CN201570994U - Power supply device for marine instruments and meters - Google Patents
Power supply device for marine instruments and meters Download PDFInfo
- Publication number
- CN201570994U CN201570994U CN2009201994428U CN200920199442U CN201570994U CN 201570994 U CN201570994 U CN 201570994U CN 2009201994428 U CN2009201994428 U CN 2009201994428U CN 200920199442 U CN200920199442 U CN 200920199442U CN 201570994 U CN201570994 U CN 201570994U
- Authority
- CN
- China
- Prior art keywords
- diode
- rectification
- metal cantilever
- mass block
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000003990 capacitor Substances 0.000 claims abstract description 11
- 238000007789 sealing Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229920006254 polymer film Polymers 0.000 claims description 11
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 10
- 230000005611 electricity Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 11
- 230000010287 polarization Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
技术领域technical field
本实用新型属于能源和电子技术领域,具体涉及一种基于海浪能捕获的海上仪器仪表供电装置。The utility model belongs to the technical field of energy and electronics, in particular to a power supply device for marine instruments and meters based on ocean wave energy capture.
背景技术Background technique
海洋对我国东部沿海地区的经济社会发展起到了巨大的作用,海洋是货物与商品输运的主要载体,也是地球物质资源最丰富的宝库,海洋资源具有很大的开发潜力。目前,我国已加大对海洋技术领域的投资与开发,但是在要求自带电源的海上装备以及仪器的供电系统中,目前研究应用的有太阳能电池、锂电子电池及燃料电池等。太阳能电池可对安放在室外的海上仪器装备实现长期供电,但是它同时也受到天气条件与应用场所的限制,锂电子电池和燃料电池的能量密度较低,电池寿命有限、需要更换并且存在污染。这就需要我们采用一种新的能量转换装置来对海上仪器仪表装置进行供电。The ocean has played a huge role in the economic and social development of my country's eastern coastal areas. The ocean is the main carrier for the transportation of goods and commodities, and it is also the treasure house of the most abundant material resources on the earth. Marine resources have great potential for development. At present, my country has increased investment and development in the field of marine technology, but in the power supply system of marine equipment and instruments that require their own power supply, solar cells, lithium-ion batteries and fuel cells are currently being researched and applied. Solar cells can provide long-term power supply for offshore instruments and equipment placed outdoors, but they are also limited by weather conditions and application sites. Lithium-ion batteries and fuel cells have low energy density, limited battery life, need to be replaced, and are polluted. This requires us to adopt a new energy conversion device to power the offshore instrumentation device.
海浪的波浪能是可用于海上仪器供电的最直接有用的能源,考虑利用海浪的波浪能进行发电具有巨大应用前景。目前,利用外界环境振动能量来进行发电的振动式发电机根据能量转换机理的不同,可以分成电磁式、静电式和压电式三类。其中振动式压电发电机具有结构简单、能量密度大、易于微型化等优点,是目前振动式微型发电机研究的热点。通过施加外力使压电体表面产生电荷,进而构造压电发电装置。根据压电体极化方向和受应力方向的关系,压电发电装置分为两种不同的模式,即压电体的极化方向和所施加的外力方向相同(d33)与压电体的极化方向和受力方向相互垂直(d31)。虽然d31模式的机电耦合系数相对较小,但在施加较小的外力时即可使薄片型压电振子获得较大的应变,故适用于振动频率较低、外力和尺寸较小的场合。然而,压电材料受其本身的材料性能的限制,发电能量较低。而铁电聚合物在室温下拥有极高的介电常数,通过调整混合物的组成,可以实现对介电性能和能量密度的调节。The wave energy of ocean waves is the most direct and useful energy source that can be used to power offshore instruments. Considering the use of wave energy of ocean waves for power generation has great application prospects. At present, the vibrating generators that use the vibration energy of the external environment to generate electricity can be divided into three types: electromagnetic, electrostatic and piezoelectric, according to the different energy conversion mechanisms. Among them, the vibrating piezoelectric generator has the advantages of simple structure, high energy density, and easy miniaturization, and is currently a hot spot in the research of vibrating micro generators. By applying an external force to generate charges on the surface of the piezoelectric body, a piezoelectric power generation device is constructed. According to the relationship between the polarization direction of the piezoelectric body and the direction of the stress, the piezoelectric power generation device is divided into two different modes, that is, the polarization direction of the piezoelectric body is the same as the direction of the applied external force (d33) and the polarity of the piezoelectric body The chemical direction and the force direction are perpendicular to each other (d31). Although the electromechanical coupling coefficient of the d31 mode is relatively small, the sheet-type piezoelectric vibrator can obtain a large strain when a small external force is applied, so it is suitable for occasions with low vibration frequency, external force and small size. However, piezoelectric materials are limited by their own material properties, and the power generation energy is low. Ferroelectric polymers have a very high dielectric constant at room temperature. By adjusting the composition of the mixture, the dielectric properties and energy density can be adjusted.
发明内容Contents of the invention
本实用新型的目的是针对现有技术的不足,提供一种海上仪器仪表供电装置。The purpose of the utility model is to provide a power supply device for marine instruments and meters aiming at the deficiencies of the prior art.
本实用新型利用海浪的波浪能所产生的随机振动,带动固定在密封球壁上的悬臂梁的上、下表面的铁电聚合物薄膜产生应变,在铁电聚合物薄膜内诱发电极化翻转,产生电场。The utility model utilizes the random vibration generated by the wave energy of the sea waves to drive the ferroelectric polymer film on the upper and lower surfaces of the cantilever beam fixed on the wall of the sealed ball to generate strain, and induce the polarization reversal in the ferroelectric polymer film. produce an electric field.
一种海上仪器仪表供电装置包括密封球、金属悬臂梁、质量块、整流电路和超级电容器。所述的密封球为密封的球形壳体,质量块设置在密封球内的球心处。密封球内沿空间三维轴向设置有六根条形片状的金属悬臂梁,每个轴向上有两根金属悬臂梁且位于质量块的两侧,每根金属悬臂梁的一端与密封球内侧壁固定连接、另一端伸入对应的开设在质量块上的矩形槽内,金属悬臂梁的厚度小于矩形槽的宽度,金属悬臂梁与矩形槽形成滑动配合。每根金属悬臂梁的上表面和下表面对应设置有能量转换装置。A power supply device for offshore instruments and meters includes a sealing ball, a metal cantilever beam, a quality block, a rectification circuit and a supercapacitor. The sealing ball is a sealed spherical shell, and the mass block is arranged at the center of the sealing ball. There are six strip-shaped metal cantilever beams arranged in the sealing ball along the three-dimensional axis of the space. There are two metal cantilever beams on each axis and located on both sides of the mass block. One end of each metal cantilever beam is connected to the inner side of the sealing ball. The wall is fixedly connected, and the other end extends into the corresponding rectangular groove provided on the mass block. The thickness of the metal cantilever beam is smaller than the width of the rectangular groove, and the metal cantilever beam forms a sliding fit with the rectangular groove. The upper surface and the lower surface of each metal cantilever beam are correspondingly provided with energy conversion devices.
所述的能量转换装置包括铁电聚合物薄膜,上金属薄膜和下金属薄膜,铁电聚合物薄膜位于上金属薄膜和下金属薄膜之间,上金属薄膜连接有上电极引出线,下金属薄膜连接有下电极引出线,上电极引出线与整流电路输入的一端连接,下电极引出线与整流电路输入的另一端连接。上电极引出线和下电极引出线的位置可以交换,也就是上电极引出线和下电极引出线分别接入整流电路的两端即可。The energy conversion device includes a ferroelectric polymer film, an upper metal film and a lower metal film, the ferroelectric polymer film is located between the upper metal film and the lower metal film, the upper metal film is connected with an upper electrode lead wire, and the lower metal film The lower electrode lead-out line is connected, the upper electrode lead-out line is connected with one end of the input of the rectification circuit, and the lower electrode lead-out line is connected with the other end of the rectification circuit input. The positions of the lead wires of the upper electrode and the lead wires of the lower electrode can be exchanged, that is, the lead wires of the upper electrode and the lead wires of the lower electrode can be respectively connected to the two ends of the rectification circuit.
