CN1974145A - Robot controller system - Google Patents
Robot controller system Download PDFInfo
- Publication number
- CN1974145A CN1974145A CN 200610163196 CN200610163196A CN1974145A CN 1974145 A CN1974145 A CN 1974145A CN 200610163196 CN200610163196 CN 200610163196 CN 200610163196 A CN200610163196 A CN 200610163196A CN 1974145 A CN1974145 A CN 1974145A
- Authority
- CN
- China
- Prior art keywords
- actuator
- controller
- robot
- signal
- encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
机器人控制器系统具备机器人、主控制器及副控制器。主控制器具有:促动器控制装置,其运算第一促动器的目标驱动量,生成包括第一促动器的目标驱动量的第一控制数据,并且,运算第二促动器的目标驱动量,生成包括第二促动器的目标驱动量的第二控制数据;第一促动器驱动部,其生成基于第一控制数据的第一驱动信号,向第一促动器供给第一驱动信号,从而驱动第一促动器;和第一输入输出部,其向副控制器供给第二控制数据。副控制器具有:第二促动器驱动部,其生成基于第二控制数据的第二驱动信号,向第二促动器供给第二驱动信号,从而驱动第二促动器;和第二输入输出部,其向第二促动器驱动部供给从第一输入输出部供给的第二控制数据。
The robot controller system includes a robot, a main controller, and a sub-controller. The main controller has an actuator control device that calculates a target driving amount of the first actuator, generates first control data including the target driving amount of the first actuator, and calculates a target driving amount of the second actuator. the driving amount generates second control data including a target driving amount of the second actuator; the first actuator driving unit generates a first driving signal based on the first control data and supplies the first actuator to the first actuator. a drive signal to drive the first actuator; and a first input-output unit that supplies the second control data to the sub-controller. The sub-controller has: a second actuator drive unit that generates a second drive signal based on the second control data and supplies the second drive signal to the second actuator to drive the second actuator; and a second input An output unit that supplies the second control data supplied from the first input and output unit to the second actuator drive unit.
Description
技术领域technical field
本发明涉及用于控制机器人的系统。The invention relates to a system for controlling a robot.
背景技术Background technique
通常,工业用机器人经由电力用电缆及信号用电缆与机器人控制器连接。电力用电缆用于从机器人控制器向工业用机器人的电动机供给电力。信号用电缆用于从工业用机器人向机器人控制器传送与电动机的旋转速度相关的信息。机器人控制器经由这些连接电缆向工业用机器人的各促动器(actuator)赋予动作指令,使工业用机器人执行任意的动作。Generally, an industrial robot is connected to a robot controller via a power cable and a signal cable. The power cable is used to supply power from the robot controller to the motor of the industrial robot. The signal cable is used to transmit information related to the rotation speed of the motor from the industrial robot to the robot controller. The robot controller gives operation commands to actuators of the industrial robot via these connecting cables, and causes the industrial robot to perform arbitrary operations.
在如此的机器人控制器例如控制4轴控制的工业用机器人时,机器人控制器具备4个伺服放大器。此外,在如此的机器人控制器控制6轴控制的工业用机器人时,机器人控制器具备6个伺服放大器。即,必须根据工业用机器人的类型选择专用的类型的机器人控制器。其结果是,由于需要按工业用机器人的类型准备专用的机器人控制器,因此生产成本增大。When such a robot controller controls, for example, a 4-axis control industrial robot, the robot controller includes four servo amplifiers. In addition, when such a robot controller controls an industrial robot controlled by 6 axes, the robot controller includes six servo amplifiers. That is, it is necessary to select a dedicated type of robot controller according to the type of industrial robot. As a result, since it is necessary to prepare a dedicated robot controller for each type of industrial robot, the production cost increases.
因此,为了灵活地应对机器人的扩张或变更,提出了由多个机器人控制器形成机器人控制器系统的方案。Therefore, in order to flexibly respond to the expansion or change of the robot, it has been proposed to form a robot controller system with a plurality of robot controllers.
特开平10-20910号公报公开了与多个副控制器连接的主控制器。主控制器存储分别对多个机器人的类型进行定义的定义文件。主控制器选择成为对象的类型的定义文件,逐次运算机器人的轨道或关节角度。副控制器基于主控制器运算的轨道或关节角度,运算各促动器的驱动量,驱动控制各促动器。因此,机器人控制器在机器人扩张时或变更时,只变更定义文件,就能够应对机器人的扩张或变更。由此,不需要重新增设专用的机器人控制器,可利用现存的机器人控制器。JP-A-10-20910 discloses a main controller connected to a plurality of sub-controllers. The main controller stores definition files respectively defining types of a plurality of robots. The main controller selects the definition file of the type of object, and calculates the trajectory or joint angle of the robot one by one. The sub-controller calculates the driving amount of each actuator based on the trajectory or joint angle calculated by the main controller, and drives and controls each actuator. Therefore, when the robot controller expands or changes the robot, it can cope with the expansion or change of the robot only by changing the definition file. Therefore, it is not necessary to newly add a dedicated robot controller, and an existing robot controller can be used.
特开平10-20922号公报公开了在所述主控制器中存储副控制器的驱动程序的情况。主控制器在规定的定时,使各副控制器下载各自的驱动程序。因此,机器人控制器能够灵活地应对驱动程序的变更或更新。JP-A-10-20922 discloses that a driver program for a sub-controller is stored in the main controller. The main controller causes each sub-controller to download its own driver program at a predetermined timing. Therefore, the robot controller can flexibly respond to driver changes or updates.
特开2000-112512号公报公开了分别包括收发部及存储器的多个机器人控制器。多个机器人控制器的每一个都与其它机器人控制器进行I/O信息的授受,在存储器中存储共用的I/O信息。通过该信息的授受,例如内置有4个电动机驱动器的机器人控制器和内置有2个电动机驱动器的机器人控制器能够协作控制6轴控制的工业用机器人。因此,可实现机器人控制器的共用化。Japanese Patent Application Laid-Open No. 2000-112512 discloses a plurality of robot controllers each including a transmitting and receiving unit and a memory. Each of the plurality of robot controllers exchanges I/O information with other robot controllers, and stores shared I/O information in the memory. By sending and receiving this information, for example, a robot controller incorporating four motor drivers and a robot controller incorporating two motor drivers can cooperatively control a 6-axis controlled industrial robot. Therefore, common use of robot controllers can be realized.
但是,在所述机器人控制器系统中,各副控制器逐次运算对应的促动器的控制指令。因此,各副控制器搭载用于运算控制指令的CPU、或成为该CPU的动作区域的存储器。其结果是,导致了如下的问题:各副控制器的尺寸或成本增大,从而使机器人控制器系统的设置空间或成本增大。However, in the above-mentioned robot controller system, each sub-controller successively calculates the control commands of the corresponding actuators. Therefore, each sub-controller mounts a CPU for computing control commands, or a memory serving as an operating area of the CPU. As a result, there arises a problem that the size or cost of each sub-controller increases, thereby increasing the installation space or cost of the robot controller system.
而且,在所述机器人控制器系统中,主控制器需要使分别搭载在多个副控制器中的CPU同步。因此,导致主控制器的复杂化,机器人控制器系统的成本增大。Furthermore, in the above-mentioned robot controller system, the main controller needs to synchronize the CPUs respectively mounted in the plurality of sub-controllers. Therefore, the main controller becomes complicated and the cost of the robot controller system increases.
发明内容Contents of the invention
本发明的目的在于,提供一种不需要过大的设置空间的廉价的机器人控制器系统。An object of the present invention is to provide an inexpensive robot controller system that does not require an excessively large installation space.
本发明的一实施方式是机器人控制器系统。该系统具备:包括第一促动器和第二促动器的机器人;驱动第一促动器的主控制器;和驱动第二促动器的副控制器。主控制器具有:促动器控制装置,其运算第一促动器的目标驱动量,生成包括第一促动器的目标驱动量的第一控制数据,并且,运算第二促动器的目标驱动量,生成包括第二促动器的目标驱动量的第二控制数据;第一促动器驱动部,其生成基于第一控制数据的第一驱动信号,向第一促动器供给第一驱动信号,从而驱动第一促动器;和第一输入输出部,其向副控制器供给第二控制数据。副控制器具有:第二促动器驱动部,其生成基于第二控制数据的第二驱动信号,向第二促动器供给第二驱动信号,从而驱动第二促动器;和第二输入输出部,其向第二促动器驱动部供给从第一输入输出部供给的第二控制数据。One embodiment of the present invention is a robot controller system. This system includes: a robot including a first actuator and a second actuator; a main controller that drives the first actuator; and a sub-controller that drives the second actuator. The main controller has an actuator control device that calculates a target driving amount of the first actuator, generates first control data including the target driving amount of the first actuator, and calculates a target driving amount of the second actuator. the drive amount generates second control data including a target drive amount of the second actuator; the first actuator driver generates a first drive signal based on the first control data and supplies the first actuator to the first actuator. a drive signal to drive the first actuator; and a first input-output unit that supplies the second control data to the sub-controller. The sub-controller has: a second actuator drive unit that generates a second drive signal based on the second control data and supplies the second drive signal to the second actuator to drive the second actuator; and a second input An output unit that supplies the second control data supplied from the first input and output unit to the second actuator drive unit.
附图说明Description of drawings
图1是表示本发明的一实施方式的机器人控制器系统的图。FIG. 1 is a diagram showing a robot controller system according to an embodiment of the present invention.
图2是表示本发明的一实施方式的本体控制器的立体图。Fig. 2 is a perspective view showing a body controller according to an embodiment of the present invention.
图3是表示本发明的一实施方式的本体控制器的电构成的框图。FIG. 3 is a block diagram showing an electrical configuration of a main body controller according to an embodiment of the present invention.
图4是表示本发明的一实施方式的机器人控制器系统的图。FIG. 4 is a diagram showing a robot controller system according to an embodiment of the present invention.
图5是表示本发明的一实施方式的追加控制器的分解立体图。Fig. 5 is an exploded perspective view showing an additional controller according to an embodiment of the present invention.
图6是表示本发明的一实施方式的机器人控制器的电构成的框图。6 is a block diagram showing an electrical configuration of a robot controller according to an embodiment of the present invention.
图7是表示本发明的另一实施方式的机器人控制器的电构成的框图。7 is a block diagram showing an electrical configuration of a robot controller according to another embodiment of the present invention.
图8是表示本发明的另一实施方式的机器人控制器的电构成的框图。8 is a block diagram showing an electrical configuration of a robot controller according to another embodiment of the present invention.
图9是表示本发明的又一实施方式的机器人控制器的电构成的框图。9 is a block diagram showing an electrical configuration of a robot controller according to still another embodiment of the present invention.
具体实施方式Detailed ways
在全部附图中,相同的参照符号用作表示相同的构成要素。Throughout the drawings, the same reference signs are used to denote the same constituent elements.
以下,参照图1~图6说明本发明的一实施方式。首先,如图1~图3所示,本发明的一实施方式的机器人控制器系统1包括作为主控制器的本体控制器A1。图1是表示机器人控制器系统1的图,图2是表示本体控制器A1的立体图。Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 6 . First, as shown in FIGS. 1 to 3 , a
在图1中,机器人RB1是具有作为第一促动器的第一电动机M1~第四电动机M4(参照图3)的4轴控制的水平多关节型工业用机器人。机器人RB1由机器人控制器系统1(本体控制器A1)驱动控制。In FIG. 1 , robot RB1 is a 4-axis controlled horizontal articulated industrial robot having first to fourth motors M1 to M4 as first actuators (see FIG. 3 ). The robot RB1 is driven and controlled by the robot controller system 1 (body controller A1).
本体控制器A1包括大致长方体状的本体侧筐体2,该本体侧筐体2具有可在开放的第一位置和封闭的第二位置之间移动的控制板。本体侧筐体2具有底座部3、左侧板4、右侧板5、顶板6、背板7和前面控制板8。The body controller A1 includes a substantially cuboid body-
底座部3包括底座侧接口接插件B1、B2。底座侧接口接插件B1、B2以其长边沿着水平方向的方式安装。底座侧接口接插件B1、B2与连接电缆L1、L2的接插件(电缆侧接口接插件C1、C2)连接。连接电缆L1、L2分别与个人计算机PC及示教盒TP连接。The
左侧板4及右侧板5分别包括通气口W2。此外,在左侧板4的内侧面配置有未图示的冷却风扇。冷却风扇从设在左侧板4上的通气口W2向本体侧筐体2的内部取入外气,从设在右侧板5上的通气口W2强制地使该取入的外气排出。通过使该冷却风扇动作,本体控制器A1冷却本体侧筐体2的内部。The
在图2中,本体侧筐体2在其内部包括机架9。机架9包括用于驱动控制各电动机M1~M4的4个伺服放大器10。各伺服放大器10沿着垂直方向隔着规定的间隔且可装卸地配置。本体侧筐体2在其内部包括设在机架9的右侧的端子固定板11。端子固定板11包括电源输入端子12。电源输入端子12与电源电缆L3连接,接受来自外部电源的供电。In FIG. 2 , the main
前面控制板8的上边通过铰链H与顶板6连结。前面控制板8以铰链H为支点转动,开放或封闭本体侧筐体2的开口部。The upper edge of the front control board 8 is connected with the
前面控制板8包括控制板侧电力用接插件20。控制板侧电力用接插件20以其长边沿着水平方向的方式安装在前面控制板8的上部。控制板侧电力用接插件20与连接在机器人RB1上的电力用连接电缆L4的接插件(电缆侧电力用接插件21)连接。控制板侧电力用接插件20经由设在前面控制板8的后面上的未图示的内部电源配线,与伺服放大器10连接。另外,该内部电源配线形成为当使前面控制板8在开放的第一位置和封闭的第二位置之间移动时,不妨碍前面控制板8的移动动作的长度。The front panel 8 includes a panel-
在控制板侧电力用接插件20的右侧安装有控制板侧信号用接插件30。控制板侧信号用接插件30以其长边沿着水平方向的方式安装在前面控制板8上。控制板侧信号用接插件30与连接在机器人RB1上的信号用连接电缆L5的接插件(电缆侧信号用接插件31)连接。控制板侧信号用接插件30经由设在前面控制板8的后面上的未图示的内部电源配线,与伺服放大器10连接。另外,该内部信号配线形成为当使前面控制板8在开放的第一位置和封闭的第二位置之间移动时,不妨碍前面控制板8的移动动作的长度。A board-
前面控制板8包括在其右侧的与电源输入端子12对置的位置上形成的端子插通孔8a及电缆嵌合槽8b。在前面控制板8位于封闭的第二位置时,在端子插通孔8a中插通电源输入端子12。在前面控制板8位于封闭的第二位置时,在电缆嵌合槽8b中嵌合电源电缆L3。前面控制板8包括在其前面的端子插通孔8a的外侧设置的大致杯状的盖形壳K。盖形壳K包括在其右侧面形成的凹部Ka。在前面控制板8位于封闭的第二位置时,盖形壳K保护电源输入端子12,并使电源电缆L3与凹部Ka嵌合。通过凹部Ka,不论前面控制板8的动作位置如何,电源电缆L3都引出到本体侧筐体2的外侧。The front panel 8 includes a terminal insertion hole 8 a and a cable fitting groove 8 b formed at a position facing the power input terminal 12 on the right side thereof. When the front panel 8 is located at the closed second position, the power input terminal 12 is inserted into the terminal insertion hole 8a. When the front panel 8 is located at the closed second position, the power cable L3 is fitted into the cable fitting groove 8b. The front control board 8 includes a substantially cup-shaped lid-shaped case K provided outside the terminal insertion holes 8 a on the front side. The lid-shaped case K includes a recess Ka formed on the right side thereof. When the front panel 8 is in the closed second position, the cover-shaped case K protects the power input terminal 12 and fits the power cable L3 into the concave portion Ka. Through the concave portion Ka, the power cable L3 is drawn out to the outside of the main
前面控制板8包括在其右侧的端子插通孔8a的下方形成的插通孔8c。在插通孔8c中插通形成在端子固定板11上的电源开关S。电源开关S用于切换本体控制器A1的电源的接通·断开。The front panel 8 includes an insertion hole 8c formed below the terminal insertion hole 8a on the right side thereof. The power switch S formed on the terminal fixing plate 11 is inserted through the insertion hole 8c. The power switch S is used to switch on and off the power of the main body controller A1.
本体侧筐体2的右侧板5包括从本体侧筐体2的内部延伸设置的接插件(本体侧连接接插件40)。在本实施方式中,该本体侧连接接插件40构成第一输入输出部。The
接着,参照图3说明所述本体控制器A1的电构成。Next, the electrical configuration of the main body controller A1 will be described with reference to FIG. 3 .
在图3中,本体控制器A1具备与外部电源E连接而构成电源供给装置的主电源电路MG。主电源电路MG向换流器电路COV供给从外部电源E供给的交流电源AC。换流器电路COV对该交流电源AC进行整流而生成作为输出信号的直流电源DC,并将该直流电源DC供给到本体控制器A1的各电路(例如,各伺服放大器10)和本体侧连接接插件40。In FIG. 3 , the main body controller A1 includes a main power supply circuit MG that is connected to an external power supply E to constitute a power supply device. The main power supply circuit MG supplies the AC power supply AC supplied from the external power supply E to the inverter circuit COV. The inverter circuit COV rectifies the alternating current power supply AC to generate a direct current power supply DC as an output signal, and supplies the direct current power supply DC to each circuit (for example, each servo amplifier 10 ) of the main body controller A1 and the main body side connection terminal.
本体控制器A1具备主控制装置MC。主控制装置MC包括CPU、存储各种数据或各种控制程序的ROM、和存储各种数据的DRAM或SRAM等RAM。这些CPU、ROM及RAM经由未图示的总线相互连接。The body controller A1 includes a main controller MC. Main controller MC includes a CPU, a ROM storing various data or various control programs, and a RAM such as DRAM or SRAM storing various data. These CPU, ROM, and RAM are connected to each other via a bus (not shown).
主控制装置MC与底座侧接口接插件B1连接。主控制装置MC经由底座侧接口接插件B1和电缆侧接口接插件C1,与个人计算机PC连接。个人计算机PC向主控制装置MC传送用于驱动机器人RB1的应用程序的数据(程序数据AP)。个人计算机PC显示由主控制装置MC运算过的数据、或存储在主控制装置MC中的数据。The main controller MC is connected to the base-side interface connector B1. The main controller MC is connected to a personal computer PC via a base-side interface connector B1 and a cable-side interface connector C1. The personal computer PC transmits data (program data AP) of an application program for driving the robot RB1 to the main controller MC. The personal computer PC displays data calculated by the main control device MC or data stored in the main control device MC.
主控制装置MC与底座侧接口接插件B2连接。主控制装置MC经由底座侧接口接插件B2和电缆侧接口接插件C2,与示教盒TP连接。示教盒TP向主控制装置MC传送用于进行机器人RB1的示教的示教指令数据ID。示教盒TP显示与由主控制装置MC运算过的示教相关的数据或与存储在主控制装置MC中的示教相关的数据。主控制装置MC将基于示教指令数据ID而示教的机器人RB1的手指的动作位置作为点位数据存储。The main controller MC is connected to the base-side interface connector B2. The main controller MC is connected to the teaching box TP via the base-side interface connector B2 and the cable-side interface connector C2. The teaching pendant TP transmits teaching command data ID for teaching the robot RB1 to the main controller MC. The teaching box TP displays data related to the teaching calculated by the main controller MC or data related to the teaching stored in the main controller MC. The main controller MC stores, as point data, the movement positions of the fingers of the robot RB1 taught based on the teaching command data ID.
主控制装置MC基于程序数据AP和点位数据,运算机器人RB1的各关节的角度,生成与各电动机M1~M4的目标速度相关的数据(位置指令数据PI)。Main controller MC calculates the angle of each joint of robot RB1 based on program data AP and point data, and generates data (position command data PI) related to the target speed of each motor M1-M4.
主控制装置MC与作为促动器控制装置的电动机控制装置MOC连接。电动机控制装置MOC与多个电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)、和本体侧连接接插件40连接。各电动机控制电路51~54与各自的伺服放大器10和编码器接收电路60连接。各伺服放大器10经由控制板侧电力用接插件20及电缆侧电力用接插件21,与对应的电动机(第一电动机M1~第四电动机M4)连接。各编码器接收电路60经由控制板侧信号用接插件30及电缆侧信号用接插件31,与对应的电动机的编码器(第一编码器M1a~第四编码器M4a)连接。The main control device MC is connected to a motor control device MOC as an actuator control device. The motor control device MOC is connected to a plurality of motor control circuits (the first motor control circuit 51 to the fourth motor control circuit 54 ) and the main body
在本实施方式中,各电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)、对应的伺服放大器10、和对应的编码器接收电路60构成单一的第一促动器驱动部。即,本体控制器A1包括4个第一促动器驱动部。In this embodiment, each motor control circuit (the first motor control circuit 51 to the fourth motor control circuit 54), the corresponding
电动机控制装置MOC从主控制装置MC接收位置指令数据PI。此外,电动机控制装置MOC从对应的编码器接收电路60接收与各电动机的即时位置相关的信号(位置信息信号:第一编码器脉冲信号EP1~第四编码器脉冲信号EP4)。电动机控制装置MOC基于位置指令数据PI、和各编码器脉冲信号EP1~EP4,运算用于使各电动机M1~M4的旋转速度达到目标速度的目标负载电流(目标驱动量)。电动机控制装置MOC生成规定目标负载电流的第一控制数据(第一电流指令数据IP1~第四电流指令数据IP4),并分别向对应的电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)供给该电流指令数据IP1~IP4。Motor control device MOC receives position command data PI from main control device MC. In addition, the motor control device MOC receives signals (position information signals: first encoder pulse signal EP1 to fourth encoder pulse signal EP4 ) related to the immediate position of each motor from the corresponding encoder receiving circuit 60 . Motor control device MOC calculates a target load current (target driving amount) for making the rotational speeds of motors M1 to M4 reach target speeds based on position command data PI and encoder pulse signals EP1 to EP4 . The motor control device MOC generates the first control data (the first current command data IP1 to the fourth current command data IP4) specifying the target load current, and sends them to the corresponding motor control circuits (the first motor control circuit 51 to the fourth motor control circuit 51 to the fourth motor control circuit respectively). The circuit 54) supplies the current command data IP1 to IP4.
