[go: up one dir, main page]

CN1983566A - A stacked thin film transistor non-volatile memory device and its manufacturing method - Google Patents

A stacked thin film transistor non-volatile memory device and its manufacturing method Download PDF

Info

Publication number
CN1983566A
CN1983566A CN200610164200.6A CN200610164200A CN1983566A CN 1983566 A CN1983566 A CN 1983566A CN 200610164200 A CN200610164200 A CN 200610164200A CN 1983566 A CN1983566 A CN 1983566A
Authority
CN
China
Prior art keywords
layer
formation
silicon
oxide
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200610164200.6A
Other languages
Chinese (zh)
Other versions
CN100501978C (en
Inventor
赖二琨
吕函庭
谢光宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN1983566A publication Critical patent/CN1983566A/en
Application granted granted Critical
Publication of CN100501978C publication Critical patent/CN100501978C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开一种堆叠非易失性存储器件,其包括多层彼此堆叠的位线层与字线层。位线层包括多条位线,这些位线可以利用先进的制造技术,而有效率地且经济地制造此器件。此器件可结构为适用于与非(NAND)操作中。

Figure 200610164200

The present invention discloses a stacked non-volatile memory device, which includes a plurality of bit line layers and word line layers stacked on each other. The bit line layer includes a plurality of bit lines, which can be efficiently and economically manufactured using advanced manufacturing technology. The device can be structured to be suitable for NAND operation.

Figure 200610164200

Description

一种堆叠薄膜晶体管非易失性存储器件及其制造方法A stacked thin film transistor non-volatile memory device and its manufacturing method

相关申请related application

本申请主张于2005年12月9日申请的美国临时申请的优先权,该申请的申请号为No.60/748,911,发明名称为”The Process of TFTNAND and Nitride Read Only Memory”,该申请为本申请的参考。本申请还有关于在2006年6月22日申请的美国专利申请No.11/425,959,其发明名称为”A Stacked Non-Volatile Memory Deviceand Methods for Fabricating the Same”,该申请也列为本申请的参考。This application claims the priority of the U.S. provisional application filed on December 9, 2005, the application number is No. 60/748,911, the title of the invention is "The Process of TFTNAND and Nitride Read Only Memory", the application is based on Application reference. This application also relates to U.S. Patent Application No.11/425,959 filed on June 22, 2006, whose title of invention is "A Stacked Non-Volatile Memory Device and Methods for Fabricating the Same", which is also listed as the subject of this application refer to.

技术领域technical field

本发明所述的实施例涉及用以制造薄膜晶体管非易失性存储器件的方法,并尤其涉及用以制造薄膜晶体管非易失性存储器件其包括多层存储单元的方法。Embodiments described herein relate to methods for fabricating thin film transistor nonvolatile memory devices, and more particularly to methods for fabricating thin film transistor nonvolatile memory devices including multilayer memory cells.

背景技术Background technique

非易失性存储器件越来越频繁地被使用于产品中。举例而言,闪速存储器件用于MP3播放器、数码相机中,并做为电脑的储存装置。随着这些使用的增加,则越需要在小尺寸中容纳大容量存储装置,进而需要制造高密度的存储装置。因此,研发的方向朝着增加传统非易失性存储器件的密度进行。Non-volatile memory devices are used more and more frequently in products. For example, flash memory devices are used in MP3 players, digital cameras, and as storage devices for computers. As these uses increase, there is a greater need to accommodate large-capacity storage devices in small sizes, which in turn requires the manufacture of high-density storage devices. Accordingly, research and development is directed toward increasing the density of conventional nonvolatile memory devices.

一种增加非易失性存储器件的密度的方法,是生成堆叠存储器件,即具有多层存储单元的器件彼此堆叠。不幸的是,至今为止并没有许多研发力量投入生成各种堆叠存储器件。举例而言,堆叠氮化物只读存储器仅有少数几种设计。这种现象可以部分归因于堆叠存储器件并无法完全与最近的工艺兼容,进而使得堆叠存储器件的制造缺乏效率、且成本高昂。One approach to increasing the density of non-volatile memory devices is to create stacked memory devices, ie, devices with multiple layers of memory cells stacked on top of each other. Unfortunately, so far not a lot of research and development effort has been devoted to producing various stacked memory devices. For example, stacked nitride ROM has only a few designs. This phenomenon can be attributed in part to the fact that stacked memory devices are not fully compatible with recent processes, making their manufacture inefficient and costly.

用以增加公知非易失性存储器件的密度仍有其他方式,然而这些方式并不必然适用于所有应用的需求。因此,对于增加公知非易失性存储器件的密度的方法仍有需求。There are still other ways to increase the density of known non-volatile memory devices, but these ways are not necessarily suitable for all applications. Therefore, there remains a need for a method of increasing the density of known non-volatile memory devices.

一种特别的非易失性存储器件为氮化物只读存储器件。图1为公知的氮化物只读存储结构150的示意图。如图所示,氮化物只读存储器150建造于硅衬底152之上。此衬底可为P型硅衬底或N型硅衬底,然而由于多种设计上的理由,通常优选地使用P型硅衬底。源极/漏极区域154,156可接着布植于衬底152之中。陷获结构158接着形成于衬底152之上、介于源极/漏极区域154,156之间。控制栅极160接着形成于陷获结构158之上。One particular type of non-volatile memory device is a nitride read-only memory device. FIG. 1 is a schematic diagram of a known nitride ROM structure 150 . As shown, the NROM 150 is fabricated on a silicon substrate 152 . The substrate can be a P-type silicon substrate or an N-type silicon substrate, however, a P-type silicon substrate is generally preferred for various design reasons. Source/drain regions 154 , 156 may then be implanted in substrate 152 . A trapping structure 158 is then formed over the substrate 152 between the source/drain regions 154 , 156 . A control gate 160 is then formed over trapping structure 158 .

源极/漏极区域154,156为掺杂有与衬底152相反类型掺杂物的硅区域。举例而言,当使用P型硅衬底时,则布植N型源极/漏极区域154,156。The source/drain regions 154 , 156 are silicon regions doped with the opposite type of dopant to the substrate 152 . For example, when a P-type silicon substrate is used, N-type source/drain regions 154, 156 are implanted.

电荷陷获结构158包括氮化物陷获层、以及位于陷获层与衬底152的沟道166之间的绝缘氧化物层。在其他实施例中,陷获结构158可以包括氮化物陷获层,其夹在二绝缘(介质)层之间,例如氧化物层或二氧化硅层。此等结构通常称为氧化物-氮化物-氧化物(ONO)陷获结构。The charge trapping structure 158 includes a nitride trapping layer, and an insulating oxide layer between the trapping layer and the channel 166 of the substrate 152 . In other embodiments, the trapping structure 158 may include a nitride trapping layer sandwiched between two insulating (dielectric) layers, such as an oxide layer or a silicon dioxide layer. Such structures are commonly referred to as oxide-nitride-oxide (ONO) trapping structures.

电荷可在陷获结构158之中、紧邻于源极/漏极区域154,156的位置累积并局域化于此处,因此有效地储存两个分离且独立的电荷162,164。每一电荷162,164可维持于两个状态之一,即编程态或擦除态,此二状态则分别由一局部陷获电子的存在与否来代表。此种结构允许了双位信息的储存,而不需要使用复杂的多级单元技术。Charge can accumulate and be localized within the trapping structure 158 immediately adjacent to the source/drain regions 154, 156, thereby effectively storing two separate and independent charges 162, 164. Each charge 162, 164 can be maintained in one of two states, a programmed state or an erased state, each of which is represented by the presence or absence of a locally trapped electron. This structure allows the storage of two bits of information without the use of complex multi-level cell technology.

在氮化物只读存储单元150中的每一储存区域,可以独立地进行编程而不影响其他储存区域。氮化物只读存储单元的编程,通过施加电压而使得带负电荷的电子被注入陷获结构158的氮化层中、接近此单元的一端处。擦除则是通过施加电压而使得空穴被注入氮化物层中,使得空穴抵销先前编程时储存在氮化物层中的电子而完成。Each storage area in the nitride read-only memory cell 150 can be independently programmed without affecting other storage areas. Nitride ROM cells are programmed by applying a voltage such that negatively charged electrons are injected into the nitride layer of trapping structure 158 near one end of the cell. Erasing is accomplished by applying a voltage so that holes are injected into the nitride layer, so that the holes cancel the electrons stored in the nitride layer during previous programming.

氮化物只读存储器件利用制造图1所示的存储单元阵列而建构。阵列将单元以字线与位线连结在一起。Nitride read-only memory devices are constructed by fabricating an array of memory cells as shown in FIG. 1 . The array connects cells together with word lines and bit lines.

