CN1997260A - A kind of electron linear accelerator and using method thereof - Google Patents
A kind of electron linear accelerator and using method thereof Download PDFInfo
- Publication number
- CN1997260A CN1997260A CN 200510135934 CN200510135934A CN1997260A CN 1997260 A CN1997260 A CN 1997260A CN 200510135934 CN200510135934 CN 200510135934 CN 200510135934 A CN200510135934 A CN 200510135934A CN 1997260 A CN1997260 A CN 1997260A
- Authority
- CN
- China
- Prior art keywords
- electron
- electron beam
- energy
- accelerating structure
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
技术领域technical field
本发明涉及现代物理领域,具体地涉及一种具有多档能量调节的电子直线加速器。The invention relates to the field of modern physics, in particular to an electron linear accelerator with multi-level energy regulation.
背景技术Background technique
带电粒子在电场中会受力而被加速、提高能量,这是至今为止的电子加速器采用的原理,中性粒子不可能在这样的原理下得到加速。因此,电子加速器定义为利用电磁场加速带电粒子的装置。电子加速器可以加速电子、质子、离子等带电粒子,使粒子的速度达到几千公里/秒、几万公里/秒,甚至接近光速。在放射治疗、医学成像及无损检测等领域中,电子加速器主要应用于放射治疗装置、材料分辨的无损检测成像系统以及其它需要X射线或电子线的应用需求的情况。在这些应用中,电子束能量的可调具有重要意义。特别是在安全检查领域,能够实现不同脉冲间电子束能量的间隔调节,可以部分实现对被检物品的材料识别。Charged particles will be accelerated and their energy will be increased by force in the electric field. This is the principle adopted by electron accelerators so far. Neutral particles cannot be accelerated under such a principle. Thus, an electron accelerator is defined as a device that accelerates charged particles using electromagnetic fields. Electron accelerators can accelerate charged particles such as electrons, protons, ions, etc., so that the speed of the particles can reach thousands of kilometers per second, tens of thousands of kilometers per second, or even close to the speed of light. In the fields of radiation therapy, medical imaging, and non-destructive testing, electron accelerators are mainly used in radiation therapy devices, material-resolving non-destructive testing imaging systems, and other applications that require X-rays or electron beams. In these applications, the tunability of the electron beam energy is of great significance. Especially in the field of security inspection, it can realize the interval adjustment of electron beam energy between different pulses, and can partially realize the material identification of the inspected items.
现有的医用电子直线加速器电子能量调节方法主要通过能量开关的机械运动,改变加速腔之间的耦合系数,从而改变加速腔链中的轴上电场分布,实现电子能量的调节。现有的无损探伤电子直线加速器一般通过直接调节脉冲调制器的电压,改变微波功率源输出脉冲功率的大小;以及调节加速管电子枪的阴极高压,改变束流负载等方法,实现电子束能量的改变。这些方法的缺点是都难以大范围地改变电子束的能量,难以实现脉冲间的电子能量的快速调节。The existing electronic energy adjustment methods of medical electron linear accelerators mainly change the coupling coefficient between the accelerating cavities through the mechanical movement of the energy switch, thereby changing the axial electric field distribution in the accelerating cavity chain, and realizing the adjustment of the electronic energy. The existing electron linear accelerators for non-destructive testing usually directly adjust the voltage of the pulse modulator to change the output pulse power of the microwave power source; and adjust the cathode high voltage of the electron gun of the accelerating tube to change the beam current load to realize the change of the electron beam energy. . The disadvantage of these methods is that it is difficult to change the energy of the electron beam in a large range, and it is difficult to realize the rapid adjustment of the electron energy between pulses.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的是要克服目前现有技术的缺陷,提出一种可以大范围改变电子束能量、实现电子能量快速调节的电子直线加速器。The purpose of the present invention is to overcome the defects of the current prior art, and propose an electron linear accelerator capable of changing electron beam energy in a large range and realizing rapid adjustment of electron energy.
(二)技术方案(2) Technical solution
本发明提出一种电子直线加速器,包括电子枪、加速结构、微波功率源、隔离器和励磁电源,其中电子枪通过隔离器从微波功率源获得微波功率,产生电磁场,发出电子束,电子束通过加速结构加速后输出,其特征在于加速结构分为两部分,分别是横向加速结构和纵向加速机构,通过2个隔离器即横向隔离器和纵向隔离器分别连接到功率分配器,从微波功率源获得微波功率;横向加速结构与纵向加速结构之间由磁铁连接并保持一定的微波相位。The invention proposes an electron linear accelerator, including an electron gun, an accelerating structure, a microwave power source, an isolator and an excitation power supply, wherein the electron gun obtains microwave power from the microwave power source through the isolator, generates an electromagnetic field, and emits electron beams, which pass through the accelerating structure The output after acceleration is characterized in that the acceleration structure is divided into two parts, namely the transverse acceleration structure and the longitudinal acceleration mechanism, which are respectively connected to the power divider through two isolators, the transverse isolator and the longitudinal isolator, and the microwave is obtained from the microwave power source. Power; The transverse acceleration structure and the longitudinal acceleration structure are connected by magnets and maintain a certain microwave phase.
上述的电子直线加速器,一种优选的方案是还包括同步触发控制系统,用于控制微波功率源和励磁电源的同步。A preferred solution of the above electron linear accelerator further includes a synchronous trigger control system for controlling the synchronization of the microwave power source and the excitation power source.
上述的电子直线加速器,其中横向加速结构和纵向加速结构之间的夹角为80°-100°,之间通过磁铁相连。其中一种优选的方案是横向加速结构和纵向加速结构之间的夹角为90°。In the above electron linear accelerator, the angle between the transverse acceleration structure and the longitudinal acceleration structure is 80°-100°, and they are connected by magnets. One of the preferred schemes is that the angle between the transverse accelerating structure and the longitudinal accelerating structure is 90°.
上述的电子直线加速器,一种优选的方案是电子束在磁铁中的运动轨迹为α形状。In the above-mentioned electron linear accelerator, a preferred solution is that the trajectory of the electron beam in the magnet is in the shape of α.
上述的电子直线加速器,一种优选的方案是电子轨迹长度的变化范围ΔL从0到5cm。In the above-mentioned electron linear accelerator, a preferred solution is that the variation range ΔL of the electron track length is from 0 to 5 cm.
本发明提出的电子直线加速器的使用方法是,通过改变磁铁的磁感应强度,改变电子束的轨迹长度,从而使电子束进入纵向加速结构的时间和相位不同,最终输出能量不同的电子束。The use method of the electron linear accelerator proposed by the present invention is to change the track length of the electron beam by changing the magnetic induction intensity of the magnet, so that the time and phase of the electron beam entering the longitudinal acceleration structure are different, and finally output electron beams with different energies.
上述的使用方法,其中磁铁的磁感应强度的空间分布,与沿着磁铁北极方向的关系满足Bz(s)=k·s,其中z表示垂直纸面方向,s代表北极方向的位移量。In the above method of use, the relationship between the spatial distribution of the magnetic induction intensity of the magnet and the direction along the north pole of the magnet satisfies B z (s)=k·s, where z represents the direction perpendicular to the paper surface, and s represents the displacement in the direction of the north pole.
上述的使用方法,一种优选的方案是输出的电子束能量通过调节磁铁的磁感应强度实现,电子加速器的其它参数保持不变。In the above method of use, a preferred solution is that the output electron beam energy is realized by adjusting the magnetic induction intensity of the magnet, and other parameters of the electron accelerator remain unchanged.
上述的使用方法,一种优选的方案是通过调节磁铁的磁感应强度,使磁感应强度具有大小有两种,电子束进入纵向加速结构时分别对应为两种不同的相位,对应到最终输出的电子束能量有高能和低能两种状态。In the above method of use, a preferred solution is to adjust the magnetic induction of the magnet so that there are two types of magnetic induction. When the electron beam enters the longitudinal acceleration structure, it corresponds to two different phases, corresponding to the final output of the electron beam. There are two states of energy, high energy and low energy.
上述的使用方法,一种优选的方案是通过调节磁铁的磁感应强度,使磁感应强度具有大小为三种,电子束进入纵向加速结构时分别对应为三种不同的相位,对应到最终输出的电子束能量有三种能量状态。In the above method of use, a preferred solution is to adjust the magnetic induction of the magnet so that the magnetic induction has three sizes. When the electron beam enters the longitudinal acceleration structure, it corresponds to three different phases, corresponding to the final output of the electron beam. Energy has three energy states.
上述的使用方法,一种优选的方案是通过调节磁铁的磁感应强度,使磁感应强度随时间的变化是周期连续的,电子束进入纵向加速结构时所处的加速相位也连续变化,对应到最终输出的电子束能量为We1-We2到We1+We2连续可调的电子能量,电子束的能量由电子束脉冲与磁感应强度变化的时序决定;其中We1为电子束通过第一段加速结构后获得的能量,We2为电子束通过第二段加速结构后获得的能量。In the above method of use, a preferred solution is to adjust the magnetic induction of the magnet so that the change of the magnetic induction over time is periodic and continuous, and the acceleration phase of the electron beam when it enters the longitudinal acceleration structure also changes continuously, corresponding to the final output The energy of the electron beam is continuously adjustable from We 1 -We 2 to We 1 + We 2 , and the energy of the electron beam is determined by the timing of the electron beam pulse and the change of magnetic induction intensity; where We 1 is the acceleration of the electron beam through the first section The energy obtained after the structure, We 2 is the energy obtained after the electron beam passes through the second accelerated structure.
(三)有益效果(3) Beneficial effects
采用本发明,通过改变电流强度可以容易的实现对电子束能量的控制与调节,从而获得快速的、可调范围大的电子加速器,对于放射医疗和无损探测领域具有重大作用。By adopting the invention, the control and adjustment of electron beam energy can be easily realized by changing the current intensity, thereby obtaining a fast electron accelerator with a large adjustable range, which has great effects on the fields of radiation medicine and non-destructive detection.
附图说明Description of drawings
图1为本发明的模块图;Fig. 1 is a block diagram of the present invention;
图2为第一种输出的电子能量与磁场强度、相位移动的关系图;Fig. 2 is the relationship diagram of the electron energy of the first kind of output and magnetic field intensity, phase shift;
图3为第二种输出的电子能量与磁场强度、相位移动的关系图;Fig. 3 is the relation diagram of the electron energy of the second kind of output and magnetic field intensity, phase shift;
图4为第三种输出的电子能量与磁场强度、相位移动的关系图;Fig. 4 is the relationship figure of the electron energy of the third kind of output and magnetic field intensity, phase shift;
图5为第一段加速结构中电子束的电场强度与加速相位的关系图;Fig. 5 is the relationship diagram between the electric field intensity and the acceleration phase of the electron beam in the first acceleration structure;
图6为第二段加速结构中电子束的电场强度与加速相位的关系图。Fig. 6 is a diagram showing the relationship between the electric field intensity of the electron beam and the acceleration phase in the second acceleration structure.
其中,11、电子枪;12、横向隔离器;13、功率分配器;14、脉冲微波功率源;15、横向加速结构;16、纵向加速结构;17、纵向隔离器;18、磁铁;19、电子束运动轨迹;100、同步触发控制系统;101、励磁电源。Among them, 11. Electron gun; 12. Transverse isolator; 13. Power divider; 14. Pulse microwave power source; 15. Transverse acceleration structure; 16. Vertical acceleration structure; 17. Longitudinal isolator; 18. Magnet; 19. Electronic beam movement track; 100, synchronous trigger control system; 101, excitation power supply.
具体实施方式Detailed ways
本发明提出具有多档能量调节的电子直线加速器,结合附图和实施例说明如下。以下实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由各权利要求限定。The present invention proposes an electron linear accelerator with multi-level energy adjustment, which is described below in conjunction with the drawings and embodiments. The following embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can also make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the patent protection scope of the present invention should be defined by each claim.
该发明的装置,除了包括一般电子直线加速器所有的脉冲微波功率源14、电子枪11、隔离器12、加速结构、同步触发控制系统100等外,其中,加速结构分为独立的两段,即横向加速结构15和纵向加速结构16,它们相互接近并呈90度的夹角。横向加速结构15和纵向16的微波功率分别通过横向隔离器12和纵向隔离器17、以及功率分配器13与脉冲微波功率源14相连,并从微波功率源获得微波功率,用于建立加速电子的微波电磁场。两段加速结构之间通过磁铁18连接在一起,电子束在横向加速结构15中加速后,通过磁铁18进入纵向加速结构16,根据电子束在磁铁18中的轨迹长度不同,在加速结构16中得到不同的能量,其中,电子束在磁铁18中的运动轨迹19类似于α的形状,其轨迹长度由磁铁18的磁感应强度决定,磁铁18的磁感应强度由励磁电源101控制。The device of this invention, except including pulsed
根据本发明,磁感应强度的空间分布,与沿着磁铁北极方向的关系会满足Bz(s)=k·s,其中z表示垂直纸面方向,s代表北极方向的位移量。According to the present invention, the relationship between the spatial distribution of magnetic induction and the direction along the north pole of the magnet satisfies B z (s)=k·s, where z represents the direction perpendicular to the paper surface, and s represents the displacement in the direction of the north pole.
整个装置由同步触发控制系统100的时序控制,同步触发控制系统100发出的触发脉冲,控制微波功率源14产生微波脉冲,同时控制电子枪11发射电子束脉冲,电子束在加速结构15中加速得到能量We1。这些属于现有技术,本领域技术人员都知道装置的具体情况,在此不做赘述。同步触发控制系统100还控制励磁电源101,使磁铁18中的磁感应强度发生变化。The entire device is controlled by the timing of the synchronous
参照图1、图5、图6。电子束经过横向加速结构15加速后,输出的电场强度和加速相位的关系如图5所示。电子束输入到磁铁18后,电子的运动轨迹19的长度由电子束的能量及磁铁18的磁感应强度决定的,可以表示为L=f(We,B)。在不同的磁感应强度的B下,电子的轨迹长度发生变化,长度的变化为ΔL=f(We,B1)-f(We,B2),电子轨迹长度的变化引起电子在第二段加速结构中的加速相位的变化,具体为Δ=ω0·(ΔL/c)。其中ω0为加速电场的角频率,c为光速。为了调整加速电子的能量的变化范围,从最大值We1+We2到最小值We1-We2,在第二段加速结构中的相位变化范围Δφ应该从0到π,如图6所示。以工作在频率为2998MHz的微波电场为例,电子轨迹长度的变化范围ΔL从0到5cm,这样的变化范围可以覆盖相位变化范围,即Δφ从0到π。Refer to Figure 1, Figure 5, and Figure 6. After the electron beam is accelerated by the
对于磁铁18的磁感应强度B0下,电子束轨迹19满足电子在第一段加速结构中加速得到We1的能量,同时电子束在第二段也处于最佳加速相位,获得最高输出能量,即对应到图6的位置50,使电子束在第二段得到We2的能量。磁铁18的磁感应强度越大,电子的轨迹长度越短,电子达到第二段的时间越早,相位差别越大。对于大于B0的磁感应强度,电子束在第二段中的相位处于类似51的位置;对于小于B0的磁感应强度,电子束在第二段中的相位处于类似52~55的位置。电子束在第二段中处于不同的相位位置,将使其在第二段得到不同的能量,甚至减小其在第一段中得到的能量,如类似于54,或甚至达到最低的输出能量,如55的位置。For the magnetic induction intensity B of the
对于电子能量输出的调节方案,参照图2,采用二级可调的方案。其中,磁场强度随时间的变化是阶跃的,有2种强度;相应的随着磁场强度的改变,相位移动随时间的变化也是阶跃的,有2种大小;输出的电子能量随时间的变化是脉冲的,也有2种大小,其中低磁场强度对应的相位移动为大于0的值,对应低电子能量;高磁场强度对应的相位移动为0,对应高电子能量。For the adjustment scheme of the electronic energy output, referring to FIG. 2 , a two-stage adjustable scheme is adopted. Among them, the change of the magnetic field strength with time is a step, there are 2 kinds of strength; correspondingly with the change of the magnetic field strength, the change of the phase shift with time is also a step, there are 2 kinds of sizes; the output electron energy changes with time The change is impulsive, and there are two kinds of sizes. The phase shift corresponding to low magnetic field strength is greater than 0, corresponding to low electron energy; the phase shift corresponding to high magnetic field strength is 0, corresponding to high electron energy.
对于图3的情况,采用三级可调的方案。其中,磁场强度随时间的变化是阶跃的,有3种强度;相应的随着磁场强度的改变,相位移动随时间的变化也是阶跃的,有3种大小;因此输出的脉冲电子能量有3种情况,其中低磁场强度对应的相位移动为接近180度,对应低电子能量;中磁场强度对应的相位移动为0度到180度之间,对应中等的电子能量;高磁场强度对应的相位移动为0度对应高电子能量。For the situation in Figure 3, a three-level adjustable scheme is adopted. Among them, the change of the magnetic field strength with time is a step, and there are 3 kinds of strength; correspondingly with the change of the magnetic field strength, the change of the phase shift with time is also a step, with 3 kinds of sizes; therefore, the output pulse electron energy has Three cases, in which the phase shift corresponding to low magnetic field strength is close to 180 degrees, corresponding to low electron energy; the phase shift corresponding to medium magnetic field strength is between 0 degrees and 180 degrees, corresponding to medium electron energy; the phase corresponding to high magnetic field strength A shift of 0 degrees corresponds to high electron energy.
对于图4的情况,采用连续可调的方案。其中,磁场强度随时间的变化是连续的,相应的随着磁场强度的改变,相位移动随时间的变化也是连续的;因此,输出的电子能量的大小也是无级可调的;其中磁场强度的变化和相位移动的变化成反比关系,磁场强度的变化和电子能量的变化成正比关系。For the situation in Figure 4, a continuously adjustable scheme is adopted. Among them, the change of the magnetic field strength with time is continuous, correspondingly with the change of the magnetic field strength, the change of the phase shift with time is also continuous; therefore, the size of the output electron energy is also steplessly adjustable; where the magnetic field strength The change is inversely proportional to the change in phase shift, and the change in magnetic field strength is in direct proportion to the change in electron energy.
由于通过调节磁铁18的磁感应强度的大小,可以方便的调节电子束在该装置中的得到的能量,而且电子加速器的其他参数,例如微波功率源的功率大小、加速结构中的场强、电子枪的发射流强等参数都基本保持不变,同现有技术中的一般情况。因此,本发明可以实现电子束输出能量的大范围可调,同前所述,可以采用二级可调、三级可调、或者类似的采用多级可调、或无级可调的调解方案。Because by adjusting the size of the magnetic induction intensity of the
磁铁18的磁感应强度由线包的电流激励,因此,通过调节励磁电源101中线包的电流强度就可以方便地调节磁感应强度,从而调节装置输出的电子束的能量,而其他参数保持基本不变。The magnetic induction of the
可见,采用本发明,由于电子束的输出能量依赖于励磁电源的电流强度,因此通过改变电流强度可以容易的实现对电子束能量的控制与调节,从而获得快速的、可调范围大的电子加速器。It can be seen that with the present invention, since the output energy of the electron beam depends on the current intensity of the excitation power supply, the control and adjustment of the energy of the electron beam can be easily realized by changing the current intensity, thereby obtaining a fast electron accelerator with a large adjustable range .
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510135934A CN100589676C (en) | 2005-12-31 | 2005-12-31 | Electron linear accelerator and using method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510135934A CN100589676C (en) | 2005-12-31 | 2005-12-31 | Electron linear accelerator and using method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1997260A true CN1997260A (en) | 2007-07-11 |
CN100589676C CN100589676C (en) | 2010-02-10 |
Family
ID=38252147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200510135934A Active CN100589676C (en) | 2005-12-31 | 2005-12-31 | Electron linear accelerator and using method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100589676C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103906340A (en) * | 2012-12-28 | 2014-07-02 | 清华大学 | Standing wave electron linear accelerator device and method thereof |
CN106455288A (en) * | 2016-10-28 | 2017-02-22 | 中广核中科海维科技发展有限公司 | Adjustable-energy electron linear accelerator |
CN109683523A (en) * | 2018-12-25 | 2019-04-26 | 中国人民解放军96630部队 | Accelerator control method and system based on programmable gate array FPGA |
CN110798960A (en) * | 2019-10-31 | 2020-02-14 | 广州华大生物科技有限公司 | Petal-shaped electron accelerator with continuously adjustable energy |
CN111611733A (en) * | 2020-04-20 | 2020-09-01 | 费勉仪器科技(上海)有限公司 | Method for constructing magnetic circuit structure of medium and small magnetic deflection electron beam evaporation source |
CN111885809A (en) * | 2020-06-30 | 2020-11-03 | 中国原子能科学研究院 | Wide-energy large-beam-spot electron accelerator |
CN112888141A (en) * | 2020-12-30 | 2021-06-01 | 兰州科近泰基新技术有限责任公司 | High-gradient backward wave type traveling wave accelerator and rapid energy adjusting method thereof |
CN113099601A (en) * | 2021-04-01 | 2021-07-09 | 中国工程物理研究院流体物理研究所 | Low-energy heavy ion accelerator and acceleration method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011076262A1 (en) * | 2011-05-23 | 2012-11-29 | Siemens Aktiengesellschaft | Accelerator e.g. electron accelerator for medical application e.g. radiotherapy application, has filter provided between two stages having acceleration zones, for reducing width of energy distribution of particles |
-
2005
- 2005-12-31 CN CN200510135934A patent/CN100589676C/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103906340A (en) * | 2012-12-28 | 2014-07-02 | 清华大学 | Standing wave electron linear accelerator device and method thereof |
WO2014101620A1 (en) * | 2012-12-28 | 2014-07-03 | 清华大学 | Standing-wave electron linear accelerator device and method thereof |
US9426877B2 (en) | 2012-12-28 | 2016-08-23 | Tsinghua University | Standing wave electron linear accelerator with continuously adjustable energy |
CN106455288A (en) * | 2016-10-28 | 2017-02-22 | 中广核中科海维科技发展有限公司 | Adjustable-energy electron linear accelerator |
CN109683523A (en) * | 2018-12-25 | 2019-04-26 | 中国人民解放军96630部队 | Accelerator control method and system based on programmable gate array FPGA |
CN110798960A (en) * | 2019-10-31 | 2020-02-14 | 广州华大生物科技有限公司 | Petal-shaped electron accelerator with continuously adjustable energy |
CN111611733A (en) * | 2020-04-20 | 2020-09-01 | 费勉仪器科技(上海)有限公司 | Method for constructing magnetic circuit structure of medium and small magnetic deflection electron beam evaporation source |
CN111611733B (en) * | 2020-04-20 | 2023-05-26 | 费勉仪器科技(上海)有限公司 | Method for constructing magnetic circuit structure of small and medium-sized magnetic deflection electron beam evaporation source |
CN111885809A (en) * | 2020-06-30 | 2020-11-03 | 中国原子能科学研究院 | Wide-energy large-beam-spot electron accelerator |
CN112888141A (en) * | 2020-12-30 | 2021-06-01 | 兰州科近泰基新技术有限责任公司 | High-gradient backward wave type traveling wave accelerator and rapid energy adjusting method thereof |
CN112888141B (en) * | 2020-12-30 | 2023-05-30 | 兰州科近泰基新技术有限责任公司 | A high-gradient back-wave traveling-wave accelerator and its fast energy adjustment method |
CN113099601A (en) * | 2021-04-01 | 2021-07-09 | 中国工程物理研究院流体物理研究所 | Low-energy heavy ion accelerator and acceleration method |
CN113099601B (en) * | 2021-04-01 | 2023-04-28 | 中国工程物理研究院流体物理研究所 | Low-energy heavy ion accelerator and acceleration method |
Also Published As
Publication number | Publication date |
---|---|
CN100589676C (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108781501B (en) | Hybrid standing/traveling wave linear accelerator for providing accelerated charged particles or radiation beams | |
KR20080059395A (en) | Sequentially pulsed traveling wave accelerator | |
CN1997260A (en) | A kind of electron linear accelerator and using method thereof | |
CN106455288A (en) | Adjustable-energy electron linear accelerator | |
Xu et al. | New injection and acceleration scheme of positrons in the laser-plasma bubble regime | |
Andrianov et al. | Development of 200 MeV linac for the SKIF light source injector | |
US6559610B2 (en) | Continuous wave electron-beam accelerator and continuous wave electron-beam accelerating method thereof | |
Toonen et al. | Gigahertz repetition rate thermionic electron gun concept | |
Petrosyan et al. | Undulator with permanent ferrimagnetic magnets | |
Pukhov et al. | Coherent acceleration by laser pulse echelons in periodic plasma structures | |
Sahai et al. | PetaVolts per meter Plasmonics: introducing extreme nanoscience as a route towards scientific frontiers | |
CN103582277A (en) | MeV-Electron source | |
JP4399604B2 (en) | Charged particle beam trajectory control apparatus and control method therefor | |
Roy et al. | Energy amplification and beam bunching in a pulse line ion accelerator | |
Shen et al. | Ultrashort relativistic electromagnetic solitons | |
JP4110253B2 (en) | Induction voltage control apparatus and control method thereof | |
WO2007004704A1 (en) | Induction voltage control device, its control method, charged particle beam orbit control device, and its control method | |
JP2007165220A (en) | Induction accelerator and charged particle beam acceleration method | |
WO2007004711A1 (en) | Synchrotron oscillation frequency control device and control method thereof | |
JP6171126B2 (en) | High frequency charged particle accelerator | |
US9590383B1 (en) | Beam-driven short wavelength undulator | |
Lallement et al. | LINACS | |
Sahai et al. | PetaVolts per meter Plasmonics: Snowmass21 White Paper | |
Sahai et al. | arXiv: PetaVolts per meter Plasmonics: Snowmass21 White Paper | |
Yadav et al. | Electron acceleration by a plasma wave in the presence of a transversely propagated laser with magnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |