CN201473329U - Polysilicon Reduction Furnace - Google Patents
Polysilicon Reduction Furnace Download PDFInfo
- Publication number
- CN201473329U CN201473329U CN2009202308365U CN200920230836U CN201473329U CN 201473329 U CN201473329 U CN 201473329U CN 2009202308365 U CN2009202308365 U CN 2009202308365U CN 200920230836 U CN200920230836 U CN 200920230836U CN 201473329 U CN201473329 U CN 201473329U
- Authority
- CN
- China
- Prior art keywords
- chassis
- circle
- furnace
- electrodes
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Silicon Compounds (AREA)
Abstract
本实用新型公开了一种多晶硅还原炉,包括炉体,设置在炉体下方的底盘,设置在底盘上的电极和与电极对应安装的硅芯,设置在底盘下方的进气管和出气管,进气管与安装在底盘上的喷口连通,出气管与安装在底盘上的尾气出口连通,炉体内设有夹套,夹套分别与炉体冷却水进水管和炉体冷却水出水管相连通,底盘上设有底盘冷却水进水管和底盘冷却水出水管,其特征在于所述电极为48对,即96个,均匀分布在底盘上。本实用新型的多晶硅还原炉通过对底盘上的电极、喷口数量和分布的改进,使得每批次产量较现有的还原炉有大幅度的提升,每公斤多晶硅的电耗相应降低,多晶硅的综合生产成本和能耗也相应降低。
The utility model discloses a polysilicon reduction furnace, which comprises a furnace body, a chassis arranged under the furnace body, an electrode arranged on the chassis and a silicon core corresponding to the electrodes, an air inlet pipe and an air outlet pipe arranged under the chassis, and The gas pipe is connected with the nozzle installed on the chassis, and the gas outlet pipe is connected with the exhaust gas outlet installed on the chassis. There is a jacket in the furnace body, and the jacket is respectively connected with the furnace cooling water inlet pipe and the furnace cooling water outlet pipe. The chassis A chassis cooling water inlet pipe and a chassis cooling water outlet pipe are arranged on the top, and the characteristic is that the electrodes are 48 pairs, that is, 96, and are evenly distributed on the chassis. The polysilicon reduction furnace of the utility model improves the number and distribution of electrodes and nozzles on the chassis, so that the output of each batch is greatly improved compared with the existing reduction furnace, and the power consumption per kilogram of polysilicon is correspondingly reduced. Production costs and energy consumption are also reduced accordingly.
Description
技术领域technical field
本实用新型涉及一种多晶硅还原炉,主要是用三氯氢硅和氢气在加热的硅芯上进行化学气相沉积生产多晶硅的还原炉。The utility model relates to a polysilicon reduction furnace, which mainly uses trichlorosilane and hydrogen to carry out chemical vapor deposition on a heated silicon core to produce polysilicon.
背景技术Background technique
目前,国内外生产多晶硅的主要工艺技术是“改良西门子法”:用氯气和氢气合成氯化氢,氯化氢和硅粉在一定温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的高纯三氯氢硅与氢气按比例混合后通入多晶硅还原炉内,在一定的温度和压力下,在通电高温硅芯上进行沉积反应生成多晶硅,反应温度控制在1080摄氏度左右,最终生成棒状多晶硅产品,同时生成四氯化硅、二氯二氢硅、氯化氢等副产物。At present, the main process technology for producing polysilicon at home and abroad is the "improved Siemens method": use chlorine and hydrogen to synthesize hydrogen chloride, hydrogen chloride and silicon powder to synthesize trichlorosilane at a certain temperature, and then separate and rectify trichlorosilane to purify. The purified high-purity trichlorosilane and hydrogen are mixed in proportion and passed into the polysilicon reduction furnace. Under a certain temperature and pressure, the deposition reaction is carried out on the energized high-temperature silicon core to form polysilicon. The reaction temperature is controlled at about 1080 degrees Celsius. Finally, rod-shaped polysilicon products are generated, and by-products such as silicon tetrachloride, dichlorodihydrosilane, and hydrogen chloride are generated at the same time.
多晶硅还原炉是“改良西门子法”生产多晶硅的主要设备,由底盘、含夹套冷却水的钟罩式双层炉体、电极、视镜孔、混和气进气管、混和气尾气出气管、炉体冷却水进水管、炉体冷却水出水管、底盘冷却水进水管、底盘冷却水出水管及其他附属部件组成,炉体主体采用不锈钢材质,以减少设备材质对产品的污染。The polysilicon reduction furnace is the main equipment for the production of polysilicon by the "improved Siemens method". Body cooling water inlet pipe, furnace cooling water outlet pipe, chassis cooling water inlet pipe, chassis cooling water outlet pipe and other accessories. The main body of the furnace body is made of stainless steel to reduce the pollution of equipment materials to the product.
实用新型内容Utility model content
本实用新型所要解决的技术问题是提供一种多晶硅还原炉,该多晶硅还原炉单炉产量比现有的多晶硅还原炉单炉产量有大幅度提升。The technical problem to be solved by the utility model is to provide a polysilicon reduction furnace, the single furnace output of the polysilicon reduction furnace is greatly improved compared with the existing polysilicon reduction furnace single furnace output.
一种多晶硅还原炉,包括炉体,设置在炉体下方的底盘,设置在底盘上的电极和与电极对应安装的硅芯,设置在底盘下方的进气管和出气管,进气管与安装在底盘上的喷口连通,出气管与安装在底盘上的尾气出口连通,炉体内设有夹套,夹套分别与炉体冷却水进水管和炉体冷却水出水管相连通,底盘上设有底盘冷却水进水管和底盘冷却水出水管,其特征在于所述电极为48对,即96个,均匀分布在底盘上。A polysilicon reduction furnace, comprising a furnace body, a chassis arranged under the furnace body, electrodes arranged on the chassis and silicon cores installed correspondingly to the electrodes, an air inlet pipe and an air outlet pipe arranged under the chassis, the air inlet pipe and the The nozzle on the top is connected, and the gas outlet pipe is connected with the exhaust gas outlet installed on the chassis. There is a jacket in the furnace body, and the jacket is respectively connected with the furnace cooling water inlet pipe and the furnace cooling water outlet pipe. The water inlet pipe and the chassis cooling water outlet pipe are characterized in that the electrodes are 48 pairs, that is, 96, and are evenly distributed on the chassis.
其中,所述电极在底盘上沿5个圆周均匀分布,由内圆周向外圆周,电极的数量分别为第一圈6个、第二圈12个、第三圈18个、第四圈24个、第五圈36个。Wherein, the electrodes are evenly distributed along 5 circles on the chassis, from the inner circle to the outer circle, the number of electrodes is 6 in the first circle, 12 in the second circle, 18 in the third circle, and 24 in the fourth circle. , 36 in the fifth circle.
其中,所述的喷口为66个,均匀分布在底盘上;所述的尾气出口为1个,设置在底盘中心。Wherein, there are 66 nozzles, which are evenly distributed on the chassis; and there is one exhaust outlet, which is arranged in the center of the chassis.
其中,所述的喷口在底盘上沿5个圆周均匀分布,最内喷口圆周设置在尾气出口与最内电极圆周之间,其它喷口圆周设置在相邻两个电极圆周之间,由内圆周向外圆周,喷口的数量分别为第一圈3个、第二圈6个、第三圈12个、第四圈18个、第五圈27个。Wherein, the nozzles are evenly distributed along five circumferences on the chassis, the innermost nozzle circumference is set between the exhaust gas outlet and the innermost electrode circumference, and the other nozzle circumferences are set between two adjacent electrode circumferences, from the inner circumference to The number of nozzles on the outer circumference is 3 in the first circle, 6 in the second circle, 12 in the third circle, 18 in the fourth circle, and 27 in the fifth circle.
其中,每一圈电极,相邻的两个电极通过电极板连接,并通过设置在电极上的硅芯分别串接组成电路回路。Wherein, for each circle of electrodes, two adjacent electrodes are connected through electrode plates, and are respectively connected in series through silicon cores arranged on the electrodes to form a circuit loop.
有益效果:本实用新型的多晶硅还原炉通过对底盘上的电极、喷口数量和分布的改进,使得每批次产量较现有24对棒还原炉提高80~120%,每公斤多晶硅的电耗相应降低20~50%,多晶硅的综合生产成本和能耗也相应降低。Beneficial effects: the polysilicon reduction furnace of the utility model improves the number and distribution of electrodes and nozzles on the chassis, so that the output of each batch is increased by 80-120% compared with the existing 24 pairs of rod reduction furnaces, and the power consumption per kilogram of polysilicon is corresponding If it is reduced by 20-50%, the comprehensive production cost and energy consumption of polysilicon will also be reduced accordingly.
附图说明Description of drawings
以下附图结合说明书具体的说明本实用新型,但本实用新型不限定于这些附图中所展示出的具体形态。The following drawings illustrate the utility model in detail in conjunction with the description, but the utility model is not limited to the specific forms shown in these drawings.
图1为本实用新型的多晶硅还原炉的结构示意图。Fig. 1 is a structural schematic diagram of a polysilicon reduction furnace of the present invention.
图2为本实用新型的多晶硅还原炉的底盘俯视图。Fig. 2 is a top view of the chassis of the polysilicon reduction furnace of the present invention.
具体实施方式Detailed ways
本实用新型涉及的多晶硅还原炉结构示意图如图1所示,1为炉体(含夹套冷却水,钟罩式,双层),2为视镜孔,3为底盘,4为底盘冷却水进水管,5为底盘冷却水出水管,6为进气管,7为喷口,8为出气管,9为炉体冷却水进水管,10为炉体冷却水出水管,11为石墨夹头(用于连接硅芯与电极),12为电极,13为硅芯,14为夹套冷却水导流板,15为尾气出口。The polysilicon reduction furnace structure schematic diagram that the utility model relates to is shown in Figure 1, and 1 is furnace body (including jacket cooling water, bell jar type, double-layer), 2 is mirror hole, 3 is chassis, 4 is chassis cooling water Water inlet pipe, 5 is the chassis cooling water outlet pipe, 6 is the air inlet pipe, 7 is the spout, 8 is the air outlet pipe, 9 is the furnace body cooling water inlet pipe, 10 is the furnace body cooling water outlet pipe, and 11 is the graphite chuck (with 12 is an electrode, 13 is a silicon core, 14 is a jacket cooling water deflector, and 15 is an exhaust gas outlet.
本实用新型的多晶硅还原炉,包括炉体1,炉体1主体采用不锈钢材质,以减少设备材质对产品的污染。炉体1下方设有底盘3,底盘3上设有电极12和与电极12对应安装的硅芯13,底盘3下方设有进气管6和出气管8,进气管6与安装在底盘3上的喷口7连通,出气管8与安装在底盘3上的尾气出口15连通,炉体1内设有夹套,夹套分别与炉体冷却水进水管9和炉体冷却水出水管10相连通,底盘3上设有底盘冷却水进水管4和底盘冷却水出水管5。所述电极12为48对,即96个,底盘3上沿5个圆周均匀分布,由内圆周向外圆周,电极的数量分别为第一圈6个、第二圈12个、第三圈18个、第四圈24个、第五圈36个(见图2)。每一圈电极,相邻的两个电极12通过电极板连接,并通过设置在电极12上的硅芯13分别串接组成电路回路。所述的尾气出口15为1个,设置在底盘3中心。所述的喷口7为66个,底盘3上沿5个圆周均匀分布,最内喷口圆周设置在尾气出口15与最内电极圆周之间,其它喷口圆周设置在相邻两个电极圆周之间,由内圆周向外圆周,喷口的数量分别为第一圈3个、第二圈6个、第三圈12个、第四圈18个、第五圈27个(见图2)。The polysilicon reduction furnace of the present utility model comprises a furnace body 1, and the main body of the furnace body 1 is made of stainless steel to reduce the pollution of equipment materials to products. A
准备生产时,在底盘3上的各对电极12上安装好连接硅芯13与电极12的石墨夹头11并安装好硅芯13,再把含夹套冷却水的钟罩式双层炉体1吊装安装在底盘3上,进行气密性试验,确认不漏气后,通过电极12对硅芯13通电加热,控制温度至1080摄氏度,通过进气管喷口7喷出的三氯氢硅和氢气的混合气在高温通电硅芯13上进行化学气相沉积反应,最终生成棒状多晶硅产品。When preparing for production, install the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202308365U CN201473329U (en) | 2009-09-08 | 2009-09-08 | Polysilicon Reduction Furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202308365U CN201473329U (en) | 2009-09-08 | 2009-09-08 | Polysilicon Reduction Furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201473329U true CN201473329U (en) | 2010-05-19 |
Family
ID=42409574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009202308365U Ceased CN201473329U (en) | 2009-09-08 | 2009-09-08 | Polysilicon Reduction Furnace |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201473329U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101870471A (en) * | 2010-07-08 | 2010-10-27 | 江苏中能硅业科技发展有限公司 | Efficient Large Polysilicon Reduction Furnace |
CN102320604A (en) * | 2011-07-01 | 2012-01-18 | 中国恩菲工程技术有限公司 | Polysilicon reducing furnace with novel nozzles |
CN102351191A (en) * | 2011-07-01 | 2012-02-15 | 中国恩菲工程技术有限公司 | Polysilicon reducing furnace possessing novel nozzles |
CN102392299A (en) * | 2011-11-28 | 2012-03-28 | 江苏双良锅炉有限公司 | Polycrystalline silicon reduction furnace with 48 pairs of rods |
CN102674361A (en) * | 2012-05-09 | 2012-09-19 | 天津大学 | Top structure of inner container of energy-saving type polysilicon reduction furnace and implementation method for top structure |
CN109682221A (en) * | 2018-12-18 | 2019-04-26 | 中国恩菲工程技术有限公司 | Heating plant and heat-exchange system |
-
2009
- 2009-09-08 CN CN2009202308365U patent/CN201473329U/en not_active Ceased
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101870471A (en) * | 2010-07-08 | 2010-10-27 | 江苏中能硅业科技发展有限公司 | Efficient Large Polysilicon Reduction Furnace |
CN101870471B (en) * | 2010-07-08 | 2012-06-13 | 江苏中能硅业科技发展有限公司 | High-efficiency large polycrystalline silicon reducing furnace |
CN102320604A (en) * | 2011-07-01 | 2012-01-18 | 中国恩菲工程技术有限公司 | Polysilicon reducing furnace with novel nozzles |
CN102351191A (en) * | 2011-07-01 | 2012-02-15 | 中国恩菲工程技术有限公司 | Polysilicon reducing furnace possessing novel nozzles |
CN102392299A (en) * | 2011-11-28 | 2012-03-28 | 江苏双良锅炉有限公司 | Polycrystalline silicon reduction furnace with 48 pairs of rods |
CN102674361A (en) * | 2012-05-09 | 2012-09-19 | 天津大学 | Top structure of inner container of energy-saving type polysilicon reduction furnace and implementation method for top structure |
CN102674361B (en) * | 2012-05-09 | 2014-04-02 | 天津大学 | Top structure of inner container of energy-saving type polysilicon reduction furnace and implementation method for top structure |
CN109682221A (en) * | 2018-12-18 | 2019-04-26 | 中国恩菲工程技术有限公司 | Heating plant and heat-exchange system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201473329U (en) | Polysilicon Reduction Furnace | |
CN201105995Y (en) | Improved Polysilicon Reduction Furnace | |
CN101476153B (en) | Reduction production process for polysilicon and reducing furnace for production thereof | |
CN201512418U (en) | Polysilicon Reduction Furnace | |
CN201793375U (en) | Reduction furnace for producing polysilicon | |
CN201125165Y (en) | Polysilicon Reduction Furnace with Double Cooling System | |
CN201722157U (en) | Silicon tetrachloride hydrogenation furnace | |
CN103172381B (en) | Preparation method and applications of cold-wall fluidized bed | |
CN201162065Y (en) | New Polysilicon Reduction Furnace | |
CN201746331U (en) | Polysilicon reducing surface | |
CN102267698B (en) | Arrangement mode and connection method of novel polysilicon reduction furnace with 18 pairs of rods | |
CN101973551B (en) | A polysilicon reduction furnace | |
CN201214631Y (en) | Polysilicon Reduction Furnace | |
CN201105991Y (en) | Polycrystalline silicon hydrogen reduction furnace | |
CN203333311U (en) | Plasma device for preparing nanometer silicon powder | |
CN201525754U (en) | Polysilicon Experimental Reduction Furnace | |
CN205687570U (en) | A kind of 45 to rod compact polycrystalline silicon reducing furnace | |
CN102259862B (en) | Novel polysilicon reduction furnace with 42 rods and connection mode | |
CN201648567U (en) | A polysilicon decomposition furnace | |
CN103880009B (en) | A polysilicon reduction furnace in which the tail gas outlet is connected to an inner extension pipe and its connection method | |
CN201162066Y (en) | Energy-saving polysilicon reduction furnace | |
CN201834768U (en) | Polycrystalline silicon production device | |
CN101830467A (en) | Polycrystalline silicon decomposing furnace | |
CN205687571U (en) | A kind of polycrystalline silicon reducing furnace of band internal cooling system | |
CN201372207Y (en) | New type trichlorosilane synthesis reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
IW01 | Full invalidation of patent right |
Decision date of declaring invalidation: 20150601 Decision number of declaring invalidation: 26049 Granted publication date: 20100519 |