CN1944713A - Method for producing multiple material micro part - Google Patents
Method for producing multiple material micro part Download PDFInfo
- Publication number
- CN1944713A CN1944713A CNA200610104685XA CN200610104685A CN1944713A CN 1944713 A CN1944713 A CN 1944713A CN A200610104685X A CNA200610104685X A CN A200610104685XA CN 200610104685 A CN200610104685 A CN 200610104685A CN 1944713 A CN1944713 A CN 1944713A
- Authority
- CN
- China
- Prior art keywords
- powder
- metal
- droplet
- control system
- droplets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 64
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 230000008021 deposition Effects 0.000 claims abstract description 19
- 238000002347 injection Methods 0.000 claims abstract description 19
- 239000007924 injection Substances 0.000 claims abstract description 19
- 238000009825 accumulation Methods 0.000 claims abstract description 8
- 239000007921 spray Substances 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000007769 metal material Substances 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000006392 deoxygenation reaction Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 7
- 238000002844 melting Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 239000011365 complex material Substances 0.000 abstract description 4
- 238000007789 sealing Methods 0.000 abstract 2
- 239000000758 substrate Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910018182 Al—Cu Inorganic materials 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 2
- 238000005049 combustion synthesis Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- KEUKAQNPUBYCIC-UHFFFAOYSA-N ethaneperoxoic acid;hydrogen peroxide Chemical compound OO.CC(=O)OO KEUKAQNPUBYCIC-UHFFFAOYSA-N 0.000 description 1
- 238000010100 freeform fabrication Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种多材料微小制件的制造方法,包括下述步骤:将金属基材料装入坩埚密封并熔融待用,将多材料粉体分别装入粉末供给装置的容器中,密封真空腔,启动喷射环境测控系统、射流喷射控制系统、熔滴/粉末联合沉积控制系统,使坩埚喷射压力维持在40KPa,加充电电压以及偏转电压,使均匀金属熔滴流按照设计进行偏转沉积;控制喷嘴将粉末喷射到熔滴堆积过程形成的“熔池”中,同时依靠熔滴堆积产生的热量以及熔融的金属液体的表面张力与金属熔滴进行互溶或者将粉末直接嵌入熔融状态的金属中;在无氧环境下冷却制件。由于采用了多个控制系统同时控制熔滴和至少两种不同的粉末,可成形具有复杂材料分布或材料成份的多材料微小制件的低成本制造。
The invention discloses a method for manufacturing multi-material micro-parts, which comprises the following steps: putting metal-based materials into a crucible, sealing and melting them for use, respectively putting multi-material powders into containers of a powder supply device, sealing the vacuum chamber, start the injection environment measurement and control system, jet injection control system, droplet/powder joint deposition control system, keep the crucible injection pressure at 40KPa, add charging voltage and deflection voltage, so that the uniform metal droplet flow is deflected and deposited according to the design; control The nozzle sprays the powder into the "melt pool" formed by the accumulation of droplets, and at the same time relies on the heat generated by the accumulation of droplets and the surface tension of the molten metal liquid to dissolve with the metal droplets or directly embed the powder into the molten metal; Cool the part in an oxygen-free environment. Since multiple control systems are used to simultaneously control molten droplets and at least two different powders, low-cost manufacturing of multi-material micro-parts with complex material distribution or material composition can be formed.
Description
技术领域technical field
本发明涉及一种多材料微小制件的制造方法。The invention relates to a manufacturing method of a multi-material micro-part.
背景技术Background technique
高性能多材料微小制件以其独特的物理、力学性质在各种航空航天器中的微小结构、微型飞行器特殊部件、空间动力系统的载重部件以及核工业等领域具有广泛的应用前景和潜在市场。传统的金属多材料制件的制备方法主要有气相沉积法、涂镀法、激光熔敷法、粉末冶金法、自蔓延高温燃烧合成法等,但由于工艺的局限,均不能从设计的原型直接制备多材料制件,例如自蔓延高温燃烧合成法等需要模具,材料成分单一,不能成形如具有复杂内流道的微小金属多材料涡轮等复杂件。另外,由于另一些技术涉及到大功率的激光设备,加工成本昂贵,工序复杂。因此人们不断地探索多材料微小制件设计制造一体化的方法,实现多材料微小制件低成本,高效率制造。Due to its unique physical and mechanical properties, high-performance multi-material micro-parts have broad application prospects and potential markets in the micro-structures of various aerospace vehicles, special parts of micro-aircraft, load-bearing parts of space power systems, and the nuclear industry. . The traditional preparation methods of metal multi-material parts mainly include vapor deposition method, coating method, laser cladding method, powder metallurgy method, self-propagating high-temperature combustion synthesis method, etc. The preparation of multi-material parts, such as the self-propagating high-temperature combustion synthesis method, requires molds, and the material composition is single, which cannot form complex parts such as tiny metal multi-material turbines with complex internal flow channels. In addition, because other technologies involve high-power laser equipment, the processing cost is expensive and the process is complicated. Therefore, people continue to explore the method of integrating the design and manufacture of multi-material micro-parts to realize low-cost and high-efficiency manufacturing of multi-material micro-parts.
均匀液滴喷射技术(UDS)是由美国麻省理工学院Droplet based Manufacture(DBM)实验室提出的一种新的金属快速原型制造方法,基本原理是使用机械扰动将层流毛细金属射流离散为均匀的金属熔滴,同时对产生的熔滴进行有选择充电,然后使用高压静电场精确定位金属熔滴,层层堆积成欲成形的制件。该方法能直接沉积金属,为金属零件以及金属基多材料件制备的快速制备提供了一条思路。但均匀液滴喷射沉积只能沉积铝、锌、铜一类熔点不是很高的金属,所以采用不同材料的均匀熔滴联合沉积制取多材料微小制件的方法只能用于制备有限的低熔点的金属多材料微小制件。Uniform Droplet Discharge Technology (UDS) is a new metal rapid prototyping method proposed by the MIT Droplet based Manufacture (DBM) laboratory. The basic principle is to use mechanical disturbance to discretize the laminar capillary metal jet into a uniform At the same time, the generated molten droplets are selectively charged, and then the high-voltage electrostatic field is used to precisely position the metal molten droplets, and they are piled up layer by layer to form the workpiece to be formed. This method can directly deposit metal, which provides a way of thinking for the rapid preparation of metal parts and metal-based multi-material parts. However, uniform droplet spray deposition can only deposit metals such as aluminum, zinc, and copper with low melting points, so the method of using uniform droplet joint deposition of different materials to prepare multi-material tiny parts can only be used to prepare limited low-temperature parts. Melting point metal multi-material tiny parts.
文献“W.B.Cao,S.Kirihara,Y.Miyamoto,K.Matsuura,M.Kudoh.evelopment of freeformfabrication method for Ti-Al-Ni intermetallics.Intermetallics 10 2002:879-885.”介绍了一种将均匀金属熔滴喷射与熔滴/粉末高温自蔓延合成(SHS)技术结合的高温金属间化合物快速制备方法。其将铝熔滴,准确地沉积在铺有均匀钛粉体的基板上,利用均匀铝液滴沉积到预热300度的金属粉体中发生高温自蔓延合成(SHS)反应生铝-钛金属间化合物,然后进行再次的铺粉和沉积,经多次的铺粉和沉积制取铝-钛金属间化合物材料。此技术能够根据设计快速沉积金属间化合物材料,其熔点比钛金属更高。但其没有沉积制件,并且由于基板上的粉体材料不能在成形过程中按要求改变,无法成型多种复杂材料成分和分布的多材料微小制件。The literature "W.B.Cao, S.Kirihara, Y.Miyamoto, K.Matsuura, M.Kudoh.evelopment of freeform fabrication method for Ti-Al-Ni
发明内容Contents of the invention
为了克服现有技术无法成型多种复杂材料成分的多材料微小制件的不足,本发明提供一种多材料微小制件的制造方法。In order to overcome the deficiency that the prior art cannot form multi-material micro-parts with various complex material components, the present invention provides a method for manufacturing multi-material micro-parts.
本发明解决其技术问题所采用的技术方案是:一种多材料微小制件的制造方法,其特征在于包括下述步骤:The technical solution adopted by the present invention to solve its technical problem is: a kind of manufacturing method of multi-material tiny parts, it is characterized in that comprising the following steps:
1)将金属材料装入坩埚密封并熔融待用,将多材料粉体分别装入粉末供给装置的容器中,调试粉末供给装置,使粉末喷嘴处充满粉末,整个制备过程在真空腔中进行;1) Put the metal material into the crucible, seal it and melt it for use, put the multi-material powder into the container of the powder supply device respectively, adjust the powder supply device, make the powder nozzle be filled with powder, and the whole preparation process is carried out in the vacuum chamber;
2)密封真空腔,启动喷射环境测控系统进行腔内气体除氧,经过2~4小时的除氧处理,将真空腔内的氧含量降低到10PPM以下;2) Seal the vacuum chamber, start the injection environment measurement and control system to deoxygenate the gas in the chamber, and reduce the oxygen content in the vacuum chamber to below 10PPM after 2 to 4 hours of deoxygenation treatment;
3)启动射流喷射控制系统,使坩埚喷射压力维持在40KPa,保证射流稳定,加上充电电压以及偏转电压,通过高速CCD摄像机观测熔滴流的形态,调整激振信号得到均匀熔滴流,使均匀金属熔滴流按照设计进行偏转沉积;3) Start the jet injection control system to maintain the injection pressure of the crucible at 40KPa to ensure the stability of the jet flow. Add the charging voltage and deflection voltage, observe the shape of the droplet flow through a high-speed CCD camera, and adjust the excitation signal to obtain a uniform droplet flow. The uniform metal droplet flow is deflected and deposited according to the design;
4)启动熔滴/粉末联合沉积控制系统,控制喷嘴将粉末喷射到熔滴堆积过程形成的“熔池”中,同时依靠熔滴堆积产生的热量以及熔融的金属液体的表面张力与金属熔滴进行互溶或者将粉末直接嵌入熔融状态的金属中;4) Start the droplet/powder joint deposition control system, control the nozzle to spray the powder into the "melt pool" formed by the droplet accumulation process, and rely on the heat generated by the droplet accumulation and the surface tension of the molten metal liquid and the metal droplet Miscibility or direct embedding of powders into molten metals;
5)在需要进行支撑的地方采用受热气化的粉末与金属熔滴进行联合喷射,形成泡沫状的金属支撑结构,成形完成以后,在无氧环境下将制件冷却,泡沫状的金属支撑结构由机械的方法去除,即得到多材料微小制件。5) Where support is required, heat-gasified powder and metal droplets are used for joint spraying to form a foam-like metal support structure. After the forming is completed, the part is cooled in an oxygen-free environment to form a foam-like metal support structure. It is removed by mechanical means to obtain multi-material tiny parts.
本发明的有益效果是,由于采用了喷射环境测控系统、射流喷射控制系统、熔滴/粉末联合沉积控制系统同时控制熔滴和至少两种不同的粉末,可成形具有复杂材料分布或材料成份的多材料微小制件的集成制造。该方法工序简单,无昂贵设备,可突破现阶段金属多材料微小制件制造成本的瓶颈,实现多材料微小制件的低成本、高效率的制备。The beneficial effect of the present invention is that due to the adoption of the injection environment measurement and control system, the jet injection control system, and the droplet/powder joint deposition control system to control the droplet and at least two different powders at the same time, it can form complex material distribution or material composition. Integrated manufacturing of multi-material tiny parts. The method has simple procedures and no expensive equipment, can break through the bottleneck of manufacturing cost of metal multi-material tiny parts at the present stage, and realize low-cost and high-efficiency preparation of multi-material tiny parts.
附图说明Description of drawings
图1是本发明多材料微小制件的制造方法所用装置结构示意图。Fig. 1 is a schematic diagram of the structure of the device used in the manufacturing method of multi-material micro-parts of the present invention.
图中,1.激振源 2.坩埚 3.电阻丝 4.射流 5.充电电极 6.偏转电极 7.粉末存储容器 8.粉末喷头 9.制件 10.三维基板 11.循环冷却水 12.回收槽 13.高速CCD摄像机14.熔滴/粉末联合沉积控制系统 15.喷射环境测控系统 16.射流喷射控制系统 17.真空腔。In the figure, 1. Exciting source 2. Crucible 3. Resistance wire 4. Jet 5. Charging electrode 6. Deflecting electrode 7.
具体实施方式Detailed ways
实施例1:参考图1,成形具有耐磨和抗疲劳裂纹扩散的Al-Li-Si多材料运动承载微小部件。制件为1×1×1cm正方体,局部为耐磨部分,由于高硅铝合金具有优良的耐磨性和耐腐蚀性能材料,材料选为Al-18Si合金;然后材料逐渐过渡到另外部分的Al-3.8Li合金,Al-3.8Li合金为低密度高锂合金,不仅极大地减轻了部件重量,而且具有很好的抗疲劳裂纹扩散能力,可以用作循环承载部件;首先根据制件的形状和材料的分布建立制件的数字化模型,根据模型生成快速沉积系统的离散文件,结合熔滴沉积系统,生成三维基板运动轨迹数据文件;同时根据材料的类型以及分布状态制定粉末供给和熔滴充电偏转沉积的数据文件。将铝锭放入坩埚2中,将硅粉和锂粉放入粉末供给装置的粉末存储容器7中,调试粉末供给装置,使粉末喷嘴处充满粉末;启动喷射环境测控系统15,密封真空腔17,进行气体除氧,直至氧含量降低为10PPM以下;密封坩埚2,给电阻丝3通电,加热坩埚2到650度,并保持该温度不变;对坩埚施加40KPa的气压,建立射流4,然后在由激振1产生3KHz的正弦扰动,通过高速CCD摄像机13观测熔滴流的形态,调整正弦信号的频率,直到产生的均匀熔滴流;对充电电极5加上充电电压,对偏转电极6加上偏转电压,射流喷射控制系统16启动熔滴/粉末联合沉积控制系统14,按照设计将欲沉积的铝熔滴偏转到三维基板10上,多余铝熔滴进入回收槽12;控制喷嘴将粉末喷射到熔滴堆积过程形成的“熔池”中,同时依靠熔滴堆积产生的热量以及熔融的金属液体的表面张力与金属熔滴进行互溶或者将粉末直接嵌入熔融状态的金属中;同时经粉末的喷头8将欲沉积的硅粉喷射到熔滴沉积点,通过控制粉末喷射的速率控制送粉量,实现铝硅的结合,得到Al-18Si合金;联合沉积过程按照三维基板10运动轨迹数据文件、粉末供给和熔滴充电偏转沉积的数据文件进行。逐渐控制粉末的量控制材料中硅含量梯度变化,到铝锂合金部分时粉末供给装置更换粉末材料为锂粉,同样重复上述过程,得到Al-3.8Li合金。在需要进行支撑的地方采用受热气化的粉末与金属熔滴进行联合喷射,形成泡沫状的金属支撑结构,成形完成以后,泡沫状的金属支撑结构由机械的方法去除,即得到多材料微型制件。在多材料沉积过程中,利用基板上的循环冷却水11和喷射粉末的气流进行双重冷却,可确保合金成分无偏析。完成件的沉积,在无氧环境下将制件冷却,得到具有部分耐磨、部分抗疲劳裂纹扩散的Al-Li-Si多材料微小制件9。Example 1: Referring to FIG. 1 , an Al-Li-Si multi-material motion-bearing tiny component with wear resistance and fatigue crack propagation resistance is formed. The workpiece is a 1×1×1cm cube, and part of it is a wear-resistant part. Since high-silicon aluminum alloy has excellent wear resistance and corrosion resistance, the material is selected as Al-18Si alloy; then the material gradually transitions to other parts of Al -3.8Li alloy, Al-3.8Li alloy is a low-density high-lithium alloy, which not only greatly reduces the weight of the component, but also has a good resistance to fatigue crack propagation, and can be used as a cyclic load-bearing component; firstly, according to the shape and Establish the digital model of the workpiece according to the distribution of materials, generate discrete files of the rapid deposition system according to the model, and combine the droplet deposition system to generate three-dimensional substrate motion trajectory data files; at the same time, formulate powder supply and droplet charging deflection according to the type and distribution state of the material Deposited data files. Put the aluminum ingot into the crucible 2, put the silicon powder and lithium powder into the powder storage container 7 of the powder supply device, debug the powder supply device, make the powder nozzle place full of powder; start the injection environment measurement and
实施例2:参照图1,成形材料梯度变化的Al-Cu/SiC颗粒增强金属基多材料微小制件。由于SiC体积分数不同的Al-Cu合金具有不同的力学性能,如随着SiC的体积分数的上升,Al-Cu合金的弹性模量E直线上升,而伸长率δ单调下降,控制SiC颗粒的体积分数变化可以制成材料性能按要求变化的多材料微小制件。制件为1×1×1cm正方体,首先根据制件的形状和材料的分布建立制件的数字化模型,根据模型生成快速沉积系统的离散文件,结合熔滴沉积系统,生成三维基板运动轨迹数据文件;同时根据材料的类型以及分布状态制定粉末供给和熔滴充电偏转沉积的数据文件。将含铜量为5%的铝铜合金放入坩埚2中,将SiC粉放入粉末供给装置的粉末存储容器7中;启动喷射环境测控系统15,密封真空腔17,进行气体除氧,直至氧含量降低为10PPM以下;密封坩埚,加热坩埚到900度,并保持该温度不变;对坩埚施加50KPa的气压,建立射流,然后在由激振1产生3KHz的正弦扰动,通过高速CCD摄像机13观测熔滴流的形态,调整正弦信号的频率,直到产生的均匀熔滴流;加上充电电压以及偏转电压,按照设计将欲沉积的铝熔滴偏转到三维基板10上,同时经粉末的喷头8将欲沉积的SiC粉以一定的初速度喷射到熔滴沉积点,通过控制粉末喷射的速率控制送粉量,实现增强相的注入,得到AL-Cu/SiC颗粒增强金属材料;联合沉积过程按照三维基板10运动轨迹数据文件、粉末供给和熔滴充电偏转沉积的数据文件进行。逐渐控制粉末的量控制材料中SiC含量梯度变化,得到SiC体积分数不同的Al-Cu/SiC颗粒增强金属基多材料微小制件,利用基板上的循环冷却水和喷射粉末的气流进行双重冷却,可确保合金熔滴的及时冷却。完成件的沉积,在无氧环境下将制件冷却,得到材料梯度变化的Al-Cu/SiC颗粒增强金属基多材料微小制件。Embodiment 2: Referring to FIG. 1 , Al-Cu/SiC particle-reinforced metal-based multi-material micro-parts with gradient materials are formed. Al-Cu alloys with different SiC volume fractions have different mechanical properties. For example, with the increase of SiC volume fraction, the elastic modulus E of Al-Cu alloys increases linearly, while the elongation δ decreases monotonously. Volume fraction changes can be made into multi-material tiny parts whose material properties change as required. The workpiece is a 1×1×1cm cube. Firstly, the digital model of the workpiece is established according to the shape of the workpiece and the distribution of materials, and the discrete file of the rapid deposition system is generated according to the model. Combined with the droplet deposition system, the three-dimensional substrate motion trajectory data file is generated. ; At the same time, formulate the data files of powder supply and droplet charging deflection deposition according to the type of material and distribution state. Put the aluminum-copper alloy with a copper content of 5% into the crucible 2, put the SiC powder into the powder storage container 7 of the powder supply device; start the injection environment measurement and control system 15, seal the vacuum chamber 17, and carry out gas deoxygenation until Reduce the oxygen content to less than 10PPM; seal the crucible, heat the crucible to 900 degrees, and keep the temperature constant; apply an air pressure of 50KPa to the crucible, establish a jet, and then generate a 3KHz sinusoidal disturbance by the excitation 1, through a high-speed CCD camera 13 Observe the shape of the droplet flow, adjust the frequency of the sinusoidal signal until a uniform droplet flow is generated; add the charging voltage and the deflection voltage, deflect the aluminum droplet to be deposited onto the three-dimensional substrate 10 according to the design, and pass through the powder nozzle at the same time 8 Spray the SiC powder to be deposited to the droplet deposition point at a certain initial velocity, and control the powder delivery amount by controlling the powder injection rate to realize the injection of the reinforcement phase and obtain AL-Cu/SiC particle-reinforced metal materials; combined deposition process The process is carried out according to the data file of the motion trajectory of the three-dimensional substrate 10, the data file of powder supply and droplet charge deflection deposition. Gradually control the amount of powder to control the gradient change of SiC content in the material, and obtain Al-Cu/SiC particle-reinforced metal-based multi-material micro-parts with different SiC volume fractions, and use the circulating cooling water on the substrate and the airflow of sprayed powder for double cooling. It can ensure timely cooling of alloy droplets. After the deposition of the parts is completed, the parts are cooled in an oxygen-free environment to obtain Al-Cu/SiC particle-reinforced metal-based multi-material micro parts with material gradient changes.
根据需要粉末存储容器7中可存储两种以上的金属或者非金属粉末。Two or more metal or non-metal powders can be stored in the powder storage container 7 as required.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610104685A CN100580138C (en) | 2006-10-08 | 2006-10-08 | Manufacturing method of multi-material micro-parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610104685A CN100580138C (en) | 2006-10-08 | 2006-10-08 | Manufacturing method of multi-material micro-parts |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1944713A true CN1944713A (en) | 2007-04-11 |
CN100580138C CN100580138C (en) | 2010-01-13 |
Family
ID=38044361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610104685A Expired - Fee Related CN100580138C (en) | 2006-10-08 | 2006-10-08 | Manufacturing method of multi-material micro-parts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100580138C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087891A (en) * | 2014-07-12 | 2014-10-08 | 卢玉锋 | Method and device for preparing composite metal material by virtue of injection and spray-coating process |
CN108754389A (en) * | 2018-05-25 | 2018-11-06 | 任三兵 | A kind of aeroponics and spray coating method prepare the method and device of metallic composite |
CN111945096A (en) * | 2013-07-16 | 2020-11-17 | 伊利诺斯工具制品有限公司 | Additive manufacturing system and method for surface covering using multiple anchoring materials prior to joining |
-
2006
- 2006-10-08 CN CN200610104685A patent/CN100580138C/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111945096A (en) * | 2013-07-16 | 2020-11-17 | 伊利诺斯工具制品有限公司 | Additive manufacturing system and method for surface covering using multiple anchoring materials prior to joining |
US11833623B2 (en) | 2013-07-16 | 2023-12-05 | Illinois Tool Works Inc. | Additive manufacturing system for joining and surface overlay |
CN104087891A (en) * | 2014-07-12 | 2014-10-08 | 卢玉锋 | Method and device for preparing composite metal material by virtue of injection and spray-coating process |
CN108754389A (en) * | 2018-05-25 | 2018-11-06 | 任三兵 | A kind of aeroponics and spray coating method prepare the method and device of metallic composite |
Also Published As
Publication number | Publication date |
---|---|
CN100580138C (en) | 2010-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113481412B (en) | A kind of additive manufacturing nickel-based superalloy and its preparation method and application | |
CN111496244B (en) | Additive manufacturing high-strength aluminum alloy powder and preparation method and application thereof | |
CN103290361B (en) | The method for applying thermal barrier coating | |
CN109022920B (en) | Crack-free 4D printing titanium-nickel shape memory alloy and preparation method thereof | |
CN109280820A (en) | A kind of high-strength aluminum alloy for additive manufacturing and preparation method of powder thereof | |
US9993996B2 (en) | Thixotropic liquid-metal-based fluid and its use in making metal-based structures with or without a mold | |
CN104507601A (en) | Manufacture of metal articles | |
WO2022142401A1 (en) | Rare earth aluminum alloy powder suitable for additive manufacturing and preparation method therefor | |
CN110039061B (en) | Wire low-pressure plasma atomization device and preparation method of 3D printing high-strength aluminum alloy powder | |
CN109338182A (en) | A kind of Al-Mg-Er-Zr series aluminum alloy and preparation method thereof | |
CN102560178B (en) | Method for preparing porous material | |
Antipas et al. | Microstructural characterisation of Al―Hf and Al―Li―Hf spray deposits | |
CN111872386A (en) | 3D printing process method of high-strength aluminum-magnesium alloy | |
US20160215364A1 (en) | Method to form oxide dispersion strengthended (ods) alloys | |
JP2017122275A (en) | Coated article and method for production | |
CN109201982B (en) | Forming device and forming method based on vacuum induction heating | |
CN111647858A (en) | Preparation method of aluminum-scandium alloy target material | |
CN102181856B (en) | Method for preparing complex gradient material by using cold spraying technology | |
CN102151828A (en) | Method for preparing gradient materials through multi-crucible and multi-nozzle spray forming | |
CN100580138C (en) | Manufacturing method of multi-material micro-parts | |
CN108941552B (en) | A Ti/Ti6Al4V Composite with Continuous Gradient Changes in Composition | |
CN109226777A (en) | 2219 aluminium-based alloyed powders of one kind and its production method | |
CN1597193A (en) | Fast forming micro manufacturing method for non homogeneous functional device | |
US8709548B1 (en) | Method of making a CIG target by spray forming | |
CN109825791A (en) | A kind of aluminum-silicon alloy layered gradient material and its preparation, processing and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100113 Termination date: 20191008 |