CN1971530A - Digital temperature sensing system - Google Patents
Digital temperature sensing system Download PDFInfo
- Publication number
- CN1971530A CN1971530A CN 200610167903 CN200610167903A CN1971530A CN 1971530 A CN1971530 A CN 1971530A CN 200610167903 CN200610167903 CN 200610167903 CN 200610167903 A CN200610167903 A CN 200610167903A CN 1971530 A CN1971530 A CN 1971530A
- Authority
- CN
- China
- Prior art keywords
- command signal
- clock
- output terminal
- input end
- comparer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 6
- 230000003534 oscillatory effect Effects 0.000 claims 5
- 230000000052 comparative effect Effects 0.000 claims 3
- 230000004913 activation Effects 0.000 claims 2
- 230000010355 oscillation Effects 0.000 abstract 2
Images
Landscapes
- Manipulation Of Pulses (AREA)
- Measurement Of Unknown Time Intervals (AREA)
Abstract
Description
技术领域technical field
本发明是为一数字式温度感测系统与方法,尤指应用在侦测芯片组内部温度的一数字式温度感测系统。The present invention is a digital temperature sensing system and method, especially a digital temperature sensing system applied to detect the internal temperature of chipsets.
背景技术Background technique
在计算机系统中,芯片组所处环境的温度是芯片组在运行过程中能否稳定的一大因素,一旦芯片组所处环境的温度超过某一临界值时,不仅会造成芯片组在处理数据时产生误差或者死机,严重时,甚至会造成芯片组硬件的损毁,因此,一般在计算机系统中,会有一测量芯片组温度的温度感测系统,用以随时监控芯片组的温度。In a computer system, the temperature of the environment where the chipset is located is a major factor for the stability of the chipset during operation. Once the temperature of the environment where the chipset is located exceeds a certain critical value, it will not only cause the chipset to process data In severe cases, it may even cause damage to the chipset hardware. Therefore, generally in a computer system, there will be a temperature sensing system for measuring the temperature of the chipset to monitor the temperature of the chipset at any time.
请参照图1,其所绘示为常用芯片组的温度感测系统的功能方块示意图。如图所示,该温度感测系统包含一转换电路10以及一热敏二极管(Thermal Diode)12,其中该转换电路10更包含一模拟数字转换单元102,连接至该热敏二极管12的两端,以及一信号温度映射单元104,连接至该模拟数字转换单元102,而该热敏二极管12可设计于芯片组(图中未示出)内部或贴近于芯片组表面。Please refer to FIG. 1 , which is a schematic functional block diagram of a temperature sensing system of a commonly used chipset. As shown in the figure, the temperature sensing system includes a
热敏二极管12的主要特征在于,该热敏二极管12所产生的电流会随着热敏二极管12的温度而改变。亦即该热敏二极管12产生的电流会与热敏二极管12的周边温度呈一特定关系。如图1所示,当置于芯片组内部或贴近于芯片组表面的热敏二极管12因为芯片组温度的改变造成该热敏二极管12产生的电流发生变化,此时,转换电路10的模拟数字转换单元102即可将模拟形式的电流转换为一数字信号输入至该信号温度映射单元104,透过该信号温度映射单元104转换出对应的一温度值输出,如此将可测量出该芯片组的温度。The main feature of the
然而常用的温度感测系统是同时运用模拟电路以及数字电路来实现,相较于数字电路来说,模拟电路往往占用较大的面积以及较复杂的电路设计,因此,内建于芯片组的温度感测系统会占据许多芯片组的面积。However, the commonly used temperature sensing system is implemented by using both analog circuits and digital circuits. Compared with digital circuits, analog circuits often occupy a larger area and more complicated circuit design. Therefore, the built-in chip set temperature Sensing systems can take up many chipset real estate.
因此,为了解决常用模拟式温度感测系统占用芯片组较大面积与较复杂的电路设计,本发明提出一种数字式温度感测系统与方法,并根据此系统进一步达成芯片组中门延迟(Gate Delay)的量测,是本发明发展的目的。Therefore, in order to solve the relatively large area occupied by the chip set and the more complicated circuit design of the commonly used analog temperature sensing system, the present invention proposes a digital temperature sensing system and method, and further achieves the gate delay ( Gate Delay) is the purpose of the development of the present invention.
