CN201291928Y - Six-foot walking robot device - Google Patents
Six-foot walking robot device Download PDFInfo
- Publication number
- CN201291928Y CN201291928Y CNU2008200416426U CN200820041642U CN201291928Y CN 201291928 Y CN201291928 Y CN 201291928Y CN U2008200416426 U CNU2008200416426 U CN U2008200416426U CN 200820041642 U CN200820041642 U CN 200820041642U CN 201291928 Y CN201291928 Y CN 201291928Y
- Authority
- CN
- China
- Prior art keywords
- crank
- frame
- connecting rod
- walking
- transmission shafts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本实用新型涉及一种六足行走机器人装置,解决了6足行走机器人步态规划和多足协调问题。该装置包括机架、三根传动轴和曲柄摇杆机构,三根传动轴平行设于机架上,其两侧前部的机架上分别平行设有一根短轴,三根传动轴之间分别由两副链传动机构连接,三根传动轴的两外伸端分别连接着曲柄的一端;每根曲柄的另一端分别铰链连接着连杆的下端,连杆的上端铰链连接着行走足杆的上端,连杆的中部铰链连接着摇杆的上端,摇杆的下端固定连接着相应侧机架上的短轴;曲柄、连杆、摇杆和行走足杆组成曲柄摇杆机构,三根传动轴中其中之一连接着电动机输出轴。该行走机器人装置具有重心平稳,仅需单电动机驱动,步态合理,设计制造成本低,可靠性高的优点。
The utility model relates to a hexapod walking robot device, which solves the problems of gait planning and multi-leg coordination of a six-leg walking robot. The device includes a frame, three transmission shafts and a crank-rocker mechanism. The three transmission shafts are arranged in parallel on the frame, and a short shaft is respectively arranged in parallel on the front frames on both sides. The three transmission shafts are respectively separated by two The two extended ends of the three transmission shafts are respectively connected to one end of the crank; the other end of each crank is hinged to the lower end of the connecting rod, and the upper end of the connecting rod is hinged to the upper end of the walking foot bar. The middle part of the rod is hinged to the upper end of the rocker, and the lower end of the rocker is fixedly connected to the short shaft on the corresponding side frame; the crank, connecting rod, rocker and walking foot rod form the crank rocker mechanism, and one of the three transmission shafts One is connected to the motor output shaft. The walking robot device has the advantages of a stable center of gravity, a single motor drive, a reasonable gait, low design and manufacturing costs, and high reliability.
Description
技术领域 technical field
本实用新型涉及一种机器人装置。The utility model relates to a robot device.
背景技术 Background technique
为了提高运载工具在坏路或无路情况下的通过能力,并避免恶劣的工作环境对人体的伤害,常使用移动机器人来满足特殊的功能要求或从事一些人体本身难以完成的工作。而足式行走移动方式因具有轮式和履带式所没有的优点正日益受到科研工作者关注。机器人力学计算表明,足式行走机器人的能耗通常低于轮式和履带式;足式行走机构能适应各种地面条件且具有较高的逾越障碍的能力,能够方便的上下台阶及通过不平整、不规则或较窄的路面,它的移动“盲区”很小。而目前行走机器人中,多采用液压、单片机等控制方式实现单足步态规划(也就是使足具有与人类类似的步态)和多足协调运动,增加了设计、制造甚至维护成本。In order to improve the passing ability of vehicles on bad roads or without roads, and to avoid harm to the human body in harsh working environments, mobile robots are often used to meet special functional requirements or to engage in some tasks that are difficult for the human body to complete. The foot type walking method is attracting the attention of scientific researchers day by day because of the advantages that the wheel type and the crawler type do not have. Robot mechanical calculations show that the energy consumption of legged walking robots is usually lower than that of wheeled and crawler-type robots; the legged walking mechanism can adapt to various ground conditions and has a high ability to overcome obstacles, and can easily go up and down steps and through unevenness , Irregular or narrow road surface, its mobile "blind zone" is very small. At present, in walking robots, hydraulic pressure, single-chip microcomputer and other control methods are mostly used to realize single-foot gait planning (that is, to make the foot have a gait similar to human beings) and multi-foot coordinated movement, which increases design, manufacturing and even maintenance costs.
