[go: up one dir, main page]

CN1947702A - 脂质载体及其制造方法 - Google Patents

脂质载体及其制造方法 Download PDF

Info

Publication number
CN1947702A
CN1947702A CNA2005101352579A CN200510135257A CN1947702A CN 1947702 A CN1947702 A CN 1947702A CN A2005101352579 A CNA2005101352579 A CN A2005101352579A CN 200510135257 A CN200510135257 A CN 200510135257A CN 1947702 A CN1947702 A CN 1947702A
Authority
CN
China
Prior art keywords
lipid
carrier according
lipid carrier
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101352579A
Other languages
English (en)
Other versions
CN100588424C (zh
Inventor
黎世达
王蔼君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN1947702A publication Critical patent/CN1947702A/zh
Application granted granted Critical
Publication of CN100588424C publication Critical patent/CN100588424C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供一种脂质载体及其制造方法。本发明的脂质载体包括:一脂质微粒,由一正电荷脂质、一胆固醇、一中性磷脂质与一中性脂质所组成,其中该正电荷脂质大体为100重量份、该胆固醇大体为25~100重量份、该中性磷脂质大体为25~100重量份以及该中性脂质大体为25~150重量份。本发明还提供一种脂质载体的制造方法。本发明的脂质载体具有均一粒径、高包覆率与高血清稳定性,也具备酸碱敏感性。

Description

脂质载体及其制造方法
技术领域
本发明涉及一种脂质载体,特别涉及一种具有酸碱敏感性与血清稳定性的脂质载体及其制造方法。
背景技术
基因治疗一直被公认是未来医疗发展的重点,尤其对于一些传统药物无法治愈的遗传性或后天疾病,如先天免疫不全症或癌症等更是重要。基因治疗在过去十五年中,已由体外试验,成功进入动物活体试验与人体临床试验,虽然大多仍在临床一、二期,但已给病人无限的希望。一般递送基因药物的载体有两类,包括病毒载体与非病毒载体,而目前85%的基因治疗临床试验使用前者。
然而,在1999年9月,美国宾州大学发生了一起医疗意外,一名18岁男孩在接受基因治疗其鸟氨酸氨甲酰转移酶缺乏症(ornithine transcarbamylase deficiency,OTC)时死亡,隔年2月,美国食品药物管制局即停止该中心所有的基因治疗临床试验。无独有偶的,2002年9月,法国也发生第一个接受基因治疗的男孩产生白血病的案例,该案例是X性联染色体多重免疫性的疾病,病人为俗称的泡泡男孩(bubble boys),到了2003年又发生第二例白血病案例。双重的挫败,严重打击基因治疗的研发领域,探究其原因,其实是使用的病毒载体造成免疫与毒性等原因所致。因此,如何研发出一套非病毒基因药物的传送系统,就成了基因治疗成功与否的关键因素。目前,基因治疗使用的非病毒基因药物载体种类,包括脂质与高分子两大类载体,在此,即以脂质类载体为主要探究对象。
正电荷脂质载体是目前最常使用的非病毒载体,也是非病毒载体中转染效率最高的,目前已有数种体外试剂上市,最常使用的为Life technology公司生产的微脂体(Lipofectin及Lipofectamine),主要用于基因及蛋白质学术研究。正电荷脂质载体除了转染效率高之外,还具有胞内裂解(endosomolysis)效果及生体相容性高等优点。然而,正电荷脂质载体与DNA形成的复合体粒径通常大于500纳米,且在血清中不稳定,因此,只能用于体外或是局部给药。而第一个进入临床试验的微脂粒载体是匹兹堡大学Leaf Huang博士研发的DC-微脂体,其应用于头颈癌与乳癌治疗,目前在临床试验第二期,给药方式以局部注射为主。
为解决正电荷脂质载体与DNA复合体粒径过大的问题,LeafHuang博士开发了包覆型微脂粒系统(LPD)。在组成中添加正电荷肽(如精蛋白(protamine)或多熔素(polylysine)),不但成功缩小粒径,并增加转染效率。但由于该微脂粒的粒子表面仍带有正电荷,在血液中仍不稳定,遂使用上依然受到限制。
考虑到载体的正电荷会产生血清不稳定性及毒性等缺点,T.M.Allen与S.C.Semple等人将DNA包裹于表面不带电的中性微脂粒中,以减少载体与血液中蛋白质非专一性作用,进而增加其血清稳定性。他们发现,中性电荷微脂粒可显著延长DNA半衰期至8~24小时(DNA本身半衰期不到30分钟),并可将DNA带至肿瘤局部,但却发现此种微脂粒的转染效率偏低,这可能是载体本身过于稳定,且缺乏正电荷与细胞作用,因此很难进入细胞。目前的解决方式是使用标的配体,借着与特定细胞表面受体的键结,启动细胞吞噬(endocytosis)机制,以增加DNA的转染效率。
目前,使用于临床试验的脂质载体仅在临床二期,显见还有许多问题必须解决,其中增加载体的血清稳定性将是开发重点,以及如何有效克服包覆率不佳与转染效率过低的问题。
发明内容
基于上述现有技术中存在的存在的问题,本发明的目的在于提供一种具有酸碱敏感性与血清稳定性的脂质载体及其制造方法。
本发明提供一种脂质载体,包括:一脂质微粒,由一正电荷脂质(cationic lipid)、一胆固醇(cholesterol)、一中性磷脂质(neutral phospholipid)与一中性脂质(neutral lipid)所组成,其中该正电荷脂质大体为100重量份、该胆固醇大体为25~100重量份、该中性磷脂质大体为25~100重量份以及该中性脂质大体为25~150重量份。
本发明的脂质载体,还包括一药物,包覆于该脂质微粒内部。
本发明的脂质载体,还包括一配体,接枝于该脂质微粒表面。
本发明还提供一种脂质载体的制造方法,包括下列步骤:混合一正电荷脂质、一胆固醇、一中性磷脂质、一中性脂质、乙醇与水以形成一脂质溶液,其中该正电荷脂质、该胆固醇、该中性磷脂质与该中性脂质为制作脂质微粒的材料,且该正电荷脂质大体为100重量份、该胆固醇大体为25~100重量份、该中性磷脂质大体为25~100重量份以及该中性脂质大体为25~150重量份;加入一含药物的溶液于该脂质溶液中以形成一混合溶液,该混合溶液包含多个包覆药物的脂质微粒;以及加热该混合溶液,以制作完成一脂质载体。