各电动机控制电路51~54从对应的伺服放大器10接收与对应的电动机的实际负载电流相关的信号(电流检测信号:第一电流检测信号IS1~第四电流检测信号IS4)。电动机控制电路51比较电流检测信号IS1和电流指令数据IP1,生成用于驱动对应的伺服放大器10的功率元件,使实际负载电流达到目标负载电流的功率元件驱动信号(第一功率元件驱动信号PS1)。电动机控制电路52~54分别与电动机控制电路51同样,比较电流检测信号(IS2~IS4)和电流指令数据(IP2~IP4),生成用于驱动对应的伺服放大器10的功率元件,使实际负载电流达到目标负载电流的功率元件驱动信号(第二功率元件驱动信号PS2~第四功率元件驱动信号PS4)。各电动机控制电路51~54向对应的伺服放大器10供给各功率元件驱动信号PS1~PS4。The respective motor control circuits 51 to 54 receive signals (current detection signals: first current detection signal IS1 to fourth current detection signal IS4 ) related to the actual load current of the corresponding motor from the corresponding
各伺服放大器10接收来自换流器电路COV的直流电源DC。各伺服放大器10利用来自换流器电路COV的直流电源DC,基于各功率元件驱动信号PS1~PS4,生成负载电流(第一驱动信号:可变频率的3相电流TC)。各伺服放大器10向对应的电动机供给该3相电流TC。Each
各伺服放大器10具有未图示的电流检测电路,检测供给到对应的电动机(第一电动机M1~第四电动机M4)的实际负载电流。各伺服放大器10以检测到的实际负载电流为反馈值(第一电流检测信号IS1~第四电流检测信号IS4),供给到对应的电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)。Each
第一编码器M1a~第四编码器M4a分别检测对应的电动机(第一电动机M1~第四电动机M4)的即时位置。各编码器M1a~M4a生成与检测到的即时位置相关的位置信息信号(第一编码器脉冲信号EP1~第四编码器脉冲信号EP4),供给到对应的编码器接收电路60。The first encoder M1a to the fourth encoder M4a respectively detect the immediate positions of the corresponding motors (the first motor M1 to the fourth motor M4). Each of the encoders M1a to M4a generates a position information signal (first encoder pulse signal EP1 to fourth encoder pulse signal EP4 ) related to the detected instant position, and supplies it to the corresponding encoder receiving circuit 60 .
各编码器接收电路60向对应的电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)供给来自对应的编码器M1a~M4a的位置信息信号(第一编码器脉冲信号EP1~第四编码器脉冲信号EP4)。第一电动机控制电路51~第四电动机控制电路54分别向电动机控制装置MOC供给来自对应的编码器接收电路60的位置信息信号(第一编码器脉冲信号EP1~第四编码器脉冲信号EP4)。Each encoder receiving circuit 60 supplies the corresponding motor control circuit (first motor control circuit 51 to fourth motor control circuit 54) with position information signals (first encoder pulse signal EP1 to fourth Four encoder pulse signal EP4). The first motor control circuit 51 to the fourth motor control circuit 54 respectively supply the motor control device MOC with position information signals (first encoder pulse signal EP1 to fourth encoder pulse signal EP4 ) from the corresponding encoder receiving circuit 60 .
即,电动机控制装置MOC基于来自主控制装置MC的位置指令数据PI、和来自各电动机控制电路的编码器脉冲信号EP1~EP4,运算各电动机M1~M4的目标负载电流。电动机控制装置MOC生成规定目标负载电流的第一电流指令数据IP1~第四电流指令数据IP4,并分别供给到第一电动机控制电路51~第四电动机控制电路54。第一电动机控制电路51~第四电动机控制电路54分别基于来自电动机控制装置MOC的对应的电流指令数据IP1~IP4、和来自对应的伺服放大器10的电流检测信号IS1~IS4,生成功率元件驱动信号PS1~PS4。第一电动机控制电路51~第四电动机控制电路54分别向对应的伺服放大器10供给功率元件驱动信号PS1~PS4,驱动电动机M1~M4。That is, motor control device MOC calculates the target load current of each motor M1 - M4 based on position command data PI from main control device MC and encoder pulse signals EP1 - EP4 from each motor control circuit. The motor control device MOC generates first current command data IP1 to fourth current command data IP4 specifying the target load current, and supplies them to the first motor control circuit 51 to the fourth motor control circuit 54, respectively. The first motor control circuit 51 to the fourth motor control circuit 54 respectively generate power element drive signals based on the corresponding current command data IP1 to IP4 from the motor control device MOC and the current detection signals IS1 to IS4 from the corresponding
根据以上的构成,主控制装置MC对第一电动机M1~第四电动机M4进行PWM(Pulse Width Modulation)控制,使第一电动机M1~第四电动机M4的即时位置和位置指令数据PI的位置间的误差最小。According to the above structure, the main control device MC performs PWM (Pulse Width Modulation) control on the first motor M1 to the fourth motor M4, so that the distance between the immediate position of the first motor M1 to the fourth motor M4 and the position of the position command data PI The error is minimal.
接着,如图4~图6所示,本发明的一实施方式的机器人控制器系统1,除作为主控制器的本体控制器A1以外,还可以包括作为副控制器的追加控制器A2。另外,与本体控制器A1相关的说明,为了避免重复而省略。图4是表示包括追加控制器A2的机器人控制器系统1的图示,图5是表示追加控制器A2的分解立体图。Next, as shown in FIGS. 4 to 6 , the
在图4中,机器人RB2是具有作为第一促动器的第一电动机M1~第四电动机M4、和作为第二促动器的第五电动机M5及第六电动机M6(参照图6)的6轴控制的垂直多关节型的工业用机器人。机器人RB2由机器人控制器系统1驱动控制。机器人控制器系统1包括本体控制器A1和追加控制器A2。In FIG. 4 , the robot RB2 is a 6-wheel drive system having first to fourth motors M1 to M4 as first actuators, and fifth and sixth motors M5 and M6 as second actuators (see FIG. 6 ). An axis-controlled vertical articulated industrial robot. The robot RB2 is driven and controlled by the
本体控制器A1经由控制板侧电力用接插件20、控制板侧信号用接插件30、电缆侧电力用接插件21、电缆侧信号用接插件31、及连接电缆L4、L5,与机器人RB2连接。此外,本体控制器A1经由底座侧接口接插件B1、B2、电缆侧接口接插件C1、C2及连接电缆L1、L2,与个人计算机PC及示教盒TP连接。个人计算机PC向本体控制器A1传送机器人RB2的应用程序(程序数据AP)。示教盒TP向本体控制器A1传送用于进行机器人RB2的示教的示教指令数据ID。The main body controller A1 is connected to the robot RB2 via the control board
在本体控制器A1的本体侧筐体2上连结有与右侧板5密接的追加控制器A2。追加控制器A2的追加侧筐体100是长方体形状的箱体。An additional controller A2 that is in close contact with the
在图5中,追加侧筐体100具有底板101、顶板104、左侧板102、右侧板103、背板105和前面板106。在底板101和顶板104上分别设置有下部安装台110和上部安装台114。在下部安装台110和上部安装台114之间,可装卸地安装有2个伺服放大器10。各伺服放大器10在配置固定在追加侧筐体100中时,与设置在追加侧筐体100的内部的未图示的追加用衬底连接。In FIG. 5 , the
左侧板102包括设在其后方下侧的作为第二输入输出部的追加侧连接接插件41。追加侧连接接插件41经由追加用衬底与2个伺服放大器10连接。追加侧连接接插件41在追加控制器A2与本体控制器A1连结时,与本体控制器A1的本体侧连接接插件40电连接。追加控制器A2的2个伺服放大器10在追加侧连接接插件41与本体侧连接接插件40连结时,与本体控制器A1的电动机控制装置MOC电连接。The
左侧板102包括形成在其前方下侧的通气口W3。通气口W3在追加控制器A2与本体控制器A1连结时,与设在本体控制器A1的右侧板5上的通气口W2对置配置,并将本体侧筐体2排出的空气驱入追加侧筐体100的内部。右侧板103包括形成在其前方上侧的通气口W4。通气口W4排出取入到追加侧筐体100的内部的空气,从而冷却追加侧筐体100的内部。The
下面,参照图6说明如上所述包括追加控制器A2的机器人控制器系统1的电构成。另外,关于本体控制器A1的说明,为了避免重复而省略。Next, the electrical configuration of the
本体控制器A1的主控制装置MC基于所述程序数据AP和点位数据,运算机器人RB2的各关节的角度,生成与第一电动机M1~第六电动机M6的目标速度的数据(位置指令数据PI)。主控制装置MC将位置指令数据PI供给到电动机控制装置MOC。The main control device MC of the main body controller A1 calculates the angles of the joints of the robot RB2 based on the program data AP and the point data, and generates data (position command data PI) corresponding to the target speeds of the first motor M1 to the sixth motor M6. ). Main controller MC supplies position command data PI to motor controller MOC.
本体控制器A1的控制板侧电力用接插件20及控制板侧信号用接插件30具备分别与第五电动机M5及第六电动机M6、和第五编码器M5a及第六编码器M6a连接的中继端子。控制板侧电力用接插件20及控制板侧信号用接插件30的中继端子分别与本体侧连接接插件40连接。The control board
追加控制器A2具备第五电动机控制电路55及第六电动机控制电路56。第五电动机控制电路55及第六电动机控制电路56在追加侧连接接插件41与本体侧连接接插件40连接时,与电动机控制装置MOC连接。The additional controller A2 includes a fifth motor control circuit 55 and a sixth motor control circuit 56 . The fifth motor control circuit 55 and the sixth motor control circuit 56 are connected to the motor control device MOC when the additional
第五电动机控制电路55及第六电动机控制电路56分别与对应的伺服放大器10及编码器接收电路60连接。追加控制器A2的各伺服放大器10在追加侧连接接插件41与本体侧连接接插件40连接时,经由控制板侧电力用接插件20和电缆侧电力用接插件21,与对应的电动机(第五电动机M5及第六电动机M6)连接。追加控制器A2的伺服放大器10与电容器57连接。电容器57在追加侧连接接插件41与本体侧连接接插件40连接时,补偿换流器电路COV的电容。The fifth motor control circuit 55 and the sixth motor control circuit 56 are respectively connected to the corresponding
追加控制器A2的各编码器接收电路60在追加侧连接接插件41与本体侧连接接插件40连接时,经由控制板侧信号用接插件30和电缆侧信号用接插件31,与对应的电动机的编码器(第五编码器M5a及第六编码器M6a)连接。Each encoder receiving circuit 60 of the additional controller A2 is connected to the corresponding motor via the control board
在本实施方式中,各电动机控制电路(第五电动机控制电路55或第六电动机控制电路56)、对应的伺服放大器10、和对应的编码器接收电路60构成单一的第二促动器驱动部。即,追加控制器A2包括2个第二促动器驱动部。In this embodiment, each motor control circuit (the fifth motor control circuit 55 or the sixth motor control circuit 56), the corresponding
本体控制器A1的电动机控制装置MOC从对应的编码器接收电路60分别接收与第五电动机M5及第六电动机M6的即时位置相关的信号(位置信息信号:第五编码器脉冲信号EP5及第六编码器脉冲信号EP6)。电动机控制装置MOC基于位置指令数据PI、和第五编码器脉冲信号EP5及第六编码器脉冲信号EP6,运算用于使第五电动机M5及第六电动机M6的旋转速度达到目标速度的第五电动机M5及第六电动机M6的目标负载电流(目标驱动量)。电动机控制装置MOC生成规定目标负载电流的第二控制数据(第五电流指令数据IP5及第六电流指令数据IP6),并分别向对应的电动机控制电路(第五电动机控制电路55及第六电动机控制电路56)供给该电流指令数据IP5、IP6。The motor control device MOC of the main body controller A1 receives signals related to the instant positions of the fifth motor M5 and the sixth motor M6 respectively from the corresponding encoder receiving circuit 60 (position information signals: fifth encoder pulse signal EP5 and sixth Encoder pulse signal EP6). The motor control device MOC calculates the fifth motor speed for making the rotation speeds of the fifth motor M5 and the sixth motor M6 reach the target speed based on the position command data PI and the fifth encoder pulse signal EP5 and the sixth encoder pulse signal EP6. The target load current (target driving amount) of the M5 and the sixth motor M6. The motor control device MOC generates the second control data (the fifth current command data IP5 and the sixth current command data IP6) specifying the target load current, and sends them to the corresponding motor control circuits (the fifth motor control circuit 55 and the sixth motor control circuit 55 and the sixth motor control circuit respectively). The circuit 56) supplies the current command data IP5, IP6.
第五电动机控制电路55及第六电动机控制电路56分别从对应的伺服放大器10接收与对应的电动机的实际负载电流相关的信号(电流检测信号:第五电流检测信号IS5及第六电流检测信号IS6)。第五电动机控制电路55及第六电动机控制电路56比较各电流检测信号和各电流指令数据(第五电流指令数据IP5及第六电流指令数据IP6)。第五电动机控制电路55及第六电动机控制电路56分别生成用于驱动对应的伺服放大器10的功率元件,使实际负载电流达到目标负载电流的各功率元件驱动信号(第五功率元件驱动信号PS5及第六功率元件驱动信号PS6),并向对应的伺服放大器10供给各功率元件驱动信号PS5、PS6。The fifth motor control circuit 55 and the sixth motor control circuit 56 respectively receive signals related to the actual load current of the corresponding motor from the corresponding servo amplifier 10 (current detection signals: fifth current detection signal IS5 and sixth current detection signal IS6 ). The fifth motor control circuit 55 and the sixth motor control circuit 56 compare each current detection signal with each current command data (fifth current command data IP5 and sixth current command data IP6 ). The fifth motor control circuit 55 and the sixth motor control circuit 56 respectively generate respective power element drive signals (fifth power element drive signals PS5 and Sixth power element drive signal PS6 ), and each power element drive signal PS5 , PS6 is supplied to the corresponding
追加控制器A2的各伺服放大器10接收经由了电容器57的直流电源DC。各伺服放大器10利用经由了电容器57的直流电源DC,基于第五功率元件驱动信号PS5及第六功率元件驱动信号PS6,生成负载电流(第二驱动信号:可变频率的3相电流TC)。各伺服放大器10向对应的电动机(第五电动机M5及第六电动机M6)供给该3相电流TC。Each
追加控制器A2的各伺服放大器10具有未图示的电流检测电路,检测供给到对应的电动机(第五电动机M5及第六电动机M6)的实际负载电流。各伺服放大器10以检测到的实际负载电流为反馈值(第五电流检测信号IS5及第六电流检测信号IS6),供给到对应的电动机控制电路(第五电动机控制电路55及第六电动机控制电路56)。Each
第五编码器M5a及第六编码器M6a分别检测对应的电动机(第五电动机M5及第六电动机M6)的即时位置。各编码器M5a、M6a分别生成与检测到的即时位置相关的位置信息信号(第五编码器脉冲信号EP5及第六编码器脉冲信号EP6),并供给到对应的编码器接收电路60。The fifth encoder M5a and the sixth encoder M6a respectively detect the immediate positions of the corresponding electric motors (the fifth electric motor M5 and the sixth electric motor M6 ). Each encoder M5a, M6a generates a position information signal (fifth encoder pulse signal EP5 and sixth encoder pulse signal EP6) related to the detected real-time position, and supplies it to the corresponding encoder receiving circuit 60 .
追加控制器A2的各编码器接收电路60接收来自对应的编码器M5a、M6a的位置信息信号(第五编码器脉冲信号EP5及第六编码器脉冲信号EP6),并向对应的电动机控制电路(第五电动机控制电路55及第六电动机控制电路56)分别供给该位置信息信号。第五电动机控制电路55及第六电动机控制电路56分别向电动机控制装置MOC供给来自对应的编码器接收电路60的位置信息信号(第五编码器脉冲信号EP5及第六编码器脉冲信号EP6)。Each encoder receiving circuit 60 of the additional controller A2 receives the position information signal (the fifth encoder pulse signal EP5 and the sixth encoder pulse signal EP6) from the corresponding encoder M5a, M6a, and sends the corresponding motor control circuit ( The fifth motor control circuit 55 and the sixth motor control circuit 56) respectively supply the position information signals. The fifth motor control circuit 55 and the sixth motor control circuit 56 respectively supply the motor control device MOC with position information signals (fifth encoder pulse signal EP5 and sixth encoder pulse signal EP6 ) from the corresponding encoder receiving circuit 60 .
