CN201295751Y - Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device - Google Patents
Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device Download PDFInfo
- Publication number
- CN201295751Y CN201295751Y CNU2008201682370U CN200820168237U CN201295751Y CN 201295751 Y CN201295751 Y CN 201295751Y CN U2008201682370 U CNU2008201682370 U CN U2008201682370U CN 200820168237 U CN200820168237 U CN 200820168237U CN 201295751 Y CN201295751 Y CN 201295751Y
- Authority
- CN
- China
- Prior art keywords
- semi
- micro
- solid metal
- solid
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 55
- 239000002184 metal Substances 0.000 title claims abstract description 55
- 230000009974 thixotropic effect Effects 0.000 title description 2
- 238000000465 moulding Methods 0.000 title 1
- 239000007787 solid Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 abstract description 29
- 238000012545 processing Methods 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 9
- 239000007769 metal material Substances 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 16
- 238000011160 research Methods 0.000 description 9
- 238000005242 forging Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010099 solid forming Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Forging (AREA)
Abstract
本实用新型公开了一种超声振动辅助半固态金属微触变成形装置。在下模的下端设有下模电加热器,下模与超声变幅杆连接,在下模中安装下模热电偶,冲头的上端与上模连接,上模上端设有上模电加热器,上模与压杆连接,上模中安装上模热电偶。本实用新型将半固态金属坯料重熔加热至固液共存区后开始压力加工,同时施加超声振动,减少半固态金属坯料与微模具之间的摩擦和微成形阻力,增强半固态金属材料的流动性,改善半固态金属材料在微模具中的填充性能,获得良好的微成形效果。本实用新型促进了半固态金属微触变成形,提高了微成形效率,降低了设备成本,避免了微加工过程中缩孔等缺陷,改善了半固态金属微触变成形效果。
The utility model discloses a semi-solid metal microthixotropic deformation device assisted by ultrasonic vibration. An electric heater for the lower die is provided at the lower end of the lower die, the lower die is connected to the ultrasonic horn, a thermocouple of the lower die is installed in the lower die, the upper end of the punch is connected to the upper die, and an electric heater for the upper die is provided at the upper end of the upper die. The upper mold is connected with the pressure rod, and the upper mold thermocouple is installed in the upper mold. The utility model remelts the semi-solid metal blank and heats it to the solid-liquid coexistence area, then starts pressure processing, and applies ultrasonic vibration at the same time, reduces the friction and micro-forming resistance between the semi-solid metal blank and the micro-mould, and enhances the flow of the semi-solid metal material properties, improve the filling performance of semi-solid metal materials in micro-molds, and obtain good micro-forming effects. The utility model promotes the micro-thixotropic deformation of the semi-solid metal, improves the micro-forming efficiency, reduces the equipment cost, avoids defects such as shrinkage cavity in the micro-processing process, and improves the micro-thixotropic deformation effect of the semi-solid metal.
Description
技术领域 technical field
本实用新型涉及金属材料微加工技术,尤其涉及一种超声振动辅助半固态金属微触变成形装置。The utility model relates to a metal material microprocessing technology, in particular to an ultrasonic vibration-assisted semi-solid metal microthixotropic deformation device.
背景技术 Background technique
20世纪70年代初,美国麻省理工学院的科学家在实验中首次发现了半固态金属的流变性能,并发展了金属半固态成形技术,该工艺介于固态金属成形和液态金属成形之间,融合了铸造和塑性成形工艺优点,具有高效、节能等显著优点,许多学者称其为是21世纪最有发展前途的近净成形技术之一。如今国内外学者已经对半固态金属成形开展了大量的研究工作,铝合金及镁合金的半固态加工技术日益成熟,其研究成果在汽车工业中零件加工中已经取得了较大程度的应用。In the early 1970s, scientists from the Massachusetts Institute of Technology discovered the rheological properties of semi-solid metals in experiments for the first time, and developed metal semi-solid forming technology, which is between solid metal forming and liquid metal forming. Combining the advantages of casting and plastic forming technology, it has significant advantages such as high efficiency and energy saving. Many scholars call it one of the most promising near-net shape technologies in the 21st century. Nowadays, scholars at home and abroad have carried out a lot of research work on semi-solid metal forming. The semi-solid processing technology of aluminum alloy and magnesium alloy is becoming more and more mature, and its research results have been applied to a large extent in the processing of parts in the automotive industry.
半固态金属成形是针对固、液态共存的半熔化或半凝固金属进行成形加工的工艺方法的总称,主要包括触变成形和流变成形两种工艺,其中流变成形(Rheoforming)是指将经搅拌获得的半固态金属浆料在保持其半固态温度的条件下直接进行半固态加工,而触变成形(Thixoforming)是指将半固态浆料冷却凝固成坯料后,根据产品尺寸下料,再重新加热到半固态温度,然后进行成形加工。触变成形工艺流程长,但它便于组织专业化生产,质量便于控制,因而成为半固态成形技术研究的重点,在现有的研究及工业应用中也绝大多数采用触变成形的工艺。Semi-solid metal forming is a general term for forming processes for semi-molten or semi-solidified metals that coexist in solid and liquid states, mainly including thixoforming and rheoforming. It refers to direct semi-solid processing of the semi-solid metal slurry obtained by stirring under the condition of maintaining its semi-solid temperature, and thixoforming refers to cooling and solidifying the semi-solid slurry into a billet, according to the size of the product The material is blanked, reheated to semi-solid temperature, and then shaped. The thixoforming process is long, but it is convenient to organize specialized production and the quality is easy to control, so it has become the focus of semi-solid forming technology research, and most of the existing research and industrial applications use thixoforming technology .
金属坯料处于半固态时具有一定的固液比,和液态压铸相比,它具有一定的粘度,所以,成形时可以避免喷溅、紊流以及卷气等缺点;它和固体锻造相比,易于形成微细特征,且变形力小,可以节省能源。因此,和传统成形工艺相比,半固态金属成形具有一系列突出的优点:成形温度低,成形件力学性能好,较好地综合了固态金属模锻与液态压铸成形的优点,可以批量生产形状复杂、高性能和高精度的微型零部件。半固态成形的固有优点决定了半固态成形技术有应用于微小零件制备的潜力,并且有望解决目前微细结构加工技术普遍存在的成本高、效率低的问题,为微细结构的大批量低成本生产提供一种新方法,然而至今半固态微成形技术在世界范围内报道仍很少。2004年荷兰的Steinhoff等人在《Steel Research International》杂志第75卷第611-619页首次提出了有关微半固态成形(又称:微触变成形,Micro-Thixoforming)的概念和方法,但至今还没有出现该技术研究和应用的进一步报道。美国密歇根大学的Gap-Yong Kim等人在博士论文的研究中对于微/介观尺度下的半固态铝合金微触变成形技术进行了研究,主要研究成果在2007年的《Transactions of the ASME,Journal of Manufacturing Science and Engineering》杂志第129卷第246-251页进行了报道。When the metal blank is in a semi-solid state, it has a certain solid-liquid ratio. Compared with liquid die-casting, it has a certain viscosity. Therefore, it can avoid the disadvantages of splashing, turbulence and air entrainment during forming; it is easier to process than solid forging. The formation of fine features with low deformation force saves energy. Therefore, compared with the traditional forming process, semi-solid metal forming has a series of outstanding advantages: low forming temperature, good mechanical properties of formed parts, better integration of the advantages of solid metal die forging and liquid die-casting, and mass production of shapes Complex, high-performance and high-precision miniature components. The inherent advantages of semi-solid forming determine that semi-solid forming technology has the potential to be applied to the preparation of tiny parts, and it is expected to solve the problems of high cost and low efficiency that currently exist in microstructure processing technology, and provide a high-volume low-cost production of microstructure. A new method, however, so far semi-solid micro-forming technology is still rarely reported in the world. In 2004, Steinhoff et al. in the Netherlands first proposed the concept and method of micro-semi-solid forming (also known as: micro-thixoforming, Micro-Thixoforming) on pages 611-619 of Volume 75 of the magazine "Steel Research International", but So far there is no further report on the research and application of this technology. Gap-Yong Kim and others from the University of Michigan in the United States studied the micro-thixotropic deformation technology of semi-solid aluminum alloys at the micro/mesoscopic scale in their doctoral dissertation research. The main research results were published in "Transactions of the ASME" in 2007. , Journal of Manufacturing Science and Engineering reported on pages 246-251 of Volume 129.
从当前半固态金属微成形技术的研究报道中可以发现,目前半固态金属微成形技术发展尚处于起步阶段,技术上还不成熟,微成形填充效果不甚理想。From the current research reports on semi-solid metal micro-forming technology, it can be found that the development of semi-solid metal micro-forming technology is still in its infancy, the technology is not yet mature, and the filling effect of micro-forming is not ideal.
主要存在的问题有:The main problems are:
(1)在半固态金属微触变成形过程中,成形效果不够稳定,同一加工过程中的一些相同结构特征的成形一致性还不够好;(1) During the microthixotropic forming process of semi-solid metal, the forming effect is not stable enough, and the forming consistency of some of the same structural features in the same processing process is not good enough;
(2)半固态金属微触变成形结构中还存在缩孔、晶粒结构不致密等问题,制造出的工件的微结构形貌也有待改进;(2) There are still problems such as shrinkage cavity and non-dense grain structure in the semi-solid metal microthixotropic deformation structure, and the microstructure morphology of the manufactured workpiece also needs to be improved;
(3)半固态金属微触变成形的加工效率和能耗尚有待改进。(3) The processing efficiency and energy consumption of semi-solid metal microthixotropy still need to be improved.
为了将半固态金属微成形方法推向产业化应用,从而提供一种适合大批量、低成本和高效的金属微细结构特征加工方法,对于现有的半固态金属微触变成形技术进行改进是十分必要的。In order to promote the semi-solid metal micro-forming method to industrial application, thereby providing a method suitable for large-scale, low-cost and high-efficiency processing of metal microstructure features, it is necessary to improve the existing semi-solid metal micro-thixotropic forming technology. very necessary.
发明内容 Contents of the invention
为了克服上述半固态金属微触变成形方法的不足,本实用新型的目的在于提供一种超声振动辅助半固态金属微触变成形装置。利用超声波的导引作用、排除气体、增强半固态金属材料材料流动性、减小微成形阻力、增加材料致密度等作用,达到对半固态金属微触变成形过程的辅助作用,从而获得良好的半固态金属工件微成形效果,提高微触变成形效率。In order to overcome the deficiencies of the above semi-solid metal microthixotropic deformation method, the purpose of the utility model is to provide an ultrasonic vibration-assisted semi-solid metal microthixotropic deformation device. Utilize the guiding effect of ultrasonic waves, remove gas, enhance the fluidity of semi-solid metal materials, reduce the resistance of micro-forming, increase the density of materials, etc., to achieve the auxiliary effect on the micro-thixotropic forming process of semi-solid metals, so as to obtain good results. Excellent semi-solid metal workpiece micro-forming effect, improving the micro-thixoforming efficiency.
本实用新型解决其技术问题所采用的技术方案是:The technical scheme that the utility model solves its technical problem adopts is:
本实用新型在下模的下端设有下模电加热器,下模与超声变幅杆连接,在下模中安装下模热电偶,下表面带有微细特征结构的冲头的上端与上模连接,上模上端设有上模电加热器,上模与压杆连接,上模中安装上模热电偶。The utility model is provided with a lower mold electric heater at the lower end of the lower mold, the lower mold is connected with the ultrasonic horn, the lower mold thermocouple is installed in the lower mold, and the upper end of the punch with a fine characteristic structure on the lower surface is connected with the upper mold. The upper end of the upper die is provided with an upper die electric heater, the upper die is connected with the pressure bar, and the upper die thermocouple is installed in the upper die.
所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。The lower surface of the punch with the fine characteristic structure is provided with an array of circular holes with a diameter and a depth of 0.8 mm to 1 mm.
本实用新型成形方法,该方法包括以下各步骤:The forming method of the utility model comprises the following steps:
(1)将内部组织结构为球状晶的半固态金属坯料置于下模上,通过内嵌电加热器预热并保持冲头和下模温度升至250~350℃;(1) Place the semi-solid metal blank whose internal structure is spherical crystal on the lower die, preheat it with an embedded electric heater and keep the temperature of the punch and the lower die rising to 250-350°C;
(2)感应线圈加热半固态金属坯料温度,控制坯料的固相分数或液相分数至固液共存区;(2) The induction coil heats the temperature of the semi-solid metal billet, and controls the solid phase fraction or liquid phase fraction of the billet to the solid-liquid coexistence area;
(3)将下表面带有微细特征结构的冲头压下并施加锻压载荷,开始压力加工,锻压力为50kN~70kN,与此同时开启功率超声发生装置,通过超声变幅杆与下模的直接连接,对半固态金属微触变成形加工过程施加功率为300~500W,频率为15~20kHz的超声振动,在超声波的辅助作用下,完成对半固态金属坯料的微触变成形过程;(3) Press down the punch with a fine feature structure on the lower surface and apply a forging load to start the press processing. The forging pressure is 50kN ~ 70kN. At the same time, turn on the power ultrasonic generator, through the ultrasonic horn and the lower die Direct connection, apply ultrasonic vibration with a power of 300-500W and a frequency of 15-20kHz to the micro-thixotropy processing of semi-solid metal, and complete the micro-thixotropy process of semi-solid metal blanks with the assistance of ultrasonic waves ;
(4)完成半固态金属的超声振动辅助微触变成形过程,停止超声振动和模具加热;(4) Complete the ultrasonic vibration-assisted microthixotropy forming process of semi-solid metal, stop ultrasonic vibration and mold heating;
(5)升起冲头后,取出半固态金属微触变成形零件。(5) After raising the punch, take out the semi-solid metal microthixomorphic deformed parts.
本实用新型具有的有益效果是:The beneficial effect that the utility model has is:
本实用新型首次将超声振动应用于半固态金属微触变成形过程,利用超声振动多方面的辅助作用改善了微触变成形效果,缩短了工艺时间,提高了工艺质量,降低了制造成本。它对于促进半固态金属微触变成形方法的发展及其应用,从而获得一种高效率、低成本、高品质的金属微细结构特征加工方法具有重要意义。The utility model applies ultrasonic vibration to the micro-thixotropy forming process of semi-solid metal for the first time, and improves the micro-thixotropy deformation effect by using the multi-faceted auxiliary functions of ultrasonic vibration, shortens the process time, improves the process quality, and reduces the manufacturing cost . It is of great significance to promote the development and application of semi-solid metal micro-thixotropic deformation methods, so as to obtain a high-efficiency, low-cost, high-quality metal microstructure feature processing method.
附图说明 Description of drawings
图1是超声振动辅助半固态金属微触变成形装置示意图(感应加热时)。Fig. 1 is a schematic diagram of an ultrasonic vibration-assisted semi-solid metal microthixotropic deformation device (during induction heating).
图2是超声振动辅助半固态金属微触变成形装置示意图(触变成形时)。Fig. 2 is a schematic diagram of an ultrasonic vibration assisted semi-solid metal micro-thixotropic deformation device (during thixotropic deformation).
图中:1.超声变幅杆,2.下模电加热器,3.螺钉,4.冲头,5.螺栓,6.上模电加热器,7.压杆,8.上模,9.上模热电偶,10.下模,11.半固态金属坯料,12.下模热电偶,13.感应线圈。In the figure: 1. Ultrasonic horn, 2. Lower die electric heater, 3. Screw, 4. Punch, 5. Bolt, 6. Upper die electric heater, 7. Pressure rod, 8. Upper die, 9 . Upper mold thermocouple, 10. Lower mold, 11. Semi-solid metal blank, 12. Lower mold thermocouple, 13. Induction coil.
具体实施方式 Detailed ways
如图1及图2所示,本实用新型是在下模10的下端设有下模电加热器2,下模10与超声变幅杆1连接,在下模10中安装下模热电偶12,下表面带有微细特征结构的冲头4的上端与上模8连接,上模8上端设有上模电加热器6,上模8与压杆7连接,上模8中安装上模热电偶9。As shown in Fig. 1 and Fig. 2, the utility model is provided with a lower mold
所述带有微细特征结构的冲头下表面开有为孔径和深度均为0.8mm~1mm的圆孔阵列。The lower surface of the punch with the fine characteristic structure is provided with an array of circular holes with a diameter and a depth of 0.8 mm to 1 mm.
如图1及图2所示,本实用新型提出的超声振动辅助半固态金属微触变成形方法的具体实施过程如下:As shown in Figure 1 and Figure 2, the specific implementation process of the ultrasonic vibration-assisted semi-solid metal microthixotropic deformation method proposed by the utility model is as follows:
(1)如图1所示,在加工装置中设置上模电加热器6与下模电加热器2分别对冲头4和下模10进行加热,同时在装置中也设置上模热电偶9及下模热电偶12,并分别实时测量上模8及下模10的温度。将上模电加热器6与上模热电偶9,以及下模电加热器2与下模热电偶12连接至多通道高精度温度控制仪从而形成两个闭环温度控制系统,通过设定多通道温度控制仪的控制温度及控制策略等有关参数,可以达到对于冲头4及下模10温度的实时反馈控制。冲头4及下模10采用的材料为热作模具钢H13。在超声振动辅助半固态金属微触变成形加工之前需要对冲头4及下模10进行预热,温度保持在300℃左右,这是因为在半固态金属微触变成形过程中,如果冲头4和下模10的温度与半固态金属坯料11二次加热温度相比过低,则会引起半固态金属坯料11在加工过程中的温度下降过快,使半固态浆料迅速结壳,或增加冷隔,从而影响半固态金属微结构的成形效果,但模具温度如果过高,容易粘焊,加速模具磨损,因此控制冲头4及下模10温度在300℃左右。(1) As shown in Figure 1, the upper mold
(2)如图1所示,在下模10及冲头4预热完成后,使用感应线圈13对于置于下模10上的半固态金属坯料11进行加热,控制坯料的固相分数或液相分数至固液共存区,半固态金属坯料11可以采用A356、A357等常用半固态铝合金或镁合金进行加工。在完成感应加热后,移出感应线圈13。(2) As shown in Figure 1, after the preheating of the
(3)如图2所示,待半固态金属坯料加热至固液共存区后,将冲头4压下并施加锻压载荷,开始压力加工,锻压力为50kN~70kN。超声振动辅助半固态金属微触变成形装置可以在普通压机的基础上进行改装,其中上模8及压杆7通过螺栓5连接,冲头4下端的微细特征结构可根据工件需要采用微细电火花加工方式完成加工。在压力加工开始的同时开启超声发生装置,超声波的功率为300~500W,频率为15~20kHz。由于超声变幅杆1与下模10通过螺钉3直接连接,从而保证了超声波振动能量的有效传递。在微触变成形加工过程中一直施加超声振动,使得半固态金属坯料在超声波的辅助作用下完成快速微成形过程。在压力加工的同时依然需要通过两个闭环温度控制系统对于冲头4和下模10进行持续加热,维持冲头4和下模10处于高温状态,从而保证半固态金属微触变成形过程中的温度处于固液共存区。(3) As shown in Figure 2, after the semi-solid metal billet is heated to the solid-liquid coexistence area, the
(4)微触变成形过程完成后,停止超声振动和模具加热。(4) After the microthixotropy forming process is completed, stop the ultrasonic vibration and mold heating.
(5)升起冲头后,取出半固态金属微成形工件,重复以上过程即可开始下一工件的加工。(5) After raising the punch, take out the semi-solid metal micro-formed workpiece, and repeat the above process to start the processing of the next workpiece.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201682370U CN201295751Y (en) | 2008-11-18 | 2008-11-18 | Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201682370U CN201295751Y (en) | 2008-11-18 | 2008-11-18 | Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201295751Y true CN201295751Y (en) | 2009-08-26 |
Family
ID=41041711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008201682370U Expired - Lifetime CN201295751Y (en) | 2008-11-18 | 2008-11-18 | Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201295751Y (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101406925B (en) * | 2008-11-18 | 2011-08-24 | 浙江大学 | Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal |
CN102343431A (en) * | 2011-03-15 | 2012-02-08 | 江苏凯特汽车部件有限公司 | Temperature field compensation method in semi-solid rheo-die-casting process of automobile aluminium alloy wheel |
CN104084559A (en) * | 2014-06-30 | 2014-10-08 | 华南理工大学 | Squeeze casting method and device based on power ultrasound and pressure coupling |
CN104588612A (en) * | 2014-12-30 | 2015-05-06 | 北京科技大学 | High-melting-point alloy thixoforming device and forming process |
CN108773077A (en) * | 2018-06-15 | 2018-11-09 | 德召尼克(常州)焊接科技有限公司 | A kind of vibratory frictional bonding machine for plastics with preheating device |
CN110125272A (en) * | 2019-06-04 | 2019-08-16 | 上海交通大学 | For forming micro radiator micro-channel thin-plate devices and method |
CN111069566A (en) * | 2020-01-03 | 2020-04-28 | 上海交通大学 | In-situ preparation and forming method and device for aluminum/magnesium alloy semi-solid slurry |
-
2008
- 2008-11-18 CN CNU2008201682370U patent/CN201295751Y/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101406925B (en) * | 2008-11-18 | 2011-08-24 | 浙江大学 | Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal |
CN102343431A (en) * | 2011-03-15 | 2012-02-08 | 江苏凯特汽车部件有限公司 | Temperature field compensation method in semi-solid rheo-die-casting process of automobile aluminium alloy wheel |
CN104084559A (en) * | 2014-06-30 | 2014-10-08 | 华南理工大学 | Squeeze casting method and device based on power ultrasound and pressure coupling |
CN104588612A (en) * | 2014-12-30 | 2015-05-06 | 北京科技大学 | High-melting-point alloy thixoforming device and forming process |
CN108773077A (en) * | 2018-06-15 | 2018-11-09 | 德召尼克(常州)焊接科技有限公司 | A kind of vibratory frictional bonding machine for plastics with preheating device |
CN108773077B (en) * | 2018-06-15 | 2024-04-05 | 德召尼克(常州)焊接科技有限公司 | Plastic vibration friction welding machine with preheating device |
CN110125272A (en) * | 2019-06-04 | 2019-08-16 | 上海交通大学 | For forming micro radiator micro-channel thin-plate devices and method |
CN111069566A (en) * | 2020-01-03 | 2020-04-28 | 上海交通大学 | In-situ preparation and forming method and device for aluminum/magnesium alloy semi-solid slurry |
CN111069566B (en) * | 2020-01-03 | 2021-12-17 | 上海交通大学 | In-situ preparation and forming method and device for aluminum/magnesium alloy semi-solid slurry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101406925B (en) | Ultrasonic vibration-assisted microthixotropic deformation method and device of semi-solid metal | |
CN201295751Y (en) | Ultrasonic vibration auxiliary semisolid metal micro thixotropic molding device | |
CN101850376B (en) | Method and die for forward extrusion and variable diameter bending extrusion of magnesium alloy semi-solid billets | |
CN104162555B (en) | A semi-solid thixotropic-plastic composite forming method | |
CN102284664A (en) | Semi-solid forming die and forming method for cavity-variable axisymmetric part | |
CN106312016B (en) | A kind of aluminum alloy forge piece vibration casting forging combined shaping method | |
CN107081343B (en) | A kind of continuous plastic processing molding die of magnesium alloy profiles and forming method | |
CN103909267B (en) | Semi-solid metal powder forming device and forming method based on ultrasonic vibration | |
CN103121075B (en) | Hot forging method for transmission shaft yoke with horizontal yoke part | |
CN104668911B (en) | Radial forging type strain-induced semi-solid extrusion process for outer cylinder forged piece of aircraft landing gear | |
CN109092957A (en) | A kind of shaft sleeve parts part thixoextruding method | |
CN203265502U (en) | Hot forging device for transmission shaft joint fork with horizontal fork part | |
CN104801557A (en) | Isovolumetric reciprocating extrusion device and machining method for enhanced magnesium alloy plate | |
CN102284536A (en) | Preparation device and method of light-alloy semisolid blanks by equal-channel reciprocating extrusion and spheroidization | |
CN107470483A (en) | The flat no riveting joint forming device of direct sensing heating and technique of lightweight sheet material | |
CN109807272A (en) | A thixotropic soft core composite forging method for aluminum-steel bimetallic components | |
CN208528052U (en) | A kind of shaping dies of shaft sleeve parts part thixoextruding | |
CN104624917B (en) | Process for manufacturing semisolid copper alloy multi-channel valve body through radial forging strain provocation method | |
CN108580574B (en) | A method for three-way near-solid pressure forming of blanks of tee parts | |
CN208083410U (en) | A kind of shaping dies of semi-solid squeeze casting shaft sleeve parts | |
CN104264089B (en) | A kind of electro-magnetic forming and the compound aluminium alloy semi-solid state blank technique of preparing of secondary remelting | |
CN104668910B (en) | The strain-induced formula of large ring twists and semisolid die forging combination process | |
CN1785550A (en) | Forging method of soliding fork | |
CN105149869B (en) | The cross wedge rolling formula strain-induced semisolid die forging technique of internal combustion engine high-pressure common-rail pipe | |
CN107470482A (en) | The flat no riveting joint forming device of indirect sensing heating and technique of lightweight sheet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20090826 Effective date of abandoning: 20081118 |