CN201230906Y - Six freedom degrees trailing type medical support robot - Google Patents
Six freedom degrees trailing type medical support robot Download PDFInfo
- Publication number
- CN201230906Y CN201230906Y CNU2008201088471U CN200820108847U CN201230906Y CN 201230906 Y CN201230906 Y CN 201230906Y CN U2008201088471 U CNU2008201088471 U CN U2008201088471U CN 200820108847 U CN200820108847 U CN 200820108847U CN 201230906 Y CN201230906 Y CN 201230906Y
- Authority
- CN
- China
- Prior art keywords
- swing
- telescopic
- optocoupler
- bionic
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011664 nicotinic acid Substances 0.000 claims abstract description 31
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 description 14
- 230000029058 respiratory gaseous exchange Effects 0.000 description 13
- 238000002679 ablation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 206010019695 Hepatic neoplasm Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 238000002324 minimally invasive surgery Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
一种六自由度随动式医用扶持机器人,主要由机器人机体(1),仿生机械臂(2),仿生机械手(3)和控制装置(4)组成,其中在立柱(13)的顶部设置有仿生机械臂(2),可绕立柱(13)轴线转动,在仿生机械臂(2)的下端设置由夹头(31),夹头旋转调节装置(32),固定轴(33)和传感跟踪控制装置(34)组成的仿生机械手(3),其中,传感跟踪控制装置(34)实现其摆动光耦(346)和伸缩光耦(360)的控制功能。本实用新型结构简单,紧凑,造价低廉,使微创治疗更为精确,灵巧与安全。
A six-degree-of-freedom follow-up medical support robot, mainly composed of a robot body (1), a bionic manipulator (2), a bionic manipulator (3) and a control device (4), wherein the top of the column (13) is provided with The bionic mechanical arm (2) can rotate around the axis of the column (13), and the lower end of the bionic mechanical arm (2) is provided with a chuck (31), a chuck rotation adjustment device (32), a fixed shaft (33) and a sensor A bionic manipulator (3) composed of a tracking control device (34), wherein the sensing tracking control device (34) realizes the control functions of its swing optocoupler (346) and telescopic optocoupler (360). The utility model has the advantages of simple structure, compact structure and low cost, and makes the minimally invasive treatment more precise, dexterous and safe.
Description
技术领域 technical field
本实用新型涉及一种医用机器人,尤其是能够随动扶持超声引导下肝肿瘤微波消融微创手术所用电极针的机器人。The utility model relates to a medical robot, in particular to a robot capable of supporting an electrode needle used in minimally invasive surgery for microwave ablation of liver tumors guided by ultrasound.
背景技术 Background technique
随着计算机和微电子技术以及医学科学的迅猛发展,各种用途的医用机器人正在医学领域中得到越来越广泛的应用。90年代中期,一家英国的医疗机器人公司研制的一种脑外科手术机器人能利用“智能”软件,提出切入肿瘤的最佳路线,使周围的健康组织损伤最小。1998年5月,德.法两国的医生共同合作,用遥控机器人系统成功地为一例心脏病人进行了瓣膜修复手术。国外还研制出了做胆囊手术的机器人。以色列吉文成像公司最近研制的一种新型肠胃内窥设备将帮助人们实现长久以来的梦想:派一个“微型机器人”进入人体内拍摄图像,帮助医生判断肠胃疾患所在。With the rapid development of computer and microelectronic technology and medical science, medical robots with various purposes are being used more and more widely in the medical field. In the mid-1990s, a brain surgery robot developed by a British medical robotics company could use "intelligent" software to propose the best route to cut into a tumor, minimizing damage to surrounding healthy tissue. In May 1998, doctors from Germany and France worked together to successfully perform a valve repair operation on a heart patient with a remote control robot system. Foreign countries have also developed robots for gallbladder surgery. A new type of gastrointestinal endoscopy device recently developed by Israel's Given Imaging Company will help people realize their long-held dream: to send a "micro-robot" into the human body to take images and help doctors determine the location of gastrointestinal diseases.
外科手术需要各种功用的机器人,尤其是微创手术技术的应用日益广泛,更需要各种用途的医用机器人来配合。目前,超声引导下肝肿瘤微波消融微创手术中所用的电极针,由于针尖深处病灶之中,整个电极针在手术过程中会随着病人的呼吸运动而运动,所以需有专门的医生来扶电极针,以保证它与病灶的相对位置固定。这不仅增加了医生的劳动强度,而且一些人为的因素,如手的抖动.力度把握不准等都会影响消融的精度。因此,设计医用扶持机器人势在必行。Surgical operations require robots with various functions, especially the application of minimally invasive surgical techniques is becoming more and more extensive, and medical robots for various purposes are needed to cooperate. At present, the electrode needles used in the minimally invasive surgery of microwave ablation of liver tumors under the guidance of ultrasound, because the needle tip is deep in the lesion, the entire electrode needle will move with the patient's breathing movement during the operation, so a specialized doctor is required Hold the electrode needle to ensure that its relative position with the lesion is fixed. This not only increases the labor intensity of doctors, but also some human factors, such as hand shaking and inaccurate grasp of strength, will affect the accuracy of ablation. Therefore, it is imperative to design medical support robots.
发明内容 Contents of the invention
根据背景技术所述,本实用新型的目的在于提供一种由机器人机体,仿生机械臂和仿生机械手组成,仿生机械臂可完成三维定位与自动锁紧,仿生机械手可完成三维随患者呼吸运动扶持电极针运动,可读取机器人机体上的控制面板和传感信号进行工作的六自由度随动式医用扶持机器人。为了实现上述目的,本实用新型是通过以下技术方案来实现的:According to the background technology, the purpose of this utility model is to provide a robot body, a bionic manipulator and a bionic manipulator. The bionic manipulator can complete three-dimensional positioning and automatic locking. Needle movement, a six-degree-of-freedom follow-up medical support robot that can read the control panel and sensor signals on the robot body. In order to achieve the above object, the utility model is achieved through the following technical solutions:
一种六自由度随动式医用扶持机器人,主要由机器人机体(1),仿生机械臂(2),仿生机械手(3)和控制装置(4)组成,其中:由带有脚轮(111)的底座(11),控制箱(12)和立柱(13)组成机器人机体(1),在立柱(13)的顶部设置有由旋转臂(21),高低调节臂(22),弯头(23)和把手(24)组成的仿生机械臂(2),其整体可绕立柱(13)的柱轴线转动;高低调节臂(22)内装置平行四连杆机构,可使弯头(23)始终保持与地面垂直的状态;在仿生机械臂(2)的下端部设置由夹头(31),夹头旋转调节装置(32),固定轴(33),传感跟踪控制装置(34),摆动电机筒体(35)和伸缩机构(36)组成的仿生机械手(3),其中固定在摆动电机筒体(35)两侧一组高低调节弹簧(351)可绕弹簧轴芯(352)上,下运动;由左右摆动光耦装置和伸缩光耦装置组成传感跟踪控制装置(34),其中有摆轴(341),Z型板(342),拨轴(343),摆动挡片(344),摆动光耦座(345),摆动光耦(346),导轨副(347),伸缩挡片(348),伸缩光耦座(349),伸缩光耦(360)和挡片摆轴(361);在控制箱(12)上设置控制面板(121),在其中主要设置有PLC控制器,二维位移传感电路,复位电路和伺服电机驱动电路。A six-degree-of-freedom follow-up medical support robot, mainly composed of a robot body (1), a bionic manipulator (2), a bionic manipulator (3) and a control device (4), wherein: a robot with casters (111) Base (11), control box (12) and column (13) form robot body (1), be provided with at the top of column (13) by swivel arm (21), height adjusting arm (22), elbow (23) The bionic mechanical arm (2) formed with the handle (24) can rotate around the column axis of the column (13) as a whole; the parallel four-bar linkage mechanism is installed in the height adjustment arm (22), so that the elbow (23) can always be kept The state perpendicular to the ground; the lower end of the bionic mechanical arm (2) is provided with a chuck (31), a chuck rotation adjustment device (32), a fixed shaft (33), a sensor tracking control device (34), and a swing motor The bionic manipulator (3) composed of cylinder body (35) and telescopic mechanism (36), wherein a group of height adjustment springs (351) fixed on both sides of the swing motor cylinder body (35) can go up and down around the spring shaft core (352). Movement: a sensor tracking control device (34) consisting of a left and right swing optocoupler and a telescopic optocoupler, including a pendulum shaft (341), a Z-shaped plate (342), a dial shaft (343), and a swing stopper (344) , swing optocoupler seat (345), swing optocoupler (346), guide rail pair (347), telescopic baffle (348), telescopic optocoupler seat (349), telescopic optocoupler (360) and baffle pendulum shaft (361 ); a control panel (121) is set on the control box (12), in which a PLC controller, a two-dimensional displacement sensing circuit, a reset circuit and a servo motor drive circuit are mainly arranged.
由于采用了上述技术方案,本实用新型具有如下优点和效果:Due to the adoption of the above-mentioned technical scheme, the utility model has the following advantages and effects:
1、本实用新型可完成三维定位与自动锁紧机械臂,仿生机械手可完成三维随患者呼吸运动扶持电极针运动,传感系统灵敏,可以实现触觉传感,利于在狭小手术空间中工作。1. The utility model can complete three-dimensional positioning and automatic locking of the mechanical arm. The bionic manipulator can complete the three-dimensional movement of the electrode needle following the breathing movement of the patient. The sensing system is sensitive and can realize tactile sensing, which is beneficial to work in a small surgical space.
2、本实用新型机构轻便灵活,传感灵敏,机座下装有小轮,可根据手术需要放置在病床周围的任意位置,使用方便。2. The mechanism of this utility model is light and flexible, and the sensor is sensitive. There are small wheels under the machine base, which can be placed at any position around the hospital bed according to the needs of the operation, and are easy to use.
附图说明 Description of drawings
图1为本实用新型总体结构示意图Fig. 1 is a schematic diagram of the overall structure of the utility model
图2为本实用新型仿生机械手结构剖视示意图Fig. 2 is a schematic sectional view of the structure of the utility model bionic manipulator
图3为本实用新型摆动电机筒与高度调节装置示意图Fig. 3 is a schematic diagram of the swing motor cylinder and the height adjustment device of the utility model
图4为本实用新型控制装置原理图Fig. 4 is the schematic diagram of the utility model control device
图5为本实用新型控制装置工作流程图Fig. 5 is the work flowchart of the utility model control device
图6为本实用新型工作流程图Fig. 6 is the working flow diagram of the utility model
具体实施方式 Detailed ways
由图1至图3示出,一种六自由度随动式医用扶持机器人,主要由机器人机体1,仿生机械臂2,仿生机械手3和控制装置4组成,其中:由带有脚轮111的底座11,控制箱12和立柱13组成机器人机体1,在立柱13的顶部设置有由旋转臂21,高低调节臂22,弯头23和把手24组成的仿生机械臂2,其整体可绕立柱13的柱轴线转动;高低调节臂22内装置平行四连杆机构,可使弯头23始终保持与地面垂直的状态;在仿生机械臂2的下端部设置由夹头31,夹头旋转调节装置32,固定轴33,传感跟踪控制装置34,摆动电机筒体35和伸缩机构36组成的仿生机械手3,其中固定在摆动电机筒体35两侧一组高低调节弹簧351可绕弹簧轴芯352上,下运动;由左右摆动光耦装置和伸缩光耦装置组成传感跟踪控制装置34,其中有摆轴341,Z型板342,拨轴343,摆动挡片344,摆动光耦座345,摆动光耦346,导轨副347,伸缩挡片348,伸缩光耦座349,伸缩光耦360和挡片摆轴361;在控制箱12上设置控制面板121,在其中主要设置有PLC控制器,二维位移传感电路,复位电路和伺服电机驱动电路。As shown in Figures 1 to 3, a six-degree-of-freedom follow-up medical support robot is mainly composed of a robot body 1, a
另知,仿生机械臂2中利用平行四杆机构和内置压缩弹簧的方式保证了机械臂在运动过程中的动平衡,使仿生机械臂2实现三维定位和自动锁紧。It is also known that the
旋转调节装置32因内部有螺纹且内嵌压簧,可使夹头31绕其旋转,并可在任意位置自动锁紧,实现手术过程中微波消融针不同进针方向时的扶持。固定轴33可使夹头31便于拆卸,实现术前消毒。The
传感跟踪控制装置34控制仿生机械手的运动,可实现跟踪扶持。当电极针随患者呼吸进行左右摆动时,电极针的运动传递给夹头31,夹头31可绕摆轴341左右摆动,从而带动与之固联的Z型板342左右摆动,Z型板342的左右摆动带动夹在Z型板342中间的拨轴343和与拨轴343固联的摆动挡片344绕挡片摆轴341左右摆动,当摆动挡片344未遮挡住固定在摆动光耦座345上的摆动光耦346时,电极针随呼吸被动摆动;当摆动范围较大,摆动挡片344遮挡住某一侧摆动光耦346时,摆动光耦346将通过控制电路向摆动电机发送信号,摆动电机运动,带动电极针主动随呼吸运动;当电极针随患者呼吸进行前后运动时,电极针的运动传递给夹头31,夹头31前后运动,因导轨副347、移动挡片362在手术过程中与夹头31固联,此时伸缩挡片348与导轨副347一起前后运动,当移动挡片362未遮挡住固定在伸缩光耦座349上的伸缩光耦348时,电极针随呼吸在前后方向被动移动,当伸缩范围较大,移动挡片362遮挡住某一侧伸缩光耦360时,伸缩光耦360将通过控制电路向伸缩电机发送信号,伸缩电机运动,带动电极针随呼吸运动。因此在左右和前后方向上,电极针随呼吸的运动均分为两部分,被动跟随和主动跟随。The sensor
由图3可知,当电极针随患者呼吸进行高低运动时,固定在摆动电机筒体35两侧一组高低调节弹簧351可绕弹簧轴芯352上下运动,使电极针的运动与患者呼吸保持一致。It can be seen from Figure 3 that when the electrode needle moves up and down with the patient's breathing, a group of height adjustment springs 351 fixed on both sides of the
由图4可知,本实用新型的传感跟踪控制系统主要由光电传感系统、PLC控制器、控制面板以及伸缩电机和摆动电机接口电路组成。医生可操纵控制面板实现伸缩电机、摆动电机的复位,实现扶持机器人的手动跟踪以及自动跟踪。As can be seen from Figure 4, the sensor tracking control system of the present invention is mainly composed of a photoelectric sensor system, a PLC controller, a control panel, and an interface circuit for a telescopic motor and a swing motor. The doctor can manipulate the control panel to realize the reset of the telescopic motor and the swing motor, and realize the manual tracking and automatic tracking of the supporting robot.
医用扶持机器人微机测控系统工作流程见图5,首先进行控制面板参数的设置,例如手动伸缩,左右摆动以及复位,电机速度调节等,使医用扶持机器人处于最佳工作状态(包括仿生机械臂、机械手的位置以及各种电路参数);面板参数设置完成后进行自动扶持,此时扶持机器人的二维传感信号处理单元将根据机械手感受到的患者呼吸运动和其他运动的幅度大小,节奏快慢将力信号转换为电信号并传递给伺服电机驱动单元,驱动装置驱动伺服电机运动,从而配合患者的呼吸,实现自动扶持。The working process of the microcomputer measurement and control system of the medical support robot is shown in Figure 5. First, set the parameters of the control panel, such as manual expansion, left and right swing and reset, motor speed adjustment, etc., so that the medical support robot is in the best working state (including bionic manipulators, manipulators, etc.) position and various circuit parameters); after the panel parameters are set, the automatic support will be performed. At this time, the two-dimensional sensing signal processing unit of the support robot will control the force according to the magnitude and rhythm of the patient's breathing movement and other movements felt by the manipulator. The signal is converted into an electrical signal and transmitted to the servo motor drive unit, and the drive device drives the servo motor to move, so as to cooperate with the patient's breathing and realize automatic support.
整个手术过程如图6所示,手术开始后,医生手动拉动把手7,仿生机械臂随之完成在手术空间的三维粗定位和自动锁紧,然后打开控制箱上的电源开关,使机器人首先复位,再将跟踪开关置于“手动”档,进行仿生机械手在手术空间的初步定位,使夹头11到达电极针的上方,医生辅助夹头11夹住电极针,并将跟踪开关置于“自动”档。当电极针随病人的呼吸发生偏移时,夹头11在一定距离内无障碍的随动,夹头11另一端连接的挡光片发生偏移,造成与其对应光耦的相对位置发生变化,这一变化的信号传送至控制箱2内,由PLC控制摆动或伸缩电机动作,夹头11随动扶持电极针。The entire operation process is shown in Figure 6. After the operation starts, the doctor manually pulls the handle 7, and then the bionic robot arm completes the three-dimensional rough positioning and automatic locking in the operation space, and then turns on the power switch on the control box to reset the robot first. , and then set the tracking switch to the "manual" position, and carry out the preliminary positioning of the bionic manipulator in the operation space, so that the chuck 11 reaches the top of the electrode needle, and the doctor assists the chuck 11 to clamp the electrode needle, and sets the tracking switch to "automatic". "files. When the electrode needle deviates with the patient's breathing, the chuck 11 can move without hindrance within a certain distance, and the light shield connected to the other end of the chuck 11 shifts, causing the relative position of the corresponding optocoupler to change. The signal of this change is transmitted to the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201088471U CN201230906Y (en) | 2008-06-26 | 2008-06-26 | Six freedom degrees trailing type medical support robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201088471U CN201230906Y (en) | 2008-06-26 | 2008-06-26 | Six freedom degrees trailing type medical support robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201230906Y true CN201230906Y (en) | 2009-05-06 |
Family
ID=40617280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008201088471U Expired - Fee Related CN201230906Y (en) | 2008-06-26 | 2008-06-26 | Six freedom degrees trailing type medical support robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201230906Y (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101653353B (en) * | 2009-08-28 | 2010-12-01 | 哈尔滨工业大学 | Continuum semi-autonomous endoscopic robot |
CN102090925A (en) * | 2011-02-12 | 2011-06-15 | 周宁新 | Handheld multi-degree-of-freedom hemostatic cutter for endoscope |
CN105215986A (en) * | 2015-11-11 | 2016-01-06 | 深圳市松崎机器人自动化设备有限公司 | A kind of multi-spindle machining hand |
CN113712673A (en) * | 2021-11-04 | 2021-11-30 | 极限人工智能(北京)有限公司 | Rotary telescopic support arm structure and surgical robot |
-
2008
- 2008-06-26 CN CNU2008201088471U patent/CN201230906Y/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101653353B (en) * | 2009-08-28 | 2010-12-01 | 哈尔滨工业大学 | Continuum semi-autonomous endoscopic robot |
CN102090925A (en) * | 2011-02-12 | 2011-06-15 | 周宁新 | Handheld multi-degree-of-freedom hemostatic cutter for endoscope |
CN102090925B (en) * | 2011-02-12 | 2012-04-25 | 周宁新 | Handheld multi-degree-of-freedom hemostatic cutter for endoscope |
CN105215986A (en) * | 2015-11-11 | 2016-01-06 | 深圳市松崎机器人自动化设备有限公司 | A kind of multi-spindle machining hand |
CN105215986B (en) * | 2015-11-11 | 2017-04-26 | 深圳市松崎机器人自动化设备有限公司 | Multi-axis manipulator |
CN113712673A (en) * | 2021-11-04 | 2021-11-30 | 极限人工智能(北京)有限公司 | Rotary telescopic support arm structure and surgical robot |
CN113712673B (en) * | 2021-11-04 | 2022-01-25 | 极限人工智能(北京)有限公司 | Rotary telescopic support arm structure and surgical robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102028549B (en) | Catheter robot system for minimally invasive interventional operation in blood vessel | |
CN109044533B (en) | Minimally invasive interventional operation robot for urinary surgery | |
CN101991901B (en) | Robotic drive for catheter | |
CN105283144B (en) | robot manipulator system | |
CN109602499B (en) | Auxiliary double-arm robot operating system for ophthalmic microsurgery | |
KR20190018726A (en) | Secondary instrument control in computer assisted remote control systems | |
CN107744405A (en) | A kind of robot is from end device, operating system and its control method | |
CN109452975A (en) | Surgical assistant system suitable for soft lens | |
CN117770979A (en) | Collision avoidance during controlled movement of movable arm of image acquisition device and steerable device | |
KR20090077694A (en) | Position-aware scanning device for high intensity intensive ultrasound therapy system | |
CN101112329A (en) | Active and passive endoscopic manipulation surgical robot | |
CN113397712B (en) | Surgical robot based on ball joint and tactile feedback | |
KR20140039418A (en) | Medical robot system | |
CN209137698U (en) | A kind of catheter controller | |
CN201230906Y (en) | Six freedom degrees trailing type medical support robot | |
EP4070756B1 (en) | Treatment assistance equipment | |
CN201987528U (en) | Mechanical arm for positioning endoscope | |
CN102197989A (en) | Intelligent electronic cystoscope system | |
CN206063225U (en) | For para-operative medical robot | |
CN215129679U (en) | Four-degree-of-freedom fixed support used in hospital lung puncture operation | |
CN105287001A (en) | Robot arm rectoscope system | |
Zhao et al. | Design of a catheter operating system with active supporting arm for vascular interventional surgery | |
CN118000837A (en) | Urinary calculus positioning system based on digital image fusion | |
CN114869470B (en) | Image recognition-based flexible clamping and force measuring device and method for vascular interventional operation robot | |
CN215839647U (en) | Oral surgery auxiliary equipment and surgical robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090506 Termination date: 20120626 |