发明内容Contents of the invention
本发明的目的在于提供一数字式温度感测系统,从而解决常用模拟式芯片组温度感测系统占用芯片组较大体积,较复杂的电路设计造成成本的提高,以及无法实际测量芯片组内的门延迟的问题。The purpose of the present invention is to provide a digital temperature sensing system, so as to solve the problem that the commonly used analog chipset temperature sensing system occupies a large volume of the chipset, the cost of the more complicated circuit design is increased, and it is impossible to actually measure the temperature in the chipset. The problem of gate delay.
本发明提出一种数字式温度感测系统,包括:一时脉产生装置,该时脉产生装置可产生一固定频率的一第一时脉信号;一振荡电路包含P个反向器门,使得该振荡电路可输出一第二时脉信号,其中P为一奇数;一命令信号产生单元,该命令信号产生单元连接至该时脉产生装置,用以根据该第一时脉信号产生一参考命令信号,使得该参考命令信号可周期性地产生一计数周期;以及,一命令信号处理单元,该命令信号处理单元连接至该命令信号产生单元和该振荡电路,用以于该计数周期时计数该第二时脉信号的一时脉数目,并根据该时脉数目决定一工作温度范围。The present invention proposes a digital temperature sensing system, comprising: a clock generating device, which can generate a first clock signal with a fixed frequency; an oscillation circuit including P inverter gates, so that the The oscillating circuit can output a second clock signal, wherein P is an odd number; a command signal generating unit connected to the clock generating device for generating a reference command signal according to the first clock signal , so that the reference command signal can periodically generate a counting period; and, a command signal processing unit, the command signal processing unit is connected to the command signal generating unit and the oscillation circuit, for counting the first counting period during the counting period A clock number of the two clock signals, and a working temperature range is determined according to the clock number.
本发明所提供的数字式温度感测系统,可解决常用模拟式芯片组温度感测系统占用芯片组较大面积,较复杂的电路设计所造成成本的提高,以及无法实际测量芯片组内门延迟的问题。The digital temperature sensing system provided by the present invention can solve the problem that the commonly used analog chipset temperature sensing system occupies a larger area of the chipset, the increase in cost caused by the more complicated circuit design, and the inability to actually measure the internal gate delay of the chipset The problem.
附图说明Description of drawings
图1所绘示为常用芯片组的温度感测系统的功能方块示意图。FIG. 1 is a schematic functional block diagram of a temperature sensing system of a commonly used chipset.
图2所绘示为一反向器门及其实际输入与输出信号示意图。FIG. 2 is a schematic diagram of an inverter gate and its actual input and output signals.
图3所绘示为P个串接反向器门组示意图。FIG. 3 is a schematic diagram of P series-connected inverter gate groups.
图4所绘示为本发明数字式温度感测系统的功能方块示意图。FIG. 4 is a schematic functional block diagram of the digital temperature sensing system of the present invention.
图5所绘示为命令信号产生单元电路图。FIG. 5 is a circuit diagram of the command signal generating unit.
图6所绘示为命令信号产生单元输出信号示意图。FIG. 6 is a schematic diagram of the output signal of the command signal generation unit.
图7所绘示为命令信号处理单元电路图。FIG. 7 is a circuit diagram of the command signal processing unit.
具体实施方式Detailed ways
本发明得通过下列图式及说明,可得一更深入的了解。A deeper understanding of the present invention can be obtained through the following drawings and descriptions.
请参照图2,其所绘示为一反向器门(Not Gate)20及其实际输入与输出信号示意图。理想上,当该反向器门20的输入端由高电平转换为低电平时,该反向器门20的输出端输出应立刻由低电平转换为高电平。然而如图2所示,反向器门20的输入端由高电平转换为低电平在时间点t1发生,而反向器门20的输出端由低电平转换为一高电平在时间点t2发生。也就是说,实际上输入与输出信号之间的时间延迟(Δt)即称之为门延迟。由于反向器门20中的集成电路元件的物理特性,当集成电路元件所处环境的温度升高时,门延迟也随之升高,因此,当芯片组的温度发生变化时,芯片组中的门延迟也随之改变。如此一来,当芯片组在实际运行的过程中由于温度改变将会造成信号传递和理想状况不同。由于常用的芯片组里,并没有针对测量门延迟的装置,通常门延迟大小主要是靠电路在设计时的预估,或是电路在设计完成后,经由程序模拟来得知。然而,由于芯片组里无法实际测量出门延迟的大小,如此一来,会造成电路设计的不便和误差。Please refer to FIG. 2 , which shows a schematic diagram of an inverter gate (Not Gate) 20 and its actual input and output signals. Ideally, when the input terminal of the
本发明即运用反向器门20对温度的特性,提出本发明数字式温度感测系统。请参阅图3,其所绘示为P个串接反向器门组示意图。其中P为奇数,且第P个反向器门的输出端反馈至第1个反向器门的输入端。由于P为一奇数,因此,假设第1个反向器门的输入端为一高电平,则第P个反向器门的输出端将输出一低电平,当此低电平再被反馈至第一个反向器门的输入端时,则第P个反向器门的输出端将输出一不断重复着低电平和高电平的时脉信号。如前所述,随着温度的升高,反向器门的门延迟也随之升高,随着门延迟的升高,反向器门组输出的时脉信号的频率fgate就随之降低,因此,本发明的数字式温度感测系统即是透过此反向器门的物理特性,通过测量反向器门组输出的时脉信号的频率fgate,进而计算出芯片组的操作温度以及每个反向器门的门延迟。The present invention utilizes the characteristics of the temperature of the
举例来说,在一特定温度下,在不受温度干扰且频率固定为fosc的时脉产生装置,例如石英振荡器,产生M个时脉数目的时间过程,量测出该P个串接的反向器门组的输出端输出N个时脉数目,则可推算出在此一特定温度下,每个反向器门的门延迟为M×1/fosc×1/N×1/P。For example, at a specific temperature, a time course of M clock pulses generated by a clock generating device that is not disturbed by temperature and whose frequency is fixed at fosc, such as a quartz oscillator, is measured to measure the P serially connected The output terminal of the inverter gate group outputs N number of clock pulses, and it can be deduced that at this specific temperature, the gate delay of each inverter gate is M×1/fosc×1/N×1/P.
请参阅图4,其所绘示为本发明数字式温度感测系统的功能方块示意图。该数字式温度感测系统包括一时脉产生装置42、P个串接反向器门组44、一命令信号产生单元46和一命令信号处理单元48。其中,该时脉产生装置42可输出具有第一频率fosc的一第一时脉信号,且该P个串接反向器门组44可输出具有第二频率fgate的一第二时脉信号。Please refer to FIG. 4 , which is a functional block diagram of the digital temperature sensing system of the present invention. The digital temperature sensing system includes a
再者,该命令信号产生单元46连接至该时脉产生装置42,其是根据时脉产生装置所产生的一第一时脉信号来产生一参考命令信号、一载入命令信号以及一清除命令信号;而该命令信号处理单元48连接至该命令信号产生单元46和该P个串接反向器门组44,其是用于在参考命令信号所指定的一计数时间内,计数该P个串接反向器门组44输出端输出的一第二时脉信号中的时脉数目,再依照时脉数目的不同,来决定温度感测系统所感测到的温度或者门延迟。Furthermore, the command
请参阅图5,其所绘示为命令信号产生单元电路图。该命令信号产生单元电路包含一第一计数器461,该第一计数器461的致能端(EN1)连接至一高电平而时脉输入端连接至一第一时脉信号用以计算该第一时脉信号所产生的第一时脉数目;一第一比较器462,该第一比较器462的第一输入端(A1)连接至该第一计数器461的输出端(O1),第二输入端(B1)则提供一第一数值(M);一第二比较器463,该第二比较器463的第一输入端(A2)连接至该第一计数器461的输出端(O1),第二输入端(B2)提供一第二数值(M+R),输出端(A2=B2)连接至该第一计数器461的清除端(C1);一第三比较器464,该第三比较器464的第一输入端(A3)连接至该第一计数器461的输出端(O1),第二输入端(B3)提供一第三数值(M+Y);一第四比较器465,该第四比较器465的第一输入端(A4)连接至该第一计数器461的输出端(O1),第二输入端(B4)提供一第四数值(M+X),输出端(A4=B4)可输出该载入命令信号(LD);一反向器门466,该反向器门466的输入端连接至该第一比较器462的输出端(A1=B1);一多工器467,该多工器467的第一输入端(Hi)连接至该反向器门466的输出端,第二输入端(Lo)连接至该第二比较器463的输出端(A2=B2);一第一D型触发器468,该第一D型触发器468的输入端连接至该多工器467的输出端,时脉输入端连接至该第一时脉信号,输出端连接至该多工器467的选择端(S)并可输出该参考命令信号(REF);一第二D型触发器469,该第二D型触发器469的输入端连接至该第三比较器464的输出端(A3=B3),时脉输入端连接至该第一时脉信号,而输出端可输出该清除命令信号(ACLR)。Please refer to FIG. 5 , which is a circuit diagram of the command signal generation unit. The command signal generating unit circuit includes a first counter 461, the enabling terminal (EN 1 ) of the first counter 461 is connected to a high level and the clock input terminal is connected to a first clock signal for calculating the first A first clock number generated by a clock signal; a first comparator 462, the first input terminal (A 1 ) of the first comparator 462 is connected to the output terminal (O 1 ) of the first counter 461, The second input terminal (B 1 ) then provides a first value (M); a second comparator 463, the first input terminal (A 2 ) of the second comparator 463 is connected to the output terminal of the first counter 461 (O 1 ), the second input terminal (B 2 ) provides a second value (M+R), and the output terminal (A 2 =B 2 ) is connected to the clear terminal (C 1 ) of the first counter 461; a first Three comparators 464, the first input terminal (A 3 ) of the third comparator 464 is connected to the output terminal (O 1 ) of the first counter 461, and the second input terminal (B 3 ) provides a third value (M +Y); a fourth comparator 465, the first input terminal (A 4 ) of the fourth comparator 465 is connected to the output terminal (O 1 ) of the first counter 461, and the second input terminal (B 4 ) provides A fourth value (M+X), the output terminal (A 4 =B 4 ) can output the load command signal (LD); an inverter gate 466, the input terminal of the inverter gate 466 is connected to the first An output terminal (A 1 =B 1 ) of a comparator 462; a multiplexer 467, the first input terminal (Hi) of the multiplexer 467 is connected to the output terminal of the inverter gate 466, and the second input terminal (Lo) is connected to the output terminal (A 2 =B 2 ) of the second comparator 463; a first D-type flip-flop 468, the input end of the first D-type flip-flop 468 is connected to the multiplexer 467 Output terminal, the clock input terminal is connected to the first clock signal, the output terminal is connected to the selection terminal (S) of the multiplexer 467 and can output the reference command signal (REF); a second D-type flip-flop 469 , the input terminal of the second D-type flip-flop 469 is connected to the output terminal of the third comparator 464 (A 3 =B 3 ), the clock input terminal is connected to the first clock signal, and the output terminal can output the Clear command signal (ACLR).
再者,当第一计数器461的致能端(EN1)连接至高电平时,该第一计数器461即可以开始计数第一时脉信号所产生的第一时脉数目,当第一计数器461的清除端(C1)输入高电平时,第一计数器461中的第一时脉数目的计数值会被归零。当第一比较器462、第二比较器463、第三比较器464与第四比较器465的二个输入端具有相同数值时,输出端输出高电平,否则输出端输出低电平。Moreover, when the enabling terminal (EN 1 ) of the first counter 461 is connected to a high level, the first counter 461 can start counting the number of first clock pulses generated by the first clock signal. When the first counter 461 When the clear terminal (C 1 ) inputs a high level, the count value of the first clock number in the first counter 461 will be reset to zero. When the two input terminals of the first comparator 462 , the second comparator 463 , the third comparator 464 and the fourth comparator 465 have the same value, the output terminal outputs a high level, otherwise the output terminal outputs a low level.
请参阅图6,其所绘示为命令信号产生单元输出信号示意图。当时脉产生装置42产生第一时脉信号时,第一计数器461会开始计数第一时脉并产生第一时脉数目,并由输出端(O1)将此第一时脉数目传送至第一比较器462、第二比较器463、第三比较器464与第四比较器465。在第一计数器461的第一时脉数目尚未到达M值时,第一比较器462的输出端(A1=B1)会输出一低电平至该反向器门466,并产生一高电平输出,并经由该多工器467以及第一D型触发器468输出高电平,此时参考命令信号(REF)为高电平,也就是说,计算第一时脉信号的第一时脉数目未到达M值时,参考命令信号(REF)会固定在高电平。Please refer to FIG. 6 , which is a schematic diagram of the output signal of the command signal generating unit. When the
当第一计数器461的第一时脉数目到达M值时,第一比较器462的输出端(A1=B1)会输出一高电平至该反向器门466,并产生一低电平输出,并经由该多工器467以及第一D型触发器468输出低电平,此时,参考命令信号(REF)转换为低电平,而多工器467的选择端(S)也会选择第二比较器463的输出端(A2=B2)信号来输出至第一D型触发器468。When the first clock number of the first counter 461 reaches the M value, the output terminal (A 1 =B 1 ) of the first comparator 462 will output a high level to the inverter gate 466 and generate a low level level output, and output a low level via the multiplexer 467 and the first D-type flip-flop 468. At this time, the reference command signal (REF) is converted to a low level, and the selection terminal (S) of the multiplexer 467 is also The signal at the output terminal (A 2 =B 2 ) of the second comparator 463 is selected to be output to the first D-type flip-flop 468 .
很明显地,当第一计数器461的第一时脉数目大于M值且尚未到达M+R值时,第二比较器463的输出端(A2=B2)维持在低电平并经由多工器467与第一D型触发器468输出,所以参考命令信号(REF)维持在低电平。Obviously, when the number of first clock pulses of the first counter 461 is greater than the M value and has not yet reached the M+R value, the output terminal (A 2 =B 2 ) of the second comparator 463 is maintained at a low level and is passed through multiple The output of the duplexer 467 and the first D-type flip-flop 468, so the reference command signal (REF) is maintained at a low level.
当第一计数器461的第一时脉数目到达M+R值时,第二比较器463的输出端(A2=B2)会输出一高电平至多工器467以及第一D型触发器468使得参考命令信号(REF)转换为高电平,而多工器467的选择端(S)也会选择反相后的第一比较器462输出端(A1=B1)来输出至第一D型触发器468。很明显地,当第一计数器461的第一时脉数目到达M+R值时,第一比较器462的输出端(A1=B1)维持在低电平,所以反相后成为高电平,因此,参考命令信号(REF)维持在高电平。同时,由于第二比较器463的输出端(A2=B2)同时将第一计数器461中的第一时脉数目归零。之后,由于第一时脉数目被归零且尚未到达M值,因此第一比较器462输出(A1=B1)仍维持在低电平使得参考命令信号(REF)维持在高电平。When the first clock number of the first counter 461 reaches the M+R value, the output terminal (A 2 =B 2 ) of the second comparator 463 will output a high level to the multiplexer 467 and the first D-type flip-flop 468 makes the reference command signal (REF) transition to a high level, and the selection terminal (S) of the multiplexer 467 will also select the inverted first comparator 462 output terminal (A 1 =B 1 ) to output to the second A D-type flip-flop 468. Obviously, when the first clock number of the first counter 461 reaches the M+R value, the output terminal (A 1 =B 1 ) of the first comparator 462 is maintained at a low level, so it becomes a high level after inversion. level, therefore, the reference command signal (REF) is maintained at a high level. At the same time, because the output terminal (A 2 =B 2 ) of the second comparator 463 simultaneously resets the first clock number in the first counter 461 to zero. Afterwards, since the number of first clocks is reset to zero and has not yet reached the M value, the output of the first comparator 462 (A 1 =B 1 ) remains at low level so that the reference command signal (REF) remains at high level.
再者,当第一计数器461的第一时脉数目到达超过M+Y值时,第三比较器464的输出端(A3=B3)会输出一高电平,使得第二D型触发器469输出高电平,使得清除命令信号(ACLR)产生一个时脉宽度的脉波;同理,当第一计数器461的第一时脉数目到达超过M+X值时,第四比较器465的输出端(A4=B4)会输出一高电平,也就是载入命令信号(LD)产生一个时脉宽度的脉波。Moreover, when the first clock number of the first counter 461 exceeds the M+Y value, the output terminal (A 3 =B 3 ) of the third comparator 464 will output a high level, so that the second D-type trigger The device 469 outputs a high level, so that the clear command signal (ACLR) generates a pulse wave with a clock width; similarly, when the first clock number of the first counter 461 reaches the value exceeding M+X, the fourth comparator The output terminal (A 4 =B 4 ) of the 465 will output a high level, that is, the load command signal (LD) generates a pulse wave with a clock width.
根据本发明的实施例,R>Y>X。因此,如图6所示,参考命令信号(REF)会周期性地产生M个时脉数目时间的高电平,产生R个时脉数目时间的低电平。其中,M个时脉数目时间可定义为计数周期(Counting Duration),R个时脉数目时间可定义为恢复周期(Recovery Duration)。而载入命令信号(LD)会周期性地于第一时脉数目为M+X值时,产生一个时脉宽度的脉波。清除命令信号(ACLR)会周期性地于第一时脉数目为M+Y值时,产生一个时脉宽度的脉波。According to an embodiment of the present invention, R>Y>X. Therefore, as shown in FIG. 6 , the reference command signal (REF) periodically generates a high level for M clock times, and generates a low level for R clock times. Wherein, the number of M clocks can be defined as a counting period (Counting Duration), and the time of R clocks can be defined as a recovery period (Recovery Duration). The load command signal (LD) will periodically generate a pulse with a clock width when the first clock number is M+X. The clear command signal (ACLR) periodically generates a pulse wave with a clock width when the first clock number is M+Y.
请参阅图7,其所绘示为命令信号处理单元电路图。该命令信号处理单元包括一第二计数器481,该第二计数器481的致能端(EN2)可输入参考命令信号(REF),清除端(C2)可输入清除命令信号(ACLR),时脉输入端可输入该第二时脉信号;一第三D型触发器482,该第三D型触发器482的输入端连接至该第二计数器481的输出端(O2),时脉输入端可输入该载入命令信号(LD);j个比较器491~49j,该j个比较器491~49j的第一输入端连接至该第三D型触发器482的输出端,该j个比较器491~49j的第二输入端可分别输入一预设比较值(N1~Nj),该j个比较器491~49j各自有多个输出端用以表示比较器的第一输入端与第二输入端之间的数值比较关系,例如,每个比较器皆有三个输出端用以代表比较器的第一输入端的数值小于第二输入端的数值(A<B),比较器的第一输入端的数值等于第二输入端的数值(A=B),以及比较器的第一输入端的数值大于第二输入端的数值(A>B)。Please refer to FIG. 7 , which is a circuit diagram of the command signal processing unit. The command signal processing unit includes a
再者,当第二计数器481的致能端(EN2)为高电平时,该第二计数器481即可以开始计数第二时脉信号所产生的一第二时脉数目,当第二计数器481的清除端(C2)输入高电平时,第二计数器481的第二时脉数目的计数值会被归零。j个比较器491~49j会比较第一输入端与第二输入端之间的数值关系,并于相应的输出端输出高电平,而其他输出端输出低电平。Furthermore, when the enabling terminal (EN 2 ) of the
当命令信号产生单元产生参考命令信号(REF)处于高电平时,亦即在计数周期时,第二计数器481会持续计数第二时脉信号的第二时脉数目,一直到计数周期结束,也就是参考命令信号(REF)转换为低电平时,停止对第二时脉信号进行计数。When the command signal generation unit generates the reference command signal (REF) at a high level, that is, during the counting cycle, the
当此计数周期停止时也就是恢复周期开始,此时第二计数器481内的第二时脉数目必须等载入命令信号(LD)产生时,此第二时脉数目才会被栓锁(Latch)于第三D型触发器482的输出端。因此,j个比较器491~49j即可进行第一输入端的第二时脉数目与第二输入端的预设比较值(N1~Nj)之间的数值关系比较,并分别于j个比较器491~49j产生比较结果。When this counting cycle stops, that is, the recovery cycle starts, and the second clock number in the
于恢复周期的过程中,当清除命令信号(ACLR)产生时,第二计数器481内的第二时脉数目会被归零。之后,当命令信号产生单元产生参考命令信号(REF)处于高电平时,第二计数器481会再次计数第二时脉信号并再次产生第二时脉数目。During the recovery period, when the clear command signal (ACLR) is generated, the second clock number in the
根据本发明的实施例,利用监测j个比较器491~49j所产生比较结果,即可得知芯片组的温度或者芯片组的门延迟。举例来说,假设预设比较值的关系为N1<N2<...<Nj,且N1以下可定义为低温工作范围,N1~N2之间可定义为正常工作温度范围,N2~N3之间可定义为高温工作范围,而N4以上可定义为过热工作范围。由于载入命令信号以及清除命令信号会周期性地产生,因此,第二时脉数目会周期性地更新,而第三D型触发器482的输出端即会根据载入命令信号周期性地栓锁住更新的第二时脉数目。因此,根据监测j个比较器491~49j所产生比较结果,即可随时得知芯片组的温度或者芯片组的门延迟。例如,当第二时脉数目小于N1时,由比较器491的A<B输出端输出高电平,而其他输出端为低电平时,芯片组即可得知正处于芯片组正在低温工作范围。同理,芯片组也可以根据j个比较器491~49j所产生的比较结果得知正处于正常温度工作范围、高温工作范围或者过热工作范围。According to an embodiment of the present invention, the temperature of the chipset or the gate delay of the chipset can be known by monitoring the comparison results generated by the j comparators 491 - 49j. For example, assume that the relationship between the preset comparison values is N1<N2<...<Nj, and below N1 can be defined as the low temperature working range, between N1~N2 can be defined as the normal working temperature range, between N2~N3 It can be defined as the high temperature working range, and above N4 can be defined as the overheating working range. Since the load command signal and the clear command signal will be generated periodically, the second clock number will be periodically updated, and the output terminal of the third D-type flip-
再者,芯片组也可以根据j个比较器491~49j所产生的比较结果利用函数(M×1/fosc×1/N×1/P)来估计芯片组中的门延迟。其中,(M×1/fosc)即为计数周期,N为第二计数值,P为反向器门的数目。Furthermore, the chipset can also use the function (M×1/fosc×1/N×1/P) to estimate the gate delay in the chipset according to the comparison results generated by the
本发明的精神亦可适用于内置于芯片的振荡电路,该振荡电路基本元件至少包含奇数个反向器门,例如为P个反向器门。第P个反向器门的输出端反馈至该振荡电路的输入端。该奇数个反向器门可串接与门、或门等任何的组合,使该振荡电路的输入信号向后级输出即可。该振荡电路输出一时脉信号,且该时脉信号的频率受到该振荡电路的门延迟或该芯片的温度所影响。因此,可通过接收一外界时脉信号且相比较后,得知该振荡电路的门延迟或该芯片的温度。The spirit of the present invention is also applicable to the oscillator circuit built in the chip, and the basic components of the oscillator circuit include at least an odd number of inverter gates, for example, P inverter gates. The output terminal of the Pth inverter gate is fed back to the input terminal of the oscillator circuit. The odd number of inverter gates can be connected in series with any combination of AND gates, OR gates, etc., so that the input signal of the oscillating circuit can be output to the subsequent stage. The oscillating circuit outputs a clock signal, and the frequency of the clock signal is affected by the gate delay of the oscillating circuit or the temperature of the chip. Therefore, the gate delay of the oscillation circuit or the temperature of the chip can be obtained by receiving an external clock signal and comparing it.
综上所述,透过本发明的数字式温度感测系统与方法,芯片组内的门延迟将可被估计出来,且芯片组的温度将可透过此数字式温度感测方法来获得,如此一来,将可解决常用模拟式芯片组温度感测系统占用芯片组较大面积,较复杂的电路设计所造成成本的提高,以及无法实际测量芯片组内门延迟的问题。To sum up, through the digital temperature sensing system and method of the present invention, the gate delay in the chip set can be estimated, and the temperature of the chip set can be obtained through the digital temperature sensing method, In this way, the common analog chipset temperature sensing system can solve the problems that the chip set takes up a large area, the cost increases caused by the complicated circuit design, and the problem that the internal gate delay of the chipset cannot be actually measured.
以上所述仅为本发明较佳实施例,然其并非用以限定本发明的范围,任何熟悉本项技术的人员,在不脱离本发明的精神和范围内,可在此基础上做进一步的改进和变化,因此本发明的保护范围当以本申请的权利要求书所界定的范围为准。The above description is only a preferred embodiment of the present invention, but it is not intended to limit the scope of the present invention. Any person familiar with this technology can make further improvements on this basis without departing from the spirit and scope of the present invention. Improvements and changes, so the protection scope of the present invention should be defined by the claims of the present application.
附图中符号的简单说明如下:A brief description of the symbols in the drawings is as follows:
转换电路:10Conversion circuit: 10
模拟数字转换单元:102Analog-to-digital conversion unit: 102
信号温度映射单元:104Signal temperature mapping unit: 104
热敏二极管:12Thermal Diodes: 12
反向器门:20Inverter gates: 20
门延迟测量装置:40Gate delay measurement device: 40
命令信号产生单元:46Command signal generation unit: 46
命令信号处理单元:48Command signal processing unit: 48
时脉产生装置:42Clock generators: 42
P个串接反向器门组:44P series inverter gate groups: 44
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101679034A CN100435109C (en) | 2006-12-19 | 2006-12-19 | Digital Temperature Sensing System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101679034A CN100435109C (en) | 2006-12-19 | 2006-12-19 | Digital Temperature Sensing System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1971530A true CN1971530A (en) | 2007-05-30 |
CN100435109C CN100435109C (en) | 2008-11-19 |
Family
ID=38112365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101679034A Active CN100435109C (en) | 2006-12-19 | 2006-12-19 | Digital Temperature Sensing System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100435109C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120189033A1 (en) * | 2011-01-25 | 2012-07-26 | Kwang-Seok Kim | Temperature sensing circuit |
CN104132738A (en) * | 2014-07-29 | 2014-11-05 | 深圳市锐能微科技有限公司 | Temperature sensor and temperature measurement method |
WO2018090596A1 (en) * | 2016-11-15 | 2018-05-24 | 华为技术有限公司 | Method and circuit for detecting operating condition of security chip |
CN118566774A (en) * | 2024-05-23 | 2024-08-30 | 深德彩科技(深圳)股份有限公司 | An application method and structure of LED lamp based on common anode negative voltage circuit |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09305569A (en) * | 1996-01-17 | 1997-11-28 | Texas Instr Inc <Ti> | Method and device for controlling operation of computer in accordance with operating characteristics of cpu |
US6029251A (en) * | 1996-12-31 | 2000-02-22 | Opti Inc. | Method and apparatus for temperature sensing |
CN100380340C (en) * | 2005-04-30 | 2008-04-09 | 华硕电脑股份有限公司 | Temperature detection and control circuit |
-
2006
- 2006-12-19 CN CNB2006101679034A patent/CN100435109C/en active Active
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120189033A1 (en) * | 2011-01-25 | 2012-07-26 | Kwang-Seok Kim | Temperature sensing circuit |
US8864376B2 (en) * | 2011-01-25 | 2014-10-21 | Hynix Semiconductor Inc. | Temperature sensing circuit |
CN104132738A (en) * | 2014-07-29 | 2014-11-05 | 深圳市锐能微科技有限公司 | Temperature sensor and temperature measurement method |
CN104132738B (en) * | 2014-07-29 | 2017-02-15 | 深圳市锐能微科技有限公司 | Temperature sensor and temperature measurement method |
WO2018090596A1 (en) * | 2016-11-15 | 2018-05-24 | 华为技术有限公司 | Method and circuit for detecting operating condition of security chip |
CN108073831A (en) * | 2016-11-15 | 2018-05-25 | 华为技术有限公司 | A kind of method and detection circuit for detecting safety chip working condition |
US10489595B2 (en) | 2016-11-15 | 2019-11-26 | Huawei Technologies Co., Ltd. | Method and detection circuit for detecting security chip operating state |
CN108073831B (en) * | 2016-11-15 | 2020-07-24 | 华为技术有限公司 | Method for detecting working state of safety chip and detection circuit |
CN118566774A (en) * | 2024-05-23 | 2024-08-30 | 深德彩科技(深圳)股份有限公司 | An application method and structure of LED lamp based on common anode negative voltage circuit |
Also Published As
Publication number | Publication date |
---|---|
CN100435109C (en) | 2008-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8593171B2 (en) | Power supply monitor | |
US8405413B2 (en) | Critical path monitor having selectable operating modes and single edge detection | |
US7563023B2 (en) | Digital temperature detecting system and method | |
US7804290B2 (en) | Event-driven time-interval measurement | |
TWI644516B (en) | A circuit delay monitoring apparatus and method | |
JP2012516629A (en) | Critical path circuit for performance monitoring | |
CN105043580B (en) | single-chip temperature sensing device | |
JP6792602B2 (en) | High resolution time-digital converter | |
US8786347B1 (en) | Delay circuits for simulating delays based on a single cycle of a clock signal | |
CN111124363B (en) | A True Random Number Generation Method and True Random Number Generator | |
CN100435109C (en) | Digital Temperature Sensing System | |
US6545508B2 (en) | Detection of clock signal period abnormalities | |
US9568889B1 (en) | Time to digital converter with high resolution | |
US7197419B2 (en) | System and method for thermal monitoring of IC using sampling periods of invariant duration | |
US10476521B2 (en) | Ratio-metric self-capacitance-to-code convertor | |
CN106662604B (en) | Voltage sensor based on low-power high-resolution oscillator | |
JP2014140107A (en) | Pulse measurement circuit and data processing device | |
US20030154043A1 (en) | Resolution in measuring the pulse width of digital signals | |
US20090055122A1 (en) | On-Chip Frequency Response Measurement | |
CN113574473B (en) | time measurement circuit | |
US20170163248A1 (en) | Modulation of Power Supply Voltage for Varying Propagation Delay | |
CN217689895U (en) | Clock oscillation stop detection circuit and SOC chip | |
CN107317581B (en) | Time-to-digital converter with high resolution | |
WO2022104613A1 (en) | Voltage monitoring circuit and chip | |
Jiménez et al. | VLSI Implementation of digital frequency sensors as hardware countermeasure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |