CN201221354Y - Near-bit geology guide probe system - Google Patents
Near-bit geology guide probe system Download PDFInfo
- Publication number
- CN201221354Y CN201221354Y CNU2008201085100U CN200820108510U CN201221354Y CN 201221354 Y CN201221354 Y CN 201221354Y CN U2008201085100 U CNU2008201085100 U CN U2008201085100U CN 200820108510 U CN200820108510 U CN 200820108510U CN 201221354 Y CN201221354 Y CN 201221354Y
- Authority
- CN
- China
- Prior art keywords
- resistivity
- data
- bit
- dipole
- microprocessor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域 technical field
本实用新型关于石油、矿山和地质勘探等随钻测量或随钻测井中的地质导向测量技术,特别关于近钻头测量和井下测量数据的无线传输技术,具体的讲是一种近钻头地质导向探测系统。The utility model relates to the geo-steering measurement technology in the measurement-while-drilling or logging-while-drilling of petroleum, mining and geological exploration, especially relates to the wireless transmission technology of near-drill bit measurement and downhole measurement data, specifically a near-drill bit geo-steering detection system.
背景技术 Background technique
在石油、矿山、地质勘探等钻井工程中,要求使钻井轨迹更准确地按照工程设计要求钻进,及时准确的掌握地层信息识别薄油层提高钻井效率,并把地层信息实时地传输到地面。这样,才能使工程技术人员及时了解井筒的轨迹和地层信息的变化。In drilling projects such as petroleum, mining, and geological exploration, it is required to make the drilling trajectory more accurate and drill according to the engineering design requirements, timely and accurately grasp formation information to identify thin oil layers to improve drilling efficiency, and transmit formation information to the ground in real time. In this way, engineers and technicians can keep abreast of wellbore trajectory and formation information changes.
但是目前的钻井工程中,很多钻井系统的传感器距离钻头有一定的距离,使探测范围减小,探测精度下降。虽然有的钻进系统中传感器安装在靠近钻头很近的地方,但是地层参数中没有地层电阻率探测器,而且当传感器采集数据上传时,传输信道为无线短传信道,数据不能直接传输到地面,必须进行中转,然后再传输到地面,这样就极大地降低了传输速率。However, in the current drilling engineering, the sensors of many drilling systems have a certain distance from the drill bit, which reduces the detection range and detection accuracy. Although the sensors in some drilling systems are installed very close to the drill bit, there is no formation resistivity detector in the formation parameters, and when the data collected by the sensors is uploaded, the transmission channel is a wireless short transmission channel, and the data cannot be directly transmitted to the ground , must be relayed and then transmitted to the ground, which greatly reduces the transmission rate.
美国专利申请5448227公开了一种近钻头钻井测量设备及其方法,该专利申请的传感器安装在靠近钻头的位置,用来测量钻进参数如:钻孔的倾角,地层的伽玛射线发射,地层的电阻率和一些机械钻井参数。传感器采集数据时通过无线短传信道,将数据先传给随钻测量(MWD),然后再传到地面。该实用新型申请所公开的技术方案可合并于此,以作为本实用新型的现有技术。U.S. Patent Application 5448227 discloses a near-bit drilling measurement device and method thereof. The sensor of this patent application is installed near the drill bit to measure drilling parameters such as: the inclination angle of the borehole, the gamma ray emission of the formation, the formation resistivity and some mechanical drilling parameters. When the sensor collects data, the data is first transmitted to the measurement while drilling (MWD) through the wireless short transmission channel, and then transmitted to the ground. The technical solution disclosed in the utility model application can be incorporated here as the prior art of the utility model.
美国专利申请US00533906A公开了一种侧翼上安装电极用于确定周围结构的电阻率的钻井测量装置,该专利申请的电极用来测量电流产生的信号,以获得电阻率信号。该实用新型申请所公开的技术方案可合并于此,以作为本实用新型的现有技术。US patent application US00533906A discloses a drilling measurement device in which electrodes are installed on the flanks to determine the resistivity of surrounding structures. The electrodes in this patent application are used to measure signals generated by current to obtain resistivity signals. The technical solution disclosed in the utility model application can be incorporated here as the prior art of the utility model.
实用新型内容Utility model content
为了克服现有技术中的缺陷,本实用新型提供了一种近钻头地质导向探测系统。将工程参数传感器、地层参数传感器、无线电磁直传信道及钻头一体化集成,使传感器尽可能靠近钻头,这样当钻头钻进时传感器就会对钻头前部及周边的地层信息做出及早的预测使其在钻井过程中达到地质导向的目的。In order to overcome the defects in the prior art, the utility model provides a geosteering detection system near a drill bit. Integrate the engineering parameter sensor, formation parameter sensor, wireless electromagnetic direct transmission channel and the drill bit, and make the sensor as close as possible to the drill bit, so that when the drill bit is drilling, the sensor will make an early prediction of the formation information in front of the drill bit and around it Make it achieve the purpose of geosteering during the drilling process.
本实用新型的目的是,提供一种近钻头地质导向探测系统,该系统包括电源和微处理器,电源与微处理器相连接;该系统还包括:电阻率探测单元,与微处理器相连接,测量近钻头地层电阻率,生成电阻率数据;伽玛探测单元,与微处理器相连接,测量近钻头伽玛射线,生成伽玛射线数据;定向传感单元,与微处理器相连接,测量近钻头井斜和工具面,生成定向数据;绝缘偶极子发射单元,与微处理器相连接,将电阻率数据、伽玛射线数据以及定向数据通过无线电磁信道传输到地面。The purpose of this utility model is to provide a geological steering detection system near the drill bit, the system includes a power supply and a microprocessor, and the power supply is connected to the microprocessor; the system also includes: a resistivity detection unit connected to the microprocessor , measure the resistivity of the formation near the drill bit, and generate resistivity data; the gamma detection unit is connected with the microprocessor, measures the gamma ray near the drill bit, and generates gamma ray data; the orientation sensing unit is connected with the microprocessor, Measure the well deviation near the drill bit and the tool face to generate directional data; the insulating dipole transmitting unit is connected with the microprocessor to transmit the resistivity data, gamma ray data and directional data to the ground through the wireless electromagnetic channel.
本实用新型的有益效果在于:使各种地质导向用探测传感器、绝缘偶极子发射器及钻头一体化集成,并使各种探测传感器更靠近钻头,实现了对钻头前和钻头周围地层状况的预测,探测传感器采集的数据通过绝缘偶极子天线发射,经无线电磁直传信道传送到地面,从而对钻井设计及时决策、及时修正。The beneficial effect of the utility model is that various geo-steering detection sensors, insulated dipole emitters and drill bits are integrated, and various detection sensors are brought closer to the drill bit, so that the formation conditions in front of the drill bit and around the drill bit are realized. It is predicted that the data collected by the detection sensor is transmitted through the insulated dipole antenna and transmitted to the ground through the wireless electromagnetic direct transmission channel, so as to make timely decisions and correct the drilling design.
附图说明 Description of drawings
图1为本实用新型装置具体实施方式的结构框图。Fig. 1 is a structural block diagram of a specific embodiment of the device of the present invention.
图2为本实用新型装置具体实施方式的结构示意图。Fig. 2 is a schematic structural view of a specific embodiment of the device of the present invention.
图3为本实用新型方法具体实施方式的工作流程图。Fig. 3 is the work flowchart of the embodiment of the utility model method.
图4为本实用新型的近钻头地质导向系统示意图。Fig. 4 is a schematic diagram of the geosteering system near the drill bit of the present invention.
