CN1918386A - 用于风力涡轮机的转子叶片 - Google Patents
用于风力涡轮机的转子叶片 Download PDFInfo
- Publication number
- CN1918386A CN1918386A CNA2005800047632A CN200580004763A CN1918386A CN 1918386 A CN1918386 A CN 1918386A CN A2005800047632 A CNA2005800047632 A CN A2005800047632A CN 200580004763 A CN200580004763 A CN 200580004763A CN 1918386 A CN1918386 A CN 1918386A
- Authority
- CN
- China
- Prior art keywords
- rotor blade
- lift
- rotor
- drag ratio
- drag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009434 installation Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/307—Blade tip, e.g. winglets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/97—Reducing windage losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
本发明涉及一种用于风力涡轮机的转子叶片,具体所述转子的中部或主板区域,在倾角偏离所述转子最优倾角约±2°的范围内其升阻比的值为升阻比最大值的80%以上,优选地为90%以上。
Description
技术领域
本发明涉及一种风力设备的转子叶片,并涉及一种包括具有这样的转子叶片的转子的风力设备。
背景技术
风力设备的性能、具体是其效率很大程度上取决于转子叶片或转子叶片的设计。转子叶片由大量参数描述,其中在此通常考虑Erich Hau的著作Windkraftanlagen,3rd edition,2002为本领域状况,具体如其第90页所述。该书的内容同时也是本申请的基础,还是本申请所需要的内容。
正如所提及的,风力设备的运行效率和调节性能很大程度上决定于所使用的转子叶片的空气动力性能。转子叶片构型的重要参数由升力系数Ca和阻力系数Cw的比率来表示:Ca/Cw=E,其中E称为升阻比。
此外,转子叶片的重要参数是高速因子λ,其中该高速因子限定为转子叶片尖端的周向速度(u)与风速v的商。
图1示出了已知的流入流动状况和叶片元件的构型截面的空气动力。
若研究已知转子叶片的构型,可建立升阻比和倾角之间的特定关系。更具体地,发现升阻比极大地依赖于相应的倾角,高升阻比一般仅在相当有限的倾角范围内实现。例如,高升阻比可在(转子叶片的)倾角为6°时实现,然而同时,一旦倾角略微上升得高于或下降得低于6°,升阻比将急剧下降。
若该值离开最优升阻比的范围,也就是说倾角明显地不同于最优倾角——例如为6°,可容易地看到,该设备的总体效率较低,因而对风力设备而言,往往要么例如通过俯仰控制再次将倾角设定为最优值和/或要么通过吊舱的定向而将整个转子以最优的关系设定在风中。
风力设备的转子尺寸近年来稳定增长,10,000平方米的扫掠转子面积现在不再是理论上的而是已经变成了现实,例如Enercon的E112型风力设备的情况下。该风力设备的转子直径为约112m。
因为由于具有非常大的扫掠面积而不再可能假定风总是沿同样的方向并以同样的速度流经转子叶片,现在实际上不可能在转子叶片的所有区域上达到最优的升阻比。
因此,在一些区域,转子叶片公认地以相对最优的方式运行,但在另外一些区域,由于在扫掠转子面积中流入流动构型具有不同特性,转子叶片以次最优的方式运行。这由于升阻比非常密切地依赖于流入角而直接产生,其结果是,因为转子叶片的升力(Ca)也与升阻比大致成正比,转子叶片的载荷可能以极端的形式波动。
将要理解的是,作为改善上述情形并避免其缺点的方式,总是可以通过适当的转子叶片的倾角控制或整个转子的摇摆而找到一个最优的设定值。然而本领域普通技术人员很容易明白的是,采用该构思,转子叶片实际上必须恒定地设定在风中(也就是说必须倾斜)和/或方位角驱动也必须恒新地适应转子的方向而并未实质上改善该情形。
发明内容
本发明的目的是避免上面提出的缺点并且提供更好的总体性能。
本发明通过具有权利要求1中的特征的转子叶片设计而实现该目的。有利的改进在从属权利要求中描述。
具体实施方式
根据本发明的转子叶片设计的其中一个基本特性在于,在相当大的倾角范围内,保持升阻比实际上是高的,但是在此方面,目前升阻比的最大值仍然在前面背景技术中的升阻比的最优值之后。换种方式表述,根据本发明的转子叶片的升阻比在具有最优倾角设定值时——在最大值时——比背景技术中的低,但是同时,从最优设定值的偏离不会立即导致升阻比和升力系数的实质性减小以及由此导致升力损耗,而是在例如±0.5°~3°的范围内的从最优设定角的偏离将不会导致升阻比的实质性减小,从而不会导致升力降低,因而,整个转子的效率得以提高。这也实现了明显更好的载荷分布以及明显更低的载荷波动(ΔL/dt)。从图2可见,在4°~8°的范围内的根据本发明的转子叶片的升阻比曲线的“鞍部”明显地宽于现有类型转子叶片的情形。
所要求保护的转子叶片的设计构造具体地位于转子叶片的中部第三部分,也就是所称的转子叶片的主板的区域。该区域位于转子叶片附连区域或转子叶片根部区域与转子叶片的尖端区域(也就是外端区域)之间。
图2示出了升力系数或升阻比相对于倾角的变化。具体地,相对于倾角的曲线图示出,在标准转子叶片的情形下,升阻比在约6°的倾角时达到其约为170的最大绝对值。当倾角从6°偏离1°时,也就是说倾角为7°或5°时,升阻比已经急剧降低,并且尤其朝向更大倾角时,当倾角为9°时,升阻比已经减半。朝向更小倾角时,也有非常急剧的降低,然而,其不如倾角朝向更大倾角方向变化时那么急剧。
在图中还可看到根据本发明的转子叶片的升阻比变化的情形。最大值再次出现在倾角约为6°的区域,并且该最大值小于标准转子叶片情形下的升阻比的最大值。然而,需要注意的是,可从交叉的曲线看到,最优值的“鞍部”明显地更宽,当倾角例如为4°~8°的范围时,也就是说介于最优倾角6°的±2°的范围内时,升阻比仅从其最优值减少约10%。在约4.5°~-4°的范围内和约7°~16°的范围内,升阻比总是高于现有类型的转子叶片的升阻比。
还可看到,根据本发明的转子叶片的构造改善了整个转子叶片的升力系数,且转子叶片的效率大约提高了15%。
特别是载荷波动现在也不再象以前那样大,若倾角的变化非常小,不需要同时采用相应的措施来将倾角再次设定到所期望的最优值——在本实施例中为6°。
图3示出了转子叶片尖端——也就是说转子叶片端部的不同视图。图3a示出了转子叶片尖端的立体图,图3b示出了侧视图,图3c示出了平面图。
转子叶片尖端还通常被称为边缘弧(edge arc)。从图3a可见,边缘弧示出为具有三个构型区段和一个线轴(thread axis)。
三个不同视图可以显示出边缘弧轮廓绕该线轴的转动。在该方面,图示的转动大于说明书中指定的度数的大小,这是为了图示的原因,用以使图中的表示在某种程度上不管怎样都是可以看出的。
需要再次特别强调的是,在此,根据本发明的转子叶片的构造具体涉及中部部分,即所称的主板,也就是说位于转子叶片根部区域和尖端区域之间的区域。主板一般也可描述为转子叶片的“中部第三部分”,在此方面,主板的规定尺寸可以是不相同的,主板例如还可占据转子叶片长度的大约60%。
此外或者独立于转子叶片前述的构造,可实现进一步的改进,如图3a~3c,若转子叶片的尖端——即尖端端部在指定范围内绕线轴转动,例如绕线轴(扭转)约4°~8°,优选地为5°。然后,该扭转处于所称的空挡入流角——也就是尖端自身不提供升力。尖端或相应的尖端端部的一般构造可从上面提及的Eric Hau的著作的第126页(图535)得知。
根据一般的学校教育,转子叶片的计算载荷由风速的平方、转子叶片的面积及升力系数的乘积来计算。公式表达为:
计算载荷=V2×A×CA,
其中转子面积A用于表示转子覆盖(扫掠)的面积。
教科书中的考虑相当粗浅,不总是合乎实际。转子叶片的最大载荷并未在通常操作下作用在转子叶片上,而是当所谓的50年一遇的骤风从侧部“击中”转子叶片时才作用。在该情形下,骤风正好作用到整个转子叶片表面。在该方面,可立刻看到升力系数CA不起作用,而是在此必须考虑阻力系数CW。然而,因为若风撞击到叶片上,其将正好吹到板上,阻力系数对于该差不多平坦的转子叶片表面总是恒定的。该情形——即全部侧向流入流动情况是最坏情形,其中出现对于转子叶片所必须计算的最大载荷,准确来说也就是计算载荷。
从前面明确的是,采用恒定的阻力系数,单单只有转子叶片的面积是至关重要的。这也是转子叶片最细长的合理构造的原因。
然而已经知道,风力设备的功率输出与转子叶片的长度极为相关。从而,长的细长叶片至今还优于短宽叶片。然而需要注意的是,在此方面不应该忽视该未应用于叶片内部区域(主板)的情况,因为在此该情形从根本上是不同的。
最后,转子叶片相对于在叶片根部区域绕其流动的空气的相对速度最低,并且朝向叶片尖端连续增大。从而,这里描述的具有狭窄外部区域和最优的升阻比的转子叶片形状是十分有利的解决方案。
Claims (4)
1.一种风力设备的转子叶片,其中,该转子叶片,具体是该转子的中部区域——即所谓的主板,具有一升阻比,在倾角偏离最优倾角约±2°的范围内,该升阻比的值为升阻比最大值的80%以上,优选地为90%以上以及更多。
2.根据权利要求1的转子叶片,其特征在于,该升阻比的特征曲线具有如图2所示的视倾角而定的构型。
3.一种包括转子的风力设备,该转子具有至少一个具有根据前述权利要求中任一项的特征的转子叶片。
4.一种转子叶片,该转子叶片具有从转子叶片平面以小翼形式升起的尖端或尖端端板,其中,所述端板绕其中部平面内的线轴转过4°~8°,优选地4°~6°,特别优选地约5°。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004007487.9 | 2004-02-13 | ||
DE102004007487A DE102004007487A1 (de) | 2004-02-13 | 2004-02-13 | Rotorblatt einer Windenergieanlage |
PCT/EP2005/050585 WO2005078277A2 (de) | 2004-02-13 | 2005-02-10 | Rotorblatt einer windenergieanlage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1918386A true CN1918386A (zh) | 2007-02-21 |
CN1918386B CN1918386B (zh) | 2013-12-18 |
Family
ID=34813409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800047632A Expired - Lifetime CN1918386B (zh) | 2004-02-13 | 2005-02-10 | 用于风力涡轮机的转子叶片 |
Country Status (19)
Country | Link |
---|---|
US (2) | US7794209B2 (zh) |
EP (2) | EP1716333B1 (zh) |
JP (1) | JP4563406B2 (zh) |
KR (2) | KR100953244B1 (zh) |
CN (1) | CN1918386B (zh) |
AR (1) | AR049772A1 (zh) |
AU (2) | AU2005212637B2 (zh) |
BR (1) | BRPI0507401B1 (zh) |
CA (2) | CA2650752C (zh) |
DE (1) | DE102004007487A1 (zh) |
DK (2) | DK2420671T3 (zh) |
ES (2) | ES2644035T3 (zh) |
MA (1) | MA28465B1 (zh) |
NO (1) | NO342217B1 (zh) |
NZ (2) | NZ549117A (zh) |
PL (1) | PL2420671T3 (zh) |
PT (2) | PT1716333T (zh) |
WO (1) | WO2005078277A2 (zh) |
ZA (1) | ZA200606164B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592122A (zh) * | 2008-05-30 | 2009-12-02 | 通用电气公司 | 带有扭转梢部的风力涡轮机叶片 |
CN102165185A (zh) * | 2008-08-29 | 2011-08-24 | 维斯塔斯风力系统有限公司 | 风轮机叶片中的控制系统 |
CN103597205A (zh) * | 2011-05-27 | 2014-02-19 | 弗洛设计风力涡轮机公司 | 具有混合的叶片加载的涡轮机叶片 |
CN102338028B (zh) * | 2010-07-16 | 2016-05-18 | 通用电气公司 | 具有吸力侧小翼的风力涡轮机转子叶片 |
CN106574600A (zh) * | 2014-07-17 | 2017-04-19 | 乌本产权有限公司 | 风能设备转子叶片,风能设备转子叶片尖端后缘,用于制造风能设备转子叶片的方法和风能设备 |
CN106886625A (zh) * | 2017-01-05 | 2017-06-23 | 北京航天自动控制研究所 | 一种基于固定翼鸭舵的双旋稳定弹的气动外形设计方法 |
US10907610B2 (en) | 2014-07-17 | 2021-02-02 | Wobben Properties Gmbh | Wind-turbine rotor blade, rotor blade trailing edge, method for producing a wind-turbine rotor blade, and wind turbine |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ538350A (en) * | 2002-09-05 | 2008-08-29 | Aloys Wobben | Use of an information support for climatic and environmental improvement |
DE102006017897B4 (de) * | 2006-04-13 | 2008-03-13 | Repower Systems Ag | Rotorblatt einer Windenergieanlage |
US20080112807A1 (en) * | 2006-10-23 | 2008-05-15 | Ulrich Uphues | Methods and apparatus for operating a wind turbine |
WO2008077403A2 (en) * | 2006-12-22 | 2008-07-03 | Vestas Wind Systems A/S | Wind turbine with rotor blades equipped with winglets and blades for such rotor |
US7927078B2 (en) * | 2007-07-12 | 2011-04-19 | General Electric Company | Wind turbine blade tip vortex breakers |
US8197218B2 (en) * | 2007-11-08 | 2012-06-12 | Alliance For Sustainable Energy, Llc | Quiet airfoils for small and large wind turbines |
GB2459453B (en) * | 2008-04-21 | 2011-06-08 | Barry Robert Marshall | Energy output limiter for wind turbine rotor(s) |
DE102008020154B4 (de) * | 2008-04-22 | 2011-04-28 | Repower Systems Ag | Verfahren zum Betreiben einer Windenergieanlage |
US8061996B2 (en) * | 2008-05-30 | 2011-11-22 | General Electric Company | Wind turbine blade planforms with twisted and tapered tips |
JP5329128B2 (ja) * | 2008-06-06 | 2013-10-30 | 学校法人明治大学 | 風力発電装置 |
GB0905316D0 (en) * | 2009-03-27 | 2009-05-13 | Vertical Wind Energy Ltd | Wind trubine blade tip |
DE102009002501A1 (de) | 2009-04-20 | 2010-10-28 | Wobben, Aloys | Rotorblattelement und Herstellverfahren |
ES2513396T3 (es) * | 2010-03-18 | 2014-10-27 | Nordex Energy Gmbh | Pala de rotor de planta de energía eólica |
US7997875B2 (en) * | 2010-11-16 | 2011-08-16 | General Electric Company | Winglet for wind turbine rotor blade |
GB2477594B (en) * | 2010-11-25 | 2011-12-28 | Moog Insensys Ltd | Wind turbine rotor blades |
US20110243736A1 (en) * | 2010-12-08 | 2011-10-06 | General Electric Company | Joint sleeve for a rotor blade assembly of a wind turbine |
DE102012103704A1 (de) | 2011-04-30 | 2012-10-31 | General Electric Co. | Winglet für einen Rotorflügel einer Windkraftanlage |
US8985947B2 (en) | 2011-11-14 | 2015-03-24 | Siemens Aktiengesellschaft | Power producing spinner for a wind turbine |
US9103325B2 (en) | 2012-03-20 | 2015-08-11 | General Electric Company | Winglet for a wind turbine rotor blade |
DE102012222323A1 (de) | 2012-12-05 | 2014-06-05 | Wobben Properties Gmbh | Windenergieanlage sowie Verfahren zum Betreiben einer Windenergieanlage |
US9366224B2 (en) | 2013-06-27 | 2016-06-14 | General Electric Company | Wind turbine blade and method of fabricating the same |
DE102013217128A1 (de) | 2013-08-28 | 2015-03-05 | Wobben Properties Gmbh | Rotorblattelement für eine Windenergieanlage, Rotorblatt, sowie ein Herstellungsverfahren dafür und Windenergieanlage mit Rotorblatt |
DE102016213206A1 (de) | 2016-07-19 | 2018-01-25 | Wobben Properties Gmbh | Mehrschichtiges Verbundbauteil |
DE102015220672A1 (de) | 2015-10-22 | 2017-04-27 | Wobben Properties Gmbh | Mehrschichtiges Verbundbauteil |
CN108136716B (zh) | 2015-10-22 | 2021-01-08 | 乌本产权有限公司 | 多层的复合构件 |
DE102016121554A1 (de) | 2016-11-10 | 2018-05-17 | Wobben Properties Gmbh | Mehrschichtiges Verbundbauteil |
US10961982B2 (en) | 2017-11-07 | 2021-03-30 | General Electric Company | Method of joining blade sections using thermoplastics |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE830627C (de) * | 1949-08-25 | 1952-02-07 | Karl Seifert Dipl Ing | Windradfluegel |
JPS58200083A (ja) * | 1982-05-18 | 1983-11-21 | Shin Meiwa Ind Co Ltd | 風向板付きプロペラ型風車 |
DE3825241A1 (de) * | 1988-04-08 | 1989-10-19 | Bentzel & Herter Wirtschafts U | Windturbine |
WO1996020343A2 (en) * | 1994-12-21 | 1996-07-04 | The Wind Turbine Company | Rotor device and control for wind turbine |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB612413A (en) * | 1943-11-01 | 1948-11-12 | Wincharger Corp | Improvements in wind driven prime movers |
US2576981A (en) * | 1949-02-08 | 1951-12-04 | Vogt Richard | Twisted wing tip fin for airplanes |
US4150301A (en) * | 1977-06-02 | 1979-04-17 | Bergey Jr Karl H | Wind turbine |
US4245804B1 (en) * | 1977-12-19 | 1993-12-14 | K. Ishimitsu Kichio | Minimum drag wing configuration for aircraft operating at transonic speeds |
US4408958A (en) * | 1980-12-23 | 1983-10-11 | The Bendix Corporation | Wind turbine blade |
US4329115A (en) * | 1981-02-02 | 1982-05-11 | Grumman Aerospace Corporation | Directionally stabilized wind turbine |
EP0094064A1 (en) * | 1982-05-11 | 1983-11-16 | George Stanmore Rasmussen | Wing tip thrust augmentation system |
DE3242584A1 (de) * | 1982-11-18 | 1984-05-24 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Anordnung von zusatzflaechen an den spitzen eines tragfluegels |
IL101069A (en) * | 1991-02-25 | 1996-09-12 | Valsan Partners Purchase N Y | A system for increasing the fuel efficiency of an aircraft and a kit for changing aircraft wings |
US5348253A (en) * | 1993-02-01 | 1994-09-20 | Gratzer Louis B | Blended winglet |
US5562420A (en) * | 1994-03-14 | 1996-10-08 | Midwest Research Institute | Airfoils for wind turbine |
US5634613A (en) | 1994-07-18 | 1997-06-03 | Mccarthy; Peter T. | Tip vortex generation technology for creating a lift enhancing and drag reducing upwash effect |
US6068446A (en) * | 1997-11-20 | 2000-05-30 | Midwest Research Institute | Airfoils for wind turbine |
FR2772715B1 (fr) * | 1997-12-22 | 2000-02-11 | Eurocopter France | Pale pour aeronef a voilure tournante |
US6491262B1 (en) * | 1999-01-15 | 2002-12-10 | Sridhar Kota | System for varying a surface contour |
US6622973B2 (en) * | 2000-05-05 | 2003-09-23 | King Fahd University Of Petroleum And Minerals | Movable surface plane |
DE20301445U1 (de) * | 2003-01-30 | 2004-06-09 | Moser, Josef | Rotorblatt |
DE10332875B4 (de) * | 2003-07-19 | 2016-11-24 | Windreich GmbH | Rotorflügelblatt |
US7246998B2 (en) * | 2004-11-18 | 2007-07-24 | Sikorsky Aircraft Corporation | Mission replaceable rotor blade tip section |
US20070205603A1 (en) * | 2006-03-03 | 2007-09-06 | Karl Appa | Methods and devices for improving efficiency of wind turbines in low wind speed sites |
-
2004
- 2004-02-13 DE DE102004007487A patent/DE102004007487A1/de not_active Withdrawn
-
2005
- 2005-02-10 PT PT57166589T patent/PT1716333T/pt unknown
- 2005-02-10 ES ES05716658.9T patent/ES2644035T3/es not_active Expired - Lifetime
- 2005-02-10 WO PCT/EP2005/050585 patent/WO2005078277A2/de active Application Filing
- 2005-02-10 KR KR1020067016756A patent/KR100953244B1/ko active IP Right Grant
- 2005-02-10 KR KR1020087016229A patent/KR20080069717A/ko not_active Application Discontinuation
- 2005-02-10 NZ NZ549117A patent/NZ549117A/en not_active IP Right Cessation
- 2005-02-10 AU AU2005212637A patent/AU2005212637B2/en not_active Ceased
- 2005-02-10 BR BRPI0507401-0A patent/BRPI0507401B1/pt active IP Right Grant
- 2005-02-10 PL PL11186609T patent/PL2420671T3/pl unknown
- 2005-02-10 DK DK11186609.1T patent/DK2420671T3/en active
- 2005-02-10 PT PT111866091T patent/PT2420671T/pt unknown
- 2005-02-10 DK DK05716658.9T patent/DK1716333T3/en active
- 2005-02-10 JP JP2006552623A patent/JP4563406B2/ja not_active Expired - Fee Related
- 2005-02-10 CA CA2650752A patent/CA2650752C/en not_active Expired - Fee Related
- 2005-02-10 CN CN2005800047632A patent/CN1918386B/zh not_active Expired - Lifetime
- 2005-02-10 ES ES11186609.1T patent/ES2629210T3/es not_active Expired - Lifetime
- 2005-02-10 EP EP05716658.9A patent/EP1716333B1/de not_active Expired - Lifetime
- 2005-02-10 EP EP11186609.1A patent/EP2420671B1/de not_active Expired - Lifetime
- 2005-02-10 CA CA2554666A patent/CA2554666C/en not_active Expired - Fee Related
- 2005-02-10 NZ NZ577920A patent/NZ577920A/en not_active IP Right Cessation
- 2005-02-11 AR ARP050100493A patent/AR049772A1/es not_active Application Discontinuation
-
2006
- 2006-07-26 ZA ZA200606164A patent/ZA200606164B/en unknown
- 2006-08-16 US US11/504,118 patent/US7794209B2/en active Active
- 2006-09-11 NO NO20064081A patent/NO342217B1/no not_active IP Right Cessation
- 2006-09-12 MA MA29317A patent/MA28465B1/fr unknown
-
2009
- 2009-08-10 AU AU2009208082A patent/AU2009208082B2/en not_active Ceased
-
2010
- 2010-07-27 US US12/844,675 patent/US8506255B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE830627C (de) * | 1949-08-25 | 1952-02-07 | Karl Seifert Dipl Ing | Windradfluegel |
JPS58200083A (ja) * | 1982-05-18 | 1983-11-21 | Shin Meiwa Ind Co Ltd | 風向板付きプロペラ型風車 |
DE3825241A1 (de) * | 1988-04-08 | 1989-10-19 | Bentzel & Herter Wirtschafts U | Windturbine |
