CN201540945U - meander slot waveguide slow wave line - Google Patents
meander slot waveguide slow wave line Download PDFInfo
- Publication number
- CN201540945U CN201540945U CN2009200827786U CN200920082778U CN201540945U CN 201540945 U CN201540945 U CN 201540945U CN 2009200827786 U CN2009200827786 U CN 2009200827786U CN 200920082778 U CN200920082778 U CN 200920082778U CN 201540945 U CN201540945 U CN 201540945U
- Authority
- CN
- China
- Prior art keywords
- waveguide
- wave line
- wave
- slow
- slot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 50
- 238000005452 bending Methods 0.000 claims abstract description 13
- 239000011810 insulating material Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000011358 absorbing material Substances 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 abstract description 12
- 230000005684 electric field Effects 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 3
- 239000007769 metal material Substances 0.000 abstract description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 abstract 4
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Landscapes
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
技术领域technical field
本实用新型属于微波电子管技术领域,涉及微波管高频系统中的慢波线结构。The utility model belongs to the technical field of microwave electron tubes, and relates to a slow wave line structure in a microwave tube high-frequency system.
背景技术Background technique
作为微波传输线的普通波导工作到毫米波特别是短毫米波波段时,尺寸将变得十分小,极大地限制了传输微波的功率容量,同时,损耗却迅速增加,比如,在200GHz频率下,矩形波导的尺寸只有1.092mm×0.546mm,理论损耗达到9.7dB/m,实际测量达到的损耗更高达40dB/m,过模波导虽然可以增大波导尺寸,但却存在严重的高次模式竞争。When the ordinary waveguide used as a microwave transmission line works in the millimeter wave, especially the short millimeter wave band, the size will become very small, which greatly limits the power capacity of microwave transmission, and at the same time, the loss increases rapidly. For example, at 200GHz frequency, rectangular The size of the waveguide is only 1.092mm×0.546mm, the theoretical loss reaches 9.7dB/m, and the actual measured loss is as high as 40dB/m. Although the overmode waveguide can increase the size of the waveguide, there is serious high-order mode competition.
槽波导是上世纪六十年代提出的一种波导传输线,如图1所示,它由上、下金属板1、2,以及在金属板上加工出的槽3组成,槽3的形状可以是圆弧形、半圆形、矩形、椭圆形、三角形、梯形等,也可以是任意其它形状。图2给出了几种槽形的槽波导的横截面图,图中同时给出了在槽波导中基模高频场的分布,细实线为电力线,虚线为磁力线,具有其它槽形的槽波导中的基模高频场分布与此类似。可以看出这种场分布类似于圆波导中的TE11模,它具有下述特点:Slot waveguide is a waveguide transmission line proposed in the 1960s. As shown in Figure 1, it consists of upper and
(1)在槽波导横截面的中心轴线方向上,电场具有横向最大值,当电子注沿着该方向通过时,就将与场发生最有效的相互作用;(1) In the direction of the central axis of the cross-section of the slot waveguide, the electric field has a lateral maximum value, and when the electron beam passes along this direction, it will interact with the field most effectively;
(2)场主要集中在槽区,随着离开槽区距离的增加,基模场将迅速衰减,以致当离开槽区达到一定距离后,基模场实际上已趋于零。(2) The field is mainly concentrated in the groove area. As the distance away from the groove area increases, the fundamental mode field will decay rapidly, so that when the distance away from the groove area reaches a certain distance, the fundamental mode field actually tends to zero.
槽波导克服了普通波导在尺寸和损耗方面的不足,具有尺寸大、损耗小,单模工作频率范围宽等优点,因而特别适合在毫米波、亚毫米波波段应用。以圆波导和半圆形槽波导比较为例,普通圆波导的TE11模单模工作范围是2.61R<λ<3.14R,其中R为圆波导半径,λ为微波波长;而半圆形槽波导的单模工作范围可以达到0.99R<λ<3.27R,远大于圆波导的工作频率范围,其中R为半圆形槽的曲率半径;反之,若单模工作频率范围不变,则半圆形槽波导的尺寸就可以比圆波导尺寸大得多,从而功率容量也相应提高;至于损耗,同样在200GHz频率下,根据两块金属板1与2之间距离的不同,矩形槽波导的损耗大约在1~5dB/m之间,比同频率下的矩形波导的理论损耗9.7dB/m小得多。The slot waveguide overcomes the shortcomings of ordinary waveguides in size and loss, and has the advantages of large size, small loss, and wide single-mode operating frequency range, so it is especially suitable for applications in the millimeter wave and submillimeter wave bands. Taking the comparison between the circular waveguide and the semicircular groove waveguide as an example, the TE 11- mode single-mode working range of the ordinary circular waveguide is 2.61R<λ<3.14R, where R is the radius of the circular waveguide, and λ is the microwave wavelength; while the semicircular groove The single-mode operating range of the waveguide can reach 0.99R<λ<3.27R, which is much larger than the operating frequency range of the circular waveguide, where R is the radius of curvature of the semicircular groove; on the contrary, if the single-mode operating frequency range remains unchanged, the semicircular The size of the shaped slot waveguide can be much larger than that of the circular waveguide, so that the power capacity is also increased accordingly; as for the loss, at the same frequency of 200GHz, according to the difference in the distance between the two
将矩形窄波导顺其宽边(E面)来回折弯就形成曲折矩形波导(折弯时可以采用直角弯,也可以是圆弧弯)。图3给出了圆弧弯普通曲折矩形波导的立体示意图,图中4为矩形窄波导。折弯时,除了圆弧弯曲部分5外,还有一段直波导部分6,沿着普通曲折波导的中轴线开一个纵向贯通的圆形孔,相邻两个曲折单元的直波导的圆形通孔之间,采用与圆形通孔孔径尺寸相同的金属管连接,形成电子注通道7,从而构成曲折波导慢波线。图3中同时也画出了矩形波导中TE10模的电力线分布。The rectangular narrow waveguide is bent back and forth along its broad side (E surface) to form a meandering rectangular waveguide (bending can be done at right angles or arcs). Fig. 3 shows a three-dimensional schematic diagram of an ordinary meandering rectangular waveguide with an arc bend, and 4 in the figure is a rectangular narrow waveguide. When bending, in addition to the
沿通过曲折波导慢波线中轴线且平行于矩形波导窄边的中心平面剖开,可将曲折波导慢波线一分为二。因此,现有的曲折波导慢波线通常采用两块半金属板制作:其中一半金属板如图4所示(另一半金属板与它完全对称),在两块半金属板上分别加工出半曲折矩形波导和半圆金属通孔8,然后将两块金属板合在一起形成完整的曲折矩形波导慢波线(两个半圆通孔8合在一起正好形成圆形电子注通道7)。The meandering waveguide slow-wave line can be divided into two by cutting along the central plane passing through the central axis of the meandering waveguide slow-wave line and parallel to the narrow side of the rectangular waveguide. Therefore, the existing meandering waveguide slow wave line is usually made of two and a half metal plates: one half of the metal plate is shown in Figure 4 (the other half of the metal plate is completely symmetrical to it), and half metal plates are processed on the two half metal plates. A meandering rectangular waveguide and a semicircular metal through
由于矩形波导中基模TE10模的电力线垂直于波导宽边,因而矩形波导经折弯形成曲折波导后,电力线方向将正好在曲折波导的纵向(即中轴线方向),当电子注在电子注通道7中通过时,电子运动方向与高频电场方向就会相同或相反,从而相互作用而产生能量交换,在一定条件下,使微波场得到放大;同时微波沿矩形波导曲折传输,它在曲折波导纵向的相速就慢了下来。可见,曲折波导可以成为微波管中发生注-波互作用的最重要的高频系统之一-慢波线,曲折矩形波导慢波线已被广泛应用于毫米波行波管中。Since the electric force line of the fundamental mode TE 10 mode in the rectangular waveguide is perpendicular to the wide side of the waveguide, after the rectangular waveguide is bent to form a meander waveguide, the direction of the force line will be exactly in the longitudinal direction of the meander waveguide (that is, the direction of the central axis). When passing through the
由于普通矩形波导工作到毫米波特别是短毫米波波段时,尺寸将变得十分小,极大地限制了传输微波的功率容量,同时,损耗却迅速增加;因此基于矩形波导的曲折矩形波导慢波线工作到毫米波特别是短毫米波波段时,同样存在尺寸小,传输微波的功率容量低,而损耗增加的缺陷,从而极大地限制了曲折矩形波导慢波线的应用。Since the ordinary rectangular waveguide works in the millimeter wave, especially the short millimeter wave band, the size will become very small, which greatly limits the power capacity of the transmitted microwave, and at the same time, the loss increases rapidly; therefore, the meandering rectangular waveguide slow wave based on the rectangular waveguide When the line works in the millimeter wave, especially the short millimeter wave band, it also has the defects of small size, low power capacity for transmitting microwaves, and increased loss, which greatly limits the application of the meandering rectangular waveguide slow wave line.