具体实施方式 Detailed ways
下面结合附图说明本实用新型的具体实施方式。如图1所示,为本实用新型装置具体实施方式的结构框图。图1所示的近钻头地质导向探测系统包括:电阻率探测单元,用于测量近钻头地层电阻率,生成电阻率数据;伽玛探测单元,用于测量近钻头伽玛射线,生成伽玛射线数据;定向传感单元,用于测量近钻头井斜和工具面,生成定向数据;绝缘偶极子发射单元,用于将电阻率数据、伽玛射线数据以及定向数据通过无线电磁信道传输到地面。定向滤波电路,与定向传感单元相连接,用于对接收的定向传感单元传来的定向数据进行滤波,并输出滤波后定向数据;电阻率放大/滤波/转换电路,与所述的电阻率探测单元相连接,用于对接收的电阻率探测单元传来的电阻率数据进行放大、滤波和A/D转换的处理,输出处理后电阻率数据;微处理器,分别与定向滤波电路、电阻率放大/滤波/转换电路以及伽玛探测单元相连接,并对所述的滤波后定向数据、处理后电阻率数据以及伽玛射线数据进行处理,生成地质导向数据。发射放大电路,分别与微处理器和绝缘偶极子发射单元相连接,用于对地质导向数据进行放大,并将放大后的地质导向数据传送给绝缘偶极子发射单元进行发射;存储器,与微处理器相连接,用于存储地质导向数据。涡轮驱动器和发电机;涡轮驱动器驱动发电机发电,为本实用新型系统提供电能。The specific embodiment of the utility model is described below in conjunction with accompanying drawing. As shown in Figure 1, it is a structural block diagram of a specific embodiment of the device of the present invention. The geosteering detection system near the drill bit shown in Fig. 1 includes: a resistivity detection unit, used to measure the resistivity of the formation near the drill bit, and generate resistivity data; a gamma detection unit, used to measure the gamma ray near the drill bit, and generate gamma ray Data; Orientation sensing unit, used to measure near-bit inclination and tool face, and generate orientation data; Insulated dipole transmitting unit, used to transmit resistivity data, gamma ray data and orientation data to the surface through wireless electromagnetic channel . The orientation filtering circuit is connected with the orientation sensing unit, and is used to filter the orientation data transmitted from the orientation sensing unit and output the filtered orientation data; the resistivity amplification/filtering/conversion circuit is connected with the resistance The rate detection unit is connected to amplify, filter and A/D convert the resistivity data received from the resistivity detection unit, and output the processed resistivity data; the microprocessor is respectively connected with the directional filter circuit, The resistivity amplification/filtering/converting circuit is connected with the gamma detection unit, and processes the filtered orientation data, processed resistivity data and gamma ray data to generate geosteering data. The transmitting amplifying circuit is respectively connected with the microprocessor and the insulating dipole transmitting unit, and is used for amplifying the geosteering data, and transmitting the amplified geosteering data to the insulating dipole transmitting unit for transmitting; the memory, and The microprocessor is connected to store geosteering data. Turbine driver and generator; the turbine driver drives the generator to generate electricity, and provides electric energy for the utility model system.
如图2所示,为本实用新型装置具体实施方式的结构示意图。在图2中,与钻头集成为一体的近钻头地质导向探测系统2安装在螺杆钻具或钻铤的钻头靴1上,在近钻头地质导向探测系统2下端的钻头靴上再安装钻头。As shown in FIG. 2 , it is a structural schematic diagram of a specific embodiment of the device of the present invention. In Fig. 2, the near-bit geosteering detection system 2 integrated with the drill bit is installed on the
近钻头地质导向探测系统2的基本结构体是由第一绝缘偶极子短节26和第二绝缘偶极子短节13所构成,两段绝缘偶极子短节用钛合金做成,两段绝缘偶极子短节可螺纹连接。在第一绝缘偶极子短节26和第二绝缘偶极子短节13的连接螺扣表面用电化学方法生成一层厚度为30-100μm的绝缘层,这样当第一绝缘偶极子短节26和第二绝缘偶极子短节13连接后就可以形成由绝缘层隔开的两电极,既绝缘偶极子。The basic structure of the near-bit geosteering detection system 2 is composed of the first
在第一绝缘偶极子短节26和第二绝缘偶极子短节13连接后,为保证连接螺扣的密封性,用耐磨绝缘纤维与耐高温树脂形成密封绝缘环12、绝缘环15和绝缘环14。After the first insulating dipole
第一绝缘偶极子短节26内部形成有第一空腔;第二绝缘偶极子短节13内部形成有第二空腔;第一绝缘偶极子短节与第二绝缘偶极子短节为螺纹连接,并通过所述的绝缘环电性隔离,第一空腔与第二空腔相连通。A first cavity is formed inside the first insulating dipole
第一绝缘偶极子短节26的测壁上开有一长槽,安装伽玛射线探测器,伽玛射线探测器的电路引线通过密封接头9引到电路仓7中。A long slot is opened on the measuring wall of the first insulating dipole
在第二绝缘偶极子短节13上安装有电阻率探测器的接收传感器,接收传感器由圆环状接收传线圈19,圆环状保护壳20,线圈仓隔离环17,线圈仓隔离环22,绝缘环21,绝缘环16以及接收传感器结构压紧环23构成。绝缘环21和绝缘环16由高温树脂和颗粒细度大于200目的陶瓷粉粒制成。The receiving sensor of the resistivity detector is installed on the second insulated dipole short joint 13, and the receiving sensor consists of an annular receiving coil 19, an annular protective shell 20, a coil compartment isolation ring 17, and a coil compartment isolation ring 22. , an insulating ring 21, an insulating ring 16 and a
接收传线圈19的引线通过密封接头18引入到抗压保护仓11中;定向传感器10,电路模块7,发电机5安装在由发电机仓体筒4,连接器8,抗压保护仓(11)密封端头24,绝缘连接件25构成的仓筒内。绝缘连接件25由绝缘材料聚四氟乙烯制成。The lead wire of receiving transmission coil 19 is introduced in the anti-pressure protection chamber 11 through sealing joint 18; ) sealed
发电机5与涡轮驱动器3构成地导向系统的电源。The
电路模块7由定向传感器滤波电路29,接收传感器电流I,电阻率发射器和无线电磁传输信道发射器共用功率放大器27,放大/滤波/(A/D)变换电路28,微处理器30,及存储器34组成。
如图3所示,本实用新型工作流程包含以下步骤:涡轮驱动器驱动发电机工作,为所有的探测器,传感器及电路模块供电S101;电阻率探测器,伽玛探测器,定向传感器在微处理器的控制下各自同时工作采集数据,并将采集的数据存入存储器S102;电阻率探测器在微处理器控制下通过功率放大器将一电压U信号施加到偶极子的两极上S103;电极上的交变电压U通过地层产生与电压U同频率的电流I,线圈检测到电流IS104;经放大,滤波,A/D变换电路将信号I送入微处理器S105;由欧姆定律求出地层R及地层率ρ,并将数据存入存储器S106;在存储器中的数据通过微处理器调制后送入功率放大器经放大后再送到偶极子的两电极上,由此将电磁信号幅射进入地层传送到地面S107。As shown in Figure 3, the utility model workflow includes the following steps: the turbine driver drives the generator to work, and supplies power S101 for all detectors, sensors and circuit modules; resistivity detectors, gamma detectors, and orientation sensors Under the control of the detector, they work simultaneously to collect data, and store the collected data in the memory S102; the resistivity detector applies a voltage U signal to the two poles of the dipole through the power amplifier under the control of the microprocessor S103; The alternating voltage U passes through the formation to produce a current I with the same frequency as the voltage U, and the coil detects the current IS104; after amplification and filtering, the A/D conversion circuit sends the signal I to the microprocessor S105; the formation R and The stratum rate ρ, and store the data in the memory S106; the data in the memory is sent to the power amplifier after modulation by the microprocessor, and then sent to the two electrodes of the dipole, so that the electromagnetic signal is radiated into the stratum for transmission to ground S107.
如图4所示,地层电阻率的测量采用绝缘偶极子发射器直接将探测电压施加到地层上,这样只要在发射功率许可的范围内,探测电压就是一可直接监测到的恒定值,这就可大大地提高探测精度。由于采用了绝缘偶极子使钻头、钻铤形成赫兹电偶极子的两极,因而建立了无线电磁传输信道,当井下发电机提供一定的功率时,钻头上方集成传感器采集的数据就可通过无线电磁传输信道直接传输到地面。近钻头地质导向系统工作原理如下:As shown in Figure 4, the measurement of formation resistivity uses an insulated dipole transmitter to directly apply the detection voltage to the formation, so that as long as the transmission power is within the allowable range, the detection voltage is a constant value that can be directly monitored. The detection accuracy can be greatly improved. Due to the use of insulating dipoles to make the drill bit and drill collar form the two poles of the Hertz electric dipole, a wireless electromagnetic transmission channel is established. When the downhole generator provides a certain power, the data collected by the integrated sensor above the drill bit can be transmitted wirelessly. The electromagnetic transmission channel transmits directly to the ground. The working principle of near-bit geosteering system is as follows:
在泥浆流(泥浆流量:28-30L/s)或高速气体流(气体流量:大于60m3/min)的冲击下涡轮驱动器3驱动发电机5工作,使其产生出100瓦以上的电能。该发电机为系统中所有的探测器,传感器及电路模块7供电;电路模块7包括:定向滤波电路,与所述的定向传感单元相连接,用于对接收的定向传感单元传来的定向数据进行滤波,并输出滤波后定向数据;电阻率放大/滤波/转换电路,与所述的电阻率探测单元相连接,用于对接收的电阻率探测单元传来的电阻率数据进行放大、滤波和A/D转换的处理,输出处理后电阻率数据;微处理器,分别与所述的定向滤波电路、电阻率放大/滤波/转换电路以及伽玛探测单元相连接,并对所述的滤波后定向数据、处理后电阻率数据以及伽玛射线数据进行处理,生成地质导向数据。发射放大电路,分别与所述的微处理器和绝缘偶极子发射单元相连接,用于对所述的地质导向数据进行放大,并将放大后的地质导向数据传送给所述的绝缘偶极子发射单元进行发射;存储器,与所述的微处理器相连接,用于存储所述的地质导向数据。Under the impact of mud flow (mud flow: 28-30L/s) or high-speed gas flow (gas flow: greater than 60m3/min), the turbine driver 3 drives the
电阻率探测器,伽玛探测器6,定向传感器10在微处理器的控制下各自同时工作采集数据,并将采集的数据存入存储器34。电阻率探测器在微处理器30控制下通过功率放大器27将一频率f=1KHz幅度为U的电压信号施加到偶极子的两极(26、13)上,电极上的交变电压U通过地层产生与电压U同频率的电流I28,电流I被线圈19检测到,经放大,滤波,A/D变换电路35将信号I送入微处理器,由欧姆定律求出地层R及地层率ρ,并将数据存入存储器。The resistivity detector, the
在存储器34中的数据通过微处理器30调制后送入功率放大器27经放大后再送到偶极子的两电极上,由此将电磁信号33幅射进入地层传送到地面。The data in the
实施例Example
本实施例,以两段经过绝缘连接钛合金短节(26、13)做为基体,在此基础上实现地质导向系统与钻头的一体化集成,以此方法形成的地质导向系统具有以下的近钻头测量功能:①近钻头地层电阻率测量;②近钻头伽玛射线测量;③近钻头井斜及工具面测量;④各种测量数据由无线电磁信道一次传输到地面。In this embodiment, two sections of titanium alloy short joints (26, 13) connected through insulation are used as the substrate, and on this basis, the integrated integration of the geosteering system and the drill bit is realized. The geosteering system formed by this method has the following nearly Drill bit measurement functions: ① formation resistivity measurement near the drill bit; ② gamma ray measurement near the drill bit; ③ well deviation and tool face measurement near the drill bit; ④ various measurement data are transmitted to the ground at one time through the wireless electromagnetic channel.
与钻头一体化集成的地质导向系统由下列部分组成:第一钛合金短节26、第二钛合金短节13、密封绝缘环12、绝缘环15和绝缘环14、绝缘环16、隔离环17、圆环状接收传线圈19、圆环状保护壳20、绝缘环21构成的近钻头地层电阻率探测器。The geosteering system integrated with the drill bit is composed of the following parts: the first titanium alloy short joint 26, the second titanium alloy short joint 13, the sealing insulating ring 12, the insulating ring 15, the insulating ring 14, the insulating ring 16, and the insulating ring 17 1. The formation resistivity detector near the drill bit formed by the circular receiving and transmitting coil 19, the circular protective shell 20 and the insulating ring 21.
伽玛探测器6。测量井斜和工具面的定向传感器10。建立井下无线电磁传输信道的偶极子(26、13),该偶极子也是地层电阻率探测器一部分;输出功率大于100W的井下涡轮发电机(3、5);电路模块7。由两段钛合金(26、13)构成偶极子,其偶极子的一极26的上端安装在螺杆钻具或钻铤的钻头靴上,钻头则安装在偶极子的另一极13的钻头靴上。Gamma detector6.
偶极子(26、13)具有两种功能,第一是可作为地层电阻率的探测发射器,第二是可作为井下无线电磁传输信道的发射天线。The dipoles (26, 13) have two functions. The first is to be used as a detection transmitter for formation resistivity, and the second is to be used as a transmitting antenna for an underground wireless electromagnetic transmission channel.
伽玛探测器6安装在偶极子的一极(26)側壁的位置;地层电阻率探测器的接收传感器线圈1安装在偶极子的一极13上,接收线圈的端面距钻头31底面的距离32为350-400mm。测量井斜和工具面的定向传感器10,电路模块7,井下涡轮发电机本体5安装在由偶极子(26、13)构成的偶极子的流道内。
由于工程参数传感器、地层参数传感器、无线电磁直传信道及钻头一体化集成,首先使各种传感器更靠近钻头可提前预测钻头前和钻头周围地层状况,其次传感器采集的数据通过集成偶极子天线立即传送到地面,使钻井工程师和地质师及时作出决策、及时修正钻井设计。Due to the integrated integration of engineering parameter sensors, formation parameter sensors, wireless electromagnetic direct transmission channels and drill bits, first of all, making various sensors closer to the drill bit can predict the formation conditions in front of the drill bit and around the drill bit in advance, and secondly, the data collected by the sensors is passed through the integrated dipole antenna. Immediately transmit to the ground, so that drilling engineers and geologists can make timely decisions and revise drilling design in time.
因此以上具体实施方式仅用于说明本实用新型,而非用于限定本实用新型。Therefore, the above specific embodiments are only used to illustrate the utility model, rather than to limit the utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201085100U CN201221354Y (en) | 2008-06-11 | 2008-06-11 | Near-bit geology guide probe system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008201085100U CN201221354Y (en) | 2008-06-11 | 2008-06-11 | Near-bit geology guide probe system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201221354Y true CN201221354Y (en) | 2009-04-15 |
Family
ID=40574863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008201085100U Expired - Fee Related CN201221354Y (en) | 2008-06-11 | 2008-06-11 | Near-bit geology guide probe system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201221354Y (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102418516A (en) * | 2011-12-30 | 2012-04-18 | 中天启明石油技术有限公司 | Near-bit directional parameter measuring device while drilling |
CN102425409A (en) * | 2011-11-10 | 2012-04-25 | 中国石油天然气集团公司 | Well deviation and tool surface measuring device and vertical drilling equipment |
CN103033853A (en) * | 2012-12-27 | 2013-04-10 | 吉林航空维修有限责任公司 | Mineral prospecting system |
CN103883320A (en) * | 2014-03-26 | 2014-06-25 | 中国石油天然气集团公司 | Logging-while-drilling method based on time lapse |
CN106200455A (en) * | 2016-06-23 | 2016-12-07 | 中国石油集团钻井工程技术研究院 | A kind of signal playback device and method measured for VSP during drilling |
CN106246163A (en) * | 2016-08-31 | 2016-12-21 | 中国科学院地质与地球物理研究所 | Nearly drill bit dynamic directional survey method and device |
US9970288B2 (en) | 2016-08-31 | 2018-05-15 | Institute of geology and geophysics, Chinese Academy of Science | Receiving apparatus for downhole near-bit wireless transmission |
US10025003B1 (en) | 2017-01-19 | 2018-07-17 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Calibration method under near-bit wireless short-transmission ground envrionment based on electric field theory |
US10030504B2 (en) | 2016-11-21 | 2018-07-24 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Receiving apparatus suitable for azimuthally acoustic logging while drilling |
CN108442926A (en) * | 2018-06-05 | 2018-08-24 | 北京捷威思特科技有限公司 | A kind of nearly drill bit electromagnetic resistivity adds gamma ray logger |
US10082021B2 (en) | 2016-11-21 | 2018-09-25 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Azimuthally acoustic while drilling signal receiving transducer encapsulating apparatus |
CN108661624A (en) * | 2018-05-09 | 2018-10-16 | 中国地质大学(武汉) | A tool face angle sensor based on distributed resistance |
US10120795B2 (en) | 2016-09-21 | 2018-11-06 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Wear-leveling nandflash memory reading/writing method |
CN109322662A (en) * | 2018-12-05 | 2019-02-12 | 贝兹维仪器(苏州)有限公司 | A measure-while-drilling short section |
US10202841B2 (en) | 2016-08-29 | 2019-02-12 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Near-bit tool attitude measurement while drilling apparatus and method |
US10428646B2 (en) | 2016-08-31 | 2019-10-01 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Apparatus for downhole near-bit wireless transmission |
US10578754B2 (en) | 2017-01-19 | 2020-03-03 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Sinusoidal excitation method and apparatus for multi-pole acoustic logging while drilling |
US10662764B2 (en) | 2016-08-31 | 2020-05-26 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Near-bit constant-power wireless short-distance transmission method and apparatus |
CN113309506A (en) * | 2021-05-18 | 2021-08-27 | 山东大学 | Advanced observation method and device based on electric dipole emission in hole |
CN114320282A (en) * | 2022-01-13 | 2022-04-12 | 苏州中科地星创新技术研究所有限公司 | Double-transmission-mode transmission device suitable for near-bit instrument |
CN115478778A (en) * | 2021-06-16 | 2022-12-16 | 中国石油天然气集团有限公司 | Drilling device, method for determining target information, storage medium and electronic device |
-
2008
- 2008-06-11 CN CNU2008201085100U patent/CN201221354Y/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102425409A (en) * | 2011-11-10 | 2012-04-25 | 中国石油天然气集团公司 | Well deviation and tool surface measuring device and vertical drilling equipment |
CN102418516B (en) * | 2011-12-30 | 2014-12-17 | 中天启明石油技术有限公司 | Near-bit orientation parameter measuring device while drilling |
CN102418516A (en) * | 2011-12-30 | 2012-04-18 | 中天启明石油技术有限公司 | Near-bit directional parameter measuring device while drilling |
CN103033853A (en) * | 2012-12-27 | 2013-04-10 | 吉林航空维修有限责任公司 | Mineral prospecting system |
CN103033853B (en) * | 2012-12-27 | 2016-02-10 | 吉林航空维修有限责任公司 | A kind of mine locating system |
CN103883320A (en) * | 2014-03-26 | 2014-06-25 | 中国石油天然气集团公司 | Logging-while-drilling method based on time lapse |
CN103883320B (en) * | 2014-03-26 | 2017-06-06 | 中国石油天然气集团公司 | With brill time-lapse logging method |
CN106200455B (en) * | 2016-06-23 | 2018-12-11 | 中国石油集团钻井工程技术研究院 | A kind of signal playback device and method for VSP during drilling measurement |
CN106200455A (en) * | 2016-06-23 | 2016-12-07 | 中国石油集团钻井工程技术研究院 | A kind of signal playback device and method measured for VSP during drilling |
US10202841B2 (en) | 2016-08-29 | 2019-02-12 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Near-bit tool attitude measurement while drilling apparatus and method |
US10428646B2 (en) | 2016-08-31 | 2019-10-01 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Apparatus for downhole near-bit wireless transmission |
CN106246163A (en) * | 2016-08-31 | 2016-12-21 | 中国科学院地质与地球物理研究所 | Nearly drill bit dynamic directional survey method and device |
US10662764B2 (en) | 2016-08-31 | 2020-05-26 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Near-bit constant-power wireless short-distance transmission method and apparatus |
US9970288B2 (en) | 2016-08-31 | 2018-05-15 | Institute of geology and geophysics, Chinese Academy of Science | Receiving apparatus for downhole near-bit wireless transmission |
CN106246163B (en) * | 2016-08-31 | 2017-07-14 | 中国科学院地质与地球物理研究所 | The nearly dynamic directional survey method and device of drill bit |
US10317204B2 (en) | 2016-08-31 | 2019-06-11 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Near-bit dynamic well deviation angle measurement method and apparatus |
US10120795B2 (en) | 2016-09-21 | 2018-11-06 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Wear-leveling nandflash memory reading/writing method |
US10030504B2 (en) | 2016-11-21 | 2018-07-24 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Receiving apparatus suitable for azimuthally acoustic logging while drilling |
US10082021B2 (en) | 2016-11-21 | 2018-09-25 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Azimuthally acoustic while drilling signal receiving transducer encapsulating apparatus |
US10025003B1 (en) | 2017-01-19 | 2018-07-17 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Calibration method under near-bit wireless short-transmission ground envrionment based on electric field theory |
US10578754B2 (en) | 2017-01-19 | 2020-03-03 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Sinusoidal excitation method and apparatus for multi-pole acoustic logging while drilling |
CN108661624A (en) * | 2018-05-09 | 2018-10-16 | 中国地质大学(武汉) | A tool face angle sensor based on distributed resistance |
CN108661624B (en) * | 2018-05-09 | 2020-05-22 | 中国地质大学(武汉) | Tool face angle sensor based on distributed resistance |
CN108442926A (en) * | 2018-06-05 | 2018-08-24 | 北京捷威思特科技有限公司 | A kind of nearly drill bit electromagnetic resistivity adds gamma ray logger |
CN109322662A (en) * | 2018-12-05 | 2019-02-12 | 贝兹维仪器(苏州)有限公司 | A measure-while-drilling short section |
CN113309506A (en) * | 2021-05-18 | 2021-08-27 | 山东大学 | Advanced observation method and device based on electric dipole emission in hole |
CN113309506B (en) * | 2021-05-18 | 2023-02-03 | 山东大学 | Advanced observation method and device based on electric dipole emission in hole |
CN115478778A (en) * | 2021-06-16 | 2022-12-16 | 中国石油天然气集团有限公司 | Drilling device, method for determining target information, storage medium and electronic device |
CN114320282A (en) * | 2022-01-13 | 2022-04-12 | 苏州中科地星创新技术研究所有限公司 | Double-transmission-mode transmission device suitable for near-bit instrument |
CN114320282B (en) * | 2022-01-13 | 2022-09-23 | 苏州中科地星创新技术研究所有限公司 | Double-transmission-mode transmission device suitable for near-bit instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201221354Y (en) | Near-bit geology guide probe system | |
CN101289935B (en) | Near-bit geological guiding probe system | |
CN202081888U (en) | Near-bit geo-steering system | |
CN204283413U (en) | Nearly drill bit directional tool | |
CN205100962U (en) | Nearly drill bit is along with boring geology direction logging instrument | |
CN204253027U (en) | The nearly drill bit gamma ray logger of π | |
CN1676874B (en) | Hole Deviation and Azimuth Gamma Measurement While Drilling | |
RU2374440C2 (en) | Sensor system | |
CN102733793B (en) | Real-time monitoring system for hole bottom parameters in deep hole drilling | |
CN110344823A (en) | It is a kind of based on rotary steerable tool with bore gamma resistivity imaging tool device | |
CN203547730U (en) | While-drilling information sound wave transmission relay forwarding device | |
CN1869400B (en) | Double-induction resistivity measuring instrument during drilling | |
CN112096289B (en) | A near-drill-bit geo-steering drilling system | |
CN110792433B (en) | Signal transmitting device for measurement while drilling system and cross-screw data transmission method | |
CN107701170A (en) | A kind of nearly drill bit image measuring device and method | |
CN108590535A (en) | Monitor and obtain in real time the intelligent drill bit of each parameter in underground | |
CN101799558A (en) | Electromagnetic surveying system while drilling of adjacent-well parallel intervals | |
CN106522922A (en) | Measurement while drilling tool for coiled tubing drilling | |
CN202900265U (en) | Near-bit measurement-while-drilling sound wave short-distance transmission device | |
CN114035237B (en) | Ground drilling transient electromagnetic method for monitoring coal mining separation layer water formation process | |
CN208075918U (en) | Multifunctional wellhead liquid supply detection device | |
CN202391420U (en) | Electromagnetic wave inclination measurement while drilling device and sliding guide drilling system | |
CN112483070A (en) | Nearly drill bit position gamma instrument | |
CN103643946A (en) | Dual-electrical-parameter logging instrument while drilling | |
CN209603955U (en) | Cable-controlled intelligent layered water injection device system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090415 Termination date: 20130611 |