即,本体控制器A1的电动机控制装置MOC基于来自主控制装置MC的位置指令数据PI、和来自各电动机控制电路51~56的编码器脉冲信号EP1~EP6,运算各电动机M1~M6的目标负载电流。电动机控制装置MOC分别生成规定目标负载电流的电流指令数据IP1~IP6,并供给到对应的第一电动机控制电路51~第六电动机控制电路56。电动机控制电路51~56分别基于来自电动机控制装置MOC的各电流指令数据IP1~IP6、和来自对应的伺服放大器10的电流检测信号IS1~IS6,生成功率元件驱动信号PS1~PS6。各电动机控制电路51~56向对应的伺服放大器10分别供给功率元件驱动信号PS1~PS6,分别驱动电动机M1~M6。That is, the motor control device MOC of the main body controller A1 calculates the target load of each motor M1-M6 based on the position command data PI from the main control device MC and the encoder pulse signals EP1-EP6 from the motor control circuits 51-56. current. The motor control device MOC generates current command data IP1 to IP6 for specifying target load currents, and supplies them to the corresponding first to sixth motor control circuits 51 to 56 . Motor control circuits 51 to 56 generate power element drive signals PS1 to PS6 based on current command data IP1 to IP6 from motor control device MOC and current detection signals IS1 to IS6 from corresponding
根据以上的构成,主控制装置MC对第一电动机M1~第六电动机M6进行PWM(Pulse Width Modulation)控制,使各电动机M1~M6的即时位置和位置指令数据PI的位置间的误差最小。According to the above configuration, the main control device MC performs PWM (Pulse Width Modulation) control on the first motor M1 to the sixth motor M6 to minimize the error between the immediate position of each motor M1 to M6 and the position of the position command data PI.
因此,追加控制器A2能够使与第五电动机M5及第六电动机M6相关的位置指令数据PI在本体控制器A1的主控制装置MC中生成。此外,追加控制器A2能够使用于驱动控制第五电动机M5及第六电动机M6的第五电流指令数据IP5及第六电流指令数据IP6在本体控制器A1的电动机控制装置MOC中逐次运算。此外,追加控制器A2能够使用于生成3相电流TC的直流电流在本体控制器A1的换流器电路COV中生成。Therefore, the additional controller A2 can generate the position command data PI related to the fifth motor M5 and the sixth motor M6 in the main controller MC of the main controller A1. In addition, the additional controller A2 can sequentially calculate the fifth current command data IP5 and the sixth current command data IP6 for driving and controlling the fifth electric motor M5 and the sixth electric motor M6 in the motor control device MOC of the main body controller A1. In addition, the additional controller A2 can generate the DC current for generating the three-phase current TC in the inverter circuit COV of the main body controller A1.
因此,追加控制器A2能够在不搭载用于生成位置指令数据PI的运算电路或存储器、用于生成第五电流指令数据IP5及第六电流指令数据IP6的电动机控制装置MOC、主电源电路MG或换流器电路COV的情况下,驱动控制第五电动机及第六电动机。因而,可实现追加控制器A2的小型化,降低成本。即,由于包括本体控制器A1和追加控制器A2的机器人控制器系统1整体小型化,所以可节省设置空间。Therefore, the additional controller A2 can be configured without mounting an arithmetic circuit or a memory for generating position command data PI, a motor control device MOC for generating fifth current command data IP5 and sixth current command data IP6, a main power supply circuit MG, or In the case of the inverter circuit COV, the drive control of the fifth motor and the sixth motor is performed. Therefore, it is possible to reduce the size of the additional controller A2 and reduce the cost. That is, since the overall size of the
接着,说明所述机器人控制器系统1的动作。首先,说明只使用本体控制器A1来控制机器人RB1的机器人控制器系统1的动作。Next, the operation of the
如图1所示,本体控制器A1的控制板侧电力用接插件20及控制板侧信号用接插件30分别经由连接电缆L4、L5,与机器人RB1连接。接着,程序数据AP及示教指令数据ID从个人计算机PC及示教盒TP分别供给到主控制装置MC。主控制装置MC基于这些程序数据AP及示教指令数据ID,生成位置指令数据PI,并将位置指令数据PI供给到电动机控制装置MOC。As shown in FIG. 1 , the control board
电动机控制装置MOC基于位置指令数据PI生成电流指令数据IP1~IP4,并将该电流指令数据IP1~IP4分别供给到对应的电动机控制电路51~54。电动机控制电路51~54基于被供给的电流指令数据IP1~IP4,分别生成功率元件驱动信号PS1~PS4,并将该功率元件驱动信号PS1~PS4分别供给到对应的伺服放大器10。各伺服放大器10利用从换流器电路COV供给的直流电流DC,基于被供给的功率元件驱动信号PS1~PS4,通过PWM控制,生成可变频率的3相电流TC,并将该3相电流TC供给对应的电动机M1~M4,根据位置指令数据PI驱动对应的电动机M1~M4。The motor control device MOC generates current command data IP1 to IP4 based on the position command data PI, and supplies the current command data IP1 to IP4 to the corresponding motor control circuits 51 to 54, respectively. The motor control circuits 51 to 54 respectively generate power element drive signals PS1 to PS4 based on the supplied current command data IP1 to IP4, and supply the power element drive signals PS1 to PS4 to the corresponding
在此期间,各编码器接收电路60向对应的电动机控制电路(第一电动机控制电路51~第四电动机控制电路54)反馈来自对应的编码器的编码器脉冲信号(第一编码器脉冲信号EP1~第四编码器脉冲信号EP4)。此外,各伺服放大器10将检测到的实际负载电流变换成电流检测信号(第一电流检测信号IS1~第四电流检测信号IS4),并反馈给电动机控制装置MOC。During this period, each encoder receiving circuit 60 feeds back the encoder pulse signal (first encoder pulse signal EP1 ~ the fourth encoder pulse signal EP4). In addition, each
电动机控制装置MOC基于位置指令数据PI和编码器脉冲信号EP1~EP4,再次生成电流指令数据IP1~IP4,并供给到各电动机控制电路51~54。Motor control device MOC regenerates current command data IP1 to IP4 based on position command data PI and encoder pulse signals EP1 to EP4 , and supplies them to motor control circuits 51 to 54 .
各电动机控制电路51~54基于各电流指令数据IP1~IP4、和各电流检测信号IS1~IS4,再次生成各功率元件驱动信号PS1~PS4,并供给到对应的伺服放大器10。通过该动作,各电动机M1~M4被驱动控制为其即时位置和位置指令数据PI的位置的误差达到最小。The motor control circuits 51 to 54 regenerate the power element drive signals PS1 to PS4 based on the current command data IP1 to IP4 and the current detection signals IS1 to IS4 and supply them to the corresponding
下面,说明使用本体控制器A1和追加控制器A2来控制作为6轴控制的垂直多关节工业用机器人的机器人RB2的机器人控制器系统1的动作。Next, the operation of the
首先,将追加控制器A2的追加侧连接接插件41与本体控制器A1的本体侧连接接插件40连接。如果本体侧连接接插件40与连接接插件41连接,则本体控制器A1的电动机控制装置MOC控制追加控制器A2的促动器驱动部(各电动机控制电路55、56、伺服放大器10及编码器接收电路60)。First, the additional
即,第一电动机控制电路51~第六电动机控制电路56基于从本体控制器A1的电动机控制装置MOC供给的第一电流指令数据IP1~第六电流指令数据IP6,生成第一功率元件驱动信号PS1~第六功率元件驱动信号PS6。第一电动机控制电路51~第六电动机控制电路56分别向对应的伺服放大器10供给功率元件驱动信号。各伺服放大器10利用从换流器电路COV供给的直流电源DC,基于被供给的功率元件驱动信号PS1~PS6,通过PWM控制,生成可变频率的3相电流TC,并将该3相电流TC供给到对应的电动机M1~M6,根据位置指令数据PI驱动对应的电动机M1~M6。That is, the first motor control circuit 51 to the sixth motor control circuit 56 generate the first power element drive signal PS1 based on the first current command data IP1 to the sixth current command data IP6 supplied from the motor control device MOC of the main body controller A1. ~Sixth power element driving signal PS6. The first to sixth motor control circuits 51 to 56 supply power element drive signals to the corresponding
在此期间,各编码器接收电路60向对应的电动机控制电路(第一电动机控制电路51~第六电动机控制电路56)反馈来自对应的编码器的编码器脉冲信号(第一编码器脉冲信号EP1~第六编码器脉冲信号EP6)。此外,各伺服放大器10将检测到的实际负载电流变换成电流检测信号(第一电流检测信号IS1~第六电流检测信号IS6),并反馈给电动机控制装置MOC。During this period, each encoder receiving circuit 60 feeds back the encoder pulse signal (the first encoder pulse signal EP1 ~Sixth encoder pulse signal EP6). In addition, each
本体控制器A1的电动机控制装置MOC基于位置指令数据PI和编码器脉冲信号EP1~EP6,再次生成第一电流指令数据IP1~第六电流指令数据IP6,并供给到各电动机控制电路51~56。The motor control device MOC of the main body controller A1 regenerates first current command data IP1 to sixth current command data IP6 based on the position command data PI and encoder pulse signals EP1 to EP6 and supplies them to the respective motor control circuits 51 to 56 .
通过该动作,本体控制器A1和追加控制器A2能够控制6轴控制的机器人RB2。Through this operation, the main body controller A1 and the additional controller A2 can control the 6-axis controlled robot RB2.
本实施方式的机器人控制器系统1具有以下的优点。The
(1)根据本实施方式,本体控制器A1具有用于生成位置指令数据PI的主控制装置MC、和用于逐次运算第五电流指令数据IP5及第六电流指令数据IP6的电动机控制装置MOC。而且,本体控制器A1及追加控制器A2分别具有用于进行位置指令数据PI、第五电流指令数据IP5及第六电流指令数据IP6的授受的接口(本体侧连接接插件40或追加侧连接接插件41)。(1) According to the present embodiment, the main body controller A1 has the main controller MC for generating the position command data PI, and the motor controller MOC for sequentially calculating the fifth current command data IP5 and the sixth current command data IP6. Furthermore, the main body controller A1 and the additional controller A2 have interfaces for receiving and receiving position command data PI, fifth current command data IP5, and sixth current command data IP6 (main body
因此,追加控制器A2能够在不需要用于生成位置指令数据PI的运算电路或存储器、及用于生成第五电流指令数据IP5和第六电流指令数据IP6的电动机控制装置MOC的情况下,驱动控制第五电动机及第六电动机。因而,可实现追加控制器A2的小型化,降低追加控制器A2的成本。其结果是,包括本体控制器A1和追加控制器A2的机器人控制器系统1可小型化,可实现机器人控制器系统1的设置空间的省空间化。Therefore, the additional controller A2 can be driven without an arithmetic circuit or a memory for generating the position command data PI and a motor control device MOC for generating the fifth current command data IP5 and the sixth current command data IP6. The fifth electric motor and the sixth electric motor are controlled. Therefore, miniaturization of the additional controller A2 can be realized, and the cost of the additional controller A2 can be reduced. As a result, the
(2)此外,共用的主控制装置MC及电动机控制装置MOC控制本体控制器A1及追加控制器A2的各电动机控制电路51~56。因此,与同步的多个CPU分别控制对应的电动机控制装置的情况相比,电动机的控制系统大幅度简化。因而,可实现机器人控制器系统的进一步的省空间化。(2) In addition, the common main control device MC and motor control device MOC control the respective motor control circuits 51 to 56 of the main controller A1 and the additional controller A2. Therefore, compared with the case where a plurality of synchronous CPUs respectively control corresponding motor control devices, the control system of the motor is greatly simplified. Therefore, further space saving of the robot controller system can be realized.
(3)根据本实施方式,本体控制器A1包括本体侧连接接插件40,追加控制器A2包括追加侧连接接插件41。而且,在连接接插件40与连接接插件41连接时,本体控制器A1与追加控制器A2密接地连接。通过该密接,机器人控制器系统1的整体可进一步小型化。(3) According to the present embodiment, the main body controller A1 includes the main body
(4)此外,只通过连接接插件40与连接接插件41连接,本体控制器A1的换流器电路COV和追加控制器A2的各伺服放大器10就电连接。因此,能使追加控制器A2节省换流器电路COV的空间量。(4) Also, only by connecting the
此外,只通过连接接插件40与连接接插件41连接,追加控制器A2的各伺服放大器10和第五电动机M5及第六电动机M6就电连接。进而,只通过连接接插件40与连接接插件41连接,追加控制器A2的各编码器接收电路60和第五编码器M5a及第六编码器M6a就电连接。In addition, each
因而,能使追加控制器A2进一步节省追加控制器A2所不需要的控制板侧电力用接插件20或控制板侧信号用接插件30的量。Therefore, the additional controller A2 can further save the amount of the board-
(5)进而,由于电力用接插件20、21及信号用接插件30、31集中在一处,所以可简化本体控制器A1和机器人RB2之间的连接电缆L4、L5。(5) Furthermore, since the
(6)根据本实施方式,本体控制器A1所收纳的促动器驱动部的数量设定为成为控制对象的多轴机器人(机器人RB1、RB2)的轴数中最小的轴数。因此,在控制具有不同的轴数的机器人RB1、RB2时,能够共用地使用本体控制器A1。因此,可实现机器人控制器的共用化,从而更可靠地降低机器人控制器的成本。(6) According to the present embodiment, the number of actuator driving units housed in the main body controller A1 is set to the smallest number of axes among the number of axes of the multi-axis robot (robots RB1 and RB2 ) to be controlled. Therefore, when controlling the robots RB1 and RB2 having different numbers of axes, the main body controller A1 can be used in common. Therefore, the common use of the robot controller can be realized, and the cost of the robot controller can be reduced more reliably.
(7)根据本实施方式,可从前面控制板8更换本体控制器A1的伺服放大器10。此外,可从前面板106更换追加控制器A2的伺服放大器10。因此,可从机器人控制器系统1的前面(前面控制板8及前面板106)侧更换伺服放大器10。因此,在变更成为控制对象的机器人时,可容易地更换伺服放大器10。(7) According to the present embodiment, the
·在本发明的一实施方式中,1个追加控制器A2包括2个促动器驱动部。但并不限定于此,例如,如图7所示,也可以1个追加控制器A3、A4只包括1个促动器驱动部。在此种情况下,追加控制器A3的第五电动机控制电路55可以经由连接接插件40、41与本体控制器A1连接,追加控制器A4的第六电动机控制电路56可以经由连接接插件40、41、42、43与本体控制器A1连接。或者,也可以本体控制器A1包括多个本体侧连接接插件40,多个追加控制器经由多个本体侧连接接插件40分别并联连接。- In one embodiment of the present invention, one additional controller A2 includes two actuator drive units. However, the present invention is not limited thereto. For example, as shown in FIG. 7 , one additional controller A3 and A4 may include only one actuator drive unit. In this case, the fifth motor control circuit 55 of the additional controller A3 can be connected to the main body controller A1 via the connecting
·在本发明的一实施方式中,追加控制器A2的伺服放大器10经由连接接插件40、41及电力用接插件20、21,与机器人RB2连接。此外,追加控制器A2的编码器接收电路60经由连接接插件40、41及信号用接插件30、31,与机器人RB2连接。但并不限定于此,例如,如图8所示,也可以追加控制器A2包括追加侧电力用接插件44及追加侧信号用接插件45,追加控制器A2的伺服放大器10及编码器接收电路60分别经由追加侧电力用接插件44及追加侧信号用接插件45,与机器人RB2连接。在此种情况下,优选如下的构成:将机器人RB2和机器人控制器系统1连接的连接电缆变更成2股电缆,接机器人RB2与本体控制器A1及追加控制器A2的双方连接。- In one embodiment of the present invention, the
·在本发明的一实施方式中,追加控制器A2的第五电动机控制电路55及第六电动机控制电路56分别驱动机器人RB2的第五电动机M5及第六电动机M6。但并不限定于此,例如,如图9所示,也可以第五电动机控制电路55及第六电动机控制电路56分别控制由第七电动机M7驱动的外部设备AR、或由第八电动机M8驱动的外部设备AR。- In one Embodiment of this invention, the 5th motor control circuit 55 and the 6th motor control circuit 56 of the additional controller A2 drive the 5th motor M5 and the 6th motor M6 of the robot RB2, respectively. However, it is not limited thereto. For example, as shown in FIG. The external device AR.
即,电动机控制装置MOC生成规定第七电动机M7及第八电动机M8的驱动量的外部设备控制数据。此外,追加控制器A2的第五电动机控制电路55、第六电动机控制电路56、伺服放大器10及编码器接收电路60生成基于外部设备控制数据的外部设备驱动信号(例如,可变频率的3相电流TC)。而且,追加控制器A2也可以经由电力用接插件46及信号用接插件47与各外部设备AR连接,向各外部设备供给外部设备驱动信号。根据该变更,主控制装置MC及电动机控制装置MOC能够同时驱动控制机器人RB1和外部设备AR。That is, the motor control device MOC generates external device control data specifying the driving amounts of the seventh motor M7 and the eighth motor M8. In addition, the fifth motor control circuit 55, the sixth motor control circuit 56, the
·在本发明的一实施方式中,为了补偿本体控制器A1的换流器电路COV的电容,而在追加控制器A2上设置电容器57。但并不限定于此,例如也可以本体控制器A1包括电容器57。此外,如果换流器电路COV的电容是充足的电容,则也可以省略电容器57。- In one embodiment of the present invention, in order to compensate the capacitance of the inverter circuit COV of the main body controller A1, the
·在本发明的一实施方式中,通过本体侧连接接插件40与追加侧连接接插件41连接,本体控制器A1与追加控制器A2电连接。但并不限定于此,例如,也可以从追加侧连接接插件41延长连接电缆,将安装在该连接电缆的前端上的电缆侧连接接插件与本体侧连接接插件40连接,从而使本体控制器A1与追加控制器A2电连接。- In one embodiment of the present invention, the main body controller A1 is electrically connected to the additional controller A2 by connecting the main body
·在本发明的一实施方式中,机器人控制器具体化为控制4轴控制的机器人RB1或6轴控制的机器人RB2的机器人控制器系统1。但并不限定于此,机器人控制器系统并不受所控制的机器人的类型及机器人的数量限制。例如,机器人控制器系统也可以控制单轴的机器人、2轴的机器人、或3轴的机器人。另外,在此种情况下,优选,本体控制器A1搭载与轴数最少的单轴机器人一致的必要最小限的伺服放大器10。- In one embodiment of the present invention, the robot controller is embodied as the
·在本发明的一实施方式中,控制板侧电力用接插件20、和控制板侧信号用接插件30作为独立部件而设置。但并不限定于此,例如,控制板侧电力用接插件20及控制板侧信号用接插件30也可以作为共用的接插件而具体化。- In one embodiment of the present invention, the control board
·在本发明的一实施方式中,在本体侧筐体2的前面设置有前面控制板8。但并不限定于此,也可以在本体侧筐体2的其它侧面设置可在开放的第一位置和封闭的第二位置之间移动的控制板。或者,也可以是本体侧筐体2的前面完全不开放的构成。- In one embodiment of the present invention, a front panel 8 is provided on the front surface of the main
·在本发明的一实施方式中,追加控制器A2的任一侧面,都可以与本体控制器A1的前面同样,是可开放的构成。另外,在此种情况下,优选,前面板106是可开放的。如此,通过将追加控制器A2的前面形成为可开放的,能够从共用的方法(前方)执行本体控制器A1的伺服放大器10的更换作业、和追加控制器A2的伺服放大器10的更换作业。- In one embodiment of the present invention, either side of the additional controller A2 may be configured to be openable like the front of the main body controller A1. Also, in this case, preferably, the
·在本发明的一实施方式中,在本体控制器A1上连接个人计算机PC及示教盒TP,但并不限定于此。例如,除个人计算机PC及示教盒TP以外,也可以将快速断开开关或可编程逻辑控制器等与本体控制器A1或追加控制器A2连接。- In one embodiment of the present invention, the personal computer PC and the teaching box TP are connected to the main body controller A1, but the present invention is not limited thereto. For example, a quick disconnect switch, a programmable logic controller, etc. may be connected to the main body controller A1 or the additional controller A2 in addition to the personal computer PC and the teaching box TP.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005344655 | 2005-11-29 | ||
JP2005344655 | 2005-11-29 | ||
JP2006180153 | 2006-06-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102251792A Division CN101890717A (en) | 2005-11-29 | 2006-11-29 | Controller |
CN2010102251754A Division CN101863032B (en) | 2005-11-29 | 2006-11-29 | Robot controller system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1974145A true CN1974145A (en) | 2007-06-06 |
Family
ID=38124639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610163196 Pending CN1974145A (en) | 2005-11-29 | 2006-11-29 | Robot controller system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1974145A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103415991A (en) * | 2011-02-28 | 2013-11-27 | 株式会社安川电机 | Multi-shaft motor drive device and multi-axis motor drive system |
-
2006
- 2006-11-29 CN CN 200610163196 patent/CN1974145A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103415991A (en) * | 2011-02-28 | 2013-11-27 | 株式会社安川电机 | Multi-shaft motor drive device and multi-axis motor drive system |
CN103415991B (en) * | 2011-02-28 | 2015-11-25 | 株式会社安川电机 | Multiaxial motor drive device and multiaxial motor drive system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101863032B (en) | Robot controller system | |
EP3461599B1 (en) | Robot | |
CN109571447B (en) | robot | |
JP5803213B2 (en) | Robot controller | |
US10940595B2 (en) | Robot | |
CN100335221C (en) | Arc welder | |
US9597794B2 (en) | Robot | |
US11077549B2 (en) | Robot and robot system | |
CN110962159B (en) | Robot | |
KR20140038329A (en) | Industrial robot having electronic drive devices distributed on the robot structure | |
US20190099900A1 (en) | Robot | |
US20170341223A1 (en) | Motor unit and robot | |
CN102862162A (en) | Robot controller and robot | |
CA2831436A1 (en) | Converter assembly, method for producing a converter assembly and method for operating a converter assembly | |
EP4221478A1 (en) | Robot control apparatus | |
CN107791244B (en) | Controller, work control device, multi-axis operation control device, and drive control device | |
CN1974145A (en) | Robot controller system | |
US20190001502A1 (en) | Robot control device and robot system | |
WO2022138266A1 (en) | Control device | |
CN103846917B (en) | Robot controller | |
CN112770879B (en) | Robot control device and method for manufacturing robot control device | |
JP2023073759A (en) | ROBOT, ROBOT CONTROL METHOD, PRODUCT MANUFACTURING METHOD USING ROBOT, CONTROL PROGRAM AND RECORDING MEDIUM | |
JPH06143185A (en) | Robot | |
CN106695845A (en) | Control method for electronic control system of robot | |
JP2020026000A (en) | Robot arm and robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20070606 |