本发明的脂质载体具有均一粒径、高包覆率与高血清稳定性,也具备酸碱敏感性。
附图说明
图1为本发明脂质载体于不同酸碱环境中的药物释放率;
图2为本发明脂质载体在有或无血清干扰下对PC14PE6细胞传输效率的比较。其中,P是统计值,一般而言,P小于0.05时,就表示在统计上具有显著性,而以*p表示。
具体实施方式
本发明提供一种脂质载体,包括:一脂质微粒,由一正电荷脂质、一胆固醇、一中性磷脂质与一中性脂质所组成,其中正电荷脂质大体为100重量份、胆固醇大体为25~100重量份、中性磷脂质大体为25~100重量份以及中性脂质大体为25~150重量份。
带正电荷的脂质类化合物可包括1,2-二油酰氧基-3-(三甲氨基)丙烷(1,2-dioleoyloxy-3-(trimethylamino)propane,DOTAP)、N-[1-(2,3-二-(十四烷氧基))丙基]-N,N-二甲基-N-羟乙基溴化铵(N-[1-(2,3-ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide,DMRIE)、N-[1-(2,3-二油酰氧基)丙基]-N,N-二甲基-N-羟乙基溴化铵(N-[1-(2,3,-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide,DORIE)、N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基氯化铵(N-[1-(2,3-dioleyloxy)propyl]- N,N,N- trimethylammoniumchloride,DOTMA)、3β-[N-(N′,N′-二甲基胺乙基)胺基甲酰基]胆固醇(3β-[N-(N′,N′-dimethylaminoethane)carbamyl]cholesterol,DC-Chol)或二甲基二(十八烷)铵(dimethyldioctadecylammonium,DDAB),其中以1,2-二油酰氧基-3-(三甲氨基)丙烷(DOTAP)为较佳选择。
中性的磷脂质化合物可包括例如为氢化大豆磷脂酰胆碱(hydrogenated soy phosphatidyl choline,HSPC)的磷脂酰胆碱(phosphatidyl choline,PC)或磷脂酰乙醇胺(phosphatidylethanolamine,PE)。而中性的脂质化合物可包括二硬脂酰磷脂酰乙醇胺-聚乙二醇(distearoylphosphatidylethanolamine-polyethyleneglycol,DSPE-PEG)。
在本发明脂质微粒中,正电荷脂质、胆固醇、中性磷脂质与中性脂质的较佳组成比例大体为正电荷脂质100重量份、胆固醇50重量份、中性磷脂质50重量份以及中性脂质65重量份。
脂质微粒可用来包覆药物,作为活体内传输药物的载体,适用的药物包括核酸药物、蛋白质药物、肽药物或有机合成药物等,其中核酸药物更包括质体DNA(plasmid DNA)、反义寡核苷酸(antisense oligonucleotide)或RNA干扰素(RNAi)。载体中,药物与正电荷脂质的重量比大体介于1∶4~1∶12,较佳大体为1∶6。
脂质微粒的直径大体介于35~95纳米,其ζ电位(zetapotential)大体介于-10~10毫伏特,而其包覆率大体介于85~100%。此脂质载体在pH值4~5环境中的药物释放率大体为60~70%,且其在血清中的活性可维持在60~100%。
此外,若在脂质微粒表面接枝(graft)一配体(ligand),作为辨识活体内标的细胞之用,则此种脂质载体于活体中的传输效率大体会高于无配体的脂质载体10倍以上。
本发明还提供一种脂质载体的制造方法,  包括下列步骤:首先,混合一正电荷脂质、一胆固醇、一中性磷脂质、一中性脂质、乙醇与水以形成一脂质溶液,其中正电荷脂质、胆固醇、中性磷脂质与中性脂质为制作脂质微粒的材料,且正电荷脂质大体为100重量份、胆固醇大体为25~100重量份、中性磷脂质大体为25~100重量份以及中性脂质大体为25~150重量份,接着,加入一含药物的溶液于脂质溶液中以形成一混合溶液,此混合溶液包含多个包覆药物的脂质微粒,最后,加热上述混合溶液,即完成此一脂质载体的制作。