发明内容Contents of the invention
本实用新型提供一种曲折槽波导慢波线,该慢波线与现有的曲折矩形波导慢波线相比具有宽频带、大尺寸、低损耗的特点,且具有更高的输出功率和效率;同时,该慢波线还具有结构相对简单,加工精度要求低和加工容易的特点。The utility model provides a meandering groove waveguide slow wave line, which has the characteristics of wide frequency band, large size and low loss compared with the existing meandering rectangular waveguide slow wave line, and has higher output power and efficiency ; At the same time, the slow wave line also has the characteristics of relatively simple structure, low processing precision requirements and easy processing.
本实用新型基于普通曲折矩形波导慢波线同样的原理,将槽波导中的槽来回折弯成曲折槽波导(其折弯方式同样可以是直角折弯,也可以是圆弧折弯),即形成本实用新型的曲折槽波导慢波线。The utility model is based on the same principle as the ordinary zigzag rectangular waveguide slow wave line, and bends the slots in the slot waveguide back and forth into a zigzag slot waveguide (the bending method can also be right-angle bending or arc bending), that is The meander groove waveguide slow wave line of the utility model is formed.
本实用新型技术方案如下:The technical scheme of the utility model is as follows:
曲折槽波导慢波线,如图5所示,包括相互平行的上金属板1和下金属板2,两块金属板上均具有曲折槽3,所述曲折槽3由系列弯曲槽部分9和直槽部分10首尾连接而成,且上、下金属板的曲折槽3相对于上、下金属板之间的中心平面呈镜面对称;上、下金属板之间通过位于上、下金属板长边边缘位置的支撑壁11(如图7所示)固定在一起。整个曲折槽波导相当于将槽波导中的槽来回折弯而成,其折弯方式可以是直角折弯,也可以是圆弧折弯;即曲折槽3的弯曲槽部分9可以是直角弯曲槽,也可以是圆弧弯曲槽。The meander groove waveguide slow wave line, as shown in Figure 5, includes an
上述方案中,所述曲折槽3的横截面形状可以是圆弧、半圆形、矩形、椭圆形、三角形或梯形,也可以是其它任意形状。所述支撑壁11的材料可以是金属、绝缘材料或微波吸收材料。In the above solution, the cross-sectional shape of the
需要说明的是,由于槽波导中高频场的电力线是接近平行于上、下金属板而不是垂直于金属板的,因而折弯时,不能对金属板进行折弯,而是顺槽的方向对槽进行来回折弯。曲折槽波导单片金属板的形状如图6所示,另一片的形状也完全与它对称。不难看出,如果槽是矩形的,则曲折槽波导的单片金属板与普通曲折矩形波导的一半金属板在形状上是基本相同的,只是曲折槽波导上已没有专门作为电子注通道的半圆形通孔8。这是因为,曲折槽波导的两片金属板合在一起形成完整的慢波线时,两片金属板并不接触,中间留有一定距离,这一间距自然形成了电子注的通路;而普通曲折矩形波导两半金属板合在一起时,必须完全合拢并牢固结合在一起,才能形成完整的曲折矩形波导慢波线,显然,这时在中轴线上单独开专门的圆形通孔来形成电子注通道成为必须;另外,正是由于槽波导上、下金属板之间有间隙,因而曲折矩形槽波导单片金属板上的槽深就比普通曲折矩形波导半金属板上的槽深要浅一些。It should be noted that since the electric force lines of the high-frequency field in the slot waveguide are nearly parallel to the upper and lower metal plates rather than perpendicular to the metal plates, when bending, the metal plates cannot be bent, but along the direction of the groove. The groove is bent back and forth. The shape of the meander groove waveguide monolithic metal plate is shown in Figure 6, and the shape of the other piece is also completely symmetrical to it. It is not difficult to see that if the slot is rectangular, the shape of the single metal plate of the meandering slot waveguide is basically the same as that of the half metal plate of the ordinary meandering rectangular waveguide, except that the meandering slot waveguide does not have a half plate dedicated to the electron injection channel. Circular through
本实用新型提供的曲折槽波导慢波线的优越性在于:The advantage of the meander groove waveguide slow wave line provided by the utility model lies in:
(1)槽波导所具有的宽频带、大尺寸、低损耗的特点,在曲折槽波导中同样具有;(1) The characteristics of broadband, large size, and low loss that slot waveguides have are also available in meandering slot waveguides;
(2)在曲折槽波导中基模高频场在上、下金属板之间的中心对称面上具有最强的纵向电场,因此与电子注发生互作用最有效,有利于提高微波管的输出功率和效率;(2) In the meander groove waveguide, the fundamental mode high-frequency field has the strongest longitudinal electric field on the central symmetry plane between the upper and lower metal plates, so the interaction with the electron beam is the most effective, which is conducive to improving the output of the microwave tube power and efficiency;