实用新型内容 Utility model content
为了避免因采用液压、单片机等控制方式实现单足步态规划和多足协调运动而导致的高设计制造成本,本实用新型提供一种六足行走机器人装置。In order to avoid high design and manufacturing costs caused by the use of hydraulic pressure, single-chip microcomputer and other control methods to realize single-legged gait planning and multi-legged coordinated movement, the utility model provides a hexapod walking robot device.
具体的结构设计方案如下:The specific structural design scheme is as follows:
一种六足行走机器人装置包括机架、三根传动轴和曲柄摇杆机构,所述机架为矩形框架形,曲柄摇杆机构包括曲柄、连杆、摇杆和行走足杆;A hexapod walking robot device includes a frame, three transmission shafts and a crank-rocker mechanism, the frame is in the shape of a rectangular frame, and the crank-rocker mechanism includes a crank, a connecting rod, a rocker and a walking foot bar;
机架上平行设有前轴3、中间轴5和后轴8三根传动轴,三根传动轴的两端分别伸至机架外,三根传动轴的两外伸端上分别固定连接着曲柄的一端;Three transmission shafts,
所述前轴3和中间轴5之间设有链传动机构,所述中间轴5和后轴8之间设有链传动机构;A chain transmission mechanism is provided between the
前轴3、中间轴5和后轴8三根传动轴两侧前部的机架上分别平行设有一根短轴,短轴与相邻传动轴之间的间距相等;
所述每根曲柄的另一端分别铰链连接着连杆的下端,连杆的上端铰链连接着行走足杆的上端,连杆的中部铰链连接着摇杆的上端,摇杆的下端固定连接着相应侧机架上的短轴;The other end of each crank is hingedly connected to the lower end of the connecting rod, the upper end of the connecting rod is hinged to the upper end of the walking foot bar, the middle part of the connecting rod is hinged to the upper end of the rocker, and the lower end of the rocker is fixedly connected to the corresponding stub shaft on side frame;
三根传动轴中其中之一连接着电动机输出轴。One of the three transmission shafts is connected to the motor output shaft.
所述摇杆长度为连杆长度的二分之一,The length of the rocker is 1/2 of the length of the connecting rod,
所述摇杆长度:短轴与相邻传动轴之间的间距:曲柄长度=1∶0.78∶0.35。The length of the rocker: the distance between the short axis and the adjacent transmission shaft: the length of the crank = 1:0.78:0.35.
机架一侧前、后和机架另一侧中部曲柄为一组,机架另一侧前、后和机架一侧中部曲柄为另一组,同一组曲柄相互平行,不同组曲柄所对应的空间向量之间的夹角恒为180度。The front and rear cranks on one side of the frame and the middle crank on the other side of the rack are one set, and the front and rear cranks on the other side of the rack and the middle crank on one side of the rack are another set. The cranks of the same set are parallel to each other, and the cranks of different sets correspond to The angle between the space vectors of is always 180 degrees.
本实用新型采用6个完全相同的曲柄摇杆机构作为单足行走机构,所给定的每个单足行走机构之杆长比例可保证其行走步态类似人的行走,并将这6个单足行走机构的主动曲柄分别装在前轴、中间轴和后轴上并以链传动实现其联动,从而以一个电动机即可驱动该行走机器人装置。又将这6个单足行走机构每3个一组共分成2组,以主动曲柄相对于前轴、中间轴和后轴的恰当安装位置来协调每一组足之间的运动,可以确保该六足行走机器人在运动的每一瞬时均有1组3足着地,同时,也均有另1组3足随机架一起抬腿行走。The utility model adopts 6 completely identical crank rocker mechanisms as the single-foot walking mechanism, and the given rod length ratio of each single-foot walking mechanism can ensure that its walking gait is similar to that of a person, and the six single-foot walking mechanisms The active cranks of the foot walking mechanism are respectively installed on the front axle, the middle axle and the rear axle and realize their linkage with a chain drive, so that the walking robot device can be driven by an electric motor. The 6 unipedal walking mechanisms are divided into 2 groups in groups of 3, and the movement between each group of feet can be coordinated with the proper installation position of the active crank relative to the front axle, intermediate axle and rear axle, which can ensure the The hexapod walking robot has one group of three legs landing on the ground at each moment of motion, and at the same time, another group of three legs lifts its legs together with the frame to walk.
