CN201454978U - Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil - Google Patents
Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil Download PDFInfo
- Publication number
- CN201454978U CN201454978U CN2009200735835U CN200920073583U CN201454978U CN 201454978 U CN201454978 U CN 201454978U CN 2009200735835 U CN2009200735835 U CN 2009200735835U CN 200920073583 U CN200920073583 U CN 200920073583U CN 201454978 U CN201454978 U CN 201454978U
- Authority
- CN
- China
- Prior art keywords
- heavy metal
- soil
- area
- cathode
- porous medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002689 soil Substances 0.000 title claims abstract description 50
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 35
- 150000001875 compounds Chemical class 0.000 title claims 5
- 238000001179 sorption measurement Methods 0.000 title abstract description 25
- 238000005067 remediation Methods 0.000 title abstract description 6
- 230000005520 electrodynamics Effects 0.000 title description 4
- 239000000463 material Substances 0.000 claims abstract description 23
- 241000196324 Embryophyta Species 0.000 claims abstract description 19
- 239000007853 buffer solution Substances 0.000 claims abstract description 13
- 238000010521 absorption reaction Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 4
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 4
- 241001330002 Bambuseae Species 0.000 claims description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 4
- 239000011425 bamboo Substances 0.000 claims description 4
- 239000003610 charcoal Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 5
- 238000003795 desorption Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 abstract description 5
- 238000009825 accumulation Methods 0.000 abstract description 3
- 230000000813 microbial effect Effects 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract 2
- 238000005192 partition Methods 0.000 abstract 2
- 150000002500 ions Chemical class 0.000 description 7
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 Hydrogen ions Chemical class 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 238000009393 electroremediation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000005838 radical anions Chemical class 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及修复重金属土壤装置,特别涉及的是一种电动力吸附植物复合修复重金属污染土壤装置。The utility model relates to a device for repairing heavy metal soil, in particular to an electrodynamic adsorption plant composite repair device for heavy metal polluted soil.
背景技术Background technique
土壤中的重金属污染源于采矿、冶炼、城市垃圾、化肥杂质和污水沉积物等,重金属在土壤中的高富集直接影响谷物的产量并使其品质下降,即使重金属富集程度不高,亦可能阻碍土壤中微生物群体的多样性和活力,从而严重影响作为营养循环和持续农业基础的土壤的生物量和肥力。因此,去除土壤和水体中的重金属已经成为了人类亟须解决的问题。Heavy metal pollution in soil comes from mining, smelting, urban waste, fertilizer impurities and sewage sediments, etc. The high accumulation of heavy metals in soil directly affects the yield of grains and reduces their quality. Even if the concentration of heavy metals is not high, it may Hinders the diversity and viability of microbial populations in soils, thereby severely affecting the biomass and fertility of soils that are the basis for nutrient cycling and sustainable agriculture. Therefore, the removal of heavy metals in soil and water has become an urgent problem for human beings.
直接电动原位去除重金属由于在阳极和阴极上生成的H+和OH-使得阳极的pH降至2以下,阴极pH升至12以上,H+和OH-分别在电场作用下向阴极和阳极迁移扩散影响整个土壤体系的化学过程。氢离子有利于物质从土壤表面的解吸附和土壤中盐类物质的溶解,并降低土壤电渗透系数和zeta电位,使得电渗流减弱;氢氧根离子迁移过程中会导致金属离子的提前沉淀进而降低去除效率;一些两性金属的阳离子也可能在碱性环境下变为酸根阴离子而改变迁移方向;沉淀的形成堵塞土壤空隙同时使得电压降的增加,能耗增加。已有的研究结果表明,直接的原位去除方法由于不能很好地控制土壤体系pH的变化,处理效率往往较低。pH变化影响土壤中离子的吸附与解吸、沉淀及溶解并影响电渗析速度,这会对土壤中重金属的存在形态和迁移特征产生重大影响,因而如何控制土壤PH是土壤电动修复的关键问题之一。Direct electrokinetic in-situ removal of heavy metals. Due to the H + and OH - generated on the anode and cathode, the pH of the anode drops below 2, and the pH of the cathode rises above 12. H + and OH - migrate to the cathode and anode under the action of an electric field, respectively. Diffusion affects chemical processes throughout the soil system. Hydrogen ions are conducive to the desorption of substances from the soil surface and the dissolution of salts in the soil, and reduce the soil electroosmotic coefficient and zeta potential, which weakens the electroosmotic flow; the migration of hydroxide ions will lead to the early precipitation of metal ions and further Reduce the removal efficiency; the cations of some amphoteric metals may also become acid radical anions in an alkaline environment and change the migration direction; the formation of precipitates blocks the soil voids and increases the voltage drop and energy consumption. Existing research results have shown that the direct in-situ removal method often has low treatment efficiency because it cannot well control the pH change of the soil system. The change of pH affects the adsorption and desorption, precipitation and dissolution of ions in the soil and affects the speed of electrodialysis, which will have a significant impact on the existence and migration characteristics of heavy metals in the soil. Therefore, how to control soil pH is one of the key issues in soil electrokinetic remediation. .
实用新型内容Utility model content
本实用新型克服了上述的缺点,而提供一种能够改变土壤中的氧化还原电位、pH值等理化性质,加快土壤固体上重金属的解吸,并且提高土壤溶液中重金属的浓度,从而强化植物的吸收和积累的电动吸附植物复合修复重金属污染土壤装置。The utility model overcomes the above-mentioned shortcomings, and provides a method that can change the physical and chemical properties of the soil such as oxidation-reduction potential and pH value, accelerate the desorption of heavy metals on soil solids, and increase the concentration of heavy metals in the soil solution, thereby strengthening the absorption of plants. A device for remediating heavy metal-contaminated soil compounded with accumulated electrokinetic adsorption plants.
为了实现上述目的,本实用新型是通过如下的技术方案来实现:In order to achieve the above object, the utility model is realized through the following technical solutions:
一种电动力吸附植物复合修复重金属污染土壤装置,它包括阳极区、阴极区和电源,其特征在于,它还包括多孔介质隔板和多孔介质吸附材料,所述阳极区和阴极区内分别装入阳极缓冲溶液和阴极缓冲溶液,并分别与电源两极相接;所述阳极区与阴极区的相对面以及阴极区与阳极区的相对面上分别依次由里向外设置多孔介质隔板和多孔介质吸附材料层,在两多孔介质吸附材料层之间形成用于修复栽种植物根系的重金属污染土壤的修复区;所述阳极区和阴极区内的阳极缓冲溶液和阴极缓冲溶液分别通过多孔介质隔板与多孔介质吸附材料相接触。An electrodynamic adsorption plant composite restoration device for heavy metal contaminated soil, which includes an anode area, a cathode area and a power supply, and is characterized in that it also includes a porous medium separator and a porous medium adsorption material, and the anode area and the cathode area are respectively installed into the anode buffer solution and the cathode buffer solution, and respectively connected to the two poles of the power supply; the opposite surfaces of the anode area and the cathode area and the opposite surfaces of the cathode area and the anode area are respectively arranged in sequence from the inside to the outside. Porous medium separators and porous A medium adsorption material layer, forming a restoration area for repairing the heavy metal contaminated soil of plant roots between the two porous medium adsorption material layers; the anode buffer solution and the cathode buffer solution in the anode area and the cathode area are separated by porous media. The plates are in contact with the porous media adsorption material.
所述电源为极性可转换电源,使阳极区和阴极区的极性采用切换电场极性的方法连接。The power supply is a polarity switchable power supply, so that the polarity of the anode area and the cathode area are connected by switching the polarity of the electric field.
所述多孔介质隔板的孔隙为0.01mm-1mm。The pores of the porous medium separator are 0.01mm-1mm.
所述多孔介质吸附材料层为竹炭或活性炭。The porous medium adsorption material layer is bamboo charcoal or activated carbon.
本实用新型在电压动力作用下,电极附近土壤溶液发生电化学元素反应,改变土壤中的氧化还原电位、pH值等理化性质,加快土壤固体上重金属的解吸,提高土壤溶液中重金属的浓度,从而强化植物的吸收、积累,使土壤中微生物群体的多样性和活力大大增加,增加了作物的产量。Under the action of voltage dynamics, the utility model reacts with electrochemical elements in the soil solution near the electrode, changes the physical and chemical properties such as oxidation-reduction potential and pH value in the soil, accelerates the desorption of heavy metals on soil solids, and increases the concentration of heavy metals in the soil solution, thereby Strengthen the absorption and accumulation of plants, greatly increase the diversity and vitality of the microbial population in the soil, and increase the yield of crops.
附图说明Description of drawings
下面结合附图和具体实施方式来详细说明本实用新型;The utility model is described in detail below in conjunction with accompanying drawing and specific embodiment;
图1为本实用新型修复重金属污染土壤的示意图。Figure 1 is a schematic diagram of the utility model for remediating heavy metal-contaminated soil.
具体实施方式Detailed ways
为使本实用新型实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本实用新型。In order to make the technical means, creative features, goals and effects achieved by the utility model easy to understand, the utility model will be further elaborated below in conjunction with specific embodiments.
参考图1:一种电动力吸附植物复合修复重金属污染土壤装置,它包括阳极区3、阴极区4和电源5,它还包括多孔介质隔板1、1a和多孔介质吸附材料2、2a,阳极区3和阴极区4内分别装入阳极缓冲溶液和阴极缓冲溶液,在阳极区3内插有阳极6,在阴极区4内插有阴极7,阳极6和阴极7分别与电源5两极相接,电源5为极性可转换电源,使阳极区3和阴极区4的极性采用切换电场极性的方法连接;在阳极区3与阴极区4的相对那个面11上由里向外依次设置多孔介质隔板1和多孔介质吸附材料层2,在阴极区4与阳极区3的相对那个面12上由里向外依次设置多孔介质隔板1a和多孔介质吸附材料层2a,在多孔介质吸附材料层2、2a之间形成用于修复栽种植物根系8的重金属污染土壤的修复区9;阳极区3和阴极区4内的阳极缓冲溶液和阴极缓冲溶液分别通过多孔介质隔板1、1a与多孔介质吸附材料层2、2a相接触,多孔介质隔板1、1a的孔隙为0.01mm-1mm,多孔介质吸附材料层2、2a为竹炭或活性炭。Referring to Fig. 1: An electrodynamic adsorption plant composite repair heavy metal contaminated soil device, it includes an
本实用新型采用石墨分别作为阳极6和阴极7与电源5的两端相连接,置入阳极区3和阴极区4内,在阳极区3及阴极区4内分别储存阳极缓冲液和阴极缓冲液,本实用新型如图1所示,由阳极区3到阴极区4,依次设置多孔介质隔板1、吸附金属的多孔介质吸附材料层2、需处理的重金属污染土壤的修复区9、栽种植物根系8、吸附重金属的多孔介质吸附材料层2a和多孔介质隔板1a。The utility model uses graphite as the
在电动力的作用下,土壤中的重金属离子由阴极区4向阳极区3迁移,使重金属离子积聚在土壤表面和栽种植物根系附近以便修复,防止其进入土壤深处,采用多孔介质隔板1、1a进一步的防止了污染重金属离子扩散,为了防止阴极区4pH值上升和阳极区3pH值下降,所以在阳极区3和阴极区4分别利用了阳极缓冲液和阴极缓冲液来进行循环调节。在电动修复过程中会发生下列电极反应:Under the action of electromotive force, the heavy metal ions in the soil migrate from the
阳极:2H2O-4e-→O2+4H+E0=-1.23VAnode: 2H 2 O-4e-→O 2 +4H+E0=-1.23V
阴极:2H2O+2e-→H2+2OH-E0=-0.83VCathode: 2H 2 O+2e-→H 2 +2OH-E0=-0.83V
由于水的电解作用导致电极附近pH值发生变化,其中阳极6产生H+而使得阳极区3呈现酸性(pH值可能降至2左右),阴极7产生OH-而使得阴极区4呈现碱性(pH值可能升至12左右),同时带正电的H+向阴极区4运动,带负电的OH-向阳极区3运动,分别形成了酸性迁移带和碱性迁移带.Due to the electrolysis of water, the pH value near the electrode changes, wherein the
将本实用新型阳极区3和阴极区4插入受重金属污染的土壤或地下水区域,在电动力的作用下,土壤中的重金属离子如铜离子Cu2+、锌离子Zn2+和砷离子As3+等重金属由阴极区4向阳极区3迁移,在多孔介质吸附材料层2如竹碳吸附区,各重金属离子被吸附而去除;采用多孔介质隔板1、1a的作用是通过多孔介质隔板1、1a,阳极缓冲稀溶液和阴极缓冲稀溶液分别与多孔介质吸附材料层2、2a接触,调节多孔介质吸附材料层2、2a的pH值,防止阴极区4pH值的上升和阳极区3pH值的下降,并可以隔离重金属离子吸附到电极上,所述多孔介质隔板的孔隙大小为0.01mm至1mm之间,一般取0.07mm为最佳。另外采用切换电场极性的方法达到了调节土壤pH值的目的。在电动力的作用下,离子积聚在土壤表面和修复植物根系附近以便修复。Insert the
以上显示和描述了本实用新型的基本原理和主要特征和本实用新型的优点。本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内。本实用新型要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present utility model and the advantages of the present utility model have been shown and described above. Those skilled in the art should understand that the utility model is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the utility model. Without departing from the spirit and scope of the utility model, the utility model The new model also has various changes and improvements, and these changes and improvements all fall within the scope of the claimed utility model. The scope of protection required by the utility model is defined by the appended claims and their equivalents.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200735835U CN201454978U (en) | 2009-06-09 | 2009-06-09 | Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200735835U CN201454978U (en) | 2009-06-09 | 2009-06-09 | Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201454978U true CN201454978U (en) | 2010-05-12 |
Family
ID=42382327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009200735835U Expired - Fee Related CN201454978U (en) | 2009-06-09 | 2009-06-09 | Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201454978U (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102806228A (en) * | 2012-08-08 | 2012-12-05 | 重庆大学 | A device and method for ex-situ electrical restoration of polluted soil |
CN103480645A (en) * | 2013-09-30 | 2014-01-01 | 苏州绿地土壤修复科技有限公司 | Injection device for in situ chemical soil remediation and distributing system thereof |
CN103736719A (en) * | 2014-01-02 | 2014-04-23 | 重庆绿色智能技术研究院 | In-situ self-sustaining contaminated soil restoring device based on plant bionics and method |
CN103975788A (en) * | 2014-04-24 | 2014-08-13 | 浙江工商大学 | Microbial fuel cell bonsai and method for in-situ hexavalent chromium-polluted soil remediation |
CN104368592A (en) * | 2014-09-01 | 2015-02-25 | 华北电力大学 | Periodic composite repair method of arsenic polluted soil |
CN104785505A (en) * | 2015-04-29 | 2015-07-22 | 重庆大学 | Method for removing heavy metals in municipal solid waste incineration fly ash |
CN105312308A (en) * | 2014-07-24 | 2016-02-10 | 台境企业股份有限公司 | Electrodynamic Soil Conditioning Device |
CN107900092A (en) * | 2017-10-30 | 2018-04-13 | 常州大学 | A kind of arid area lead cadmium pollution soil repair system |
CN108262353A (en) * | 2018-03-31 | 2018-07-10 | 天津大学 | A kind of plant biological electrochemical in-situ restorative procedure by plant driving mass transfer |
CN110695079A (en) * | 2019-10-23 | 2020-01-17 | 常熟理工学院 | Method for removing mercury in soil polluted by bottom mercury by using electric restoration coupled plant extraction technology |
CN116060436A (en) * | 2023-03-23 | 2023-05-05 | 哈尔滨工业大学 | Electroosmosis-wicking fabric-plant combined treatment system and method for heavy metal contaminated soil |
-
2009
- 2009-06-09 CN CN2009200735835U patent/CN201454978U/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102806228A (en) * | 2012-08-08 | 2012-12-05 | 重庆大学 | A device and method for ex-situ electrical restoration of polluted soil |
CN103480645A (en) * | 2013-09-30 | 2014-01-01 | 苏州绿地土壤修复科技有限公司 | Injection device for in situ chemical soil remediation and distributing system thereof |
CN103736719A (en) * | 2014-01-02 | 2014-04-23 | 重庆绿色智能技术研究院 | In-situ self-sustaining contaminated soil restoring device based on plant bionics and method |
CN103736719B (en) * | 2014-01-02 | 2016-09-07 | 中国科学院重庆绿色智能技术研究院 | The most self-holding prosthetic device of contaminated soil based on plant bionic and method |
CN103975788A (en) * | 2014-04-24 | 2014-08-13 | 浙江工商大学 | Microbial fuel cell bonsai and method for in-situ hexavalent chromium-polluted soil remediation |
CN103975788B (en) * | 2014-04-24 | 2016-01-20 | 浙江工商大学 | Potted plant and the method for the microbiological fuel cell of in-situ immobilization is polluted for soil Cr |
CN105312308B (en) * | 2014-07-24 | 2018-04-10 | 台境企业股份有限公司 | Electrodynamic soil remediation device |
CN105312308A (en) * | 2014-07-24 | 2016-02-10 | 台境企业股份有限公司 | Electrodynamic Soil Conditioning Device |
CN104368592B (en) * | 2014-09-01 | 2016-06-15 | 华北电力大学 | A kind of As polluted soil becomes periodically complex repairation method |
CN104368592A (en) * | 2014-09-01 | 2015-02-25 | 华北电力大学 | Periodic composite repair method of arsenic polluted soil |
CN104785505A (en) * | 2015-04-29 | 2015-07-22 | 重庆大学 | Method for removing heavy metals in municipal solid waste incineration fly ash |
CN107900092A (en) * | 2017-10-30 | 2018-04-13 | 常州大学 | A kind of arid area lead cadmium pollution soil repair system |
CN108262353A (en) * | 2018-03-31 | 2018-07-10 | 天津大学 | A kind of plant biological electrochemical in-situ restorative procedure by plant driving mass transfer |
CN110695079A (en) * | 2019-10-23 | 2020-01-17 | 常熟理工学院 | Method for removing mercury in soil polluted by bottom mercury by using electric restoration coupled plant extraction technology |
CN110695079B (en) * | 2019-10-23 | 2021-06-25 | 常熟理工学院 | Method for removing mercury from bottom mercury-contaminated soil by electrokinetic remediation coupled with plant extraction technology |
CN116060436A (en) * | 2023-03-23 | 2023-05-05 | 哈尔滨工业大学 | Electroosmosis-wicking fabric-plant combined treatment system and method for heavy metal contaminated soil |
CN116060436B (en) * | 2023-03-23 | 2023-08-15 | 哈尔滨工业大学 | Electroosmosis-wicking fabric-plant joint treatment system and method for heavy metal polluted soil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201454978U (en) | Electrodynamic adsorption plant compound remediation device for heavy metal polluted soil | |
CN201511037U (en) | Electric Plant Composite Remediation Device for Heavy Metal Contaminated Soil | |
CN201454977U (en) | Electrokinetic Adsorption Composite Remediation Device for Heavy Metal Contaminated Soil | |
CN104064794B (en) | A kind of microbiological fuel cell of in-situ remediation of underground water azotate pollution | |
CN102503059B (en) | Method for removing heavy metal from sludge and device thereof | |
CN105502673B (en) | It is a kind of using slag as the synchronous electrogenesis of anode and the device of sewage purification | |
CN105152351A (en) | Photoelectric artificial wetland and application thereof | |
CN102603039A (en) | Coupling desalination method and device | |
CN102500610A (en) | Electrodynamic and drop-irrigation combined heavy-metal-polluted soil remediation method | |
CN108821439B (en) | Submerged microalgae-microbial electrochemical system and remediation method for in situ remediation of nutrient pollution in surface water | |
CN107413837A (en) | Device and the application of oil heavy-metal composite pollution soil are repaired with electronic microbial association | |
CN102381758B (en) | A water treatment process and device for synchronous electricity generation and removal of groundwater nitrate | |
CN106623386B (en) | Electric restoration vertical device for heavy metal contaminated soil | |
CN204338567U (en) | Based on the electric osmose system of the electro reclamation heavy-metal contaminated soil of plastic electrode | |
CN201511038U (en) | Electrodynamic Remediation Device for Chromium Contaminated Soil | |
CN104377378A (en) | Microbial electrochemical apparatus and method for restoring nitrate-polluted underground water | |
CN105565497A (en) | Air cathode microbial fuel cell constructed wetland device of biological carbon matrix anode | |
CN104556392A (en) | Floating type ecological water purification plant | |
CN109513741A (en) | Device and restorative procedure for repairing polluted soil | |
CN102863131B (en) | Method for removing heavy metals from municipal residual sludge | |
CN106602101A (en) | Autotrophic denitrification bio-cathode-type microbial fuel cell | |
CN107983762A (en) | Solar photovoltaic driven bioelectrochemical soil remediation system and method | |
CN106986501A (en) | A kind of method and device of electronic permeable reactive wall and artificial swamp coupling treatment of sewage water | |
CN103787557B (en) | A kind of controlling device of integral treatment device | |
CN210140460U (en) | A capacitive deionization device for concentrating phosphorus-containing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100512 Termination date: 20100609 |