WO1996020343A2 (en) * | 1994-12-21 | 1996-07-04 | The Wind Turbine Company | Rotor device and control for wind turbine |
Non-Patent Citations (1)
Title |
---|
ROBERT GASCH: "《windkraftanlagen》", 31 December 1996, SPRINGER * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592122A (zh) * | 2008-05-30 | 2009-12-02 | 通用电气公司 | 带有扭转梢部的风力涡轮机叶片 |
CN101592122B (zh) * | 2008-05-30 | 2015-01-28 | 通用电气公司 | 带有扭转梢部的风力涡轮机叶片 |
CN102165185A (zh) * | 2008-08-29 | 2011-08-24 | 维斯塔斯风力系统有限公司 | 风轮机叶片中的控制系统 |
CN102165185B (zh) * | 2008-08-29 | 2013-07-24 | 维斯塔斯风力系统有限公司 | 风轮机叶片中的控制系统 |
CN102338028B (zh) * | 2010-07-16 | 2016-05-18 | 通用电气公司 | 具有吸力侧小翼的风力涡轮机转子叶片 |
CN103597205A (zh) * | 2011-05-27 | 2014-02-19 | 弗洛设计风力涡轮机公司 | 具有混合的叶片加载的涡轮机叶片 |
CN106574600A (zh) * | 2014-07-17 | 2017-04-19 | 乌本产权有限公司 | 风能设备转子叶片,风能设备转子叶片尖端后缘,用于制造风能设备转子叶片的方法和风能设备 |
US10815963B2 (en) | 2014-07-17 | 2020-10-27 | Wobben Properties Gmbh | Wind-turbine rotor blade, trailing edge for wind-turbine rotor blade tip, method for producing a wind-turbine rotor blade, and wind turbine |
US10907610B2 (en) | 2014-07-17 | 2021-02-02 | Wobben Properties Gmbh | Wind-turbine rotor blade, rotor blade trailing edge, method for producing a wind-turbine rotor blade, and wind turbine |
CN106574600B (zh) * | 2014-07-17 | 2021-05-07 | 乌本产权有限公司 | 风能设备转子叶片,转子叶片尖端后缘,风能设备转子叶片的制造方法和风能设备 |
CN106886625A (zh) * | 2017-01-05 | 2017-06-23 | 北京航天自动控制研究所 | 一种基于固定翼鸭舵的双旋稳定弹的气动外形设计方法 |
CN106886625B (zh) * | 2017-01-05 | 2020-04-14 | 北京航天自动控制研究所 | 一种基于固定翼鸭舵的双旋稳定弹的气动外形设计方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1918386B (zh) | 用于风力涡轮机的转子叶片 | |
JP5479388B2 (ja) | 風車翼およびこれを備えた風力発電装置 | |
CN101403368B (zh) | 风力涡轮机转子叶片及可调桨距式风力涡轮机 | |
US20150132141A1 (en) | Rotor blade of a wind turbine | |
US20120217754A1 (en) | Wind turbine blade, wind turbine generator with the same, and design method of wind turbine blade | |
CN113090442B (zh) | 可调节翼叶片、其控制方法、控制装置和风力发电机组 | |
US11828262B2 (en) | Rotor blade and wind turbine | |
US10975837B2 (en) | Rotor blade shaped to enhance wake diffusion | |
CN111622904A (zh) | 对称翼型垂直轴风力机的变桨控制方法及系统 | |
EP3020959A1 (en) | Methods of operating a wind turbine and wind turbines | |
US11946449B2 (en) | Flow turbine rotor with twisted blades | |
CN111622893A (zh) | 非对称翼型垂直轴风力机的变桨控制方法及系统 | |
MXPA06009000A (es) | Alabe de rotor para una turbina eolica | |
JP5574914B2 (ja) | 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20131218 |
|
CX01 | Expiry of patent term |