与现有技术相比本实用新型具有的优点和积极效果:Compared with the prior art, the utility model has advantages and positive effects:
(1)、仅需单电动机驱动,每个单足行走机构的杆长比例按给定数值选取后即具有与人类行走相类似的步态,不需另加控制装置实现步态的规划,节约了设计制造成本,提高了可靠性。(1) It only needs to be driven by a single motor. After the rod length ratio of each single-foot walking mechanism is selected according to a given value, it will have a gait similar to human walking. No additional control device is needed to realize the gait planning, saving energy Design and manufacturing costs are reduced, and reliability is improved.
(2)、主动曲柄与前轴、中间轴和后轴的安装位置满足给定条件时即可实现6足的协调行走运动,也不需另加控制装置实现多足行走的协调运动。(2) When the installation positions of the active crank, the front axle, the intermediate axle and the rear axle meet the given conditions, the coordinated walking motion of six legs can be realized, and the coordinated motion of multi-legged walking can be realized without additional control devices.
(3)、机架移动时,总有3足着地,重心平稳。(3) When the rack moves, there are always 3 feet on the ground, and the center of gravity is stable.
附图说明 Description of drawings
图1为本实用新型结构示意图(本实用新型立于地面时,自左侧观察得到的三维图),Fig. 1 is a structural representation of the utility model (when the utility model stood on the ground, a three-dimensional figure observed from the left side),
图2为每个单足行走机构示意图,Fig. 2 is a schematic diagram of each single-foot walking mechanism,
图3为本实用新型的与前、后以及中间回转轴相平行的平面内的投影图,Fig. 3 is the projection diagram in the plane parallel with the front, back and middle rotary axis of the present utility model,
图4为本实用新型立于地面时,自右侧观察得到的三维图。Fig. 4 is a three-dimensional view obtained from the right side when the utility model stands on the ground.
具体实施方式 Detailed ways
下面结合附图,通过实施例对本实用新型作进一步地说明。Below in conjunction with accompanying drawing, the utility model is further described by embodiment.
实施例:Example:
参见图1、图2、图3和图4,一种六足行走机器人装置包括机架1、三根传动轴和曲柄摇杆机构,所述机架为矩形框架形,曲柄摇杆机构包括曲柄、连杆、摇杆和行走足杆;Referring to Fig. 1, Fig. 2, Fig. 3 and Fig. 4, a kind of hexapod walking robot device comprises
机架1上通过轴承平行安装有前轴3、中间轴5和后轴8三根传动轴,三根传动轴的两端分别伸至机架外,三根传动轴的两外伸端上分别固定连接着曲柄的一端;即前轴3两外伸端上分别固定连接着前左曲柄13A和前右曲柄13D,中间轴5两外伸端上分别固定连接着中左曲柄13B和中右曲柄13E,后轴8两外伸端上分别固定连接着后左曲柄13C和后右曲柄13F;Three transmission shafts,
前轴3和中间轴5之间,由前轴链轮10C、传动链10B和中间链轮10A组成的链传动机构连接,中间轴5和后轴8之间,由过渡链轮6A、传动链6B和后轴链轮6C组成的链传动机构连接;Between the
前轴3、中间轴5和后轴8三根传动轴两侧前部的机架上分别平行安装有一根短轴,短轴与相邻传动轴之间的间距相等;即前轴3前部的机架上分别平行安装有前左短轴12和前右短轴2,中间轴5前部的机架上分别平行安装有中左短轴11和中右短轴4,后轴8前部的机架上分别平行安装有后左短轴9和后右短轴7;A short shaft is installed in parallel on the front racks on both sides of the
每根曲柄的另一端分别铰链连接着连杆的下端,连杆的上端铰链连接着行走足杆的上端,连杆的中部铰链连接着摇杆的上端,摇杆的下端固定连接着相应侧机架上的短轴;The other end of each crank is hinged to the lower end of the connecting rod, the upper end of the connecting rod is hinged to the upper end of the walking foot bar, the middle of the connecting rod is hinged to the upper end of the rocker, and the lower end of the rocker is fixedly connected to the corresponding side machine. short shaft on the frame;
即前左曲柄13A的另一端分别铰链连接着前左连杆14A的下端,前左连杆14A的上端铰链连接着前左行走足杆16A的上端,前左连杆14A的中部铰链连接着前左摇杆15A的上端,前左摇杆15A的下端固定连接着相应侧机架上的前左短轴12;前左曲柄13A、前左连杆14A、前左摇杆15A和前左行走足杆16A组成前左足单足行走机构;That is, the other end of the front
前右曲柄13D的另一端分别铰链连接着前右连杆14D的下端,前右连杆14D的上端铰链连接着前右行走足杆16D的上端,前右连杆14D的中部铰链连接着前右摇杆15D的上端,前右摇杆15D的下端固定连接着相应侧机架上的前右短轴2;前右曲柄13D、前右连杆14D、前右摇杆15D和前右行走足杆16D组成前右足单足行走机构;The other end of front
中左曲柄13B的另一端分别铰链连接着中左连杆14B的下端,中左连杆14B的上端铰链连接着中左行走足杆16B的上端,中左连杆14B的中部铰链连接着中左摇杆15B的上端,中左摇杆15B的下端固定连接着相应侧机架上的中左短轴11;中左曲柄13B、中左连杆14B、中左摇杆15B和中左行走足杆16B组成中左足单足行走机构;The other end of the middle
中右曲柄13E的另一端分别铰链连接着中右连杆14E的下端,中右连杆14E的上端铰链连接着中右行走足杆16E的上端,中右连杆14E的中部铰链连接着中右摇杆15E的上端,中右摇杆15E的下端固定连接着相应侧机架上的中右短轴4;中右曲柄13E、中右连杆14E、中右摇杆15E和中右行走足杆16E组成中右足单足行走机构;The other end of the middle
后左曲柄13C的另一端分别铰链连接着后左连杆14C的下端,后左连杆14C的上端铰链连接着后左行走足杆16C的上端,后左连杆14C的中部铰链连接着后左摇杆15C的上端,后左摇杆15C的下端固定连接着相应侧机架上的后左短轴9;后左曲柄13C、后左连杆14C、后左摇杆15C和后左行走足杆16C组成后左足单足行走机构;The other end of rear
后右曲柄13F的另一端分别铰链连接着后右连杆14F的下端,后右连杆14F的上端铰链连接着后右行走足杆16F的上端,后右连杆14F的中部铰链连接着后右摇杆15F的上端,后右摇杆15F的下端固定连接着相应侧机架上的后右短轴7;后右曲柄13F、后右连杆14F、后右摇杆15F和后右行走足杆16F组成后右足单足行走机构。The other end of rear
三根传动轴中其中之一连接着电动机输出轴。One of the three transmission shafts is connected to the motor output shaft.
每根摇杆长度为连杆长度的二分之一,The length of each rocker is 1/2 of the length of the connecting rod,
摇杆长度:短轴与相邻传动轴之间的间距:曲柄长度=1∶0.78∶0.35。Rocker length: distance between short axis and adjacent transmission shaft: crank length=1:0.78:0.35.
左前足、左后足和右中足为一组同步行走足,该组中的前左曲柄13A、后左曲柄13C和中右曲柄13E相互平行;右前足、右后足和左中足为另一组同步行走足,该另一组中的前右曲柄13D、后右曲柄13F和中左曲柄13B相互平行;所述的两组曲柄,即第一组前左曲柄13A、后左曲柄13C,中右曲柄13E与第二组前右曲柄13D、后右曲柄13F、中左曲柄13B所对应的空间向量之间的夹角恒为180度。The left front foot, the left rear foot and the right middle foot are a group of synchronous walking feet, and the front
该六足行走机器人装置行走原理如下:The walking principle of the hexapod walking robot device is as follows:
如果同为一组的左前足、左后足和右中足(即16A、16C、16E)着地停驻,则由低副运动可逆性原理,机架1必向前平移,又由于“将各主动曲柄以前左曲柄13A、中右曲柄13E、后左曲柄13C为一组,以前右曲柄13D、中左曲柄13B、后右曲柄13F为另一组,装配时该两组主动曲柄满足:同组主动曲柄互相平行,不同组主动曲柄所对应的空间向量之间的夹角恒为180度两个条件”,同为一组的另外3足右前足、右后足和左中足(即16D、16F、16B)必处于“抬腿离地——腾空运动行走——降腿落地”运动状态中。即:左前足、左后足和右中足(即16A、16C、16E)着地时,机架1必向前平移且右前足、右后足和左中足(即16D、16F、16B)也同时抬腿行走。反之,如果右前足、右后足和左中足(16D、16F、16B)着地时,则机架1向前平移且左前足、左后足和右中足(即16A、16C、16E)也同时抬腿行走。这样可以看出,在该六足行走机器人装置行走过程中,总有同一组的3足着地(另一组的3足随机架向前平移而抬腿行走),又同一组的3足着地点不共线而是呈三角形,保证了其重心的平稳。If the left front foot, left rear foot and right middle foot (i.e. 16A, 16C, 16E) of the same group are parked on the ground, then by the principle of reversibility of the low pair of motions, the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200416426U CN201291928Y (en) | 2008-08-28 | 2008-08-28 | Six-foot walking robot device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200416426U CN201291928Y (en) | 2008-08-28 | 2008-08-28 | Six-foot walking robot device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201291928Y true CN201291928Y (en) | 2009-08-19 |
Family
ID=41005394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008200416426U Expired - Fee Related CN201291928Y (en) | 2008-08-28 | 2008-08-28 | Six-foot walking robot device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201291928Y (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012046037A1 (en) | 2010-10-04 | 2012-04-12 | China Industries Limited | Steerable walking machine and method for controlling the operation of such a machine |
CN102689659A (en) * | 2011-03-21 | 2012-09-26 | 洪浛檩 | Gait of precise positioning of three-steering engine hexapod robot |
CN103481964A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Six-leg walking robot capable of crossing obstacles |
CN103481963A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Two-stage buffer foot device applicable to obstacle crossing robot |
CN105564524A (en) * | 2016-02-16 | 2016-05-11 | 秦广泉 | Walking device |
CN106080830A (en) * | 2016-07-08 | 2016-11-09 | 苏州米众三维科技有限公司 | The Hexapod Robot printed based on 3D |
CN107042501A (en) * | 2016-10-29 | 2017-08-15 | 李宁 | A kind of many leg robot motion structures |
CN108045452A (en) * | 2017-12-08 | 2018-05-18 | 丁秀珍 | A kind of energy conservation and environmental protection road robot |
CN108082324A (en) * | 2017-12-14 | 2018-05-29 | 丁秀珍 | A kind of road drives robot with energy saving and environment friendly single motor |
CN108082321A (en) * | 2017-12-14 | 2018-05-29 | 朱银娥 | A kind of gardens robot of the single motor driving with dust-extraction unit |
CN108100072A (en) * | 2017-12-08 | 2018-06-01 | 陈德梅 | A kind of environment friendly road robot |
CN112046638A (en) * | 2020-09-15 | 2020-12-08 | 华中农业大学 | Be applied to delivery platform of paddy field environment |
CN113018884A (en) * | 2021-01-29 | 2021-06-25 | 广州理工学院 | Multi-foot arrow throwing robot |
-
2008
- 2008-08-28 CN CNU2008200416426U patent/CN201291928Y/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012046037A1 (en) | 2010-10-04 | 2012-04-12 | China Industries Limited | Steerable walking machine and method for controlling the operation of such a machine |
US8657042B2 (en) | 2010-10-04 | 2014-02-25 | China Industries Limited | Walking machine |
CN102689659A (en) * | 2011-03-21 | 2012-09-26 | 洪浛檩 | Gait of precise positioning of three-steering engine hexapod robot |
CN103481964A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Six-leg walking robot capable of crossing obstacles |
CN103481963A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Two-stage buffer foot device applicable to obstacle crossing robot |
CN103481964B (en) * | 2013-09-13 | 2015-08-05 | 北京航空航天大学 | A kind of Six-foot walking robot with obstacle climbing ability |
CN103481963B (en) * | 2013-09-13 | 2016-06-01 | 北京航空航天大学 | A kind of foot device with two-stage buffering being applicable to barrier-surpassing robot |
CN105564524A (en) * | 2016-02-16 | 2016-05-11 | 秦广泉 | Walking device |
CN106080830A (en) * | 2016-07-08 | 2016-11-09 | 苏州米众三维科技有限公司 | The Hexapod Robot printed based on 3D |
CN107042501A (en) * | 2016-10-29 | 2017-08-15 | 李宁 | A kind of many leg robot motion structures |
CN108045452A (en) * | 2017-12-08 | 2018-05-18 | 丁秀珍 | A kind of energy conservation and environmental protection road robot |
CN108100072A (en) * | 2017-12-08 | 2018-06-01 | 陈德梅 | A kind of environment friendly road robot |
CN108082324A (en) * | 2017-12-14 | 2018-05-29 | 丁秀珍 | A kind of road drives robot with energy saving and environment friendly single motor |
CN108082321A (en) * | 2017-12-14 | 2018-05-29 | 朱银娥 | A kind of gardens robot of the single motor driving with dust-extraction unit |
CN112046638A (en) * | 2020-09-15 | 2020-12-08 | 华中农业大学 | Be applied to delivery platform of paddy field environment |
CN113018884A (en) * | 2021-01-29 | 2021-06-25 | 广州理工学院 | Multi-foot arrow throwing robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201291928Y (en) | Six-foot walking robot device | |
CN105667622B (en) | A six-wheeled mobile robot with a three-segment body | |
CN108327812B (en) | A multi-walking wheel-legged robot | |
CN102815348B (en) | Four-feet climbing robot | |
CN106585761B (en) | A kind of planar linkage formula four feet walking robot of imitative equine gait | |
CN207311652U (en) | A kind of four-leg bionic robot of guide rail slide block driving | |
CN203228864U (en) | Connecting-bar type four-footed crawling robot | |
CN209454890U (en) | A wheeled crawling freely switching hexapod robot | |
CN101428655B (en) | Wheeled mobile device for foot for humanoid robot, polypodia walking vehicle | |
CN106476928A (en) | The variable electronic quadruped robot of mechanism configuration | |
CN108382484A (en) | A kind of Multifeet walking robot for flexibly turning to advance | |
CN106542018B (en) | A kind of semi-passive double feet walking machine with bionical articulationes metatarsophalangeae | |
CN203005598U (en) | Four-foot-crawling robot | |
CN202847865U (en) | Four-footed climbing robot | |
CN101428421A (en) | Two-foot walk triangle robot | |
CN218806218U (en) | A self-balancing wheel-legged biped robot | |
CN101224765A (en) | A dual-purpose robot leg with casters | |
CN109398527A (en) | A kind of multi link Movable device | |
CN204846105U (en) | Robot that can take turns, leg warp | |
CN206278172U (en) | The variable electronic quadruped robot of mechanism configuration | |
CN204309924U (en) | A kind of multi-mode traveling gear for robot | |
CN207311654U (en) | A kind of an educational quadruped robot | |
CN206654106U (en) | Track-leg-foot compound mobile robot | |
CN205131423U (en) | 3D prints eight sufficient bionic robot | |
CN108216415A (en) | Biped luggage transport robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090819 Termination date: 20110828 |