所述的整流电路设置在密封球内,整流电路包括滤波电容C1、第一整流二极管D1、第二整流二极管D2、第三整流二极管D3和第四整流二极管D4。整流电路输入的一端为第一整流二极管D1负极和第二整流二极管D2正极连接端,整流电路输入的另一端为第三整流二极管D3正极和第四整流二极管D4负极连接端;第一整流二极管D1正极和第四整流二极管D4正极与滤波电容C1的一端连接,第二整流二极管D2负极和第三整流二极管D3负极与滤波电容C1的另一端连接。整流电路输出的正极端为第二整流二极管D2负极和第三整流二极管D3负极连接端,整流电路输出的负极端为第一整流二极管D1正极和第四整流二极管D4正极连接端;The rectification circuit is arranged in the sealing ball, and the rectification circuit includes a filter capacitor C1, a first rectification diode D1, a second rectification diode D2, a third rectification diode D3 and a fourth rectification diode D4. One end of the input of the rectification circuit is the connection end of the cathode of the first rectification diode D1 and the anode of the second rectification diode D2, and the other end of the input of the rectification circuit is the connection end of the anode of the third rectification diode D3 and the cathode of the fourth rectification diode D4; the first rectification diode D1 The anode and the anode of the fourth rectifier diode D4 are connected to one end of the filter capacitor C1, and the cathode of the second rectifier diode D2 and the cathode of the third rectifier diode D3 are connected to the other end of the filter capacitor C1. The positive end of the output of the rectification circuit is the connection end of the cathode of the second rectification diode D2 and the cathode of the third rectification diode D3, and the cathode end of the output of the rectification circuit is the connection end of the anode of the first rectification diode D1 and the anode of the fourth rectification diode D4;
每个能量转换装置对应一个整流电路,十二个能量转换装置对应十二个整流电路,十二个整流电路的输出并联到超级电容器C13的两端;Each energy conversion device corresponds to a rectification circuit, twelve energy conversion devices correspond to twelve rectification circuits, and the outputs of the twelve rectification circuits are connected in parallel to both ends of the supercapacitor C13;
所述的十二个整流电路的输出并联到超级电容器C13的两端为超级电容器C13的正极与十二个整流电路输出的正极端连接,负极与十二个整流电路输出的负极端连接。The outputs of the twelve rectification circuits are connected in parallel to both ends of the supercapacitor C13. The positive pole of the supercapacitor C13 is connected to the positive terminals of the outputs of the twelve rectification circuits, and the negative pole is connected to the negative terminals of the outputs of the twelve rectification circuits.
所述的密封球由两个半球拼接而成。The sealing ball is formed by splicing two hemispheres.
本实用新型将采用铁电聚合物薄膜作为机-电转换器,来实现较高的输出电压。由于本实用新型利用波浪的无休止的运动(波浪运动大的时候变形较大),可以得到持续的电量供给;本实用新型内部采用三个不同方向的悬臂梁,无论封闭球体在那个方向运动,总会有两根梁上的变形最大,因而能够最大程度的产生较大的电流同时供电稳定。The utility model adopts the ferroelectric polymer thin film as an electromechanical converter to realize higher output voltage. Because the utility model utilizes the endless movement of waves (the deformation is larger when the wave movement is large), it can obtain continuous power supply; the utility model uses three cantilever beams in different directions inside, no matter which direction the closed ball moves, There will always be the largest deformation on the two beams, so that a larger current can be generated to the greatest extent while the power supply is stable.
附图说明Description of drawings
图1为本实用新型纵截面结构示意图;Fig. 1 is a schematic view of the longitudinal section of the utility model;
图2为本实用新型横截面结构示意图;Fig. 2 is a schematic diagram of the cross-sectional structure of the utility model;
图3为本实用新型中整流电路示意图;Fig. 3 is the schematic diagram of the rectification circuit in the utility model;
图4为本实用新型中整流电路与超级电容连接示意图。Fig. 4 is a schematic diagram of the connection between the rectifier circuit and the supercapacitor in the present invention.