氮化物只读存储器件(例如图1所示的器件)可以配置为将多位储存在单一单元中,因此氮化物只读存储器件的密度可以使用堆叠结构而增加。不幸的是,氮化物只读存储器件堆叠鲜少被实施,即便实施,其工艺并无效率且因此增加制造成本。Nitride ROM devices, such as the device shown in FIG. 1 , can be configured to store multiple bits in a single cell, so the density of NROM devices can be increased using a stacked structure. Unfortunately, nitride ROM device stacking is rarely implemented, and when it is, the process is inefficient and thus increases manufacturing costs.

发明内容Contents of the invention

本发明公开用以制造堆叠非易失性存储器件的方法。所公开的方法使用了有效率的工艺技术,以制造此堆叠器件。因此。本发明所述的实施例可以缩小其尺寸以达到不同级的层的堆叠。The present invention discloses a method for fabricating a stacked non-volatile memory device. The disclosed method uses efficient process technology to fabricate the stacked device. therefore. Embodiments of the present invention can be scaled down to allow stacking of different levels of layers.

在本发明的目的之一中,堆叠氮化物只读存储器可以利用本发明的方法而制造。In one of the objects of the present invention, a stacked nitride ROM can be fabricated using the method of the present invention.

在本发明的另一目的中,堆叠氮化物只读存储器件可以利用绝缘层上覆硅(SOI)工艺技术而制造,例如薄膜晶体管(TFT)工艺技术等。In another object of the present invention, the stacked nitride read-only memory device can be manufactured using silicon-on-insulator (SOI) process technology, such as thin film transistor (TFT) process technology and the like.

在本发明的另一目的中,包括在此堆叠非易失性存储器件中的陷获层,可包括多种结构,例如硅-氧化物-氮化物-氧化物-硅(SONOS)、带隙加工的SONOS(BE-SONOS)、硅-氧化物-氮化物-硅(SONS)、高介电值材料等。In another object of the present invention, the trapping layer included in this stacked nonvolatile memory device may include various structures such as silicon-oxide-nitride-oxide-silicon (SONOS), bandgap Processed SONOS (BE-SONOS), silicon-oxide-nitride-silicon (SONS), high dielectric value materials, etc.

在本发明的另一目的中,利用本发明的方法所制造的堆叠存储器件,可构成供与非门(NAND)操作。In another object of the present invention, the stacked memory device fabricated by the method of the present invention can be configured to operate with a NAND gate (NAND).

以下详细说明本发明的结构与方法。本发明内容说明部分的目的并非在于限定本发明。本发明由所附权利要求书限定。凡本发明的实施例、特征、目的及优点等将可通过下列说明书、权利要求书及附图获得充分了解。The structure and method of the present invention will be described in detail below. The purpose of this summary of the invention is not to limit the invention. The invention is defined by the appended claims. All embodiments, features, objects and advantages of the present invention will be fully understood through the following description, claims and accompanying drawings.

附图说明Description of drawings

图1为公知氮化物只读存储结构。FIG. 1 is a known nitride read-only memory structure.

图2示出本发明的实施例中的一个堆叠氮化物只读存储结构。FIG. 2 shows a stacked nitride ROM structure in an embodiment of the present invention.

图3-17为根据本发明的实施例,其示出利用示例工艺以制造如图2所示的堆叠氮化物只读存储器。3-17 illustrate an exemplary process for fabricating the stacked nitride ROM as shown in FIG. 2, according to an embodiment of the present invention.

图18A-18H示出可包括于图2中的器件中的不同陷获结构实施例。18A-18H illustrate different trapping structure embodiments that may be included in the device in FIG. 2 .

图19A与19B为图18C的陷获结构的带图。19A and 19B are band diagrams of the trapping structure of FIG. 18C.

图20根据本发明的实施示例出另一示例堆叠非易失性存储结构。FIG. 20 illustrates another example stacked non-volatile memory structure according to an embodiment of the present invention.

图21-31根据本发明的实施示例出包括用以制造18A至18H的器件的步骤的示例工艺步骤。21-31 illustrate example process steps including steps to fabricate the devices of 18A through 18H, according to an embodiment of the invention.

主要元件符号说明Description of main component symbols

100        氮化物只读存储器100 Nitride ROM

102        绝缘层102 insulation layer

103,107   陷获层103, 107 trapping layer

104        位线104 bit lines

105        字线导体105 word line conductor

106        绝缘区域106 Insulation area

110        第一位线层110 The first bit line layer

120        第一字线层120 first word line layer

130        第二位线层130 Second bit line layer

140        第二字线层140 Second word line layer

150        氮化物只读存储结构150 Nitride ROM structure

152        硅衬底152 silicon substrate

154,156   源极/漏极区域154, 156 source/drain regions

158        陷获结构158 trapping structure

160        控制栅极160 Control grid

162,164   电荷162,164 charges

166        沟道166 channel

202        绝缘层202 insulation layer

204        半导体层204 semiconductor layer

206        覆盖层206 Overlay

209        介质层209 medium layer

210,212   介质区域210, 212 medium area

216    陷获结构216 trapping structure

218    字线导体层218 word line conductor layer

219    字线219 word line

220    源极与漏极区域220 source and drain regions

221    P型区域221 P-type area

222    陷获就222 Trapped

224    多晶硅层224 polysilicon layer

226    介质区域226 medium area

338    陷获结构338 trapping structure

230    位线层230 bit line layer

231    字线导体层231 word line conductor layer

232    陷获结构232 trapping structure

240-256非易失性存储单元240-256 non-volatile memory cells

260-270额外单元260-270 Additional Units

272,276,278,282,284,288    氧化物层272, 276, 278, 282, 284, 288 oxide layer

274,280,286,290              氮化物层274, 280, 286, 290 Nitride layer

292                             介质层292 medium layer

294                             ONO结构294 ONO structure

302                             薄氧化物层302 Thin oxide layer

304,308,318                   氮化物层304, 308, 318 nitride layer

306,310,314,316              氧化物层306, 310, 314, 316 oxide layer

321                             OSO结构321 OSO structure

322,328                        薄多晶硅层322,328 Thin polysilicon layer

324,326,330,334,336,340    薄氧化物层324, 326, 330, 334, 336, 340 thin oxide layer

325                             薄OSO结构325 Thin OSO structure

328,332,338,342              薄氮化物层328, 332, 338, 342 Thin nitride layer

341    ON结构341 ON structure

2402   介质层2402 medium layer

2404   单元间介质层2404 inter-unit dielectric layer

2406   字线层2406 word line layer

2408       陷获结构2408 trapping structure

2410       位线层2410 bit line layer

2502       绝缘层2502 insulation layer

2504       多晶硅层2504 polysilicon layer

2506       位线区域2506 bitline regions

2508       覆盖层2508 Overlay

2510       覆盖区域2510 Coverage area

2508       陷获结构层2508 Trapped structure layer

2510       字线2510 word line

2512       区域2512 area

2514       源极与漏极区域2514 source and drain regions

2516       沟道区域2516 channel area

2518       单位间介质层2518 Medium layer between units

2520-2526  存储单元2520-2526 storage unit

具体实施方式Detailed ways

应该了解的是,以下所述的任何尺寸、测量、范围、测试结果、数据资料等,近似真实且除非另有叙述,并非用以指称精确数据。所涉及的接近真实程度,将会随着数据的本质、内文、以及特定实施例或应用而变动。It should be understood that any dimensions, measurements, ranges, test results, data, etc. stated below are approximate and unless stated otherwise, are not intended to imply exact data. The degree of near reality involved will vary with the nature of the data, the context, and the particular embodiment or application.

图2根据实施示例出示例薄膜晶体管(TFT)堆叠氮化物只读存储器100。在图2的实施例中,此堆叠氮化物只读存储器100制造于绝缘层102之上。因此,器件100利用绝缘层上硅(SOI)工艺技术而制造。举例而言,器件100可利用薄膜晶体管(TFT)工艺技术而制造。TFT为一种特别的场效应晶体管,通过在绝缘层上沉积薄膜做为金属接触点、半导体活性层、以及介质层而制造。TFT的沟道区域为薄膜,此薄膜沉积于衬底上,而此衬底则经常为玻璃。FIG. 2 illustrates an example thin film transistor (TFT) stack nitride read only memory 100 according to an implementation example. In the embodiment of FIG. 2 , the stacked nitride ROM 100 is fabricated on the insulating layer 102 . Accordingly, device 100 is fabricated using silicon-on-insulator (SOI) process technology. For example, device 100 may be fabricated using thin film transistor (TFT) process technology. TFT is a special field effect transistor, which is manufactured by depositing thin films on insulating layers as metal contacts, semiconductor active layers, and dielectric layers. The channel region of a TFT is a thin film deposited on a substrate, which is often glass.

连续的位线层与字线层可接着形成于绝缘层102之上。举例而言,在图2中,第一位线层110形成于绝缘层102之上。第一字线层120接着制造于第一位线层110之上。第二位线层130接着制造于第一字线层120之上。最后第二字线层140制造于第二位线层130之上。Successive bit line layers and word line layers may then be formed over the insulating layer 102 . For example, in FIG. 2 , the first bit line layer 110 is formed on the insulating layer 102 . The first word line layer 120 is then fabricated on the first bit line layer 110 . The second bit line layer 130 is then fabricated on the first word line layer 120 . Finally, the second word line layer 140 is fabricated on the second bit line layer 130 .

额外的位线与字线层,可顺序制造于图2所示的各层之上。因此,为了简洁起见,图中示出二位线层与二字线层,但本发明所描述的方法不应被视为将本发明限制于特定数目的位线层及/或字线层。每一位线层110,130包括了多条位线104,其由绝缘区域106所分隔。每一字线层120,140包括了字线导体105,其夹在陷获层103与107之间。Additional bitline and wordline layers can be sequentially fabricated on top of the layers shown in FIG. 2 . Therefore, for the sake of brevity, two bit line layers and two word line layers are shown in the figure, but the method described in the present invention should not be considered as limiting the present invention to a specific number of bit line layers and/or word line layers. Each bitline layer 110 , 130 includes a plurality of bitlines 104 separated by insulating regions 106 . Each wordline layer 120 , 140 includes a wordline conductor 105 sandwiched between trapping layers 103 and 107 .

通过使用图2中的堆叠结构,则可以达到较大的存储密度。此外,如下所解释,可使用有效率的工艺方式以制造结构100。By using the stacked structure shown in Figure 2, greater storage density can be achieved. Furthermore, as explained below, efficient process means can be used to fabricate the structure 100 .

图3-17示出示例工艺步骤顺序,以制造本发明实施例的结构100。如图3所示,半导体层204可形成于绝缘层202之上。举例而言,在某些实施例中,绝缘层202可包括氧化物材料。半导体层204可包括P型半导体材料,例如硅、锗、或锗化硅。优选地,半导体层204包括沉积于绝缘层202之上的薄膜多晶硅层。可以理解的是,在其他实施例中,半导体层204可包括N型半导体材料。覆盖层206可接着形成于半导体层204之上。举例而言,在特定实施例中,覆盖层206可包括氮化硅材料。3-17 illustrate an example sequence of process steps to fabricate structure 100 in accordance with an embodiment of the present invention. As shown in FIG. 3 , a semiconductor layer 204 may be formed on the insulating layer 202 . For example, in some embodiments, insulating layer 202 may include an oxide material. The semiconductor layer 204 may include a P-type semiconductor material, such as silicon, germanium, or silicon germanium. Preferably, the semiconductor layer 204 includes a thin film polysilicon layer deposited on the insulating layer 202 . It can be understood that, in other embodiments, the semiconductor layer 204 may include N-type semiconductor material. A capping layer 206 may then be formed over the semiconductor layer 204 . For example, in certain embodiments, capping layer 206 may include a silicon nitride material.

如图4所示,公知平板印刷技术可用以图案化并蚀刻层204与206。图示出出截至目前为止所制造的器件中,各层的顶视图。图4为图5沿着AA’线所做的剖面图。因此,如图5所示,层206与204经图案化并蚀刻到区域205中,区域205从上到下穿越了绝缘层202。如下所解释,区域205将形成图2的第一位线层110的位线。As shown in FIG. 4 , known lithography techniques can be used to pattern and etch layers 204 and 206 . The figure shows a top view of the various layers in the devices fabricated so far. Fig. 4 is a sectional view taken along line AA' of Fig. 5 . Thus, as shown in FIG. 5 , layers 206 and 204 are patterned and etched into region 205 , which traverses insulating layer 202 from top to bottom. Region 205 will form the bitlines of first bitline layer 110 of FIG. 2 as explained below.

请参见图6,介质层209可接着形成于绝缘层202之上,如图所示。举例而言,介质层209可为氧化物如二氧化硅层,并可利用高密度等离子化学气相沉积法(HDP-CVD)而形成。请参见图7,介质层209的一部份被移除,以露出覆盖层206的剩余部分,以及半导体层204的剩余部分。举例而言,可使用公知的湿蚀刻工艺(即各向同性蚀刻)以移除介质层209的一部份。为了移除正确数量的介质层209,可使用针对介质层209与覆盖层206具有高蚀刻选择比例的蚀刻方法。蚀刻工艺在覆盖层206之上产生了介质区域210,并在半导体层204的剩余部分之间形成了介质区域212。Referring to FIG. 6 , a dielectric layer 209 may then be formed on the insulating layer 202 as shown. For example, the dielectric layer 209 can be an oxide layer such as silicon dioxide, and can be formed by high density plasma chemical vapor deposition (HDP-CVD). Referring to FIG. 7 , a portion of the dielectric layer 209 is removed to expose the remaining portion of the capping layer 206 and the remaining portion of the semiconductor layer 204 . For example, a known wet etching process (ie, isotropic etching) can be used to remove a portion of the dielectric layer 209 . In order to remove the correct amount of dielectric layer 209 , an etching method with a high etch selectivity ratio for dielectric layer 209 and capping layer 206 may be used. The etching process creates dielectric region 210 above capping layer 206 and forms dielectric region 212 between remaining portions of semiconductor layer 204 .

图8示出截至目前为止所制造的各层的顶视图。图7为沿着AA’线所做的剖面图。因此,如图8所示,介质区域212位于各区域205之间。如图所示,介质区域210覆盖了覆盖层206的一部份。Figure 8 shows a top view of the layers fabricated so far. Fig. 7 is a sectional view taken along line AA'. Thus, as shown in FIG. 8 , dielectric regions 212 are located between regions 205 . As shown, the dielectric region 210 covers a portion of the cover layer 206 .

请参见图9,覆盖层206的剩余部分可被移除,同时在此步骤中移除介质层209的区域210。举例而言,可使用热磷酸以移除覆盖层206的剩余部分。在移除覆盖层206的剩余部分时,介质层209的介质区域210会自动被移除,因为介质区域210并不连接至介质区域212。Referring to FIG. 9 , the remaining portion of capping layer 206 may be removed, while region 210 of dielectric layer 209 is removed in this step. For example, hot phosphoric acid may be used to remove the remaining portion of cap layer 206 . When removing the remaining portion of cover layer 206 , dielectric region 210 of dielectric layer 209 is automatically removed because dielectric region 210 is not connected to dielectric region 212 .

图6-9中所示出的工艺,在美国专利No.6,380,068”Method forPlanarizing a Flash Memory Device”中进行了描述,该专利于2002年4月30日转让给本专利的申请人,并在此列为本案的参考。图6-9所示的工艺可以针对图9所示的剩余表面进行有效率的平坦化。因此,在此所述的工艺和较新、较有效率的工艺技术兼容。此特点将使得堆叠非易失性存储器件的制造变得更有效率且符合经济效益。The process shown in Figures 6-9 is described in U.S. Patent No. 6,380,068 "Method for Planarizing a Flash Memory Device," assigned to the applicant of this patent on April 30, 2002, and incorporated herein referenced in this case. The process shown in FIGS. 6-9 can efficiently planarize the remaining surface shown in FIG. 9 . Accordingly, the processes described herein are compatible with newer, more efficient process technologies. This feature will make the fabrication of stacked non-volatile memory devices more efficient and cost-effective.

图10为截至目前为止所形成的各层的顶视图。图9为沿着图10的AA’线所做的剖面图。因此,绝缘层202现在被交互排列的氧化物区域212以及位线205所覆盖,其中位线205由半导体材料204的剩余部分所形成。Figure 10 is a top view of the layers formed so far. Fig. 9 is a sectional view taken along line AA' of Fig. 10 . Consequently, insulating layer 202 is now covered by alternating oxide regions 212 and bitlines 205 formed by the remainder of semiconductor material 204 .

如图11所示,陷获结构216可接着形成于半导体层204的剩余部分以及绝缘区域212之上。字线导体层218可接着形成于陷获结构216之上。氮化硅层(未示出)可接着形成于字线导体层218之上。氮化硅层(未示出)与各层218,216可接着利用公知的平板印刷技术而图案化并蚀刻。蚀刻步骤的实施,使得高密度等离子氧化物区域212做为蚀刻工艺的停止层。另一高密度等离子氧化物层可接着形成于这些经过蚀刻的层之上,包括氮化硅层(未示出)。高密度等离子层可接着被部分蚀刻,之后则将部分高密度等离子氧化物层以及剩余的氮化硅层(未示出)移除,以形成图12中所示的字线219,此移除方式相近于图6-9中所示的方法。As shown in FIG. 11 , a trapping structure 216 may then be formed over the remaining portion of the semiconductor layer 204 and the insulating region 212 . A word line conductor layer 218 may then be formed over the trapping structure 216 . A silicon nitride layer (not shown) may then be formed over the word line conductor layer 218 . The silicon nitride layer (not shown) and the layers 218, 216 can then be patterned and etched using well-known lithographic techniques. The etch step is performed such that the HDPO region 212 acts as a stop layer for the etch process. Another high density plasma oxide layer may then be formed over these etched layers, including a silicon nitride layer (not shown). The HDP layer may then be partially etched, after which part of the HDP oxide layer and the remaining silicon nitride layer (not shown) are removed to form the word lines 219 shown in FIG. The method is similar to the method shown in Figure 6-9.

在图11的实施例中,陷获结构216可包括多层结构。多层结构的实施例将在解释图18A-18H时做进一步的说明。因此,通过连续形成陷获结构216所包含的各层,而可以形成陷获结构216。In the embodiment of FIG. 11 , trapping structure 216 may comprise a multilayer structure. Embodiments of multilayer structures will be further described when explaining Figures 18A-18H. Therefore, the trapping structure 216 can be formed by successively forming each layer included in the trapping structure 216 .

字线导体层218可从N+或P+导体材料而形成,例如多晶硅材料、多晶硅/硅化物/多晶硅材料、或金属如铝、铜、或钨等。The word line conductor layer 218 can be formed from N+ or P+ conductor material, such as polysilicon material, polysilicon/silicide/polysilicon material, or metal such as aluminum, copper, or tungsten.

图12示出了到目前为止所形成的各层的顶视图。因此,字线219在图中重迭至位线205。图13示出图12中的各层沿着AA’线所做的剖面图。图14示出图12中的各层沿着BB’线所做的剖面图。Figure 12 shows a top view of the layers formed so far. Thus, word line 219 overlaps bit line 205 in the figure. Fig. 13 shows a cross-sectional view of the layers in Fig. 12 along line AA'. Fig. 14 shows a sectional view of each layer in Fig. 12 taken along line BB'.

如图15所示,一旦字线219形成于位线205之上,源极与漏极区域220可形成于半导体层204中、包括位线205而未被字线导体218所覆盖的区域中。因此,源极与漏极区域220可被布植并热注入半导体层204的区域220之中。可以了解的是,布植源极与漏极区域220的工艺为自对准工艺。在图15的实施例中,源极与漏极区域应为利用砷(As)或磷(P)所形成的N+区域,因为半导体层204包括了P型半导体材料。可以了解的是,在使用了N型半导体材料的实施例中,则必须形成P+型区域。As shown in FIG. 15 , once the wordline 219 is formed over the bitline 205 , source and drain regions 220 may be formed in the semiconductor layer 204 in regions including the bitline 205 not covered by the wordline conductor 218 . Accordingly, the source and drain regions 220 may be implanted and thermally injected into the region 220 of the semiconductor layer 204 . It can be understood that the process of implanting the source and drain regions 220 is a self-aligned process. In the embodiment of FIG. 15 , the source and drain regions should be N+ regions formed by arsenic (As) or phosphorus (P), because the semiconductor layer 204 includes a P-type semiconductor material. It can be understood that, in the embodiment using N-type semiconductor material, a P+-type region must be formed.

形成了源极与漏极区域220之后,半导体层204将包括N+型的源极/漏极区域220,并在字线导体218之下包括P型区域。如下所述,这些P型区域将会成特定存储单元的沟道区域。After forming the source and drain regions 220 , the semiconductor layer 204 will include an N+ type source/drain region 220 and a P type region under the word line conductor 218 . These P-type regions will become the channel region of a particular memory cell as described below.

图16为为目前形成的各层沿着BB’线所做的剖面图。如图所示,N+型源极/漏极区域220形成于各字线219之间,并被介质区域212所分隔。图13示出目前形成的各层沿着AA’线所做的剖面图。如图所示,层204仍在字线导体218之下包括P型区域221。Fig. 16 is a sectional view taken along line BB' for each layer formed so far. As shown, the N+ type source/drain regions 220 are formed between the word lines 219 and separated by the dielectric region 212 . Figure 13 shows a cross-sectional view of the layers formed so far along the line AA'. As shown, layer 204 still includes P-type region 221 below wordline conductor 218 .

目前为止所形成的各层,将形成非易失性存储单元240-256。非易失性存储单元240-256的源极与漏极区域,从所属字线219两侧的N+源极/漏极区域220而形成。请参见图13,在字线219下形成位线205的多晶硅层204中的区域221,形成非易失性存储单元240-256的沟道区域。位于这些沟道区域上的陷获结构216用以储存每一单元240-256中的电荷。电荷陷获结构参照图18A-18H而进行更详细的描述。The layers formed so far will form the non-volatile memory cells 240-256. The source and drain regions of the nonvolatile memory cells 240 - 256 are formed from the N+ source/drain regions 220 on both sides of the associated word line 219 . Referring to FIG. 13, a region 221 in the polysilicon layer 204 of the bit line 205 is formed under the word line 219 to form channel regions of the non-volatile memory cells 240-256. Trapping structures 216 over these channel regions are used to store charge in each cell 240-256. The charge trapping structure is described in more detail with reference to Figures 18A-18H.

因此,通过施加正确的电压至字线导体218以及源极/漏极区域220,电荷可被储存于适当单元240-256的陷获结构216中。相似地单元240-256的移除可通过施加适当的电压至字线导体218与所属源极/漏极区域220而完成。单元240-256的编程状态可通过施加适当电压至适当的字线导体218与源极/漏极区域220而图取。Thus, by applying the correct voltages to the word line conductors 218 and the source/drain regions 220, charge can be stored in the trapping structures 216 of the appropriate cells 240-256. Similarly removal of cells 240-256 may be accomplished by applying appropriate voltages to word line conductor 218 and associated source/drain regions 220. Referring now to FIG. The programmed state of cells 240-256 can be obtained by applying appropriate voltages to the appropriate word line conductors 218 and source/drain regions 220.

如图17所示,额外的存储单元260-270可通过形成额外且分别位于位线层210与字线层220之上的位线层与字线层而形成。因此,额外的陷获结构222可形成于字线导体218之上,接着可在陷获结构222上形成额外的位线层230。位线层230可利用上述形成位线层210的相同步骤而形成。因此,位线层230会包括经蚀刻多晶硅层224的剩余部分,其中这些剩余部分被介质区域226所分隔开来。图17中所示出的多晶硅层224的剩余部分,可形成额外单元260-270的沟道区域,这些剩余部分位于字线层240的字线之下。As shown in FIG. 17, additional memory cells 260-270 may be formed by forming additional bit line layers and word line layers above bit line layer 210 and word line layer 220, respectively. Accordingly, an additional trapping structure 222 may be formed over the wordline conductor 218 , and then an additional bitline layer 230 may be formed over the trapping structure 222 . The bit line layer 230 can be formed using the same steps as the bit line layer 210 described above. Thus, bit line layer 230 will include remaining portions of etched polysilicon layer 224 separated by dielectric regions 226 . The remaining portions of polysilicon layer 224 , shown in FIG. 17 , which form the channel regions of additional cells 260 - 270 , are located below the wordlines of wordline layer 240 .

源极与漏极区域可被布植于多晶硅层224的剩余部分中,而位于字线层240的各字线的两侧。Source and drain regions may be implanted in the remainder of the polysilicon layer 224 on either side of each wordline in the wordline layer 240 .

通过形成陷获结构228在多晶硅层224的剩余部分与介质区域226之上,形成字线导体层231与陷获结构228之上、并接着形成陷获结构232于字线导体231之上,而可形成字线层240。再一次地,可使用上述形成字线层220的工艺技术而形成字线层240。图15的存储单元240-244示出于图17中。因此,而外的存储单元260-270形成于存储单元240-244上的各层中。然而,可以了解的是,根据本发明的系统与方法所制造的器件,可包括任何数目的层结构与任何数目的存储单元。By forming trapping structure 228 over the remainder of polysilicon layer 224 and dielectric region 226, forming wordline conductor layer 231 and trapping structure 228, and then forming trapping structure 232 over wordline conductor 231, and A word line layer 240 may be formed. Again, word line layer 240 may be formed using the process techniques described above for word line layer 220 . The memory cells 240-244 of FIG. 15 are shown in FIG. 17 . Thus, the outer memory cells 260-270 are formed in layers above the memory cells 240-244. However, it will be appreciated that devices fabricated according to the systems and methods of the present invention may include any number of layer structures and any number of memory cells.

由于使用了高效率的技术以形成字线与位线层,此工艺可被缩小以制造任何数目的层结构。因此,可以了解的是,图17所示的二层位线层与二层字线层仅为了图式简洁的考虑。Due to the use of efficient techniques to form the wordline and bitline layers, the process can be scaled to produce any number of layered structures. Therefore, it can be understood that the second bit line layer and the second word line layer shown in FIG. 17 are only for the sake of simplicity of the drawing.

图18A-18H示出了在器件100中可以使用的各种不同陷获结构的实施例。举例而言,参照图11,在图18A-18H中所示的各种结构可用做为陷获结构216。在图18A所示的第一示例实施例,包括硅-氧化物-氮化物-氧化物-硅(SONOS)结构。此结构包括氧化物层272、氮化物层274、氧化物层276,其顺序形成于多晶硅层204之上。氧化物区域272作为沟道介质层,而氮化物层274作为陷获层以陷获电荷。当使用图18A的SONOS结构时,电荷通过注入电子于陷获层274中,而储存于特定单元的陷获层274中。单元的擦除,是将空穴直接隧穿于陷获层274中而抵销任何先前储存于陷获层274中的电子而完成。在陷获层274中的空穴隧穿,利用富勒-诺德罕隧穿效应而实现。氧化物层272可为薄氧化物层,例如其厚度可小于3纳米。举例而言,利用图18A的SONOS陷获结构所形成的单元可用于与非存储应用中。18A-18H illustrate various embodiments of trapping structures that may be used in device 100. FIG. For example, referring to FIG. 11 , various structures shown in FIGS. 18A-18H may be used as trapping structures 216 . A first example embodiment, shown in FIG. 18A, includes a silicon-oxide-nitride-oxide-silicon (SONOS) structure. The structure includes an oxide layer 272 , a nitride layer 274 , and an oxide layer 276 , which are sequentially formed on the polysilicon layer 204 . The oxide region 272 acts as a channel dielectric layer, and the nitride layer 274 acts as a trapping layer to trap charges. When using the SONOS structure of FIG. 18A , charges are stored in the trapping layer 274 of a particular cell by injecting electrons into the trapping layer 274 . Erasing of the cell is accomplished by tunneling holes directly into the trapping layer 274 to cancel any electrons previously stored in the trapping layer 274 . Hole tunneling in the trapping layer 274 is realized by using the Fuller-Nordham tunneling effect. Oxide layer 272 may be a thin oxide layer, for example, may be less than 3 nanometers thick. For example, cells formed using the SONOS trap structure of FIG. 18A can be used in NAND memory applications.

利用图18A所示的SONOS陷获结构所建构的与非器件,可能显示较差的电荷保留效果,因为在电荷保留过程中,空穴直接隧穿至陷获层274中会产生漏电流。The NAND device constructed using the SONOS trapping structure shown in FIG. 18A may exhibit poor charge retention because holes directly tunnel into the trapping layer 274 during the charge retention process to generate leakage current.

图18B示出了氮化物只读存储陷获结构。相同地,此氮化物只读存储陷获结构包括了ONO结构,其通过顺序形成氧化物层278、氮化物层280、以及第二氧化物层282于多晶硅区域214之上而形成。然而,此处的氧化物层278的厚度大约介于5-7纳米之间。利用如图18B的氮化物只读存储结构所形成的单元的编程,是将电子注入层280中而实现。利用如图18B的氮化物只读存储结构所形成的单元,可接着利用热空穴擦除技术而擦除。图18B所示的氮化物只读存储结构可用于NOR(或非)应用中;然而,利用图18B的氮化物只读存储结构所建构的器件,显示了由热空穴擦除过程所造成的一些伤害。Figure 18B shows a nitride ROM trap structure. Likewise, the nitride ROM trap structure includes an ONO structure formed by sequentially forming an oxide layer 278 , a nitride layer 280 , and a second oxide layer 282 over the polysilicon region 214 . However, the thickness of the oxide layer 278 here is about 5-7 nm. Programming of cells formed using the nitride ROM structure of FIG. 18B is accomplished by injecting electrons into layer 280 . Cells formed using the nitride ROM structure of FIG. 18B can then be erased using hot hole erase techniques. The nitride read-only memory structure shown in Figure 18B can be used in NOR (or not) applications; however, devices constructed using the nitride read-only memory structure of Figure 18B show the some damage.

图18C示出带隙加工(BE)的SONOS结构。图18C所示的BE-SONOS结构通过连续地形成ONO结构294、接着形成氮化物层290与介质层292而制成。ONO结构294依序由氧化物层284、氮化物层286、以及氧化物层288形成于多晶硅层204之上而获得。如同图18A的SONOS结构,图18C的BE-SONOS结构使用富勒-诺德罕空穴隧穿效应以擦除存储单元;然而,图18C的BE-SONOS结构并不具有由隧穿漏电流所产生的较差电荷保留效果,或由热空穴擦除所造成的伤害。此外,图18C的BE-SONOS结构可用于或非与与非应用中。Figure 18C shows a bandgap engineered (BE) SONOS structure. The BE-SONOS structure shown in FIG. 18C is formed by successively forming an ONO structure 294 followed by a nitride layer 290 and a dielectric layer 292 . ONO structure 294 is obtained by sequentially forming oxide layer 284 , nitride layer 286 , and oxide layer 288 on polysilicon layer 204 . Like the SONOS structure of FIG. 18A, the BE-SONOS structure of FIG. 18C uses the Fuller-Nordham hole tunneling effect to erase memory cells; however, the BE-SONOS structure of FIG. resulting in poor charge retention, or damage caused by hot hole erase. In addition, the BE-SONOS structure of FIG. 18C can be used in NOR and NAND applications.

图19A与19B示出图18C中的BE-SONOS结构中的ONO结构294的带图。图19A示出数据保存时的带图,而图19B则是擦除时的带图。如图19A所示,在数据保存时,空穴所具有的能量并不足以克服包括有ONO结构294的各层的势垒。由于空穴的隧穿效应被结构294所封阻,因此施加低场时几乎不会产生隧穿漏电流。然而,如图19B所示,当陷获结构294具有高场横跨其上时,能带的迁移会允许空穴隧穿经过结构294。此现象是因为对于空穴而言,由层286与288所代表的势垒几乎被空穴所消除了,其是由于高场存在时所产生的能带偏移。19A and 19B show band diagrams of the ONO structure 294 in the BE-SONOS structure in FIG. 18C. FIG. 19A shows the band diagram at the time of data saving, and FIG. 19B is the band diagram at the time of erasing. As shown in FIG. 19A , during data storage, the energy of the holes is not enough to overcome the potential barriers of the layers including the ONO structure 294 . Since the hole tunneling effect is blocked by the structure 294, the tunneling leakage current hardly occurs when a low field is applied. However, when trapping structure 294 has a high field across it, as shown in FIG. 19B , the shift in energy bands allows holes to tunnel through structure 294 . This phenomenon is due to the fact that the potential barrier represented by layers 286 and 288 is almost eliminated by the holes due to the band shift in the presence of high fields.

图18D-18H示出其他可用于器件100的陷获层中的示例结构。举例而言,图18D示出SONS结构,其可被包括于器件100的陷获结构中。图18D所示的结构包括形成于多晶硅层204之上的薄氧化物层302。氮化物层304接着形成于薄氧化物层302之上。栅极导电层218可接着形成于氮化物层304之上。薄氧化物层302作为隧穿介质层,且电荷可被储存于氮化物层304之中。18D-18H illustrate other example structures that may be used in the trapping layer of device 100 . For example, FIG. 18D shows a SONS structure, which may be included in a trapping structure of device 100 . The structure shown in FIG. 18D includes a thin oxide layer 302 formed over a polysilicon layer 204 . A nitride layer 304 is then formed over the thin oxide layer 302 . A gate conductive layer 218 may then be formed over the nitride layer 304 . The thin oxide layer 302 acts as a tunneling dielectric layer, and charge can be stored in the nitride layer 304 .

图18E示出可使用于器件100中的陷获结构的上BE-SONOS结构。因此,图18E所示的结构包括氧化物层306,其形成于多晶硅层214之上。氮化物层308接着形成于氧化物层306之上,且包括有氧化物层310、氮化物层312、以及氧化物层314的ONO结构315接着形成于氮化物层308之上。在图18E所示的实施例中,氧化物层306作为隧穿介质层,且电荷可被捕获于氮化物层308中。FIG. 18E shows an upper BE-SONOS structure that can be used as a trapping structure in device 100 . Thus, the structure shown in FIG. 18E includes an oxide layer 306 formed over the polysilicon layer 214 . A nitride layer 308 is then formed over the oxide layer 306 , and an ONO structure 315 including the oxide layer 310 , the nitride layer 312 , and the oxide layer 314 is then formed over the nitride layer 308 . In the embodiment shown in FIG. 18E , the oxide layer 306 acts as a tunneling dielectric layer, and charges can be trapped in the nitride layer 308 .

图18F示出底SONOSOS结构,其可应用于器件100的陷获层中。图18F所示的结构包括形成于多晶硅层204之上的氧化物层316、以及形成于氧化物层316之上的氮化物层318。薄氧化物层320接着形成于氮化物层318上,接着则形成薄多晶硅层322。另一薄氧化物层324接着形成于多晶硅层322之上。因此,层320,322,324形成了靠近栅极导体218的OSO结构321。在图18F所示的实施例中,氧化物层316可作用为隧穿介质层,而电荷可被储存于氮化物层318之中。FIG. 18F shows a bottom SONOSOS structure, which can be applied in the trapping layer of device 100 . The structure shown in FIG. 18F includes an oxide layer 316 formed over the polysilicon layer 204 , and a nitride layer 318 formed over the oxide layer 316 . A thin oxide layer 320 is then formed on the nitride layer 318 , followed by a thin polysilicon layer 322 . Another thin oxide layer 324 is then formed over the polysilicon layer 322 . Thus, the layers 320 , 322 , 324 form an OSO structure 321 adjacent to the gate conductor 218 . In the embodiment shown in FIG. 18F , the oxide layer 316 can function as a tunneling dielectric layer, and charges can be stored in the nitride layer 318 .

18G图示出底SOSONOS结构。图中可见,薄OSO结构325形成于多晶硅层204之上。OSO结构325包括了薄氧化物层326、薄多晶硅层328、以及薄氧化物层330。氮化物层332接着形成于OSO结构325之上,且氧化物层334可接着形成于氮化物层332之上。在图18G的实施例中,OSO结构325可作为隧穿介质层,而电荷则可储存于氮化物层332之中。Figure 18G shows the bottom SOSONOS structure. As can be seen in the figure, a thin OSO structure 325 is formed on the polysilicon layer 204 . OSO structure 325 includes thin oxide layer 326 , thin polysilicon layer 328 , and thin oxide layer 330 . A nitride layer 332 is then formed over the OSO structure 325 , and an oxide layer 334 may then be formed over the nitride layer 332 . In the embodiment of FIG. 18G , the OSO structure 325 can be used as a tunnel dielectric layer, and charges can be stored in the nitride layer 332 .

图18H示出示例SONONS结构,其可使用于器件100的陷获结构中。图中可见,氧化物层336形成于多晶硅层204之上,且氮化物层338形成于氧化物层336之上。ON结构341接着形成于氮化物层338之上。ON结构341包括形成于氮化物层338之上的薄氧化物层340、以及形成于薄氧化物层340之上的氮化物层342。在图18H所示的实施例中,氧化物层336可作用为隧穿介质层,而电荷则可被捕获于氮化物层338之中。FIG. 18H shows an example SONONS structure that can be used in the trapping structure of device 100 . As can be seen in the figure, an oxide layer 336 is formed on the polysilicon layer 204 , and a nitride layer 338 is formed on the oxide layer 336 . ON structure 341 is then formed over nitride layer 338 . ON structure 341 includes thin oxide layer 340 formed over nitride layer 338 , and nitride layer 342 formed over thin oxide layer 340 . In the embodiment shown in FIG. 18H , the oxide layer 336 acts as a tunneling dielectric layer, and charges are trapped in the nitride layer 338 .

在其他实施例中,陷获结构可包括氮化硅或氮氧化硅,或者高介电值材料,例如氧化铪、氧化铝、氮化铝等。一般而言,可使用任何介质结构或介质材料,只要其可符合特定应用的要求即可。In other embodiments, the trapping structure may include silicon nitride or silicon oxynitride, or high-k materials such as hafnium oxide, aluminum oxide, aluminum nitride, and the like. In general, any dielectric construction or dielectric material can be used so long as it can meet the requirements of a particular application.

图20示出根据本发明另一实施例所构造的示例堆叠非易失性存储器件。图21-31示出根据本发明的实施例而用以制造图20的存储器件的各工艺步骤进程。图20-31所述的实施例提供了一种较简单的设计,其中字线并没有被多个存储单元所共用。如图20所示,图21-31所示的工艺会生成堆叠存储结构,其包括绝缘或介质层2402,且在绝缘层2402之上包括有堆叠的字线与位线层,并且被中间层(或单元间介质层)2404所分隔。字线与位线层包括位线2410与字线层2406,二者之间则被陷获结构2408所分隔。如下所述,可先沉积位线层,并接着图案化并蚀刻以形成位线2410。接着可沉积陷获结构层,并接着沉积字线层于陷获结构层之上。字线与陷获结构层可接着被图案化并蚀刻,以在位线2410之上形成字线。位于位线2410上以及字线2406下的陷获结构2408,可接着作用为陷获层以在存储单元中储存电荷。Figure 20 illustrates an example stacked non-volatile memory device constructed in accordance with another embodiment of the present invention. 21-31 illustrate the progression of process steps used to fabricate the memory device of FIG. 20 in accordance with an embodiment of the present invention. The embodiment described in Figures 20-31 provides a simpler design in which the word line is not shared by multiple memory cells. As shown in FIG. 20, the processes shown in FIGS. 21-31 result in a stacked memory structure that includes an insulating or dielectric layer 2402 with stacked wordline and bitline layers above the insulating layer 2402, surrounded by intervening layers. (or inter-unit dielectric layer) 2404 separated. The word line and bit line layer includes a bit line 2410 and a word line layer 2406 separated by a trap structure 2408 . As described below, a bitline layer may be deposited first, followed by patterning and etching to form bitlines 2410 . A trapping structure layer may then be deposited, and then a word line layer may be deposited over the trapping structure layer. The wordline and trapping structure layers may then be patterned and etched to form wordlines over the bitlines 2410 . Trapping structure 2408, located above bit line 2410 and below word line 2406, may then function as a trapping layer to store charge in the memory cell.

图21-31示出了用以制造图20的器件的示例工艺。如图21所示,多晶硅层2504可沉积于绝缘层2502之上。绝缘层2502可包括氧化物材料,例如二氧化硅材料。多晶硅层2504的厚度可介于约200至1000埃之间。举例而言,多晶硅层2504的厚度在特定实施例中优选地可约为400埃。21-31 illustrate example processes to fabricate the device of FIG. 20 . As shown in FIG. 21 , polysilicon layer 2504 may be deposited over insulating layer 2502 . The insulating layer 2502 may include an oxide material, such as a silicon dioxide material. The polysilicon layer 2504 may have a thickness between about 200-1000 Angstroms. For example, the thickness of polysilicon layer 2504 may preferably be approximately 400 Angstroms in certain embodiments.

请参照图22,多晶硅层2504可接着利用公知平板印刷工艺而图案化并蚀刻,以生成位线区域2506。举例而言,绝缘层2502可作为蚀刻步骤的蚀刻停止层,以生成区域2506。图22所示的结构的整体厚度,可介于约200至1000埃,且优选地为约400埃。Referring to FIG. 22 , the polysilicon layer 2504 can then be patterned and etched using known lithography techniques to generate bit line regions 2506 . For example, insulating layer 2502 may serve as an etch stop for an etching step to create region 2506 . The overall thickness of the structure shown in FIG. 22 may be between about 200 and 1000 angstroms, and is preferably about 400 angstroms.

图23A-23C示出用以蚀刻多晶硅层2504的替代工艺,以生成位线区域2506。请参照图23A,覆盖层2508可形成于多晶硅层2504之上。举例而言,覆盖层2508可包括氮化硅层。多晶硅层2504与覆盖层2508可接着利用公知的平板印刷技术以图案化并蚀刻,如图23B所示。相同地,绝缘层2502可作用为蚀刻程序的蚀刻停止层。23A-23C illustrate an alternative process to etch the polysilicon layer 2504 to create bit line regions 2506 . Referring to FIG. 23A , a capping layer 2508 may be formed on the polysilicon layer 2504 . Capping layer 2508 may include, for example, a silicon nitride layer. The polysilicon layer 2504 and capping layer 2508 can then be patterned and etched using known lithographic techniques, as shown in FIG. 23B. Likewise, the insulating layer 2502 may serve as an etch stop layer for the etch process.

请参照图23C,当层2504,2508被蚀刻而生成区域2506,2510与覆盖层2508之后,区域2510可利用公知工艺而移除。Referring to FIG. 23C, after the layers 2504, 2508 are etched to form the regions 2506, 2510 and the capping layer 2508, the region 2510 can be removed using known techniques.

请参照图24,陷获结构层2508可形成于绝缘层2502以及位线区域2506之上。如上所述,陷获结构层2508可包括多个陷获结构的任一个,例如SONOS、BE-SONOS、上BE-SONOS、SONONS、SONOSLS、SLSLNLS等。在其他实施例中,陷获结构层2508可包括氮化硅材料、氮氧化硅材料、或高介质材料,例如氧化铪、氧化铝、氮化铝等。Referring to FIG. 24 , a trapping structure layer 2508 may be formed on the insulating layer 2502 and the bit line region 2506 . As noted above, the trapping structure layer 2508 may include any of a number of trapping structures, such as SONOS, BE-SONOS, BE-SONOS on, SONONS, SONOSLS, SLSLNLS, and the like. In other embodiments, the trapping structure layer 2508 may include silicon nitride material, silicon oxynitride material, or high dielectric material, such as hafnium oxide, aluminum oxide, aluminum nitride, and the like.

请参照图25,字线层2510可接着形成于陷获结构层2508之上。举例而言,字线层2510可包括沉积于陷获结构层2508之上的多晶硅材料。层2510与2508可接着以公知平板印刷技术进行图案化与蚀刻。如图27所示,此将在位线2506之上形成字线2510。Referring to FIG. 25 , a word line layer 2510 may then be formed on the trapping structure layer 2508 . For example, word line layer 2510 may include polysilicon material deposited over trapping structure layer 2508 . Layers 2510 and 2508 may then be patterned and etched using known lithographic techniques. This will form word line 2510 over bit line 2506 as shown in FIG. 27 .

如图26所示,此蚀刻工艺的结构可设定为使得蚀刻发生于各字线2510之间的区域并穿透陷获结构层2508。此工艺会生成区域2506,其具有陷获结构层2508的区域2512位于区域2506的两侧。As shown in FIG. 26 , the etch process can be structured such that the etch occurs in the region between the word lines 2510 and penetrates the trapping structure layer 2508 . This process results in a region 2506 flanked by regions 2512 with trapping structure layer 2508 .

图27示出截至目前为止所生成的各层的顶视图。图25示出图27中的各层沿着AA’线所做的剖面图。图26示出图27中的各层沿着BB’线所做的剖面图。Figure 27 shows a top view of the layers generated so far. Fig. 25 shows a cross-sectional view of the layers in Fig. 27 taken along line AA'. Fig. 26 shows a sectional view of each layer in Fig. 27 taken along line BB'.

请参见图30,源极与漏极区域2514可沉积于位线2506中、并非位于字线2510底下的区域中。举例而言,若字线2506以P型多晶硅材料形成,则可布植N型源极/漏极区域2514,并热注入于位线2506未被字线2510覆盖的部分中。或者,若字线2506以N型多晶硅材料形成,则可布植P型源极/漏极区域,并热注入于位线2506中。Referring to FIG. 30 , source and drain regions 2514 may be deposited in the bitline 2506 , not in the region underlying the wordline 2510 . For example, if the word line 2506 is formed of P-type polysilicon material, the N-type source/drain region 2514 can be implanted and heat injected into the portion of the bit line 2506 not covered by the word line 2510 . Alternatively, if the word line 2506 is formed of N-type polysilicon material, P-type source/drain regions can be implanted and heat injected into the bit line 2506 .

图28示出图30中的各层沿着AA’线所做的剖面图。图29示出图30中的各层沿着BB’线所做的剖面图。因此,可以看到位线2506在字线2510底下包括有沟道区域2516。源极与漏极区域2514形成于字线2510的两侧。可以了解的是,源极/漏极区域2514的形成过程为自我对准工艺。Fig. 28 shows a cross-sectional view of the layers in Fig. 30 taken along line AA'. Fig. 29 shows a sectional view of each layer in Fig. 30 taken along line BB'. Thus, bit line 2506 can be seen to include channel region 2516 beneath word line 2510 . Source and drain regions 2514 are formed on both sides of the word line 2510 . It can be understood that the formation process of the source/drain region 2514 is a self-alignment process.

请参照图31,中间层(或单位间介质层)2518接着形成于字线层2510之上。另一位线与字线层可接着利用上述的相同工艺而形成于中间层(或单位间介质层)2518之上。通过此种方法,任何数目的字线层与位线层均可形成于绝缘层2502之上,且被中间层(或单位间介质层)2518所分隔。Referring to FIG. 31 , an intermediate layer (or inter-unit dielectric layer) 2518 is then formed on the word line layer 2510 . Another bitline and wordline layer can then be formed on the intermediate layer (or inter-unit dielectric layer) 2518 using the same process as described above. In this way, any number of word line layers and bit line layers can be formed on the insulating layer 2502 and separated by the intermediate layer (or inter-unit dielectric layer) 2518 .

请参照图30,存储单元2520-2526可接着形成于所示出的结构中。存储单元2520,2522示出于图31中。存储单元的源极与漏极区域由相关字线2510两侧的源极/漏极区域2514所形成。沟道区域从位于字线2510之下的位线2506的区域2516所形成。Referring to FIG. 30, memory cells 2520-2526 may then be formed in the structure shown. Storage units 2520, 2522 are shown in FIG. 31 . The source and drain regions of the memory cells are formed by the source/drain regions 2514 on either side of the associated word line 2510 . A channel region is formed from a region 2516 of the bitline 2506 underlying the wordline 2510 .

可以了解的是,图30与31中所示出的单元为三栅极器件。三栅极器件可能显示过量的边缘效应,但也能因为较大的器件宽度而增加单元电流。It will be appreciated that the cells shown in Figures 30 and 31 are tri-gate devices. Tri-gate devices may exhibit excessive edge effects, but can also increase cell current due to larger device widths.

虽然本发明已参照优选地实施例加以描述,应该了解的是,本发明的范围并不受限于其详细描述内容。替换方式及修改方式已于先前描述中建议,并且其他替换方式及修改方式将为本领域的技术人员可想到的。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果的,皆不脱离本发明的精神范畴。因此,所有这些替换方式及修改方式意欲落在本发明所附的权利要求书及其等价物所界定的范畴中。任何在前文中提及的专利申请以及公开文本,均列为本案的参考。While this invention has been described with reference to preferred embodiments, it should be understood that the scope of the invention is not limited to the detailed description thereof. Alternatives and modifications have been suggested in the preceding description, and other alternatives and modifications will occur to those skilled in the art. In particular, according to the structure and method of the present invention, all combinations of components that are substantially the same as those of the present invention to achieve substantially the same results as the present invention do not depart from the scope of the present invention. Accordingly, all such alternatives and modifications are intended to come within the scope of the present invention as defined by the appended claims and their equivalents. Any patent applications and publications mentioned above are incorporated by reference in this case.

Claims (48)

1. one kind in order to making the method for nonvolatile semiconductor memory member, and this memory device comprises and be formed at multilayer bit line layer over each other and multilayer word line layer alternately that this method comprises:
Form these multilayer bit line layer, wherein the formation of each this bit line layer comprises:
Form semi-conductor layer on insulating barrier; And
This semiconductor layer of patterning and etching is to form multiple bit lines;
Form these multilayer word line layers on these previous multilayer bit line layer, wherein the formation of each this word line layer comprises:
Form trapping structure and conductive layer in regular turn; And
This trapping structure of patterning and etching and this conductive layer are to form many word lines.
2. the method for claim 1, wherein the patterning of this semiconductor layer and etching comprise:
Form cover layer on this semiconductor layer;
This cover layer of etching and this semiconductor layer are to form the bit line zone, and this bit line zone comprises the remainder of this cover layer and this semiconductor layer;
Form dielectric layer on overetched this cover layer and this semiconductor layer;
The some of this dielectric layer of etching is to form areas of dielectric between each bit line and on this tectal remainder; And
Remove this tectal remainder, and then remove this dielectric layer part that is positioned on this cover layer.
3. method as claimed in claim 2, wherein this cover layer comprises the mononitride layer.
4. method as claimed in claim 2, wherein this dielectric layer comprises silicon dioxide.
5. method as claimed in claim 4, wherein this silicon dioxide utilizes the high density plasma chemical vapor deposition method and deposits.
6. the method for claim 1, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--oxide-silicon structure.
7. the method for claim 1, wherein the formation of this trapping structure comprises the read-only storage organization of nitride that forms oxide-nitride thing-oxide.
8. the method for claim 1, wherein the formation of this trapping structure comprises the silicon-oxide-nitride--oxide-silicon structure that forms band gap processing.
9. the method for claim 1, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--silicon structure.
10. the method for claim 1, wherein the formation of this trapping structure comprises and forms upper strata band gap machine silicon-oxide-nitride thing-oxide-silicon structure.
11. the method for claim 1, wherein the formation of this trapping structure comprises formation upper strata silicon-oxide-nitride--oxide-silicon-oxide-silicon structure.
12. the method for claim 1, wherein the formation of this trapping structure comprises formation bottom silicon-oxide-silicon-oxide-nitride--oxide-silicon structure.
13. the method for claim 1, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--oxide-nitride thing-silicon structure.
14. the method for claim 1, wherein the formation of this trapping structure comprises the formation silicon nitride layer.
15. the method for claim 1, wherein the formation of this trapping structure comprises the formation silicon oxynitride layer.
16. the method for claim 1, wherein the formation of this trapping layer comprises the high dielectric radio material of deposition.
17. method as claimed in claim 16, wherein this high dielectric radio material is a hafnium oxide), aluminium nitride or aluminium oxide.
18. the method for claim 1, also comprise form regions and source in these multiple bit lines not by the zone that this many word lines covered in.
19. method as claimed in claim 18, wherein this semiconductor layer comprises the P type semiconductor material, and wherein the formation of this regions and source is included in formation N+ zone in the P type semiconductor material.
20. method as claimed in claim 19, wherein this N+ zone utilizes arsenic or phosphorus and forms.
21. the method for claim 1, wherein this conductive layer comprises polycrystalline silicon material.
22. the method for claim 1, wherein this conductive layer comprises polysilicon/silicide/polycrystalline silicon material.
23. the method for claim 1, wherein this conductive layer comprises metal.
24. method as claimed in claim 23, wherein this metal is aluminium, copper or tungsten.
25. the method for claim 1, wherein the patterning of this trapping structure and this conductive layer and etching comprise:
Form cover layer on this trapping structure and this conductive layer;
This cover layer of etching and this trapping structure and this conductive layer, to form word line regions, this word line regions comprises the remainder of this cover layer, this trapping structure and conductive layer;
Form dielectric layer in this on etched this cover layer, this trapping structure and this conductive layer:
The some of this dielectric layer of etching is to form areas of dielectric between each word line and on this tectal remainder; And
Remove this tectal remainder, to remove this dielectric layer part that is positioned on this cover layer.
26. method as claimed in claim 25, wherein this cover layer comprises nitride layer.
27. method as claimed in claim 25, wherein this cover layer comprises silicon dioxide.
28. method as claimed in claim 27, wherein this silicon dioxide utilizes high density plasma chemical vapor deposition and deposits.
Be formed at multilayer bit line layer over each other and multilayer word line layer in regular turn 29. the method in order to the manufacturing nonvolatile semiconductor memory member, this device comprise, this method comprises:
Form the multilayer bit line layer, wherein the formation of each bit line layer comprises:
Form first semiconductor layer on insulator;
Form cover layer on this semiconductor layer;
This cover layer of etching and this semiconductor layer are to form the bit line zone, and this bit line zone comprises the remainder of this cover layer and this semiconductor layer;
Form dielectric layer in this through overetched cover layer on semiconductor layer;
The some of this dielectric layer of etching to be forming areas of dielectric between the bit line zone, and forms areas of dielectric on this tectal remainder; And
Remove this tectal remainder, and then remove this dielectric layer part that is positioned on this cover layer; And
Form this multilayer word line layer on this previous multilayer bit line layer, wherein the formation of each word line layer comprises:
Form trapping structure and conductive layer in regular turn, this trapping structure comprises sandwich construction, and
This trapping structure of patterning and etching and this conductive layer are to form many word lines.
30. method as claimed in claim 29, wherein this cover layer comprises nitride layer.
31. method as claimed in claim 29, wherein this dielectric layer comprises silicon dioxide.
32. method as claimed in claim 31, wherein this silicon dioxide utilizes the high density plasma chemical vapor deposition method and deposits.
33. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--oxide-silicon structure.
34. method as claimed in claim 29, wherein the formation of this trapping structure comprises the read-only storage organization of nitride that forms oxide-nitride thing-oxide.
35. method as claimed in claim 29, wherein the formation of this trapping structure comprises the silicon-oxide-nitride--oxide-silicon structure that forms band gap processing.
36. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--silicon structure.
37. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation upper strata band gap machine silicon-oxide-nitride thing-oxide-silicon structure.
38. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation upper strata silicon-oxide-nitride--oxide-silicon-oxide-silicon structure.
39. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation bottom silicon-oxide-silicon-oxide-nitride--oxide-silicon structure.
40. method as claimed in claim 29, wherein the formation of this trapping structure comprises formation silicon-oxide-nitride--oxide-nitride thing-silicon structure.
41. method as claimed in claim 29, wherein the formation of this trapping structure comprises the formation silicon nitride layer.
42. method as claimed in claim 29, wherein the formation of this trapping structure comprises the formation silicon oxynitride layer.
43. method as claimed in claim 29 also comprises forming regions and source in these multiple bit lines and in not by the zone that this many word lines covered.
44. method as claimed in claim 43, wherein this semiconductor layer comprises the P type semiconductor material, and wherein the formation of this regions and source is included in formation N+ zone in the P type semiconductor material.
45. method as claimed in claim 44, wherein this N+ zone utilizes arsenic or phosphorus and forms.
46. method as claimed in claim 29, wherein this conductive layer comprises polycrystalline silicon material.
47. method as claimed in claim 29, wherein this conductive layer comprises polysilicon/silicide/polycrystalline silicon material.
48. method as claimed in claim 29, wherein this conductive layer comprises metal.
CNB2006101642006A 2005-12-09 2006-12-08 Stacked thin film transistor nonvolatile memory device and method of manufacturing the same Active CN100501978C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74891105P 2005-12-09 2005-12-09
US60/748,911 2005-12-09
US11/549,520 2006-10-13

Publications (2)

Publication Number Publication Date
CN1983566A true CN1983566A (en) 2007-06-20
CN100501978C CN100501978C (en) 2009-06-17

Family

ID=38165969

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101642006A Active CN100501978C (en) 2005-12-09 2006-12-08 Stacked thin film transistor nonvolatile memory device and method of manufacturing the same

Country Status (1)

Country Link
CN (1) CN100501978C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035775A (en) * 2021-02-25 2021-06-25 长鑫存储技术有限公司 Memory device and preparation method thereof
US11854880B2 (en) 2021-02-25 2023-12-26 Changxin Memory Technologies, Inc. Memory device and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284017A4 (en) * 2000-04-28 2008-10-08 Matrix Semiconductor Inc THREE DIMENSIONAL MEMORY MATRIX AND METHOD OF MANUFACTURE
US6897514B2 (en) * 2001-03-28 2005-05-24 Matrix Semiconductor, Inc. Two mask floating gate EEPROM and method of making
US6849905B2 (en) * 2002-12-23 2005-02-01 Matrix Semiconductor, Inc. Semiconductor device with localized charge storage dielectric and method of making same
TW591761B (en) * 2003-07-11 2004-06-11 Macronix Int Co Ltd NAND type binary nitride read only memory and the manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035775A (en) * 2021-02-25 2021-06-25 长鑫存储技术有限公司 Memory device and preparation method thereof
US11854880B2 (en) 2021-02-25 2023-12-26 Changxin Memory Technologies, Inc. Memory device and method for manufacturing the same

Also Published As

Publication number Publication date
CN100501978C (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR100876851B1 (en) Stacked thin film transistor nonvolatile memory device and method for manufacturing same
KR100924983B1 (en) A stacked non-volatile memory device and method for fabricating the same
US7795088B2 (en) Method for manufacturing memory cell
JP5781733B2 (en) Nonvolatile memory cell and manufacturing method thereof
JP2007500953A (en) Nonvolatile memory device
KR20030019917A (en) Memory cell, memory cell device and method for the production thereof
US20060043457A1 (en) Nonvolatile semiconductor memory device having a recessed gate and a charge trapping layer and methods of forming the same, and methods of operating the same
US9230971B2 (en) NAND string containing self-aligned control gate sidewall cladding
KR20110058631A (en) Semiconductor memory device
EP1745511B1 (en) Bitline implant utilizing dual poly
US20070205440A1 (en) Semiconductor device and method for producing the same
US7491600B2 (en) Nanocrystal bitcell process integration for high density application
CN100501978C (en) Stacked thin film transistor nonvolatile memory device and method of manufacturing the same
JP2004056071A (en) Method of manufacturing semiconductor device, and semiconductor device
CN100550352C (en) Stacked non-volatile memory element and method of manufacturing the same
US7602005B2 (en) Memory devices including spacer-shaped electrodes on pedestals and methods of manufacturing the same
US7227216B2 (en) Mono gate memory device and fabricating method thereof
JP2011151072A (en) Nonvolatile semiconductor memory device
TWI336136B (en) A stacked thin film transistor non-volatile memory devices and methods for fabricating the same
KR20060062791A (en) Nonvolatile Memory Device and Manufacturing Method Thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant