CN201163124Y - Air-solar-ground energy three heat source compound heat pump device - Google Patents
Air-solar-ground energy three heat source compound heat pump device Download PDFInfo
- Publication number
- CN201163124Y CN201163124Y CNU200820069365XU CN200820069365U CN201163124Y CN 201163124 Y CN201163124 Y CN 201163124Y CN U200820069365X U CNU200820069365X U CN U200820069365XU CN 200820069365 U CN200820069365 U CN 200820069365U CN 201163124 Y CN201163124 Y CN 201163124Y
- Authority
- CN
- China
- Prior art keywords
- heat
- water
- solar
- valve
- heat source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
一种空气—太阳能—地能三热源复合热泵装置,该装置中的蓄热水箱(11)的两个热交换进水口中的一个进水口与太阳能集热器(12)的出水口相连接,另一个进水口与地下热源供水管道相连通;蓄热水箱(11)的两个热交换出水口中的一个出水口与太阳能集热器(12)的进水口相连接,另一个出水口与地下热源供水管道并联后通过第二循环水泵(6)与翅片—套管式三介质复合式换热器(2)中由内、外套管构成的两种介质通道中的液态热源通道管口的一端相连通;该液态热源通道管口的另一端分别与地下热源供水管道、地下热源回水管道相连接;质复合式换热器中由内、外套管构成的两种介质通道中的热泵工作介质通道的两端口分别与用户侧换热器(3)中换热管的两端口相连接。
An air-solar-ground energy composite heat pump device with three heat sources, one of the two heat exchange water inlets of the heat storage tank (11) in the device is connected to the water outlet of the solar heat collector (12) , the other water inlet is connected with the underground heat source water supply pipeline; one water outlet in the two heat exchange water outlets of the heat storage tank (11) is connected with the water inlet of the solar heat collector (12), and the other water outlet is connected with the water inlet of the solar heat collector (12). After the underground heat source water supply pipeline is connected in parallel, it passes through the nozzle of the liquid heat source channel in the two medium channels formed by the inner and outer sleeves in the second circulating water pump (6) and the fin-casing type three-medium composite heat exchanger (2). The other end of the nozzle of the liquid heat source channel is connected with the underground heat source water supply pipe and the underground heat source return water pipe respectively; The two ports of the working medium channel are respectively connected with the two ports of the heat exchange tube in the user side heat exchanger (3).
Description
技术领域 technical field
本实用新型涉空气源热泵、地源热泵空调及太阳能热利用领域,尤其涉及空气-太阳能-地能三热源复合热泵装置。The utility model relates to the fields of air-source heat pumps, ground-source heat pump air conditioners and solar heat utilization, in particular to a composite heat pump device of air-solar-ground energy three heat sources.
背景技术 Background technique
随着社会的发展和人民生活水平的提高,用于采暖、空调及制取生活用热水方面的能耗占能源总量的比例越来越大。为此,大力开发和有效利用可再生能源已成为各国的优先发展战略。太阳能作为拥有巨大应用前景和市场的可再生清洁能源,其开发和有效利用越来越受到广泛的重视。太阳能热泵作为太阳能热利用综合技术,将太阳能集热技术与热泵技术有机集成,可同时提高太阳能集热效率和热泵系统性能。因此,创新与开发低成本、高效率的新型太阳能热泵技术和产品,已成为太阳能热泵技术的研究重点和发展方向。但是,太阳能是一种间歇性的能源,阴雨天及晚上无法直接利用,使太阳能热泵的应用受到极大的限制。地源热泵是一种高效节能装置,具有环保、节能、经济、可靠等显著的优点。地源热泵利用地下水、地下土壤、江河湖泊水中的热量作为热泵空调系统的冷热源,充分利用地热能这一可再生能源,实现热泵空调系统全年的高效运行。但地源热泵仍然存在地下水回灌困难,地下水循环量大,循环水泵能耗较高,地下埋管过多等问题。空气源热泵以空气作为冷热源,结构简单,安装使用方便,可以充分利用空气中的能源,是一种高效、节能的空调设备。但在冬季室外气温过低时,空气源热泵系统蒸发温度过低,COP急剧下降,系统能耗升高,甚至不能正常启动,不能满足正常供暖要求。With the development of society and the improvement of people's living standards, energy consumption for heating, air conditioning and domestic hot water production accounts for an increasing proportion of the total energy. For this reason, vigorously developing and effectively utilizing renewable energy has become a priority development strategy for all countries. As a renewable clean energy with huge application prospect and market, solar energy has been paid more and more attention to its development and effective utilization. As a comprehensive technology for solar heat utilization, solar heat pump organically integrates solar heat collection technology and heat pump technology, which can simultaneously improve solar heat collection efficiency and heat pump system performance. Therefore, innovation and development of low-cost, high-efficiency new solar heat pump technology and products have become the research focus and development direction of solar heat pump technology. However, solar energy is an intermittent energy source, which cannot be directly used in rainy days and nights, which greatly limits the application of solar heat pumps. Ground source heat pump is a high-efficiency energy-saving device, which has obvious advantages such as environmental protection, energy saving, economy, and reliability. The ground source heat pump uses groundwater, underground soil, and heat from rivers and lakes as the cold and heat source of the heat pump air-conditioning system, and makes full use of geothermal energy, a renewable energy source, to realize the efficient operation of the heat pump air-conditioning system throughout the year. However, ground source heat pumps still have problems such as difficulty in groundwater recharge, large amount of groundwater circulation, high energy consumption of circulating water pumps, and too many underground pipes. The air source heat pump uses air as the cold and heat source. It has a simple structure, is easy to install and use, and can make full use of the energy in the air. It is an efficient and energy-saving air-conditioning equipment. However, when the outdoor temperature is too low in winter, the evaporation temperature of the air source heat pump system is too low, the COP drops sharply, the energy consumption of the system increases, and even cannot start normally, which cannot meet the normal heating requirements.
发明内容 Contents of the invention
本实用新型的目的是在充分利用现有空气源热泵、地源热泵及太阳能热水集热的成熟技术的基础上,提供一种实现能源综合利用的空气-太阳能-地能三热源复合热泵装置。该装置既解决了太阳能不稳定的问题,又充分利用太阳能,减少地源热泵地下水用量和能耗,使太阳能热水系统、空气源热泵及地源热泵三者有机结合。The purpose of this utility model is to provide an air-solar-ground energy three-heat source compound heat pump device that realizes the comprehensive utilization of energy on the basis of making full use of the existing mature technologies of air-source heat pump, ground-source heat pump and solar hot water heat collection . The device not only solves the problem of unstable solar energy, but also makes full use of solar energy, reduces groundwater consumption and energy consumption of ground source heat pumps, and organically combines solar water heating systems, air source heat pumps and ground source heat pumps.
本实用新型的目的可通过下述技术措施来实现,但不限制本实用新型。The purpose of this utility model can be realized by following technical measures, but does not limit the utility model.
本实用新型的空气-太阳能-地能三热源复合热泵装置包括压缩机,翅片一套管式三介质复合式换热器,用户侧换热器,四通换向阀,节流阀,第一循环水泵,第二循环水泵,旁通阀,太阳能集热器,箱体内设置有换热盘管的蓄热水箱;其中所述蓄热水箱的两个进水口中的一个进水口通过设置在管路间的阀门与太阳能集热器的出水口相连接,另一个进水口通过旁通阀和阀门分别与地下热源供水管道和翅片一套管式三介质复合式换热器中液态热源介质通道的出口相连通;蓄热水箱的两个出水口中的一个出水口通过设置在管路间的阀门、第一循环水泵与太阳能集热器的进水口相连接,另一个出水口通过阀门与地下热源供水管道并联后通过第二循环水泵与翅片一套管式三介质复合式换热器中由内、外套管构成的两种介质通道中的一种介质——液态热源通道管口的一端管口相连通;该液态热源通道管口的另一端分别通过设置在管路间的阀门与地下热源回水管道和蓄热水箱中换热器的进水口相连接;翅片-套管式三介质复合式换热器中由内、外套管构成的两种介质通道中的另一种介质——热泵工作介质通道管口的一端管口通过四通换向阀、压缩机与用户侧换热器中换热管一个端口相连接,该热泵工作介质通道管口的另一端管口通过节流阀接入用户侧换热器中上述换热管的另一个端口;翅片-套管式三介质复合式换热器的外套管外壁与翅片之间构成空气热源介质通道。The air-solar-earth energy composite heat pump device of the utility model includes a compressor, a fin-in-tube type three-medium composite heat exchanger, a user-side heat exchanger, a four-way reversing valve, a throttle valve, and a A circulating water pump, a second circulating water pump, a bypass valve, a solar heat collector, and a heat storage tank with a heat exchange coil installed in the box; wherein one of the two water inlets of the heat storage tank passes through The valve set between the pipelines is connected to the water outlet of the solar collector, and the other water inlet is respectively connected to the underground heat source water supply pipeline and the liquid in the finned and sleeved three-medium compound heat exchanger through the bypass valve and the valve. The outlets of the heat source medium channels are connected; one of the two water outlets of the heat storage tank is connected to the water inlet of the solar collector through the valve and the first circulating water pump arranged between the pipelines, and the other water outlet is connected through the After the valve is connected in parallel with the underground heat source water supply pipeline, it passes through the second circulating water pump and one of the two medium channels composed of inner and outer sleeves in the finned and sleeved three-medium composite heat exchanger—the liquid heat source channel tube One end of the nozzle of the liquid heat source channel is connected with the nozzle; the other end of the liquid heat source channel nozzle is respectively connected with the underground heat source return water pipeline and the water inlet of the heat exchanger in the heat storage tank through the valves arranged between the pipelines; the fins- In the sleeve-type three-medium composite heat exchanger, the other medium in the two medium passages composed of inner and outer sleeves—the heat pump working medium passage nozzle, one end of the nozzle passes through the four-way reversing valve, compressor and One port of the heat exchange tube in the user-side heat exchanger is connected, and the other end of the nozzle of the heat pump working medium channel is connected to the other port of the above-mentioned heat exchange tube in the user-side heat exchanger through a throttle valve; the fin- The air heat source medium channel is formed between the outer wall of the outer casing and the fins of the casing type three-medium composite heat exchanger.
本实用新型中所述蓄热水箱与其它相关部件的连接方式也可采用下述技术措施来实现:与蓄热水箱蓄热腔相连通的进水口通过设置在管路间的阀门与太阳能集热器的出水口相连接,与蓄热水箱蓄热腔相连通的出水口通过设置在管路间的阀门、第一循环水泵与太阳能集热器的进水口相连接;设置在蓄热水箱内的换热盘管的进水口通过旁通阀与地下热源供水管道相连通,该换热盘管的出水口与地下热源供水管道并联后通过第二循环水泵与翅片一套管式三介质复合式换热器中由内、外套管构成的两种介质通道中的一种介质——液态热源通道管口的一端相连通。本实用新型蓄热水箱设置生活热水供水管口补水管口。也可单独设置一个生活热水箱,该生活热水箱中的进水口通过设置在管路间的阀门与太阳能集热器的出水口相连接,出水口通过阀门与太阳能集热器的进水口相连接;在所述生活热水箱上设置有生活热水供水管口和补水管口。The connection method between the hot water storage tank and other related components described in the utility model can also be realized by adopting the following technical measures: the water inlet connected with the heat storage cavity of the hot water storage tank is connected with the solar energy through the valve arranged between the pipelines. The water outlet of the heat collector is connected, and the water outlet connected with the heat storage chamber of the heat storage tank is connected with the water inlet of the solar heat collector through the valve and the first circulating water pump arranged between the pipelines; The water inlet of the heat exchange coil in the water tank is connected to the underground heat source water supply pipeline through a bypass valve, and the water outlet of the heat exchange coil is connected in parallel with the underground heat source water supply pipeline through the second circulating water pump and the fin sleeve type In the three-medium composite heat exchanger, one end of the liquid heat source channel, one of the two medium channels formed by the inner and outer sleeves, is connected. The hot water storage tank of the utility model is provided with a domestic hot water supply nozzle and a replenishment nozzle. A domestic hot water tank can also be installed separately. The water inlet in the domestic hot water tank is connected to the water outlet of the solar collector through a valve arranged between the pipelines, and the water outlet is connected to the water inlet of the solar collector through a valve. connected; the domestic hot water tank is provided with a domestic hot water supply nozzle and a water replenishment nozzle.
本实用新型中所述蓄热水箱与其它相关部件的连接方式还可采用下述技术措施来实现:与蓄热水箱蓄热腔相连通的进水口通过旁通阀与地下热源供水管道相连通,与蓄热水箱蓄热腔相连通的出水口与地下热源供水管道并联后通过第二循环水泵与翅片-套管式三介质复合式换热器中由内、外套管构成的两种介质通道中的一种介质——液态热源通道管口的一端相连通;设置在蓄热水箱内的换热盘管的进水口通过设置在管路间的阀门与太阳能集热器的出水口相连接,该换热盘管的出水口通过设置在管路间的阀门、第一循环水泵与太阳能集热器的进水口相连接;所述太阳能集热器的出水口通过设置在管路间的阀门与设置在生活水箱内的换热盘管的进水口相连接,换热盘管的出水口通过阀门与太阳能集热器的进水口相连接;在所述生活水箱上设置有生活热水供水管口和补水管口。The connection mode between the heat storage tank and other related components in the utility model can also be realized by adopting the following technical measures: the water inlet connected with the heat storage chamber of the heat storage tank is connected with the underground heat source water supply pipeline through a bypass valve The water outlet connected to the heat storage chamber of the heat storage tank is connected in parallel with the underground heat source water supply pipe, and then passes through the second circulating water pump and the two fin-tube type three-media composite heat exchangers consisting of inner and outer tubes. One of the media in the medium channel—one end of the liquid heat source channel nozzle is connected; the water inlet of the heat exchange coil arranged in the water storage tank is connected with the outlet of the solar collector through the valve arranged between the pipelines. The water outlet of the heat exchange coil is connected to the water inlet of the solar collector through the valve and the first circulating water pump arranged between the pipelines; The valve between them is connected with the water inlet of the heat exchange coil installed in the living water tank, and the water outlet of the heat exchange coil is connected with the water inlet of the solar collector through the valve; Water supply spout and refill spout.
本实用新型中所述翅片-套管式三介质复合式换热器包括外套管、穿装在外套管管腔中的内套管、以及与外套管外壁相结合的翅片;所述内套管外径小于外套管的孔径,并由内套管外壁与外套管内壁之间的环型空间构成一种介质(热泵工作介质)通道,内套管的管腔构成另一种介质(液态热源)通道;外套管外壁与翅片之间构成第三种介质(气态热源)通道。该翅片-套管式三介质复合式换热器的技术方案已在在先申请的专利申请号为“200710054879.8”申请日为20070801的专利申请文件中公开。The fin-casing type three-medium compound heat exchanger described in the utility model includes an outer casing, an inner casing worn in the lumen of the outer casing, and a fin combined with the outer wall of the outer casing; the inner casing The outer diameter of the casing is smaller than the hole diameter of the outer casing, and the annular space between the outer wall of the inner casing and the inner wall of the outer casing forms a medium (heat pump working medium) channel, and the lumen of the inner casing forms another medium (liquid state) heat source) channel; the third medium (gas heat source) channel is formed between the outer wall of the outer casing and the fins. The technical solution of the fin-tube type three-medium compound heat exchanger has been disclosed in the patent application document with the patent application number of "200710054879.8" and the filing date of 20070801.
由于本实用新型的技术方案将太阳能热水集热技术、地源热泵技术和空气源热泵技术进行了科学合理的结合,并将气态热源换热器与液态热源换热器合二为一,设计成一体式结构的翅片-套管式三介质复合式换热器,使整个系统对空气热源、太阳能和地能的利用方式更加灵活多变,在进行热泵循环时,翅片套管复合式换热器(做为蒸发器)既可以同时利用空气源、太阳能低温热媒及地下热源作为热泵热源,又可以单独利用空气源、太阳能低温热媒或地下热源作为热泵热源,还可以任意选择上述三者中地二者作为热泵热源。该系统还可实现白天储存太阳能集热量供热泵夜晚使用,解决太阳能具有间歇性,夜晚无法直接利用的问题,从而充分提高冬季热泵工作效率。Because the technical solution of the utility model combines solar hot water heat collection technology, ground source heat pump technology and air source heat pump technology scientifically and rationally, and combines the gaseous heat source heat exchanger and the liquid heat source heat exchanger into one, the design The integrated fin-tube type three-medium compound heat exchanger makes the whole system more flexible and changeable in the use of air heat source, solar energy and ground energy. The heat exchanger (as an evaporator) can use air source, solar low-temperature heat medium and underground heat source as heat pump heat source at the same time, and can use air source, solar low-temperature heat medium or underground heat source as heat pump heat source alone, and can also choose any of the above Two of the three are used as the heat source of the heat pump. The system can also realize the storage of solar energy collected during the day for use by the heat pump at night, solving the problem that solar energy is intermittent and cannot be directly used at night, thereby fully improving the working efficiency of the heat pump in winter.
本实用新型具有以下优点:The utility model has the following advantages:
(1)可同时利用太阳能、地下热源和空气三种资源量巨大的可再生清洁能源,其应用范围非常广泛,不受气候条件和水源条件限制;(1) It can simultaneously utilize solar energy, underground heat sources and air, which are renewable and clean energy sources with a huge amount of resources. Its application range is very wide, and it is not limited by climate conditions and water source conditions;
(2)只使用一个换热器——翅片套管复合式换热器即可实现同时从太阳能热水、地下热源和空气中获取热量,在使热泵机组的供热性能系数COP和运行稳定性明显提高的同时,使系统组成更为简化;(2) Only one heat exchanger—the fin-tube composite heat exchanger can be used to obtain heat from solar hot water, underground heat sources and air at the same time, which can stabilize the heat supply coefficient of performance (COP) and operation of the heat pump unit While the reliability is obviously improved, the system composition is simplified;
(3)太阳能热水环路作为热泵空调蒸发器的低温热源,可实现太阳能集热器的低温集热,热水温度通常为20~30℃,集热器集热效率提高,散热损失小。(3) The solar hot water loop is used as the low-temperature heat source of the evaporator of the heat pump air conditioner, which can realize the low-temperature heat collection of the solar collector. The temperature of the hot water is usually 20-30°C, the heat collection efficiency of the collector is improved, and the heat dissipation loss is small.
本实用新型的空气-太阳能-地能三热源复合热泵可以广泛应用于民用建筑、公共建筑、别墅建筑等所有可以采用空气源热泵的场所。The air-solar-ground energy composite heat pump of the utility model can be widely used in all places where air source heat pumps can be used, such as civil buildings, public buildings, and villa buildings.
附图说明 Description of drawings
图1为本实用新型的结构原理图。Fig. 1 is the structure schematic diagram of the utility model.
图2为本实用新型的第二种实施方式。Fig. 2 is the second embodiment of the present utility model.
图3为本实用新型的第三种实施方式。Fig. 3 is the third embodiment of the present utility model.
图中序号:1压缩机,2翅片套管复合式换热器,2’风机,3用户侧换热器,4四通换向阀,5节流阀,6第二循环水泵,10换热盘管,11蓄热水箱,12太阳能集热器,13第一循环水泵,7、8、9、14、15、16、17、20、21为连接在管路间的阀门,18生活水箱。Serial numbers in the picture: 1 compressor, 2 fin-tube compound heat exchanger, 2' fan, 3 user-side heat exchanger, 4 four-way reversing valve, 5 throttle valve, 6 second circulating water pump, 10 changing Heat coil, 11 hot water storage tank, 12 solar heat collector, 13 first circulating water pump, 7, 8, 9, 14, 15, 16, 17, 20, 21 are valves connected between pipelines, 18 life water tank.
图4为图1、图2、图3中翅片-套管复合式换热器结构原理图。Fig. 4 is a structural schematic diagram of the fin-tube composite heat exchanger in Fig. 1 , Fig. 2 and Fig. 3 .
图中序号:22由内套管管腔构成的另一种介质(液态热源)通道,23由内套管外壁与外套管内壁之间的环型空间构成的一种介质(热泵工作介质)通道,24外套管外壁与翅片之间构成的第三种介质(气态热源)通道,25翅片,26外套管,27内套管。Serial number in the figure: 22 is another medium (liquid heat source) channel formed by the lumen of the inner sleeve, 23 is a medium (heat pump working medium) channel formed by the annular space between the outer wall of the inner sleeve and the inner wall of the outer sleeve , A third medium (gas heat source) channel formed between the outer wall of the 24 outer casing and the fins, 25 fins, 26 outer casings, and 27 inner casings.
具体实施方式 Detailed ways
本实用新型以下将结合实施例(附图)作进一步描述:The utility model will be further described below in conjunction with embodiment (accompanying drawing):
实施例1Example 1
如图1所示,本实用新型的空气-太阳能-地能三热源复合热泵装置包括压缩机1,翅片-套管式三介质复合式换热器2,用户侧换热器3,四通换向阀4,节流阀5,第一循环水泵13,第二循环水泵6,旁通阀9,太阳能集热器12,箱体内设置有换热盘管10的蓄热水箱11;其中与蓄热水箱11蓄热腔相连通的进水口通过设置在管路间的阀门15与太阳能集热器12的出水口相连接,与蓄热水箱11蓄热腔相连通的出水口通过设置在管路间的阀门14、第一循环水泵13与太阳能集热器12的进水口相连接;设置在蓄热水箱11内的换热盘管10的进水口通过旁通阀9与地下热源供水管道相连通,该换热盘管10的出水口与地下热源供水管道并联后通过第二循环水泵6与翅片-套管式三介质复合式换热器2中由内、外套管构成的两种介质通道中的一种介质——液态热源通道管口的一端相连通;该液态热源通道管口的另一端分别通过设置在管路间的阀门16和17与地下热源供水管道、地下热源回水管道相连接;翅片-套管式三介质复合式换热器2中由内、外套管构成的两种介质通道中的另一种介质——热泵工作介质通道管口的一端通过四通换向阀4、压缩机1与用户侧换热器3中换热管一个端口相连接,该热泵工作介质通道管口的另一端通过节流阀5接入用户侧换热器3中上述换热管的另一个端口;翅片-套管式三介质复合式换热器2的外套管外壁与翅片之间构成空气热源介质通道;蓄热水箱11上设置生活热水供水接口和补水接口。As shown in Figure 1, the air-solar-ground energy composite heat pump device of the present utility model includes a
实施例2Example 2
如图2所示,该实施例与实施例1相比其不同之处在于:在蓄热水箱11上未设置生活热水供水接口和补水口,而是另外单独设置一个生活热水箱18,该生活水箱中的进水口通过设置在管路间的阀门20与太阳能集热器的出水口相连接,出水口通过阀门21与太阳能集热器的进水口相连接;在所述生活水箱上设置有生活热水供水管口和补水管口。As shown in Figure 2, the difference between this embodiment and
实施例3Example 3
如图3所示,该实施例与实施例2的不同之处在于:与蓄热水箱11蓄热腔相连通的进水口通过旁通阀9与地下热源供水管道相连通,与蓄热水箱11蓄热腔相连通的出水口与地下热源供水管道并联后通过第二循环水泵6与翅片-套管式三介质复合式换热器2中由内、外套管构成的两种介质通道中的一种介质——液态热源通道管口的一端相连通;设置在蓄热水箱11内的换热盘管10的进水口通过设置在管路间的阀门15与太阳能集热器12的出水口相连接,该换热盘管10的出水口通过设置在管路间的阀门14、第一循环水泵13与太阳能集热器12的进水口相连接。As shown in Figure 3, the difference between this embodiment and
如图4所示,本实用新型中所述翅片-套管式三介质复合式换热器2包括壳体,位于壳体内的风机2′和换热器本体,所述换热器本体包括以S形盘绕的外套管26、穿装在外套管管腔中的内套管27、以及与外套管外壁相结合的翅片25;所述内套管外径小于外套管的孔径,并由内套管外壁与外套管内壁之间的环型空间构成热泵工作介质通道23,内套管的管腔构成液态热源介质通道22,翅片25与外套管外壁构成气态热源通道20。当单独与气态热源换热时,关闭通道22,开启风机,通道23内的热泵工作介质与气态热源进行换热。当单独与液态热源换热时,关闭风机,通道23内的热泵工作介质与通道22内的液态热源介质进行换热。当需要与液态和气态热源同时换热时,开启通道22,开启风机,通道23内的热泵工作介质与通道22内的液态热源介质和通道24内的气态热源通道同时进行换热。该翅片-套管式三介质复合式换热器的技术方案已在在先申请的专利申请号为“200710054879.8”申请日为20070801的专利申请文件中公开。As shown in Figure 4, the fin-tube type three-medium
本实用新型中的太阳能集热器12可选择全玻璃真空管型太阳集热器或平板型太阳集热器,集热面积根据热泵功率大小及安装地太阳辐射条件确定。太阳能集热器12可以置于屋顶或阳台,蓄热水箱11和生活热水箱18由钢板或其它坚硬材料制成,可以置于室内或室外。蓄热水箱11和生活热水箱18内布置电辅助加热器,从而保证全年的生活热水供水温度。本实用新型中的太阳能集热、蓄热系统室外、室内管路中的热媒及蓄热水箱11中的蓄热介质可为水或其它防冻液。蓄热水箱11和生活热水箱18内换热盘管为紫铜管或其它具有高换热系数盘管。The
本实用新型中的压缩机1可选定频压缩机或变频压缩机,可使用现有的常用工质和新型环保工质做冷媒。The
本实用新型的工作流程如下:Work process of the present utility model is as follows:
(1)热泵工作模式(1) Heat pump working mode
1)空气源单独供热和太阳能生活热水模式:1) Air source heating alone and solar domestic hot water mode:
风机2’打开,第一循环水泵13打开,阀门14、15打开,第二循环水泵6关闭,阀门7、8、9、16、17关闭;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入翅片套管复合式换热器2吸收空气中热量后进入压缩机进入下一循环;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned on, the first circulating water pump 13 is turned on, the
2)太阳能热媒供热模式:2) Solar heat medium heating mode:
风机2’关闭,第一循环水泵13打开,第二循环水泵6打开,阀门8、14、15、17打开,阀门7、9、16关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器12,被加热后送回蓄热水箱11;蓄热水箱11中换热盘管二10中的热媒吸收蓄热水箱11中的热量后经第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入翅片套管复合式换热器2吸收太阳能热媒热量后进入压缩机进入下一循环。The fan 2' is turned off, the first circulating water pump 13 is turned on, the second circulating
3)地能单独供热和太阳能生活热水模式3) Ground energy independent heating and solar domestic hot water mode
风机2’关闭,第一循环水泵13打开,第二循环水泵6打开,阀门7、14、15、16打开,阀门8、9、17关闭;地下热媒经阀门7,第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源后经阀门16送回地下;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入翅片套管复合式换热器2吸收地下热媒热量后进入压缩机进入下一循环;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned off, the first circulating water pump 13 is turned on, the second circulating
4)空气源、地能联合供热和太阳能生活热水模式4) Air source, ground energy combined heating and solar domestic hot water mode
风机2’打开,第一循环水泵13打开,第二循环水泵6打开,阀门7、14、15、16打开,阀门8、9、17关闭;地下热媒经阀门7,第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源后经阀门16送回地下;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入翅片套管复合式换热器2吸收空气和地下热媒热量后进入压缩机进入下一循环;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned on, the first circulating water pump 13 is turned on, the second circulating
5)空气源、太阳能热媒联合供热模式5) Combined heating mode of air source and solar heat medium
风机2’打开,第一循环水泵13打开,第二循环水泵6打开,阀门8、14、15、17打开,阀门7、9、16关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器12,被加热后送回蓄热水箱11;蓄热水箱11中换热盘管二10中的热媒吸收蓄热水箱11中的热量后经第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入翅片套管复合式换热器2吸收空气和太阳能热媒热量后进入压缩机进入下一循环。The fan 2' is turned on, the first circulating water pump 13 is turned on, the second circulating
6)太阳能热媒、地能联合供热模式6) Combined heating mode of solar heat medium and ground energy
A.太阳能热媒、地能并联A. Parallel connection of solar heat medium and ground energy
风机2’关闭,第一循环水泵13打开,第二循环水泵6打开,阀门7、8、14、15、16、17打开,阀门9关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器12,被加热后送回蓄热水箱11;蓄热水箱11中换热盘管10中的热媒吸收蓄热水箱11中的热量后与地下热媒汇合后经阀门7、第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入热源侧换热器2吸收太阳能热媒和地下热媒热量后进入压缩机进入下一循环。The fan 2' is turned off, the first circulating water pump 13 is turned on, the second circulating
B.太阳能热媒、地能串联B. Solar heat medium and ground energy connected in series
风机2’关闭,第一循环水泵13打开,第二循环水泵6打开,阀门8、9、14、15、16打开,阀门7、17关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器11,被加热后送回蓄热水箱11;地下热媒经阀门9进入蓄热水箱11的换热盘管10中,吸收蓄热水箱11中的热量后经第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入热源侧换热器2吸收太阳能热媒和地下热媒热量后进入压缩机进入下一循环。The fan 2' is turned off, the first circulating water pump 13 is turned on, the second circulating
7)空气源、地能、太阳能热媒联合工作7) Combined work of air source, ground energy, and solar heat medium
A.太阳能热媒、地能并联A. Parallel connection of solar heat medium and ground energy
风机2’打开,第一循环水泵13打开,第二循环水泵6打开,阀门7、8、14、15、16、17打开,阀门9关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器12,被加热后送回蓄热水箱11;蓄热水箱11中换热盘管10中的热媒吸收蓄热水箱11中的热量后与地下热媒汇合后经阀门7、第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入热源侧换热器2吸收空气、太阳能热媒和地下热媒热量后进入压缩机进入下一循环。The fan 2' is turned on, the first circulating water pump 13 is turned on, the second circulating
B.太阳能热媒、地能串联B. Solar heat medium and ground energy connected in series
风机2’打开,第一循环水泵13打开,第二循环水泵6打开,阀门8、9、14、15、16打开,阀门7、17关闭;蓄热水箱11中的热媒经第一循环水泵13进入太阳能集热器11,被加热后送回蓄热水箱11;地下热媒经阀门9进入蓄热水箱11的换热盘管10中,吸收蓄热水箱11中的热量后经第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源;制冷剂由压缩机1压缩,经四通换向阀4至用户侧换热器3向室内释放热量后,经节流阀5进入热源侧换热器2吸收空气、太阳能热媒和地下热媒热量后进入压缩机进入下一循环。The fan 2' is turned on, the first circulating water pump 13 is turned on, the second circulating
(2)制冷工作模式。(2) Refrigeration working mode.
1)空气源单独工作和太阳能生活热水模式:1) Air source works alone and solar domestic hot water mode:
风机2’打开,第一循环水泵13打开,阀门14、15打开,第二循环水泵6关闭,阀门7、8、9、16、17关闭;制冷剂由压缩机1压缩,经四通换向阀4至翅片套管复合式换热器2释放热量后,经节流阀5节流后进入用户侧换热器3与室内空气对流释放冷量后,冷媒进入压缩机继续进行循环工作;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned on, the first circulating water pump 13 is turned on, the
2)地能单独工作和太阳能生活热水模式2) Ground energy works alone and solar domestic hot water mode
风机2’关闭,第一循环水泵13打开,第二循环水泵6打开,阀门7、14、15、16打开,阀门8、9、17关闭;地下热媒经阀门7,第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源后经阀门16送回地下;制冷剂由压缩机1压缩,经四通换向阀4至翅片套管复合式换热器2释放热量后,经节流阀5节流后进入用户侧换热器3与室内空气对流释放冷量后,冷媒进入压缩机继续进行循环工作;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned off, the first circulating water pump 13 is turned on, the second circulating
3)空气源、地能联合供热和太阳能生活热水模式3) Air source, ground energy combined heating and solar domestic hot water mode
风机2’打开,第一循环水泵13打开,第二循环水泵6打开,阀门7、14、15、16打开,阀门8、9、17关闭;地下热媒经阀门7,第二循环水泵6送入翅片套管复合式换热器2为热泵提供热源后经阀门16送回地下;制冷剂由压缩机1压缩,经四通换向阀4至翅片套管复合式换热器2释放热量后,经节流阀5节流后进入用户侧换热器3与室内空气对流释放冷量后,冷媒进入压缩机继续进行循环工作;蓄热水箱11中的生活热水通过第一循环泵13进入太阳能集热器11,被加热后通过阀门15回到蓄热水箱11。The fan 2' is turned on, the first circulating water pump 13 is turned on, the second circulating
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200820069365XU CN201163124Y (en) | 2008-02-18 | 2008-02-18 | Air-solar-ground energy three heat source compound heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200820069365XU CN201163124Y (en) | 2008-02-18 | 2008-02-18 | Air-solar-ground energy three heat source compound heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201163124Y true CN201163124Y (en) | 2008-12-10 |
Family
ID=40184059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU200820069365XU Expired - Fee Related CN201163124Y (en) | 2008-02-18 | 2008-02-18 | Air-solar-ground energy three heat source compound heat pump device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201163124Y (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101929733A (en) * | 2010-09-29 | 2010-12-29 | 中原工学院 | Solar-air-ground energy three heat source heat pump water heater |
CN101929764A (en) * | 2010-09-29 | 2010-12-29 | 中原工学院 | Solar-air-ground energy three heat source heat pump air conditioning unit |
CN101988775A (en) * | 2010-11-16 | 2011-03-23 | 山东建筑大学 | Solar-air-geothermal multisource dual-machine heat pump heat supply and air conditioning composite system |
CN103528295A (en) * | 2013-11-04 | 2014-01-22 | 山东宏力空调设备有限公司 | Composite energy heat pump type energy-saving household central air conditioner and control method thereof |
CN104515219A (en) * | 2013-09-27 | 2015-04-15 | 宁夏银晨太阳能科技有限公司 | Multi-source composite air conditioning system |
CN105928035A (en) * | 2016-04-29 | 2016-09-07 | 齐齐哈尔市洪博伟业供暖设备有限公司 | Indoor solar heating system |
CN108850127A (en) * | 2018-09-10 | 2018-11-23 | 西南大学 | A kind of heat pump assembly and heat treatment method of citrus anti-corrosive fresh-keeping and sterilization |
CN111578537A (en) * | 2020-04-28 | 2020-08-25 | 中国建筑科学研究院有限公司 | Combined energy source coupling energy supply and energy storage integrated device |
CN112781276A (en) * | 2020-04-08 | 2021-05-11 | 青岛海尔新能源电器有限公司 | Low-grade heat source heat pump system |
-
2008
- 2008-02-18 CN CNU200820069365XU patent/CN201163124Y/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101929733A (en) * | 2010-09-29 | 2010-12-29 | 中原工学院 | Solar-air-ground energy three heat source heat pump water heater |
CN101929764A (en) * | 2010-09-29 | 2010-12-29 | 中原工学院 | Solar-air-ground energy three heat source heat pump air conditioning unit |
CN101988775A (en) * | 2010-11-16 | 2011-03-23 | 山东建筑大学 | Solar-air-geothermal multisource dual-machine heat pump heat supply and air conditioning composite system |
CN101988775B (en) * | 2010-11-16 | 2012-08-15 | 山东建筑大学 | Solar-air-geothermal multisource dual-machine heat pump heat supply and air conditioner composite system |
CN104515219A (en) * | 2013-09-27 | 2015-04-15 | 宁夏银晨太阳能科技有限公司 | Multi-source composite air conditioning system |
CN103528295A (en) * | 2013-11-04 | 2014-01-22 | 山东宏力空调设备有限公司 | Composite energy heat pump type energy-saving household central air conditioner and control method thereof |
CN103528295B (en) * | 2013-11-04 | 2015-12-09 | 山东宏力热泵能源股份有限公司 | The energy-saving residential central air-of compound energy heat-pump-type and control method thereof |
CN105928035A (en) * | 2016-04-29 | 2016-09-07 | 齐齐哈尔市洪博伟业供暖设备有限公司 | Indoor solar heating system |
CN108850127A (en) * | 2018-09-10 | 2018-11-23 | 西南大学 | A kind of heat pump assembly and heat treatment method of citrus anti-corrosive fresh-keeping and sterilization |
CN112781276A (en) * | 2020-04-08 | 2021-05-11 | 青岛海尔新能源电器有限公司 | Low-grade heat source heat pump system |
CN111578537A (en) * | 2020-04-28 | 2020-08-25 | 中国建筑科学研究院有限公司 | Combined energy source coupling energy supply and energy storage integrated device |
CN111578537B (en) * | 2020-04-28 | 2021-11-09 | 中国建筑科学研究院有限公司 | Combined energy source coupling energy supply and energy storage integrated device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101988775B (en) | Solar-air-geothermal multisource dual-machine heat pump heat supply and air conditioner composite system | |
CN201163124Y (en) | Air-solar-ground energy three heat source compound heat pump device | |
CN100487343C (en) | Air- solar energy double heat source synchronous composite type heat pump device | |
CN100494827C (en) | Air-ground energy dual heat source synchronous composite heat pump device | |
CN201866994U (en) | Solar energy-air-geothermal energy multi-source double-compressor heat pump heat supply air conditioning combined system | |
CN101358784A (en) | Combined system of solar heat storage and ground source heat pump | |
CN101226016B (en) | Solar-ground energy dual heat source composite heat pump device | |
CN104913424A (en) | Direct-expansion wind-water cooling air conditioner system | |
CN105716329B (en) | Direct expanding solar heating pump system | |
CN108870598A (en) | A kind of separate heat pipe energy-storage air conditioner system | |
CN105627623A (en) | Novel solar energy-air energy combined heat pump cold-heat combined supply unit | |
CN201363859Y (en) | Air conditioning unit | |
CN100467964C (en) | An air-conditioning device utilizing a variety of natural and environmentally friendly energy sources | |
CN109520052B (en) | A renewable energy heat pump system suitable for energy-saving renovation of existing residential buildings | |
CN101929764A (en) | Solar-air-ground energy three heat source heat pump air conditioning unit | |
CN106931674A (en) | A kind of solar energy combines the double heat source heat pump and across season energy-storage system of energy supply with soil source | |
CN204240636U (en) | A kind of new type solar energy-air energy combined heat-pump cold and heat combined supply unit | |
CN101929733A (en) | Solar-air-ground energy three heat source heat pump water heater | |
CN103499163A (en) | Direct expansion type solar heat pump air conditioning system | |
CN103925729A (en) | Air conditioning system and central air conditioner comprising same | |
CN106839217B (en) | Combined heat pump air conditioning system capable of independently operating in de-electrification mode and control method thereof | |
CN108895715A (en) | Cold and heat balance concept-based energy storage ground source heat pump system suitable for southern China | |
CN101285625B (en) | Ground source warm and cold air conditioner system | |
CN201811380U (en) | Solar-air-ground energy three heat source heat pump air conditioning unit | |
CN201828020U (en) | Solar-air double-heat source type heat pump water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081210 Termination date: 20160218 |