具体实施方式Detailed ways
如图1、图2和图3所示,一种海上仪器仪表供电装置包括密封球7、金属悬臂梁4、质量块5、整流电路8和超级电容器。所述的密封球7为密封的球形壳体,质量块5设置在密封球7内的球心处。密封球7内沿空间三维轴向设置有六根条形片状的金属悬臂梁4,每个轴向上有两根金属悬臂梁4且位于质量块5的两侧,每根金属悬臂梁4的一端与密封球7内侧壁固定连接、另一端伸入对应的开设在质量块7上的矩形槽6内,金属悬臂梁4的厚度小于矩形槽6的宽度,金属悬臂梁4与矩形槽6形成滑动配合。每根金属悬臂梁4的上表面和下表面对应设置有能量转换装置。As shown in Fig. 1, Fig. 2 and Fig. 3, a power supply device for offshore instruments and meters includes a
能量转换装置包括铁电聚合物薄膜2,上金属薄膜1和下金属薄膜3,铁电聚合物薄膜2位于上金属薄膜1和下金属薄膜3之间,上金属薄膜1连接有上电极引出线A1,下金属薄膜3连接有下电极引出线B1,上电极引出线A1与整流电路8输入的一端连接,下电极引出线B1与整流电路8输入的另一端连接。上电极引出线A1和下电极引出线B1的位置可以交换,也就是上电极引出线A1和下电极引出线B1分别接入整流电路的两端即可。图中所示的A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12均作为能量转换装置对应上电极引出线,B2、B3、B4、B5、B6、B7、B8、B9、B10、B11、B12均作为能量转换装置对应下电极引出线。The energy conversion device includes a ferroelectric polymer film 2, an upper metal film 1 and a lower metal film 3, the ferroelectric polymer film 2 is located between the upper metal film 1 and the lower metal film 3, and the upper metal film 1 is connected with an upper electrode lead wire A1, the lower metal thin film 3 is connected with the lower electrode lead wire B1, the upper electrode lead wire A1 is connected with one input end of the
整流电路8设置在密封球内,结构如图3所示:包括滤波电容C1、第一整流二极管D1、第二整流二极管D2、第三整流二极管D3和第四整流二极管D4;整流电路输入的一端为第一整流二极管D1负极和第二整流二极管D2正极连接端,整流电路输入的另一端为第三整流二极管D3正极和第四整流二极管D4负极连接端;第一整流二极管D1正极和第四整流二极管D4正极与滤波电容C1的一端连接,第二整流二极管D2负极和第三整流二极管D3负极与滤波电容C1的另一端连接;整流电路8输出的正极端为第二整流二极管D2负极和第三整流二极管D3负极连接端,整流电路8输出的负极端为第一整流二极管D1正极和第四整流二极管D4正极连接端。The
每个能量转换装置对应一个整流电路,十二个能量转换装置对应十二个整流电路,十二个整流电路的输出并联到超级电容器C13的两端。Each energy conversion device corresponds to a rectification circuit, twelve energy conversion devices correspond to twelve rectification circuits, and the outputs of the twelve rectification circuits are connected in parallel to both ends of the supercapacitor C13.
如图4所示,十二个整流电路的输出并联到超级电容器C13的两端,超级电容器C13的正极与十二个整流电路输出的正极端连接,负极与十二个整流电路输出的负极端连接。As shown in Figure 4, the outputs of the twelve rectification circuits are connected in parallel to both ends of the supercapacitor C13, the positive pole of the supercapacitor C13 is connected to the positive terminal of the output of the twelve rectification circuits, and the negative pole is connected to the negative terminal of the output of the twelve rectification circuits connect.
为了装配方便,密封球由两个半球拼接而成,拼接处可采用常规的密封措施。For the convenience of assembly, the sealing ball is spliced by two hemispheres, and conventional sealing measures can be used at the splicing.
该装置的具体工作过程是:随着海水的上下运动,质量块将受到惯性力的作用,引起金属悬臂梁变形,进而引起铁电聚合物薄膜内应变和应力的变化,由于铁电聚合物薄膜的电极化效应,铁电聚合物薄膜对将产生变化的电势差,随着外部波浪的运动,铁电聚合物薄膜表面会有峰值不定的交流电输出,输出的交变电流经过整流电路后输出到超级电容存储,超级电容存储的输出为负载供电。当环境振动频率等于密封球固有频率时,将引起密封球的共振,压电层应力和应变的变化最大,从而使该装置输出电压的变化达到最大。The specific working process of the device is: as the seawater moves up and down, the mass block will be affected by the inertial force, causing the deformation of the metal cantilever beam, which will cause the change of strain and stress in the ferroelectric polymer film. The electric polarization effect of the ferroelectric polymer film will produce a changing potential difference. With the movement of the external wave, the surface of the ferroelectric polymer film will have an alternating current output with an indeterminate peak value. The output alternating current will be output to the super Capacitive storage, the output of supercapacitor storage supplies power to the load. When the environmental vibration frequency is equal to the natural frequency of the sealing ball, it will cause the resonance of the sealing ball, and the change of the stress and strain of the piezoelectric layer is the largest, so that the change of the output voltage of the device reaches the maximum.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201994428U CN201570994U (en) | 2009-10-26 | 2009-10-26 | Power supply device for marine instruments and meters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201994428U CN201570994U (en) | 2009-10-26 | 2009-10-26 | Power supply device for marine instruments and meters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201570994U true CN201570994U (en) | 2010-09-01 |
Family
ID=42663295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201994428U Expired - Fee Related CN201570994U (en) | 2009-10-26 | 2009-10-26 | Power supply device for marine instruments and meters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201570994U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102739107A (en) * | 2012-05-22 | 2012-10-17 | 哈尔滨工业大学深圳研究生院 | Collision type piezoelectric micro-energy collector |
CN103199739A (en) * | 2013-03-12 | 2013-07-10 | 张平 | Sea wave and wind power generation device |
CN105846720A (en) * | 2016-05-13 | 2016-08-10 | 哈尔滨工程大学 | Piezoelectric transducer and piezoelectric wave energy collecting device employing same |
CN107870350A (en) * | 2017-12-13 | 2018-04-03 | 中国地质大学(武汉) | A core body of a differential double piezoelectric sheet geophone and a piezoelectric geophone |
-
2009
- 2009-10-26 CN CN2009201994428U patent/CN201570994U/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102739107A (en) * | 2012-05-22 | 2012-10-17 | 哈尔滨工业大学深圳研究生院 | Collision type piezoelectric micro-energy collector |
CN102739107B (en) * | 2012-05-22 | 2015-01-14 | 哈尔滨工业大学深圳研究生院 | Collision type piezoelectric micro-energy collector |
CN103199739A (en) * | 2013-03-12 | 2013-07-10 | 张平 | Sea wave and wind power generation device |
CN103199739B (en) * | 2013-03-12 | 2015-10-28 | 张平 | Wave and wind power generation plant |
CN105846720A (en) * | 2016-05-13 | 2016-08-10 | 哈尔滨工程大学 | Piezoelectric transducer and piezoelectric wave energy collecting device employing same |
CN105846720B (en) * | 2016-05-13 | 2017-10-03 | 哈尔滨工程大学 | A kind of piezoelectric type wave energy collection device of piezoelectric transducer and the application transducer |
CN107870350A (en) * | 2017-12-13 | 2018-04-03 | 中国地质大学(武汉) | A core body of a differential double piezoelectric sheet geophone and a piezoelectric geophone |
CN107870350B (en) * | 2017-12-13 | 2023-12-15 | 中国地质大学(武汉) | Differential dual-piezoelectric-patch geophone core and piezoelectric geophone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101783615B (en) | Offshore instrumentation power supply device based on wave energy capture | |
WO2017114499A1 (en) | Power generation system and power generation network | |
CN101938230B (en) | Wave vibration piezoelectric power generation and solar energy combined power generating method and system | |
CN110460262B (en) | Spherical electret wave power generation device | |
CN111355403B (en) | A jellyfish-shaped piezoelectric triboelectric composite marine mechanical energy harvester | |
CN108054951B (en) | A kind of energy harvesting/energy storage integrated micro-nano battery based on multi-layer structure | |
Li et al. | O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas | |
CN114400922B (en) | Solid-solid/solid-liquid contact composite friction nano generator | |
Wang et al. | Design and evaluate the wave driven-triboelectric nanogenerator under external wave parameters: Experiment and simulation | |
CN201570994U (en) | Power supply device for marine instruments and meters | |
CN105134465A (en) | Fluid dynamic energy conversion device imitating tail fin swing vibration excitation | |
CN107425748A (en) | A kind of layer flexible expandable type friction generator | |
CN111911333A (en) | A high-efficiency piezoelectric-controlled nano-friction wave energy power generation device | |
Zhang et al. | A high-output performance disc-shaped liquid-solid triboelectric nanogenerator for harvesting omnidirectional ultra-low-frequency natural vibration energy | |
CN104578908B (en) | Wind power generation device | |
Gao et al. | Self-powered buoy triboelectric nanogenerator with nanofiber-enhanced surface for efficient wave energy harvesting | |
Liu et al. | A pitched roof-like hybrid piezo/triboelectric nanogenerator with reliable supply capability for building a self-powered industrial monitoring system | |
CN114738173A (en) | A wave energy harvesting device based on triboelectric nanogenerators | |
CN105179153B (en) | The bionical swing fluid kenetic energy converting device of hydrofoil | |
CN115111107A (en) | Omnibearing wave energy power generation device based on nano generator | |
Han et al. | Investigation and characterization of an arc-shaped piezoelectric generator | |
CN115313905A (en) | A point absorption wave power generation device based on triboelectric nanogenerator | |
CN203352480U (en) | Piezoelectric power generator | |
CN209385279U (en) | A buoy-type dielectric elastomer wave energy generator | |
Liu et al. | A High DC Current Output Salt Battery Hybrid and Enhanced by TENG |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100901 Termination date: 20131026 |