加热步骤中,混合溶液的温度须加热至大体50~70摄氏度,较佳大体为65摄氏度。而乙醇与水的体积比大体介于3∶7~5∶5,较佳大体为4∶6。
本发明提供了新颖的载体配方及其特殊的混合比例,再配合控制乙醇/水比例、药物/正电荷脂质比例及加热处理等,而制得一均一粒径、高包覆率与高血清稳定性的脂质微粒,且由于此特殊的组成比例,使载体也具备了酸碱敏感性,当其进入细胞后,会选择在适当酸性(pH值4~5)的溶酶体(lysosome)内释出药物,并不会先被溶酶体的酵素分解、破坏,大幅提高基因药物的转染效率。
以下通过实施例来更进一步说明本发明的特征及优点。
实施例
脂质载体的制作
首先,将0.05毫升的乙醇滴入1.5毫升离心管中,接着,将0.1毫克带正电荷的1,2-二油酰氧基-3-(三甲氨基)丙烷(DOTAP)、0.05毫克的胆固醇、0.05毫克的氢化大豆磷脂酰胆碱(HSPC)与0.065毫克的二硬脂酰磷脂酰乙醇胺-聚乙二醇(DSPE-PEG)溶入乙醇溶液中,并以65摄氏度的水浴助溶,之后,加入去离子水至溶液总体积达0.095毫升并混合均匀,即制备完成一脂质溶液。
接着,将0.005毫升含寡核苷酸的溶液(10mg/ml)加入脂质溶液中以形成一均匀混合溶液,此混合溶液会包含多个包覆寡核苷酸的脂质微粒,最后,加入0.1毫升的磷酸盐缓冲溶液(pH值7.4)至离心管中并以65摄氏度水浴加热10分钟,即可完成脂质载体的制作。
粒径与ζ电位(zeta potential)测定
本发明以Coulter N4 Plus次微米颗粒测定仪(Miami,FL)测定载体粒径,以ZetaPlus ζ电位分析仪(BrookhavenInstruments corporation,Holtsville,NY)测定载体ζ电位。结果测得的粒径与ζ电位分别为72.0±22.5纳米及-0.302毫伏特。
包覆率测定
本发明先以层析管柱分离被包覆与未被包覆(free)的寡核苷酸,再测定载体的包覆率。包覆率的计算公式如下:
包覆率(%)=(寡核苷酸总量-未被包覆寡核苷酸量)/寡核苷酸总量×100%
结果测得的包覆率为95±5%。
药物释放率测定
将上述0.2毫升的载体溶液与100mM各种酸碱值的缓冲溶液(pH值分别为6.8,6,5.5,5,4.5,及4)混合,置于37摄氏度的水浴槽加热5分钟,之后,以Sepharose CL 4B(琼脂糖凝胶CL 4B)层析管柱分离并测定寡核苷酸的释放率。结果请参见图1,由图中可看出,本发明特殊配方的载体在pH值小于5的酸性环境中具有较佳的药物释放率,大体为60~70%。
血清稳定性测试
将PC14PE6细胞于进行实验前一日先培养在1平方厘米的玻片上,每片含有2×104个细胞,于培养隔夜后进行实验。实验步骤如下,将细胞与包覆寡核苷酸的载体于37摄氏度条件下培养4小时(培养基分成含10%血清与不含血清组),之后,以磷酸盐缓冲溶液冲洗细胞三次,再以含1% Triton X-100(曲拉通X-100)的磷酸盐缓冲溶液与细胞培养1小时使细胞溶解,取出细胞溶出物后,以萤光测定仪分析其萤光强度(激发光波长:494纳米,辐射光波长:519纳米)。结果可测知本发明载体于血清中的活性可维持在60~100%。
含配体载体的传输效率测定
将PC14PE6细胞于进行实验前一天先培养在24个孔中,每个孔含有5×104个细胞,于培养隔夜后进行实验。实验步骤如下,分别将细胞与含tamoxifen(它莫西芬)配体的载体以及不含tamoxifen配体的载体于37摄氏度条件下培养4小时(培养基分成含10%血清与不含血清组),之后,以磷酸盐缓冲溶液冲洗细胞一次,吸去磷酸盐缓冲溶液后,再以含1% Triton X-100的磷酸盐缓冲溶液与细胞培养1小时使细胞溶解,取出细胞溶出物后,以萤光仪测定其萤光强度(激发光波长:494纳米,辐射光波长:519纳米)。
结果请参见图2,由图中可看出,含配体的载体其传输效率大约为无配体载体的10倍以上,且不因血清存在与否而有所不同,再次验证本发明脂质载体的血清稳定性。
以上所述仅为本发明较佳实施例,然其并非用以限定本发明的范围,任何熟悉本项技术的人员,在不脱离本发明的精神和范围内,可在此基础上做进一步的改进和变化,因此本发明的保护范围当以本申请的权利要求书所界定的范围为准。

Claims (41)

1.一种脂质载体,包括:
一脂质微粒,由一正电荷脂质、一胆固醇、一中性磷脂质与一中性脂质所组成,其中该正电荷脂质为100重量份、该胆固醇为25~100重量份、该中性磷脂质为25~100重量份以及该中性脂质为25~150重量份。
2.根据权利要求1所述的脂质载体,其中该正电荷脂质包括1,2-二油酰氧基-3-(三甲氨基)丙烷、N-[1-(2,3-二-(十四烷氧基))丙基]-N,N-二甲基-N-羟乙基溴化铵、N-[1-(2,3-二油酰氧基)丙基]-N,N-二甲基-N-羟乙基溴化铵、N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基氯化铵、3β-[N-(N′,N′-二甲基胺乙基)胺基甲酰基]胆固醇或二甲基二(十八烷)铵。
3.根据权利要求1所述的脂质载体,其中该中性磷脂质包括磷脂酰胆碱或磷脂酰乙醇胺。
4.根据权利要求3所述的脂质载体,其中该磷脂酰胆碱包括氢化大豆磷脂酰胆碱。
5.根据权利要求1所述的脂质载体,其中该中性脂质包括二硬脂酰磷脂酰乙醇胺-聚乙二醇。
6.根据权利要求1所述的脂质载体,其中该正电荷脂质为100重量份、该胆固醇为50重量份、该中性磷脂质为50重量份以及该中性脂质为65重量份。
7.根据权利要求1所述的脂质载体,还包括一药物,包覆于该脂质微粒内部。
8.根据权利要求7所述的脂质载体,其中该药物包括核酸药物、蛋白质药物、肽药物或有机合成药物。
9.根据权利要求8所述的脂质载体,其中该核酸药物包括质体DNA、反义寡核苷酸或RNA干扰素。
10.根据权利要求7所述的脂质载体,其中该药物与该正电荷脂质的重量比介于1∶4~1∶12。
11.根据权利要求7所述的脂质载体,其中该药物与该正电荷脂质的重量比为1∶6。
12.根据权利要求1所述的脂质载体,其中该脂质微粒的直径介于35~95纳米。
13.根据权利要求1所述的脂质载体,其中该脂质微粒的ζ电位介于-10~10毫伏特。
14.根据权利要求1所述的脂质载体,其中该脂质微粒的包覆率介于85~100%。
15.根据权利要求7所述的脂质载体,其中该脂质载体于pH值小于5的酸性环境中的药物释放率介于60~70%。
16.根据权利要求1所述的脂质载体,其中该脂质载体于血清中的活性介于60~100%。
17.根据权利要求1所述的脂质载体,还包括一配体,接枝于该脂质微粒表面。
18.根据权利要求17所述的脂质载体,其中该配体是用来辨识活体内的标的细胞。
19.根据权利要求17所述的脂质载体,其中该脂质载体于活体中的传输效率高于无配体脂质载体10倍以上。
20.一种脂质载体的制造方法,包括下列步骤:
混合一正电荷脂质、一胆固醇、一中性磷脂质、一中性脂质、乙醇与水以形成一脂质溶液,其中该正电荷脂质、该胆固醇、该中性磷脂质与该中性脂质为制作脂质微粒的材料,且该正电荷脂质为100重量份、该胆固醇为25~100重量份、该中性磷脂质为25~100重量份以及该中性脂质为25~150重量份;
加入一含药物的溶液于该脂质溶液中以形成一混合溶液,该混合溶液包含多个包覆药物的脂质微粒;以及
加热该混合溶液,以制作完成一脂质载体。
21.根据权利要求20所述的脂质载体的制造方法,其中该正电荷脂质包括1,2-二油酰氧基-3-(三甲氨基)丙烷、N-[1-(2,3-二-(十四烷氧基))丙基]-N,N-二甲基-N-羟乙基溴化铵、N-[1-(2,3-二油酰氧基)丙基]-N,N-二甲基-N-羟乙基溴化铵、N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基氯化铵、3β-[N-(N′,N′-二甲基胺乙基)胺基甲酰基]胆固醇或二甲基二(十八烷)铵。
22.根据权利要求20所述的脂质载体的制造方法,其中该中性磷脂质包括磷脂酰胆碱或磷脂酰乙醇胺。
23.根据权利要求22所述的脂质载体的制造方法,其中该磷脂酰胆碱包括氢化大豆磷脂酰胆碱。
24.根据权利要求20所述的脂质载体的制造方法,其中该中性脂质包括二硬脂酰磷脂酰乙醇胺-聚乙二醇。
25.根据权利要求20所述的脂质载体的制造方法,其中该正电荷脂质为100重量份、该胆固醇为50重量份、该中性磷脂质为50重量份以及该中性脂质为65重量份。
26.根据权利要求20所述的脂质载体的制造方法,其中乙醇与水的体积比介于3∶7~5∶5。
27.根据权利要求20所述的脂质载体的制造方法,其中乙醇与水的体积比为4∶6。
28.根据权利要求20所述的脂质载体的制造方法,其中该药物包括核酸药物、蛋白质药物、肽药物或有机合成药物。
29.根据权利要求28所述的脂质载体的制造方法,其中该核酸药物包括质体DNA、反义寡核苷酸或RNA干扰素。
30.根据权利要求20所述的脂质载体的制造方法,其中该药物与该正电荷脂质的重量比介于1∶4~1∶12。
31.根据权利要求20所述的脂质载体的制造方法,其中该药物与该正电荷脂质的重量比为1∶6。
32.根据权利要求20所述的脂质载体的制造方法,其中加热该混合溶液的温度至50~70摄氏度。
33.根据权利要求20所述的脂质载体的制造方法,其中加热该混合溶液的温度至65摄氏度。
34.根据权利要求20所述的脂质载体的制造方法,其中该脂质微粒的直径介于35~95纳米。
35.根据权利要求20所述的脂质载体的制造方法,其中该脂质微粒的ζ电位介于-10~10毫伏特。
36.根据权利要求20所述的脂质载体的制造方法,其中该脂质微粒的包覆率介于85~100%。
37.根据权利要求20所述的脂质载体的制造方法,其中该脂质载体于pH值小于5的酸性环境中的药物释放率介于60~70%。
38.根据权利要求20所述的脂质载体的制造方法,其中该脂质载体于血清中的活性介于60~100%。
39.根据权利要求20所述的脂质载体的制造方法,还包括一配体,接枝于该脂质微粒表面。
40.根据权利要求39所述的脂质载体的制造方法,其中该配体是用来辨识活体内的标的细胞。
41.根据权利要求39所述的脂质载体的制造方法,其中该脂质载体于活体中的传输效率高于无配体脂质载体10倍以上。
CN200510135257A 2005-10-14 2005-12-29 脂质载体及其制造方法 Active CN100588424C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/249,326 2005-10-14
US11/249,326 US20070087045A1 (en) 2005-10-14 2005-10-14 Lipid carrier and method of preparing the same

Publications (2)

Publication Number Publication Date
CN1947702A true CN1947702A (zh) 2007-04-18
CN100588424C CN100588424C (zh) 2010-02-10

Family

ID=35695559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510135257A Active CN100588424C (zh) 2005-10-14 2005-12-29 脂质载体及其制造方法

Country Status (5)

Country Link
US (1) US20070087045A1 (zh)
EP (1) EP1774962B1 (zh)
JP (1) JP5264053B2 (zh)
CN (1) CN100588424C (zh)
TW (1) TWI350177B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711454A (zh) * 2009-10-12 2012-10-03 杰西.L.S.奥 用于提高rna干扰剂的递送、表达或活性的方法和组合物
US8871251B2 (en) 2008-11-11 2014-10-28 Can Heal Biomeditech Corp. Liposome and method for producing the same
CN105163721A (zh) * 2012-05-23 2015-12-16 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200800235A (en) * 2005-10-18 2008-01-01 Otsuka Pharma Co Ltd Carrier composition for nucleic acid transport
CA2906732C (en) * 2013-03-15 2023-08-08 The University Of British Columbia Lipid nanoparticles for transfection and related methods
EP3519578B1 (en) 2016-10-03 2021-12-22 Precision Nanosystems Inc Compositions for transfecting resistant cell types
CA3057320A1 (en) * 2017-03-23 2018-09-27 DNARx Systems and methods for nucleic acid expression in vivo
FI3864163T3 (fi) 2018-10-09 2024-05-03 Univ British Columbia Koostumukset ja järjestelmät, joihin sisältyvät transfektiokompetentit vesikkelit, joissa ei ole orgaanisia liuottimia eikä pesuaineita, sekä niihin liittyvät menetelmät
EP4132591A4 (en) 2020-04-09 2024-04-24 Verve Therapeutics, Inc. BASE EDITING OF PCSK9 AND METHODS OF USE THEREOF FOR TREATING DISEASES
EP4213882A4 (en) 2020-09-15 2025-02-26 Verve Therapeutics Inc TAL EFFECTOR NUCLEASES FOR GENE EDITING
WO2025022920A1 (ja) * 2023-07-26 2025-01-30 株式会社日本触媒 脂質ナノ粒子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908635A (en) * 1994-08-05 1999-06-01 The United States Of America As Represented By The Department Of Health And Human Services Method for the liposomal delivery of nucleic acids
US5837533A (en) * 1994-09-28 1998-11-17 American Home Products Corporation Complexes comprising a nucleic acid bound to a cationic polyamine having an endosome disruption agent
US6743779B1 (en) * 1994-11-29 2004-06-01 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
US5786214A (en) * 1994-12-15 1998-07-28 Spinal Cord Society pH-sensitive immunoliposomes and method of gene delivery to the mammalian central nervous system
US5965434A (en) * 1994-12-29 1999-10-12 Wolff; Jon A. Amphipathic PH sensitive compounds and delivery systems for delivering biologically active compounds
CA2223179A1 (en) * 1995-06-07 1996-12-19 Bob Dale Brown Phosphonic acid-based cationic lipids
WO1998051278A2 (en) * 1997-05-14 1998-11-19 Inex Pharmaceuticals Corporation High efficiency encapsulation of charged therapeutic agents in lipid vesicles
CA2294579C (en) * 1997-06-23 2007-10-09 Sequus Pharmaceuticals, Inc. Liposome-entrapped polynucleotide composition and method
DE19915610A1 (de) * 1999-04-07 2000-10-19 Augustinus Bader Verfahren zur Besiedlung von Substraten mit biologischen Zellen und dafür verwendbare Besiedlungsvorrichtungen
WO2000075164A1 (en) * 1999-06-07 2000-12-14 Mirus Corporation COMPOSITIONS AND METHODS FOR DRUG DELIVERY USING pH SENSITIVE MOLECULES
EP1613285A2 (en) * 2003-03-31 2006-01-11 Alza Corporation Lipid particles having asymmetric lipid coating and method of preparing same
US20070212403A1 (en) * 2003-11-03 2007-09-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method for Selecting Cationic or Anionic Liposomes for Treatment of a Mucosa Membrane, and Kit Comprising the Same
EP1766035B1 (en) * 2004-06-07 2011-12-07 Protiva Biotherapeutics Inc. Lipid encapsulated interfering rna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871251B2 (en) 2008-11-11 2014-10-28 Can Heal Biomeditech Corp. Liposome and method for producing the same
CN102711454A (zh) * 2009-10-12 2012-10-03 杰西.L.S.奥 用于提高rna干扰剂的递送、表达或活性的方法和组合物
CN102711454B (zh) * 2009-10-12 2015-05-20 杰西.L.S.奥 用于提高rna干扰剂的递送、表达或活性的方法和组合物
CN105163721A (zh) * 2012-05-23 2015-12-16 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法
CN105163721B (zh) * 2012-05-23 2018-05-22 俄亥俄州立大学 脂质纳米颗粒组合物以及制备和使用其的方法

Also Published As

Publication number Publication date
TWI350177B (en) 2011-10-11
EP1774962A1 (en) 2007-04-18
CN100588424C (zh) 2010-02-10
JP5264053B2 (ja) 2013-08-14
US20070087045A1 (en) 2007-04-19
EP1774962B1 (en) 2014-03-19
TW200714292A (en) 2007-04-16
JP2007106740A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
US20210299058A1 (en) Intracellular Delivery System for mRNA Nucleic Acid Drugs, Preparation Method and Application Thereof
CN109152735B (zh) 包含亲脂性抗炎剂的脂质纳米颗粒及其使用方法
US6120798A (en) Liposome-entrapped polynucleotide composition and method
US9028797B2 (en) Composite body for antigen or drug delivery
US20110117026A1 (en) Methods and compositions for the delivery of bioactive compounds
CN100588424C (zh) 脂质载体及其制造方法
US7005140B2 (en) Lipid particles having asymmetric lipid coating and method of preparing same
JP5382682B2 (ja) 薬物送達複合体
Bulbake et al. Comparison of cationic liposome and PAMAM dendrimer for delivery of anti-Plk1 siRNA in breast cancer treatment
Wang et al. Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment
Zhang et al. Construction of a targeting nanoparticle of 3′, 3 ″-bis-peptide-siRNA conjugate/mixed lipid with postinserted DSPE-PEG2000-cRGD
CN107362370B (zh) 一种基于金纳米簇联合NGF siRNA治疗胰腺癌的方法
Chaudhary et al. Strategic targeting of non‐small‐cell lung cancer utilizing genetic material‐based delivery platforms of nanotechnology
US20240382425A1 (en) RNA binding and stabilising cationic liposome, its application and method of loading the liposome with emetine
CN114306244B (zh) 一种微米级脂质复合物及其制备和应用
Liu et al. Preparation and characterization of siRNA-loaded liposomes
Aliakbarinodehi et al. Time-Resolved Inspection of Ionizable Lipid-Facilitated Lipid Nanoparticle Disintegration and Cargo Release at an Early Endosomal Membrane Mimic
Li et al. Targeted delivery of antisense oligodeoxynucleotides formulated in a novel lipidic vector
Xiao et al. A novel long-circulating DOX liposome: Formulation and pharmacokinetics studies
Chen et al. Soft biomaterial-based nanocrystal in pharmaceutical
Liu et al. DNA tetrahedron nanoparticles service as a help carrier and adjvant of mRNA vaccine
Zhong et al. Conditional fusogenic lipid nanocarriers for cytosolic delivery of macromolecular therapeutics
Muralidharan et al. Lipid Nanocarriers for RNAi-Based Cancer Therapy
CN119523941A (zh) 一种递送核酸的仿生抗原提呈细胞靶向脂质纳米颗粒及其应用
Kumar et al. Delivery of functionalized nanoformulations for small interfering RNA (siRNA): recent innovative strategies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant