CN201283263Y - 用于制备高纯度氢气的膜分离设备 - Google Patents
用于制备高纯度氢气的膜分离设备 Download PDFInfo
- Publication number
- CN201283263Y CN201283263Y CNU2008202019002U CN200820201900U CN201283263Y CN 201283263 Y CN201283263 Y CN 201283263Y CN U2008202019002 U CNU2008202019002 U CN U2008202019002U CN 200820201900 U CN200820201900 U CN 200820201900U CN 201283263 Y CN201283263 Y CN 201283263Y
- Authority
- CN
- China
- Prior art keywords
- synthesis gas
- palladium membrane
- gas circulation
- palladium
- membrane component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本实用新型公开了用于制备高纯度氢气的膜分离设备,包括钯膜组件、合成气流通框架、盲板法兰、石墨垫片、连接螺栓及螺母;在两盲板法兰之间设有多个钯膜组件,盲板法兰与钯膜组件之间及钯膜组件与钯膜组件之间设有合成气流通框架,盲板法兰与合成气流通框架之间及合成气流通框架与钯膜组件之间安装石墨垫片;合成气流通框架为方形框架,中间为空腔;方形框架与盲板法兰或钯膜组件形成封闭的空间,在合成气流通框架设有含氢合成气导入和导出管,导入和导出管与钯膜组件的气体流通空间连通;在合成气流通框架四周设有凸台。本实用新型将含氢合成气直接引入钯膜组件两侧,设计紧凑、体积小、拆卸方便,可提纯分离得到高纯度氢气,并且氢气透过率大。
Description
技术领域:
本实用新型涉及一种从含氢的合成气中分离、用于制备高纯度氢气的膜分离设备,特别涉及到一种结构紧凑、易于扩展的膜分离器。该装置能从含氢混合气中生产高纯度的氢气。
背景技术
目前世界上90%的氢气来自于碳氢化合物(天然气,煤,生物质等)的重整,气化或裂解等化学过程后经过纯化得到,合成气的提纯是其中一个关键的工艺过程。可用的提纯技术有:变压吸附,高分子膜分离,钯膜分离,低温分离等。与其他分离技术相比,钯膜分离可以生产只含ppb级别杂质的高纯度氢气,尤其适应燃料电池的要求;另外钯膜分离装置占地小,在小型化方面也较其他几种分离方法容易。
氢气在钯膜中的传递服从所谓的“溶解—扩散”(Solution-diffusion)机理,它包含以下几个过程:氢气从边界层中扩散到钯膜表面;氢气在膜表面分解成氢原子;氢原子被钯膜溶解;氢原子在钯膜中从高压侧扩散到低压侧;氢原子在钯膜低压侧重新合成为氢分子;氢气扩散离开膜表面。根据上述理论,氢气在钯膜中的穿透率与膜的温度,厚度,合金成分,以及氢气在膜两侧的分压有关,并可用Sievert’s Law来表达:
式中:
R:气体常数;T:温度;A:膜面积;L:膜厚度;E:活化能;Ph:氢气高压侧分压;Pl:氢气低压侧分压;n:压力指数;k:指数函数前系数;M透过率。
应用钯膜分离生产氢气的方法主要有两种:A)将膜组件与制氢反应器耦合为一体成为膜反应器,利用该反应器一步法从原料气中经过反应和分离得到高纯度的氢气。膜分离与反应过程的耦合可打破反应的热力学平衡,使得反应有利于向产氢的方向进行。但由于反应器中增加了膜分离组件,反应器结构复杂,钯膜与反应介质及催化剂直接接触,运行条件比较恶劣,钯膜寿命较短。B)钯膜分离与制氢反应器分离,制氢反应器生产含氢合成气,其下游采用钯膜分离得到高纯度氢气,该方法工艺简单,操作维修都比较方便。
中国发明专利申请“一种利用微尺度通道传热的快速启动钯膜组件”(申请号:200710031743.5)公开了一种钯膜组件,该组件包括膜支撑框架、多孔金属支撑体及钯合金膜,两多孔金属支撑体及钯合金膜分别依次位于膜支撑框架的两侧,膜支撑框架内含被净化氢气气流通道和小尺度通道,所述小尺度通道为穿行于膜支撑框架内部的一个加热用的气体的流通通道,其截面为矩形,截面尺寸0.2-1.0毫米×0.2-1.0毫米,连接小尺度的通道入口和出口设在含膜支撑框架上;支撑体上氢气气流通道为矩形齿状,气体到出口设置在支撑框架上端。该组件利用热流体在小尺度通道内的流动传热可以快速使钯合金膜组件升温至所需要的工作温度,降低了钯合金膜组件的金属含量,进一步减少了升温时间。
在通常的钯膜分离组件的应用中,一般将钯膜分离组件置于一压力容器内,氢气引出管通过压力容器法兰引出压力容器。含氢合成气被引入到压力容器内,其中的氢气透过钯膜后,通过氢气引出管引出压力容器。由于压力容器一般为圆型结构,内置矩型的钯膜分离组件,该种应用型式一般结构比较庞大,扩展困难。本实用新型在钯膜分离组件的两侧设矩型合成气流通框架,直接将含氢合成气引入到钯膜分离组件的两侧,组成的钯膜分离器结构紧凑,易于扩展。
实用新型内容
本实用新型针对化工生产及实验室中制得的含氢合成气,以钯膜组件为主要部件,提供一种结构紧凑、易于扩展的钯膜分离装置。
本实用新型的主要实施方案如下:
用于制备高纯度氢气的膜分离设备,包括钯膜组件,其特征在于,该装置还包括合成气流通框架、盲板法兰、石墨垫片、连接螺栓及螺母;在两盲板法兰之间设有多个钯膜组件,盲板法兰与钯膜组件之间及钯膜组件与钯膜组件之间设有合成气流通框架,盲板法兰与合成气流通框架之间及合成气流通框架与钯膜组件之间安装石墨垫片;
所述合成气流通框架为方形框架,中间为空腔;方形框架与盲板法兰或钯膜组件形成封闭的空间,在合成气流通框架设有含氢合成气导入和导出管,导入和导出管与钯膜组件的气体流通空间连通;在合成气流通框架四周设有凸台;
所述盲板法兰为方形板;在盲板法兰和钯膜组件与合成气流通框架连接的一面四周分别设有凹槽,凹槽内设有石墨垫圈,合成气流通框架的凸台与盲板法兰和钯膜组件上的凹槽密封连接,在盲板法兰的四周上开圆孔,用于组装时螺栓固定。
为了进一步实现本实用新型的目的,所述钯膜组件的膜支撑框架两侧分别有多孔烧结金属支撑体和钯合金膜,膜支撑框架内含有被净化氢气气流流通通道,该通道为两对称的矩形齿状组合,通道宽度为3-5毫米,通道之间的支撑框架为3-5毫米,气体导出口设置在支撑框架上下两端,与气流通道连通;所述的膜支撑框架的四周加工一用于与合成气流通框架密封的长方形凹槽,所述凹槽宽3—7毫米、深1—3毫米。
所述合成气流通框架为不锈钢方形框架。中间为空腔;方形框架与盲板法兰或钯膜组件形成封闭的空间,在合成气流通框架设有含氢合成气导入和导出管,在合成气流通框架四周加工有凸台,凸台宽度比盲板法兰和钯膜组件的凹槽的宽度窄0.3—0.7毫米,高度与盲板法兰和钯膜组件的凹槽深度相同。
所述盲板法兰和钯膜组件与合成气流通框架连接的一面四周分别设有的凹槽为长方形凹槽,所述凹槽宽度为3—7毫米、深度为1—3毫米。
所述合成气流通框架的凸台宽度比盲板法兰和钯膜组件的凹槽的宽度窄0.3—0.7毫米,高度与盲板法兰和钯膜组件的凹槽深度相同。
所述石墨垫圈为由耐高温的石墨制成的长方形垫圈,宽度与盲板法兰和钯膜组件的凹槽的宽度相同,厚0.3-0.5毫米。
钯膜分离器组装完毕后,外面包覆保温材料以减少散热损失。保温材料可选用耐高温的陶瓷纤维或其他材料,材料厚度以保证保温材料外表面温度不高于环境温度10℃计算确定。
本实用新型与变压吸附等其它氢气分离技术相比,有以下优点:
(1)本实用新型装置中钯膜组件及合成气流通框架的数量可根据所需的氢气产量及操作条件确定,数量的多少不改变分离器的基本结构型式,只增加或减少钯膜组件及合成气流通框架的数量即可,负荷范围既可以满足化工生产中每小时数百立方氢气产量的需求,也可以用于实验室每小时数升氢气生产的要求。
(2)本实用新型装置采用矩形合成气流通框架的设计,将含氢合成气直接引入钯膜组件两侧,设计紧凑、体积小、拆卸方便。
(3)利用厚度低至10微米的钯合金膜,可提纯分离得到高纯度氢气,并且氢气透过率大。
附图说明
图1.用于制备高纯度氢气的膜分离设备组装图。
图2.图1的局部放大图。
图3.钯膜组件半剖图。
图4.图3中钯膜组件A-A剖面图。
图5.图3中钯膜组件B-B剖面图。
图6-1.合成气流通框架结构示意图。
图6-2图6-1的C-C剖面图。
图7-1.盲板法兰结构示意图。
图7-2图7-1的D-D剖面图。
具体实施方式
下面结合附图和具体实例对本实用新型做进一步说明。需要说明的是,所举的实例,其作用只是进一步说明本实用新型的技术特征,而不是限定本实用新型。
如图1、2所示,一种生产高纯度氢气的钯膜分离装置,包括五个部件:钯膜组件1、合成气流通框架2、盲板法兰3、石墨垫圈4、螺栓及螺母5。在两盲板法兰3之间设有多个钯膜组件,盲板法兰与钯膜组件之间及钯膜组件与钯膜组件之间设有合成气流通框架2,用合成气流通框架2分隔,为保持密封,盲板法兰与合成气流通框架之间及合成气流通框架与钯膜组件之间安装石墨垫片。钯膜组件的数量可根据所需的氢气产量、分离器的操作条件(温度、压力等)、钯膜的面积、厚度等几何尺寸来决定。若整个装置所需要的钯膜组件的数量为N,则所需要的合成气流通框架的数量为N+1,石墨垫片的数量为2N+3,盲板法兰数量为2。合成气流通框架,石墨垫片、盲板法兰,都通过连接螺栓和螺母固定。
如图3~5所示,钯膜组件1包括膜支撑框架101、多孔烧结金属支撑体105、钯合金膜106及氢气导出管104。膜支撑框架101两侧分别有多孔烧结金属支撑体105和钯合金膜106,膜支撑框架101内含有被净化氢气气流流通通道102,该通道为两对称的矩形齿状组合,通道宽度为3-5毫米,通道之间的支撑框架为3-5毫米,气体导出口104设置在支撑框架101上下两端,与气流通道104连通。支撑框架101采用不锈钢,多孔烧结金属支撑体105采用烧结不锈钢。支撑框架与烧结金属之间采用焊接连接。钯合金膜106采用钯银合金膜,膜的厚度为10-50微米。钯合金膜106与金属支撑框架101和多孔烧结金属支撑体105之间采用金属扩散的方法密封连接在一起,该方法是将该组件至于高温高压环境下,使得钯合金膜106的分子与金属支撑框架101的分子相互扩散,从而达到密封的效果。膜支撑框架101四周加工宽为3—7毫米,优选5毫米,深为1—3毫米,优选1毫米的凹槽103;组装时,槽103内加厚度0.3-0.5毫米宽度为5毫米的石墨垫片4,与合成气流通框架2的凸台203对接(图2.)。
如图6-1、6-2所示,合成气流通框架2为一不锈钢方形框架,中间为空腔。安装后,与其两侧的盲板法兰及钯膜组件形成封闭的空间201,合成气可在此空间流动,并有一定的停留时间。在合成气流通框架2两端焊接含氢合成气导入和导出管202,导入和导出管与气体流通空间201连通。在框架两侧加工一宽4.5毫米、高1毫米的凸台203,用于合成气流通框架2与钯膜组件1或盲板法兰3安装组合时密封(图2)。
如图7-1、7-2所示,盲板法兰3为一方形不锈钢板301,厚度为15毫米。在盲板法兰的四周上开圆孔303,用于组装时螺栓5固定(图1)。在盲板法兰3与合成气流通框架2连接的一面加工宽为5毫米,深为1毫米的长方形凹槽302;在组装时(图1),凹槽302内加厚度0.3-0.5毫米宽度为5毫米的石墨垫圈4,再与合成气流通框架2的凸台203密封。
石墨垫圈4为一长方形垫圈,由耐高温的石墨制成。该垫圈宽5毫米,厚0.3-0.5毫米。
钯膜的适宜工作温度是450—600℃,钯膜分离器组装完毕后,外面包覆保温材料以减少散热损失。保温材料可选用耐高温的陶瓷纤维或其他材料,材料厚度以保证保温材料外表面温度不高于环境温度10℃计算确定。
如图1~2所示,含有2个钯膜组件的钯膜分离装置的组装顺序为:盲板法兰、石墨垫片、合成气流通框架,石墨垫片、钯膜组件、石墨垫片、合成气流通框架,石墨垫片、钯膜组件、石墨垫片、合成气流通框架,石墨垫片、盲板法兰;整个装置的部件通过连接螺栓及螺母固定。当需要增加钯膜组件数量时,可在盲板法兰内依次添加石墨垫片、合成气流通框架,钯膜组件即可。
工作时,首先通过合成气引入引出口202在合成气流通框架内引入高温惰性气体对膜分离装置加热,当温度上升到钯膜的工作温度(一般在450-600℃)时,将高压的含氢混合气体由合成气流通框架2的导入管202引入,在含氢气体流通通道中,混合气体中的氢气与钯膜106接触,通过钯膜106、烧结金属105传递到氢气流通通道102,再由氢气引出管104引出钯膜分离装置,成为高纯度的产品氢气。
在通常的钯膜分离组件的应用中,一般将钯膜分离组件置于一压力容器内,氢气引出管通过压力容器法兰引出压力容器。含氢合成气被引入到压力容器内,其中的氢气透过钯膜后,通过氢气引出管引出压力容器。由于压力容器一般为圆型结构,内置矩型的钯膜分离组件,该种应用型式结构比较庞大,扩展困难。本实用新型在钯膜分离组件的两侧设矩型合成气流通框架,直接将含氢合成气引入到钯膜分离组件的两侧,组成的钯膜分离器结构紧凑,易于扩展。
Claims (6)
1、用于制备高纯度氢气的膜分离设备,包括钯膜组件,其特征在于,该装置还包括合成气流通框架、盲板法兰、石墨垫片、连接螺栓及螺母;在两盲板法兰之间设有多个钯膜组件,盲板法兰与钯膜组件之间及钯膜组件与钯膜组件之间设有合成气流通框架,盲板法兰与合成气流通框架之间及合成气流通框架与钯膜组件之间安装石墨垫片;
所述合成气流通框架为方形框架,中间为空腔;方形框架与盲板法兰或钯膜组件形成封闭的空间,在合成气流通框架设有含氢合成气导入和导出管,导入和导出管与钯膜组件的气体流通空间连通;在合成气流通框架四周设有凸台;
所述盲板法兰为方形板;在盲板法兰和钯膜组件与合成气流通框架连接的一面四周分别设有凹槽,凹槽内设有石墨垫圈,合成气流通框架的凸台与盲板法兰和钯膜组件上的凹槽密封连接,在盲板法兰的四周上开圆孔,用于组装时螺栓固定。
2、根据权利要求1所述的用于制备高纯度氢气的膜分离设备,其特征在于:所述钯膜组件的膜支撑框架两侧分别有多孔烧结金属支撑体和钯合金膜,膜支撑框架内含有被净化氢气气流流通通道,该通道为两对称的矩形齿状组合,通道宽度为3-5毫米,通道之间的支撑框架为3-5毫米,气体导出口设置在支撑框架上下两端,与气流通道连通;所述的膜支撑框架的四周加工一用于与合成气流通框架密封的长方形凹槽,所述凹槽宽3—7毫米、深1—3毫米。
3、根据权利要求1所述的用于制备高纯度氢气的膜分离设备,其特征在于:所述合成气流通框架为不锈钢方形框架。中间为空腔;方形框架与盲板法兰或钯膜组件形成封闭的空间,在合成气流通框架设有含氢合成气导入和导出管,在合成气流通框架四周加工有凸台,凸台宽度比盲板法兰和钯膜组件的凹槽的宽度窄0.3—0.7毫米,高度与盲板法兰和钯膜组件的凹槽深度相同。
4、根据权利要求1所述的用于制备高纯度氢气的膜分离设备,其特征在于:所述盲板法兰和钯膜组件与合成气流通框架连接的一面四周分别设有的凹槽为长方形凹槽,所述凹槽宽度为3—7毫米、深度为1—3毫米。
5、根据权利要求1所述的用于制备高纯度氢气的膜分离设备,其特征在于:所述合成气流通框架的凸台宽度比盲板法兰和钯膜组件的凹槽的宽度窄0.3—0.7毫米,高度与盲板法兰和钯膜组件的凹槽深度相同。
6、根据权利要求1所述的膜分离设备,其特征在于:所述石墨垫圈为由耐高温的石墨制成的长方形垫圈,宽度与盲板法兰和钯膜组件的凹槽的宽度相同,厚0.3-0.5毫米。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008202019002U CN201283263Y (zh) | 2008-10-14 | 2008-10-14 | 用于制备高纯度氢气的膜分离设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008202019002U CN201283263Y (zh) | 2008-10-14 | 2008-10-14 | 用于制备高纯度氢气的膜分离设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201283263Y true CN201283263Y (zh) | 2009-08-05 |
Family
ID=40948247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008202019002U Expired - Fee Related CN201283263Y (zh) | 2008-10-14 | 2008-10-14 | 用于制备高纯度氢气的膜分离设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201283263Y (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107399727A (zh) * | 2016-05-19 | 2017-11-28 | 拜默实验设备(上海)股份有限公司 | 一种组合式膜分离制备氮气的装置 |
CN109513318A (zh) * | 2017-09-20 | 2019-03-26 | 上海铭寰新能源科技有限公司 | 可拆卸式钯膜滤芯组件 |
-
2008
- 2008-10-14 CN CNU2008202019002U patent/CN201283263Y/zh not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107399727A (zh) * | 2016-05-19 | 2017-11-28 | 拜默实验设备(上海)股份有限公司 | 一种组合式膜分离制备氮气的装置 |
CN109513318A (zh) * | 2017-09-20 | 2019-03-26 | 上海铭寰新能源科技有限公司 | 可拆卸式钯膜滤芯组件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2812278B1 (en) | Heat integrated reformer with catalytic combustion for hydrogen production | |
US20160340187A1 (en) | Steam methane reforming reactor with hydrogen selective membrane | |
WO2005075606B1 (en) | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor | |
CN104098071A (zh) | 一种管式金属膜反应器及应用 | |
AU2018330243B2 (en) | Conversion reactor and management of method | |
CN210103452U (zh) | 一种撬装式高纯氢纯化装置 | |
US6946020B2 (en) | Hydrogen purification module | |
CN201283263Y (zh) | 用于制备高纯度氢气的膜分离设备 | |
CN111689469A (zh) | 一种采用钯合金膜纯化制取高纯氢工艺 | |
CN115650160A (zh) | 一种氨分解制氢与板式膜反应器集成用于制备高纯氢的装置 | |
CN101372316A (zh) | 一种生产高纯度氢气的膜分离装置 | |
CN201300029Y (zh) | 一种电动加热生产高纯度氢气的膜分离器 | |
Basile et al. | Single-stage hydrogen production and separation from fossil fuels using micro-and macromembrane reactors | |
CN101295795B (zh) | 烷烃裂解与燃料电池复合发电系统 | |
CN101406791B (zh) | 一种电预热与恒温的生产高纯度氢气的膜分离装置 | |
CN201400568Y (zh) | 一种基于高温预热的钯膜氢气分离装置 | |
CN101543716B (zh) | 一种采用高温气体预热与恒温的钯膜氢气分离装置 | |
Hu et al. | Low-cost iron (Fe) hollow fiber membrane for hydrogen separation | |
CN201283262Y (zh) | 设有换热通道的钯膜氢气分离装置 | |
CN213193140U (zh) | 一种提纯器 | |
CN107029559B (zh) | 一种集电加热和氢气分离于一体的钯膜组件 | |
CN103910330A (zh) | 天然气、二氧化碳混合气催化部分氧化制合成气工艺 | |
CN101181975A (zh) | 一种利用小尺度通道传热的快速启动钯膜组件 | |
CN208545116U (zh) | 撬装式甲醇和水蒸气重整制氢气的装置 | |
CN102580478A (zh) | 一体式管式陶瓷透氧膜分离反应器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090805 Termination date: 20111014 |