(3)在曲折槽波导中,分离的上下金属板之间将自然形成电子注通道,并允许带状电子注通过,比之普通曲折波导的圆孔电子注通道,在带状电子注厚度与圆柱形电子注直径相同时,带状电子注的宽度可以比厚度大很多,因此在电流密度不变的情况下,带状电子注的总电流就可以比圆柱形电子注大得多,参与互作用的电流增加,微波管的输出功率就可以增加,由此可见,曲折槽波导慢波线行波管可以比普通曲折波导行波管在相同尺寸下获得更大的输出功率。(3) In the zigzag waveguide, the separated upper and lower metal plates will naturally form electron beam channels, and allow the ribbon electron beam to pass through. When the diameter of the cylindrical electron beam is the same, the width of the ribbon-shaped electron beam can be much larger than the thickness. Therefore, under the condition of constant current density, the total current of the ribbon-shaped electron beam can be much larger than that of the cylindrical electron beam. As the applied current increases, the output power of the microwave tube can be increased. It can be seen that the meandering slot waveguide slow wave line traveling wave tube can obtain greater output power than the ordinary meandering waveguide traveling wave tube with the same size.
(4)由于在槽波导中,只要离开槽一定的距离,基模场就会衰减到很小,因此,在曲折槽波导慢波线中,我们可以很方便地在离开槽一定距离后,用支撑壁来支持固定上下金属板,如图7所示,支撑壁11可以是金属,也可以是绝缘材料或微波吸收材料,只要正确设计曲折槽波导,不论什么支撑壁都不会影响槽波导对基模的传输。(4) Since in the slot waveguide, the fundamental mode field will be attenuated to a small value as long as it is a certain distance away from the slot, therefore, in the meandering slot waveguide slow wave line, we can conveniently use The support wall is used to support and fix the upper and lower metal plates. As shown in Figure 7, the
(5)曲折槽波导由于上下金属板的分离,上下金属板合在一起时中间有间距,因此降低了对上下金属板中槽的对准要求,而普通曲折矩形波导,由于必须使两半金属板合拢成整体,这样就要求两块金属板上的波导槽必须严格对准以形成完整的内壁光滑的矩形窄波导,并且要通过特殊方法将两块半金属板紧密牢固结合在一起。因而加工精度要求十分严格,工艺相对复杂。(5) Due to the separation of the upper and lower metal plates of the zigzag slot waveguide, there is a gap between the upper and lower metal plates when they are put together, thus reducing the alignment requirements for the slots in the upper and lower metal plates. The plates are closed into a whole, which requires that the waveguide grooves on the two metal plates must be strictly aligned to form a complete rectangular narrow waveguide with smooth inner walls, and the two half-metal plates must be tightly and firmly combined by a special method. Therefore, the processing accuracy requirements are very strict, and the process is relatively complicated.
基于曲折槽波导的这些优点,因此它更适合于在毫米波、亚毫米波波段行波管中作慢波线应用。Based on these advantages of the meander groove waveguide, it is more suitable for slow wave line application in millimeter wave and submillimeter wave band traveling wave tubes.
附图说明Description of drawings
图1是槽波导示意图,图中(a)是圆弧形槽波导,(b)是矩形槽波导。Figure 1 is a schematic diagram of a slot waveguide, in which (a) is an arc-shaped slot waveguide, and (b) is a rectangular slot waveguide.
图2是四种槽形的槽波导横截面图,槽形分别为:(a)三角形,(b)梯形,(c)半圆形和(d)矩形。图中给出了槽波导中基模高频电磁场的分布,细实线为电力线,虚线为磁力线。Fig. 2 is a cross-sectional view of the slot waveguide of four slot shapes, respectively: (a) triangle, (b) trapezoid, (c) semicircle and (d) rectangle. The figure shows the distribution of the fundamental mode high-frequency electromagnetic field in the slot waveguide, the thin solid line is the electric force line, and the dotted line is the magnetic force line.
图3为普通曲折矩形波导慢波线的立体示意图,图中同时给出了矩形波导中TE10模电力线分布。Figure 3 is a three-dimensional schematic diagram of the slow wave line of a common meandering rectangular waveguide, and the distribution of TE 10 -mode electric force lines in the rectangular waveguide is also shown in the figure.
图4为实际加工出的普通曲折矩形波导慢波线的半金属板的图形。Fig. 4 is the pattern of the half-metal plate of the ordinary meandering rectangular waveguide slow wave line actually processed.
图5是本实用新型提供的曲折圆弧槽波导慢波线的立体结构示意图。Fig. 5 is a three-dimensional structural schematic diagram of the meandering arc groove waveguide slow wave line provided by the utility model.
图6为实际加工出的曲折圆弧槽波导慢波线的半金属板图形。Fig. 6 is the semi-metallic plate pattern of the waveguide slow wave line of the meandering arc groove waveguide actually processed.
图7是本实用新型提供的曲折矩形槽波导慢波线的结构示意图。Fig. 7 is a schematic structural view of the meandering rectangular slot waveguide slow wave line provided by the present invention.
以上各图中,1为槽波导上金属板;2为槽波导下金属板;3为槽波导的槽;4为形成曲折矩形波导的矩形窄波导形状及TE10模电力线分布;5为普通曲折矩形波导慢波线中的弯曲波导部分;6为普通曲折矩形波导慢波线中的直波导部分;7为电子注通道;8则是在实际加工出的曲折矩形波导一半金属板上的半圆通孔;9是曲折槽波导慢波线中的弯曲槽波导部分;10是曲折槽波导慢波线中的直槽波导部分;11是曲折槽波导慢波线上下金属板之间的支撑侧壁。In the above figures, 1 is the upper metal plate of the slot waveguide; 2 is the lower metal plate of the slot waveguide; 3 is the slot of the slot waveguide; 4 is the rectangular narrow waveguide shape and the distribution of the TE 10- mode electric force line forming the meandering rectangular waveguide; 5 is the ordinary meandering waveguide The curved waveguide part in the rectangular waveguide slow wave line; 6 is the straight waveguide part in the ordinary meandering rectangular waveguide slow wave line; 7 is the electron injection channel; Hole; 9 is the curved groove waveguide part in the meander groove waveguide slow wave line; 10 is the straight groove waveguide part in the meander groove waveguide slow wave line; 11 is the support side wall between the upper and lower metal plates of the meander groove waveguide slow wave line.
具体实施方式Detailed ways
图5和图7给出了两种曲折槽波导慢波线的具体实施方式。Fig. 5 and Fig. 7 show two specific implementations of meandering slot waveguide slow wave lines.
图5是一种曲折圆弧槽波导慢波线的立体结构示意图,这里为了能清楚看到槽的曲折情形,忽略了金属板的厚度;同时忽略了上、下金属板之间的支撑壁。Fig. 5 is a three-dimensional structural schematic diagram of a meandering arc groove waveguide slow wave line. Here, in order to clearly see the meandering situation of the groove, the thickness of the metal plate is ignored; at the same time, the support wall between the upper and lower metal plates is ignored.
图7是一种曲折矩形槽波导慢波线的立体结构示意图。上、下金属板应该是在有一定厚度的金属板上直接挖曲折槽形成,与图6类似。这里为了能清楚看到槽的曲折情形,忽略了金属板的厚度。上、下金属板之间采用了氧化铍陶瓷条11支撑。Fig. 7 is a three-dimensional structural schematic diagram of a meandering rectangular slot waveguide slow wave line. The upper and lower metal plates should be formed by directly digging zigzag grooves on the metal plate with a certain thickness, similar to Fig. 6 . Here, the thickness of the metal plate is ignored in order to clearly see the twists and turns of the groove. Beryllium oxide
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200827786U CN201540945U (en) | 2009-07-22 | 2009-07-22 | meander slot waveguide slow wave line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200827786U CN201540945U (en) | 2009-07-22 | 2009-07-22 | meander slot waveguide slow wave line |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201540945U true CN201540945U (en) | 2010-08-04 |
Family
ID=42592401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009200827786U Expired - Fee Related CN201540945U (en) | 2009-07-22 | 2009-07-22 | meander slot waveguide slow wave line |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201540945U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324363A (en) * | 2011-08-11 | 2012-01-18 | 电子科技大学 | A ridge-loaded meandering rectangular slot waveguide slow wave line |
CN103336331A (en) * | 2013-06-28 | 2013-10-02 | 上海理工大学 | Zigzag optical waveguide device |
CN104536136A (en) * | 2015-01-25 | 2015-04-22 | 上海理湃光晶技术有限公司 | Folding collimating optical waveguide device for display |
CN104536137A (en) * | 2015-01-25 | 2015-04-22 | 上海理湃光晶技术有限公司 | Folding expanding optical waveguide device for image display |
CN105513927A (en) * | 2015-12-30 | 2016-04-20 | 中国电子科技集团公司第十二研究所 | Cosine gate loading folded waveguide slow wave structure |
CN105575745A (en) * | 2015-12-30 | 2016-05-11 | 中国电子科技集团公司第十二研究所 | Half-cycle staggered cosine end plane gate slow wave structure |
-
2009
- 2009-07-22 CN CN2009200827786U patent/CN201540945U/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324363A (en) * | 2011-08-11 | 2012-01-18 | 电子科技大学 | A ridge-loaded meandering rectangular slot waveguide slow wave line |
CN103336331A (en) * | 2013-06-28 | 2013-10-02 | 上海理工大学 | Zigzag optical waveguide device |
CN103336331B (en) * | 2013-06-28 | 2015-06-17 | 上海理工大学 | Zigzag optical waveguide device |
CN104536136A (en) * | 2015-01-25 | 2015-04-22 | 上海理湃光晶技术有限公司 | Folding collimating optical waveguide device for display |
CN104536137A (en) * | 2015-01-25 | 2015-04-22 | 上海理湃光晶技术有限公司 | Folding expanding optical waveguide device for image display |
CN105513927A (en) * | 2015-12-30 | 2016-04-20 | 中国电子科技集团公司第十二研究所 | Cosine gate loading folded waveguide slow wave structure |
CN105575745A (en) * | 2015-12-30 | 2016-05-11 | 中国电子科技集团公司第十二研究所 | Half-cycle staggered cosine end plane gate slow wave structure |
CN105575745B (en) * | 2015-12-30 | 2018-06-15 | 中国电子科技集团公司第十二研究所 | A kind of half period interlocks cosine end face grid slow-wave structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101673866A (en) | Curved channel waveguide slow-wave line | |
CN101572205B (en) | A meandering double ridge waveguide slow wave line | |
CN201540945U (en) | meander slot waveguide slow wave line | |
CN102064069B (en) | Energy coupling device suitable for rectangular-crossed double-gate slow-wave structure | |
CN103632905B (en) | A kind of ladder track structure slow wave line | |
CN101651074B (en) | A ridge-loaded meander waveguide slow wave line | |
CN202352608U (en) | Tapered ridge loading serpentine waveguide slow-wave line | |
CN101615553B (en) | Rectangular-grooved loading winding waveguide slow wave line | |
CN114005717B (en) | Multi-electron beam all-metal slow wave structure suitable for traveling wave tube amplifier | |
CN103632907A (en) | Band-shaped beam klystron multi-gap cavity output apparatus | |
CN109119310A (en) | Slow-wave structure suitable for Dual-band type note backward wave oscillator | |
CN108389767A (en) | A kind of media of both sides bar cramp holds bielectron note period meandering metal line slow-wave structure | |
CN102339708B (en) | Gradient ridge loading tortuous waveguide slow wave line | |
CN202855699U (en) | Zigzag waveguide slow-wave line | |
CN102915898B (en) | Zigzag waveguide slow-wave line | |
CN102013375B (en) | Energy coupling device suitable for winding double comb teeth slow wave structure | |
CN202111052U (en) | Fluctuant waveguide slow wave structure | |
CN102324363A (en) | A ridge-loaded meandering rectangular slot waveguide slow wave line | |
CN102306599A (en) | Curved ridge-loading rectangular slot waveguide slow wave line | |
CN201838556U (en) | Energy coupling device suitable for winding double-comb slow wave structure | |
CN102054644B (en) | A waveguide slow-wave structure | |
CN201465983U (en) | A meandering waveguide slow-wave line loaded by a curved slot | |
CN116110761A (en) | A folded waveguide slow wave structure and vacuum electron tube | |
CN106207319B (en) | A kind of coaxial board plug type mode converter of the Broadband FM of high conversion efficiency | |
CN202150438U (en) | Ridge loading curved rectangular groove waveguide slow wave line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100804 Termination date: 20130722 |