CN1979237A - Method for realizing smooth output of array light-guide grating by 3dB coupling wave - Google Patents
Method for realizing smooth output of array light-guide grating by 3dB coupling wave Download PDFInfo
- Publication number
- CN1979237A CN1979237A CN 200510126241 CN200510126241A CN1979237A CN 1979237 A CN1979237 A CN 1979237A CN 200510126241 CN200510126241 CN 200510126241 CN 200510126241 A CN200510126241 A CN 200510126241A CN 1979237 A CN1979237 A CN 1979237A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- grating
- array
- output
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000008878 coupling Effects 0.000 title claims abstract 9
- 238000010168 coupling process Methods 0.000 title claims abstract 9
- 238000005859 coupling reaction Methods 0.000 title claims abstract 9
- 238000001228 spectrum Methods 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 7
- 240000000233 Melia azedarach Species 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000002902 bimodal effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- -1 SOI Chemical compound 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
一种3dB耦合波导实现阵列波导光栅输出平坦化的方法,其特征在于,包括如下步骤:步骤1:取一阵列波导光栅;步骤2:在阵列波导光栅的输入端的末端加入一3dB耦合波导,该3dB耦合波导与阵列波导光栅中的输入波导构成3dB耦合器,从而实现阵列波导光栅的输出谱平坦化。
A kind of 3dB coupling waveguide realizes the method for arrayed waveguide grating output flattening, it is characterized in that, comprises the following steps: Step 1: get an arrayed waveguide grating; Step 2: add a 3dB coupling waveguide at the end of the input end of arrayed waveguide grating, the The 3dB coupling waveguide and the input waveguide in the arrayed waveguide grating constitute a 3dB coupler, so as to realize the flattening of the output spectrum of the arrayed waveguide grating.
Description
Technical field
The present invention relates to array waveguide grating (AWG) device, be meant a kind of method of 3dB coupled waveguide realization array waveguide grating output planarization especially.
Background technology
Generic array waveguide optical grating output spectra is a gaussian shaped profile, and bandwidth is narrower, and in optical-fiber network, the Gaussian output spectra is to the requirement harshness of laser instrument and detector, and for relaxing the requirement to laser instrument and detector, the output spectra of array waveguide grating should be planarization.
In the world the method for array waveguide grating output planarization is had at present: at the terminal multiple-mode interfence instrument (MMI) that uses of the input waveguide of array waveguide grating, Waveguide array adopts the different Waveguide array cross arrangement of two group length differences, the design of many Rowland circles (is seen document: [1] M.Kohtoku, H.Takahashi, T.Kitoh, T.Shibata, Y.Inoue and Y.Hibino, " Low-loss flat-top passbandarrayed waveguide gratings realized by first-order modeassistance method; " Electron.Lett.2002,38 (15), 792-794.[2] K.Okamo to and A.Sugita, " Flatspectral response arrayed-waveguide grating multiplexerwith parabolic waveguide horns; " Electron.Lett.1996,32 (18): 1661-1662.[3] M.R.Amersfoort, J.B.D.Soole, H.P.LeBlanc, N.C.Andreadakis, A.Rajhel and C.Caneau, " Passband broadening ofintegrated arrayed waveguide filters using multimodeintergerence couplers; " Electron.Lett.1996,32 (5), 449-451.[4] A.Rigny, A.Bruno and H.Sik, " Multigrating method for flattened spectral responsewavelength multi/demultiplexer; " Electron.Lett.volume, 1997,33 (20) 1701-1702.[5] Y.P.Ho, H.Li, and Y.J.Chen, " FlatChannel-Passband-Wavelength Multiplexing andDemultiplexing Devices by Multiple-Rowland-CircleDesign; " IEEE Photonics Technology Letters, 1997,9 (3) 342-344).And adopt end to add the 3dB coupled waveguide at input waveguide, and realize the planarization of array waveguide grating output spectra, also do not report in the world.
Summary of the invention
The purpose of this invention is to provide a kind of method that realizes array waveguide grating (AWG) output response planarization.Key is to adopt at the terminal 3dB coupled waveguide that adds of the input waveguide of array waveguide grating (AWG), make the input waveform become bimodal shape by Gaussian, bimodal shape incoming wave still is bimodal shape in the imaging of output planar waveguide, and the eigenmode convolution of this waveform and output waveguide is divided the planarization that can realize array waveguide grating (AWG) output spectra.
The present invention realizes by following method:
A kind of 3dB coupled waveguide of the present invention is realized the method for array waveguide grating output planarization, it is characterized in that, comprises the steps:
Step 1: get an array waveguide optical grating;
Step 2: the end at the input end of array waveguide grating adds a 3dB coupled waveguide, and the input waveguide in this 3dB coupled waveguide and the array waveguide grating constitutes three-dB coupler, thereby realizes the output spectra planarization of array waveguide grating.
Wherein the waveguide material of array waveguide grating is silicon based silicon dioxide, SOI, InP or low-loss polymkeric substance.
Wherein array waveguide grating 100 comprises: the input waveguide of Lian Jieing, input planar waveguide, Waveguide array, output planar waveguide and output waveguide successively.
Description of drawings
For further specifying concrete technology contents of the present invention, below in conjunction with embodiment and accompanying drawing describes in detail as after, wherein:
Fig. 1-the 1st, structural representation of the present invention.
Fig. 1-2 is the synoptic diagram of three-dB coupler.
Fig. 2-the 1st does not have the simulated spectrum of 3dB coupled waveguide array waveguide grating.
Fig. 2-the 2nd has the simulated spectrum of 3dB coupled waveguide array waveguide grating.
Embodiment
See also Fig. 1-1 Fig. 1-2, a kind of 3dB coupled waveguide of the present invention is realized the method for array waveguide grating output planarization, comprises the steps:
Step 1: get an array waveguide optical grating 100, the waveguide material of this array waveguide grating 100 is silicon based silicon dioxide, SOI, InP or low-loss polymkeric substance; Wherein array waveguide grating 100 comprises: the input waveguide 10 of Lian Jieing, input planar waveguide 11, Waveguide array 12, output planar waveguide 13 and output waveguide 14 successively;
Step 2: the end at the input end of array waveguide grating 100 adds a 3dB coupled waveguide 15, and this 3dB coupled waveguide 15 constitutes three-dB couplers with input waveguide 10 in the array waveguide grating 100, thereby realizes the output spectra planarization of array waveguide grating 100.
Example
1, see also Fig. 1-1, get an array waveguide optical grating 100, the waveguide material of this array waveguide grating 100 is silicon based silicon dioxides; Wherein array waveguide grating 100 comprises: the input waveguide 10 of Lian Jieing, input planar waveguide 11, Waveguide array 12, output planar waveguide 13 and output waveguide 14 successively; End at the input end of array waveguide grating 100 adds a 3dB coupled waveguide 15,3dB coupled waveguide 15 is determined by the refringence of silicon based silicon dioxide wave with the spacing W and the length L of input waveguide 10, input waveguide 10 in this 3dB coupled waveguide 15 and the array waveguide grating 100 constitutes three-dB couplers, shown in Fig. 1-2, thus the output spectra planarization of realization array waveguide grating 100.
2, see also Fig. 1-1, get an array waveguide optical grating 100, the waveguide material of this array waveguide grating 100 is SOI; Wherein array waveguide grating 100 comprises: the input waveguide 10 of Lian Jieing, input planar waveguide 11, Waveguide array 12, output planar waveguide 13 and output waveguide 14 successively; End at the input end of array waveguide grating 100 adds a 3dB coupled waveguide 15,3dB coupled waveguide 15 is determined by the refringence of SOI waveguide with the spacing W and the length L of input waveguide 10, input waveguide 10 in this 3dB coupled waveguide 15 and the array waveguide grating 100 constitutes three-dB couplers, shown in Fig. 1-2, thus the output spectra planarization of realization array waveguide grating 100.
3, see also Fig. 1-1, get an array waveguide optical grating 100, the waveguide material of this array waveguide grating 100 is InP; Wherein array waveguide grating 100 comprises: the input waveguide 10 of Lian Jieing, input planar waveguide 11, Waveguide array 12, output planar waveguide 13 and output waveguide 14 successively; End at the input end of array waveguide grating 100 adds a 3dB coupled waveguide 15,3dB coupled waveguide 15 is determined by the refringence of InP waveguide with the spacing W and the length L of input waveguide 10, input waveguide 10 in this 3dB coupled waveguide 15 and the array waveguide grating 100 constitutes three-dB couplers, shown in Fig. 1-2, thus the output spectra planarization of realization array waveguide grating 100.
4, see also Fig. 1-1, get an array waveguide optical grating 100, the waveguide material of this array waveguide grating 100 is low-loss polymer; Wherein array waveguide grating 100 comprises: successively the input waveguide 10 of Lian Jieing, the input planar waveguide 1
1, Waveguide array 12, output planar waveguide 13 and output waveguide 14; End at the input end of array waveguide grating 100 adds a 3dB coupled waveguide 15,3dB coupled waveguide 15 is determined by the refringence of low-loss polymer waveguide with the spacing W and the length L of input waveguide 10, input waveguide 10 in this 3dB coupled waveguide 15 and the array waveguide grating 100 constitutes three-dB couplers, shown in Fig. 1-2, thus the output spectra planarization of realization array waveguide grating 100.
The synoptic diagram of this method such as Fig. 1 by at the terminal 3dB coupled waveguide that adds of input waveguide, make the input waveform be bimodal shape, and the eigenmode convolution with output waveguide after the imaging of output planar waveguide can realize the planarization output waveform.Fig. 2 is the array waveguide grating output spectra comparison diagram that does not have and have the 3dB coupled waveguide, and the existence of 3dB coupled waveguide can realize the planarization of array waveguide grating as seen from the figure, and method is feasible.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101262411A CN100383582C (en) | 2005-11-30 | 2005-11-30 | 3dB coupled waveguide to achieve output flattening of arrayed waveguide grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101262411A CN100383582C (en) | 2005-11-30 | 2005-11-30 | 3dB coupled waveguide to achieve output flattening of arrayed waveguide grating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1979237A true CN1979237A (en) | 2007-06-13 |
CN100383582C CN100383582C (en) | 2008-04-23 |
Family
ID=38130466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101262411A Expired - Fee Related CN100383582C (en) | 2005-11-30 | 2005-11-30 | 3dB coupled waveguide to achieve output flattening of arrayed waveguide grating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100383582C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103549941A (en) * | 2013-11-04 | 2014-02-05 | 天津工业大学 | AWG (arrayed waveguide grating) wavelength demodulation system with temperature compensation function, heartbeat detection device and application |
CN109556833A (en) * | 2018-12-29 | 2019-04-02 | 中科天芯科技(北京)有限公司 | A kind of difference measuring device and measuring method of waveguide array |
CN115390187A (en) * | 2022-09-19 | 2022-11-25 | 西安交通大学 | Three-channel high-resolution demodulation structure based on arrayed waveguide grating |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003005086A1 (en) * | 2001-07-06 | 2003-01-16 | Hangzhou Coer Photonic Information Technologies Ltd. | Asymmetric arrayed waveguide grating device |
US6882778B2 (en) * | 2002-04-15 | 2005-04-19 | Jds Uniphase Corporation | Chromatic dispersion compensation in waveguide arrays |
CN2552017Y (en) * | 2002-06-11 | 2003-05-21 | 浙江大学 | High-flat low-crosstalk wavelength division multiplexing device with optimization input |
US7065273B2 (en) * | 2003-06-20 | 2006-06-20 | Intel Corporation | Wideband arrayed waveguide grating |
-
2005
- 2005-11-30 CN CNB2005101262411A patent/CN100383582C/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103549941A (en) * | 2013-11-04 | 2014-02-05 | 天津工业大学 | AWG (arrayed waveguide grating) wavelength demodulation system with temperature compensation function, heartbeat detection device and application |
CN103549941B (en) * | 2013-11-04 | 2015-05-20 | 天津工业大学 | AWG (arrayed waveguide grating) wavelength demodulation system with temperature compensation function, heartbeat detection device and application |
CN109556833A (en) * | 2018-12-29 | 2019-04-02 | 中科天芯科技(北京)有限公司 | A kind of difference measuring device and measuring method of waveguide array |
CN109556833B (en) * | 2018-12-29 | 2023-11-03 | 国科光芯(海宁)科技股份有限公司 | Phase difference measuring device and measuring method of waveguide array |
CN115390187A (en) * | 2022-09-19 | 2022-11-25 | 西安交通大学 | Three-channel high-resolution demodulation structure based on arrayed waveguide grating |
Also Published As
Publication number | Publication date |
---|---|
CN100383582C (en) | 2008-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106199836B (en) | A Bandwidth Tunable Filter Based on Silicon Waveguide Grating | |
US6266464B1 (en) | Optical arrayed waveguide grating devices | |
Ho et al. | Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design | |
CN109407209B (en) | An Optical Wavelength Division Mode Division Hybrid Multiplexer Demultiplexer Based on Mode Converter and Bragg Waveguide Grating | |
CA2329382A1 (en) | Optical arrayed waveguide grating devices | |
CN106842430A (en) | A kind of asymmetrical directional coupler | |
EP2250523B1 (en) | Improved waveguide grating optical router suitable for cwdm | |
Shi et al. | Silicon CWDM demultiplexers using contra-directional couplers | |
WO2017004275A1 (en) | Bent taper and polarization rotator | |
CN107490829B (en) | Three-mode multiplexer/demultiplexer based on reverse tapered waveguide | |
EP1938129B1 (en) | Rectangular-passband multiplexer | |
CN112946815A (en) | Low-crosstalk 32-channel silicon-based array waveguide grating wavelength division multiplexer | |
JP5573430B2 (en) | Optical multiplexing / demultiplexing device | |
CN108469651A (en) | Uniform arrayed-waveguide grating routers are lost | |
US8594474B2 (en) | Mach-Zehnder wavelength division multiplexer having flat passband and low crosstalk | |
CN108732685A (en) | A kind of directional coupler based on sub-wave length grating | |
CN1979237A (en) | Method for realizing smooth output of array light-guide grating by 3dB coupling wave | |
Sreenivasulu et al. | Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis | |
CN111025468B (en) | Mode multiplexing demultiplexer, mode demultiplexing method and mode multiplexing method | |
US20120189240A1 (en) | Wavelength Division Multiplexing and Optical Modulation Apparatus | |
Dabos et al. | Thick-SOI Echelle grating for any-to-any wavelength routing interconnection in multi-socket computing environments | |
CN111158087A (en) | An Optical Waveguide Ring Resonator Based on Asymmetric Directional Coupler | |
CN115016060B (en) | Cascaded grating type multichannel on-chip filter with ultralow crosstalk | |
WO2003005086A1 (en) | Asymmetric arrayed waveguide grating device | |
CN101551489A (en) | One multiply N power splitter comprising wavelength selectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |