CN201382970Y - Ultra-high voltage transmission line lightning full parameter measurement system - Google Patents
Ultra-high voltage transmission line lightning full parameter measurement system Download PDFInfo
- Publication number
- CN201382970Y CN201382970Y CN200920084797U CN200920084797U CN201382970Y CN 201382970 Y CN201382970 Y CN 201382970Y CN 200920084797 U CN200920084797 U CN 200920084797U CN 200920084797 U CN200920084797 U CN 200920084797U CN 201382970 Y CN201382970 Y CN 201382970Y
- Authority
- CN
- China
- Prior art keywords
- lightning
- unit
- gprs
- power supply
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
本实用新型涉及超高压输电线路雷电全参数测量系统,其采用了供电电源、多个电流传感器,多个电流传感器与雷击信号采样单元、数据接收和GPRS、BT传输单元分别相连;供电电源由蓄电池、太阳能电池板和电压变换器组成,蓄电池分别与太阳能电池板、电压变换器相接;由直流电源分别为雷击信号采样单元、数据接收和GPRS、BT传输单元供电;数据接收和GPRS、BT传输单元将各路采集到的雷电流信号通过天线发送到INTERNET网,并存储至FTP服务器;用户终端与INTERNET网连接后,可直接调用FTP服务器中的存储数据。优点是,测量范围宽,全数字化的数据处理,满足了多重雷记录需要,方便了数据的实时监测和共享,实现了雷击线路的快速精确定位,确保了测量设备的长期正常工作。
The utility model relates to an ultra-high voltage transmission line lightning full parameter measurement system, which adopts a power supply, a plurality of current sensors, and a plurality of current sensors are respectively connected with a lightning strike signal sampling unit, a data receiving unit, and a GPRS and BT transmission unit; the power supply is provided by a storage battery , solar panels and voltage converters, the batteries are connected to the solar panels and voltage converters respectively; the DC power supply supplies power for the lightning signal sampling unit, data receiving and GPRS, BT transmission unit respectively; data receiving and GPRS, BT transmission The unit sends the lightning current signals collected by each channel to the Internet network through the antenna, and stores them in the FTP server; after the user terminal is connected to the Internet network, it can directly call the stored data in the FTP server. The advantage is that the measurement range is wide, and the fully digital data processing meets the needs of multiple lightning records, facilitates real-time monitoring and sharing of data, realizes fast and accurate positioning of lightning strike lines, and ensures long-term normal operation of measuring equipment.
Description
技术领域 technical field
本实用新型涉及一种输电线路雷电流参数的测量系统,特别是超高压输电线路雷电全参数测量系统,其适用于对架空输电线路遭受雷击的形式和闪络路径的判断分析和雷电流参数与波形的测量。The utility model relates to a measurement system for lightning current parameters of transmission lines, in particular to a measurement system for lightning full parameters of ultra-high voltage transmission lines, which is suitable for the judgment and analysis of lightning strike forms and flashover paths of overhead transmission lines and the analysis of lightning current parameters and Waveform measurements.
背景技术 Background technique
超高压输电线路每年雷电事故在电网的运行中十分突出,随着线路长度的迅猛增加,线路雷击跳闸事故明显增多。绕击和反击没有明确的判据,故障点的查找十分困难,尤其在山区和高海拔地区更是难上加难。雷电现象极其复杂,常用的电气几何法(EGM)对线路的雷电屏蔽性能给出了过于乐观的估计,与实际情况有很大的偏差。据申请人所知,由于实际情况下雷击电流可从几kA到几百kA,来雷的方位也变化很大,同一防护系统对不同落雷的防护效果很不相同,再加上对防护效果影响显著的地形地貌和气象因素的复杂多变,输电线路在某些地段常常出现防护失效,成为绕击跳闸事故的易击段。架空输电线路避雷线的保护角究竟取多大合适,多大雷电流才会使输电线路出现绕击或反击,绝缘子串哪相发生闪络,雷击线路的雷电流幅值多大,实际雷电流波形如何等,一直是国际上争论的问题。在超高压输电线路上安装一种雷电测量系统,便于及时发现故障杆塔,给电力部门根据测量信息和有针对性地采取防雷保护措施,为今后铁塔设计提供第一手资料,也为雷电流波形和幅值标准的制定提供有力的支持,对提高我国的防雷技术在国际上的地位有非常积极的作用。Every year, lightning accidents on ultra-high voltage transmission lines are very prominent in the operation of the power grid. With the rapid increase of the length of the line, the number of lightning tripping accidents on the line has increased significantly. There is no clear criterion for shielding and counterattack, and it is very difficult to find the fault point, especially in mountainous and high-altitude areas. The lightning phenomenon is extremely complex, and the commonly used electrical geometric method (EGM) gives an overly optimistic estimate of the lightning shielding performance of the line, which has a large deviation from the actual situation. As far as the applicant knows, since the lightning current can range from a few kA to hundreds of kA in actual conditions, and the direction of the lightning strikes also changes greatly, the protection effect of the same protection system on different lightning strikes is very different. Due to the complex and changeable terrain and meteorological factors, transmission lines often have protection failures in certain sections, which become vulnerable to shielding tripping accidents. What is the appropriate protection angle for the lightning protection line of overhead transmission lines, how much lightning current will cause shielding or counterattack on the transmission line, which phase of the insulator string will flashover, how large is the lightning current amplitude of the lightning strike line, and what is the actual lightning current waveform, etc. , has been an issue of international debate. Install a lightning measurement system on the ultra-high voltage transmission line, which is convenient for timely detection of faulty towers, and provides power departments with targeted lightning protection measures based on measurement information, providing first-hand information for future tower design, and also for lightning current The formulation of waveform and amplitude standards provides strong support and plays a very positive role in improving the international status of my country's lightning protection technology.
发明内容 Contents of the invention
本实用新型的目的是,针对上述现有技术的不足进行改进,提供一种超高压输电线路雷电全参数测量系统。该测量系统可以对遭受雷击的输电线路上的雷电流幅值、波形和持续时间等参数进行测量,可以给出雷击线路的杆塔号、受雷击的避雷线或导线的相别、雷电流幅值、极性和雷害事故形式,实现故障快速定位。The purpose of this utility model is to provide a lightning full parameter measurement system for ultra-high voltage transmission lines by improving the above-mentioned deficiencies in the prior art. The measurement system can measure parameters such as the amplitude, waveform and duration of the lightning current on the transmission line struck by lightning, and can give the tower number of the line struck by lightning, the phase difference of the lightning conductor or conductor struck by lightning, and the amplitude of lightning current , polarity and lightning accident forms, to achieve rapid fault location.
为了实现上述任务,本实用新型的技术解决方案是:采用了供电电源、多个电流传感器,其特征在于,多个电流传感器与雷击信号采样单元、数据接收和GPRS、BT传输单元分别相连;供电电源系直流电源,由蓄电池、太阳能电池板和电压变换器组成,蓄电池分别与太阳能电池板、电压变换器相接;由直流电源分别为雷击信号采样单元、数据接收和GPRS、BT传输单元供电;数据接收和GPRS、BT传输单元将各路采集到的雷电流信号通过天线发送到INTERNET网,并存储至FTP服务器;用户终端与INTERNET网连接后,可直接调用FTP服务器中的存储数据。In order to realize above-mentioned task, the technical solution of the present utility model is: adopted power supply, a plurality of current sensors, it is characterized in that, a plurality of current sensors are connected with lightning strike signal sampling unit, data receiving and GPRS, BT transmission unit respectively; The power supply is a DC power supply, which is composed of a battery, a solar panel and a voltage converter. The battery is connected to the solar panel and the voltage converter respectively; the DC power supplies power for the lightning signal sampling unit, data receiving and GPRS, BT transmission unit respectively; The data receiving and GPRS, BT transmission unit sends the lightning current signal collected by each channel to the Internet network through the antenna, and stores it in the FTP server; after the user terminal is connected to the Internet network, it can directly call the stored data in the FTP server.
其特征在于,电流传感器采用传统罗戈夫斯基线圈。It is characterized in that the current sensor adopts a traditional Rogowski coil.
其特征在于,雷击信号采样单元包括高速采样通道信号调理、高速数据采集模块、总线控制单元、单片机微控制器、调试用键盘、调试用液晶显示器、RS232串口、实时时钟、地址发生、通道识别和协调控制单元、基准电压产生器和低速采样通道信号调理;高速采样通道信号调理与高速数据采集模块相连,单片机微控制器分别与高速数据采集模块、总线控制单元、地址发生单元、通道识别单元和协调控制单元相连接,总线控制单元分别与高速数据采集模块、单片机微控制器、地址发生单元、通道识别单元和协调控制单元相连,在单片机微控制器上装有调试用键盘、调试用液晶显示器、RS232通讯口、实时时钟,基准电压发生器分别与高速采样通道信号调理、低速采样通道信号调理相连;低速采样通道信号调理与单片机微控制器相连。It is characterized in that the lightning strike signal sampling unit includes high-speed sampling channel signal conditioning, high-speed data acquisition module, bus control unit, single-chip microcontroller, keyboard for debugging, liquid crystal display for debugging, RS232 serial port, real-time clock, address generation, channel identification and Coordination control unit, reference voltage generator and low-speed sampling channel signal conditioning; high-speed sampling channel signal conditioning is connected with high-speed data acquisition module, single-chip micro-controller is respectively connected with high-speed data acquisition module, bus control unit, address generation unit, channel identification unit and The coordination control unit is connected, and the bus control unit is respectively connected with the high-speed data acquisition module, the single-chip microcontroller, the address generation unit, the channel identification unit and the coordination control unit, and the single-chip microcontroller is equipped with a debugging keyboard, a debugging liquid crystal display, The RS232 communication port, the real-time clock, and the reference voltage generator are respectively connected with the signal conditioning of the high-speed sampling channel and the signal conditioning of the low-speed sampling channel; the signal conditioning of the low-speed sampling channel is connected with the single-chip microcontroller.
本实用新型的工作过程是,从太阳光转化的直流电由太阳能电池板送至蓄电池,同时连至电压变换器,把蓄电池电压变换成测量系统各单元所需的电压,为雷击信号采样单元、数据接收和GPRS、BT传输单元供电。在雷击信号采样单元分别与电流传感器、数据接收和GPRS、BT传输单元相连的条件下,作为采集雷电流信号的电流传感器将雷电流变换为电压信号,用同轴电缆送至雷击信号采样单元,经数据接收和处理后,通过连接接口送至GPRS、BT传输单元,并将各路雷电流传感器得到的数据通过移动网络传送至INTERNET网,存储在FTP服务器。用户终端可从服务器下载接收数据。高速数据采样通道对应杆塔避雷线地线支架和绝缘子串上电流传感器检测的雷击采样电流,按并行方式工作。高速数据采样通道的采样方式是:10位双极性采样、10MHz采样速率。低速数据采样通道考虑扩展测试环境温湿度、绝缘子串泄漏电流等的要求而设置的。单片机微控制器实现各通道的采样控制和采样数据的转存、实时时钟(精度为微秒级)、串口发送等。这部分是系统正常工作的核心。The working process of the utility model is that the direct current converted from sunlight is sent to the storage battery by the solar panel, and at the same time connected to the voltage converter, and the voltage of the storage battery is converted into the voltage required by each unit of the measurement system, which is the lightning strike signal sampling unit, data Receiving and GPRS, BT transmission unit power supply. Under the condition that the lightning strike signal sampling unit is connected with the current sensor, data receiving and GPRS, and BT transmission unit respectively, the current sensor used as collecting lightning current signal converts the lightning current into a voltage signal, and sends it to the lightning strike signal sampling unit with a coaxial cable. After the data is received and processed, it is sent to the GPRS and BT transmission unit through the connection interface, and the data obtained by each lightning current sensor is transmitted to the Internet network through the mobile network, and stored in the FTP server. The user terminal can download and receive data from the server. The high-speed data sampling channel corresponds to the lightning strike sampling current detected by the current sensor on the ground wire support of the tower lightning protection line and the insulator string, and works in parallel. The sampling mode of the high-speed data sampling channel is: 10-bit bipolar sampling, 10MHz sampling rate. The low-speed data sampling channel is set considering the requirements of extended test environment temperature and humidity, insulator string leakage current, etc. The single-chip micro-controller realizes sampling control of each channel, dumping of sampling data, real-time clock (accuracy is microsecond level), serial port transmission, etc. This part is at the heart of the system working properly.
本实用新型具有以下优点和效果:The utility model has the following advantages and effects:
1)雷电测量系统的电流测量范围为±3kA~150kA,包括了输电线路可能遭受雷电流的几乎全部范围,满足实际工程的需要。1) The current measurement range of the lightning measurement system is ±3kA~150kA, including almost the entire range where the transmission line may be subjected to lightning current, and meets the needs of actual engineering.
2)全数字化数据处理系统,A/D转换速率10M次/秒,5通道并行采样,每通道纪录字长1s,满足多重雷记录需要。2) Fully digital data processing system, A/D conversion rate 10M times/s, 5-channel parallel sampling, each channel record word length 1s, to meet the needs of multiple mine records.
3)各通道可同时测量流过相线和地线的雷电流,记录雷电流波形及雷击发生时刻,智能判定雷击线路形式,实现雷击线路的快速精确定位。3) Each channel can measure the lightning current flowing through the phase wire and the ground wire at the same time, record the lightning current waveform and the time when the lightning strike occurs, intelligently determine the form of the lightning strike line, and realize the rapid and accurate positioning of the lightning strike line.
4)采用GPRS无线传输技术和蓝牙技术,实现采样数据文件遥传至接收方,方便数据实时监测和共享。4) Adopt GPRS wireless transmission technology and Bluetooth technology to realize remote transmission of sampling data files to the receiver, which facilitates real-time monitoring and sharing of data.
5)测量系统设置了每日模拟冲击电流自检方式和户外设备供电电源报告模式,确保测量设备的长期正常工作。5) The measurement system is equipped with a daily analog impulse current self-inspection mode and an outdoor equipment power supply report mode to ensure the long-term normal operation of the measurement equipment.
附图说明 Description of drawings
图1、本实用新型结构示意图。Fig. 1, the structural representation of the utility model.
图2、本实用新型的电流传感器结构示意图。Fig. 2 is a schematic structural diagram of the current sensor of the present invention.
图3、本实用新供电电源组成框图。Fig. 3, the composition block diagram of the power supply of the utility model.
图4、本实用新型的雷击信号采样单元原理框图。Fig. 4 is a schematic block diagram of the lightning strike signal sampling unit of the present invention.
图5、本实用新型的主程序流程示意图。Fig. 5, the schematic diagram of the main program flow of the utility model.
图6、本实用新型的用户应用程序流程示意图。Fig. 6 is a schematic flow diagram of the user application program of the present invention.
其中:1-电流传感器;2-电压变换器;3-蓄电池;4-太阳能电池板;5-数据接收与GPRS、BT传输单元;6-INTERNET网;7-用户终端;8-FTP服务器;9-雷击信号采样单元;91-高速采样通道信号调理;92-高速数据采集模块;93-总线控制单元;94-单片机微控制器;941-调试用键盘;942-调试用液晶显示器;943-RS232通讯口;944-实时时钟;95-地址发生单元;通道识别单元;协调控制单元;96-基准电压产生器;97-低速采样通道信号调理。Among them: 1-current sensor; 2-voltage converter; 3-battery; 4-solar panel; 5-data receiving and GPRS, BT transmission unit; 6-INTERNET network; 7-user terminal; 8-FTP server; 9 -lightning strike signal sampling unit; 91-high-speed sampling channel signal conditioning; 92-high-speed data acquisition module; 93-bus control unit; 94-single-chip microcontroller; 941-keyboard for debugging; 942-LCD display for debugging; Communication port; 944-real-time clock; 95-address generation unit; channel identification unit; coordination control unit; 96-reference voltage generator; 97-low-speed sampling channel signal conditioning.
具体实施方式 Detailed ways
下面根据附图,详细描述本实用新型的实施例。Below according to accompanying drawing, describe embodiment of the present utility model in detail.
如图1、图2、图3、图4、图5、图6所示,本实用新型采用了供电电源、多个电流传感器1,供电电源系直流电源,由蓄电池3、太阳能电池板4和电压变换器组成,多个电流传感器1分别与雷击信号采样单元9相连,雷击信号采样单元9再与数据接收和GPRS、BT传输单元5相连,蓄电池3分别与太阳能电池板4、电压变换器2相接,电压变换器2输出分别与雷击信号采样单元9、数据接收和GPRS、BT传输单元5相连。数据接收和GPRS、BT传输单元5将各路雷电流信号通过移动网络传送给INTERNET网6、存储至FTP服务器8中。用户终端7与INTERNET网6接后连,可直接调用FTP服务器8的存储数据。As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the utility model has adopted a power supply, a plurality of
组成本实用新型的各部件的相互连接关系和作用如下:The interconnection relationship and the effect of forming each part of the utility model are as follows:
电流传感器1与雷击信号采样单元9相连,接收采集到的雷电流信号,再与数据接收和GPRS、BT传输单元5相连,进行数据处理和发送。蓄电池3分别与太阳能电池板4、电压变换器2相接,作为设备的供电电源。供电电源为直流电源。数据接收和GPRS、BT传输单元5将各路雷电流传感器1得到的数据通过移动网络传送至INTERNET网6、存储至FTP服务器8。用户终端7可直接通过INTERNET网6调用FTP服务器8的存储数据。电流传感器1和(5路10M次/秒的)雷击信号采样单元9为自行研制,太阳能电池板4和蓄电池3为外购常规产品,数据接收和GPRS、BT传输单元5中的处理板为工业级PC104,购置的带天线的GPRS为通用工业级模块。本实用新型的电流传感器1采用传统罗戈夫斯基线圈,线圈绕制如图2所示。本实用新型的供电电源,由蓄电池3、太阳能电池板4、电压变换器2组成。蓄电池3分别与太阳能电池板4、电压变换器2相接,太阳能电池板4经光电转换的直流电向蓄电池3充电,蓄电池3向电压变换器2供电,变换成测量系统所需工作电压;电压变换器2分别与雷击信号采样单元9、数据接收和GPRS、BT传输单元5相连。The
如图4所示,雷击信号采样单元9包括高速采样通道信号调理91、高速数据采集模块92、总线控制单元93、单片机微控制器94、调试用键盘941、调试用液晶显示器942、RS232串口943、实时时钟944、地址发生、通道识别和协调控制单元95、基准电压产生器96和低速采样通道信号调理97。高速采样通道信号调理91与高速数据采集模块92相连,单片机微控制器94分别与高速数据采集模块92、总线控制单元93、地址发生单元、通道识别单元和协调控制单元95相连接,总线控制单元93分别与高速数据采集模块92、单片机微控制器94、地址发生单元、通道识别单元和协调控制单元95相连,在单片机微控制器13上装有调试用键盘941、调试用液晶显示器942、RS232通讯口943、实时时钟944,基准电压发生器96分别与高速采样通道信号调理91、低速采样通道信号调理97相连;低速采样通道信号调理97与单片机微控制器94相连。高速数据采样通道对应杆塔避雷线或绝缘子上的雷击采样电流的各通道,按并行方式工作(按6路设计,1路备用)。高速数据采样通道的采样方式是:10位双极性采样、10MHz采样速率。低速数据采样通道考虑扩展测试环境温湿度、绝缘子串泄漏电流等的需要。单片机微控制器94实现各通道的采样控制和采样数据的转存、实时时钟、串口发送等工作,这部分是系统正常工作的核心。采样通过单片机微控制器94控制各路的采样;数据传送及存取过程通过总线控制单元93完成,地址发生、通道识别和协调控制单元95完成存取地址和通道的协调;低速采样通道信号调理97对风速、温度等信号采集后送至单片机微控制器94;高速与低速采样信号调理的基准电压由基准电压发生器96产生;采集的数据由单片机控制通过RS232通讯口943传给数据接收和GPRS、BT传输单元5,以实现采样数据的异步传输;实时时钟芯片944产生的时钟信号送至单片机微控制器94。图4中的调试用键盘941和调试用液晶显示器942接口供调试用。As shown in Figure 4, the lightning strike
雷击信号采样单元9由单片机微控制器94实行全面管理,其主程序流程如图5所示。该程序普通技术人员根据其基本知识均能编写,采用Basic语言或Pascal语言或C/C++语言或Fortran语言编程,也可采用普通程序(市场均有购置),以实现对雷击信号采样单元进行控制。The lightning strike
启动程序后,会对状态标志及相关数据存储单元进行初始化(过程A),然后读取GPS实时时钟信号,校准系统时间(过程B),下面判断系统是否处于调试状态(过程C),如果是,则调用键盘和LCD显示程序,方便调试人员查看程序执行的中间状态(过程D),如果不是调试状态,为节省程序运行时间,则不用调键盘显示程序,接着判断采样是否被触发(过程E),如果尚未被触发,则返回至过程B,如果采样已被触发,则记录触发时间(过程F),并等待直至采样数据准备好为止(过程G),然后启动串口发送服务程序,该子程序采用了串口中断方式(过程H),直至采样数据发送完毕(过程J),发送完毕后返回过程B,等待下一轮采样触发。After starting the program, the status flag and related data storage unit will be initialized (process A), then read the GPS real-time clock signal, and calibrate the system time (process B), and then judge whether the system is in the debugging state (process C), if it is , then call the keyboard and LCD display program, which is convenient for debuggers to check the intermediate state of program execution (process D). ), if it has not been triggered, then return to process B, if the sampling has been triggered, record the trigger time (process F), and wait until the sampling data is ready (process G), then start the serial port sending service program, the sub The program adopts the serial port interrupt method (process H) until the sampling data is sent (process J), and returns to process B after sending, waiting for the next round of sampling trigger.
图6所示为数据接收和GPRS、BT传输单元5进行控制管理时的用户应用程序流程示意图,该程序普通技术人员根据基本知识均能编写,采用Basic语言或Pascal语言或C/C++语言或Fortran语言编程,也可采用普通程序(市场均有购置),其功能是实现接收雷击信号采样单元的采样数据,并控制传输单元模块通过无线方式与远端公共互联网上的FTP服务器连接,向远端FTP服务器所指定的目录传送采样数据文件。同时,为减少无线传送数据量,软件中设计有滤波程序,将1.5MHz以上谐波滤除。启动程序后,会对状态标志及相关数据存储单元进行初始化(过程A),然后开RS232通讯串口943接收中断(过程B),则这个时候微控制器将可能响应RS232口接收到的中断信号,收到中断信号后转入中断服务子程序,先读取接收缓冲区中的状态量(过程C),判断系统是否处于调试状态(过程D),如果是,则调用键盘和LCD显示程序,方便调试人员查看程序执行的中间状态(过程E),如果不是调试状态,为节省程序运行时间,则不用调键盘显示程序,然后判断是否收到来自微控制器的联络信号(过程E),如果尚未收到,则返回至过程C,循环等待,如果已经收到来自微控制器的联络信号,则向单片机发送应答信号,并判断接收数据的类型(过程G),然后获取接收缓冲区中的数据量(过程H),直到接收完规定字节(过程I),下面连接GPRS网络,准备无线数据传输(过程J),对远端FTP服务器域名进行解析(过程K),完毕后,将FTP文件上传至远端FTP服务器(过程L),直到FTP文件上传完成(过程M),如果本次数据全部上传后,则返回过程C,等待开始下一轮数据上传任务。Fig. 6 shows the user application program flow diagram when data receiving and GPRS,
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200920084797U CN201382970Y (en) | 2009-04-09 | 2009-04-09 | Ultra-high voltage transmission line lightning full parameter measurement system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200920084797U CN201382970Y (en) | 2009-04-09 | 2009-04-09 | Ultra-high voltage transmission line lightning full parameter measurement system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201382970Y true CN201382970Y (en) | 2010-01-13 |
Family
ID=41526442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200920084797U Expired - Lifetime CN201382970Y (en) | 2009-04-09 | 2009-04-09 | Ultra-high voltage transmission line lightning full parameter measurement system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201382970Y (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102193050A (en) * | 2011-04-19 | 2011-09-21 | 嘉兴电力局 | Positioning system for fault of direct-current transmission line |
CN102590708A (en) * | 2012-02-27 | 2012-07-18 | 广东电网公司电力科学研究院 | Method for identifying lightning stroke fault and non-lightning stroke fault of transmission line |
CN102944794A (en) * | 2012-11-18 | 2013-02-27 | 山东电力集团公司检修公司 | Direct current electric transmission line state detection communication system |
CN108008195A (en) * | 2017-11-10 | 2018-05-08 | 海南电网有限责任公司电力科学研究院 | A kind of powerline pole tower ground resistance monitoring system and its application method |
CN109946496A (en) * | 2019-02-20 | 2019-06-28 | 四川健坤科技有限公司 | A remote electrical signal monitoring device |
CN113009207A (en) * | 2021-03-18 | 2021-06-22 | 国网内蒙古东部电力有限公司电力科学研究院 | Transformer reactive power disturbance calculation method based on GIC monitoring device |
-
2009
- 2009-04-09 CN CN200920084797U patent/CN201382970Y/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102193050A (en) * | 2011-04-19 | 2011-09-21 | 嘉兴电力局 | Positioning system for fault of direct-current transmission line |
CN102590708A (en) * | 2012-02-27 | 2012-07-18 | 广东电网公司电力科学研究院 | Method for identifying lightning stroke fault and non-lightning stroke fault of transmission line |
CN102944794A (en) * | 2012-11-18 | 2013-02-27 | 山东电力集团公司检修公司 | Direct current electric transmission line state detection communication system |
CN108008195A (en) * | 2017-11-10 | 2018-05-08 | 海南电网有限责任公司电力科学研究院 | A kind of powerline pole tower ground resistance monitoring system and its application method |
CN109946496A (en) * | 2019-02-20 | 2019-06-28 | 四川健坤科技有限公司 | A remote electrical signal monitoring device |
CN113009207A (en) * | 2021-03-18 | 2021-06-22 | 国网内蒙古东部电力有限公司电力科学研究院 | Transformer reactive power disturbance calculation method based on GIC monitoring device |
WO2022193661A1 (en) * | 2021-03-18 | 2022-09-22 | 国网内蒙古东部电力有限公司电力科学研究院 | Transformer reactive power disturbance calculation method based on gic monitoring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100538371C (en) | Transmission line lightning strike online monitoring system | |
CN201382970Y (en) | Ultra-high voltage transmission line lightning full parameter measurement system | |
CN201096825Y (en) | Thunder online monitoring device for transmission line | |
CN104579166A (en) | Distributed photovoltaic power station monitoring system and fault diagnosis method thereof | |
CN201277997Y (en) | Full parameter on-line monitoring apparatus for overhead transmission line and lightning arrester current | |
CN201555658U (en) | A test device for vibration performance of railway catenary | |
CN101825654A (en) | Self energy supply lightning current detection system | |
CN101424712A (en) | Population parameter on-line monitoring system for lightning current and work flow thereof | |
CN204536448U (en) | A kind of high voltage supply leakage conductor wireless monitoring device | |
CN203630281U (en) | Electric transmission line zinc oxide arrester online monitoring device based on electric field sensor | |
CN202494742U (en) | Multi function electric power quality collecting analyzer | |
CN204990657U (en) | Remote meter reading system | |
CN202158869U (en) | Weather observation system for overhead power transmission line | |
CN116780758A (en) | On-line monitoring system and method for multi-sensor data fusion of power transmission line | |
CN203405509U (en) | A high-voltage cable instantaneous short circuit fault current detecting apparatus designed by a Rogowski Coil | |
CN102436733A (en) | A thermal power type energy efficiency data acquisition terminal | |
CN202720299U (en) | Insulator Leakage Current Online Monitoring System | |
CN107024615A (en) | A kind of direct access three-dimentional measurement electric energy meter | |
CN103605105B (en) | Calibration device for digital electric energy meter of intelligent substation | |
CN203433104U (en) | Real load error detector for secondary electric-energy metering loop of intelligent transformer station | |
CN102571442A (en) | Real time wind resource network management system of 10,000MW wind power base | |
CN202033025U (en) | Antenna status monitoring device for mobile communication base station | |
CN202938903U (en) | Electric transmission line aeolian vibration monitoring device | |
CN213633627U (en) | Electronic phase indication handheld terminal | |
CN105528877A (en) | Remote ammeter system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20100113 |