CN1892231A - Acceleration sensor and magnetic disk device using same - Google Patents
Acceleration sensor and magnetic disk device using same Download PDFInfo
- Publication number
- CN1892231A CN1892231A CNA2006101000536A CN200610100053A CN1892231A CN 1892231 A CN1892231 A CN 1892231A CN A2006101000536 A CNA2006101000536 A CN A2006101000536A CN 200610100053 A CN200610100053 A CN 200610100053A CN 1892231 A CN1892231 A CN 1892231A
- Authority
- CN
- China
- Prior art keywords
- acceleration sensor
- vibrating element
- region
- support member
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 195
- 238000001514 detection method Methods 0.000 claims abstract description 147
- 239000000758 substrate Substances 0.000 claims abstract description 124
- 238000005452 bending Methods 0.000 claims abstract description 7
- 238000000605 extraction Methods 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 61
- 239000000853 adhesive Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 24
- 230000001070 adhesive effect Effects 0.000 description 23
- 238000004088 simulation Methods 0.000 description 22
- 239000010408 film Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000003822 epoxy resin Substances 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000010287 polarization Effects 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 229920000106 Liquid crystal polymer Polymers 0.000 description 6
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000004696 Poly ether ether ketone Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 229920002530 polyetherether ketone Polymers 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000009975 flexible effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Pressure Sensors (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
本发明提供一种加速度传感器,其包括在长方体状的压电基板(21、22)的外侧主面配置导体膜(26、29)而构成的振动元件(2)、和夹持其一部分的第1支撑构件(3a、3b),第1支撑构件(3a、3b)由弹性体构成,振动元件的弯曲点位于由第1支撑构件(3a、3b)夹持的支撑区域(91)内。由此,压电基板(21、22)中产生应变的区域变大,产生的电荷增加,输出电压增大,从而可提高加速度的检测灵敏度。
The present invention provides an acceleration sensor comprising a vibrating element (2) formed by arranging a conductive film (26, 29) on the outer main surface of a rectangular parallelepiped piezoelectric substrate (21, 22), and a first vibrating element sandwiching a part thereof. 1 support member (3a, 3b), the first support member (3a, 3b) is made of elastic body, and the bending point of the vibration element is located in the support area (91) sandwiched by the first support member (3a, 3b). As a result, the region where strain occurs in the piezoelectric substrate (21, 22) becomes larger, the generated charge increases, and the output voltage increases, thereby improving the detection sensitivity of acceleration.
Description
技术领域technical field
本发明涉及使用了压电基板的加速度传感器,特别涉及小型且高灵敏度的加速度传感器。The present invention relates to an acceleration sensor using a piezoelectric substrate, and more particularly to a compact and highly sensitive acceleration sensor.
背景技术Background technique
以往,在检测从外部对硬盘驱动器等电子设备施加的冲击等用途中使用加速度传感器。Conventionally, acceleration sensors have been used for purposes such as detecting external shocks applied to electronic devices such as hard disk drives.
例如,已知有:在长方体状的压电基板的两主面上配置电荷检测电极而制成振动元件,并由支撑构件支撑其端部这种类型的加速度传感器(例如,参照特开2000-321299号公报,实开平7-36064号公报)。For example, there is known an acceleration sensor of the type in which charge detection electrodes are arranged on both main surfaces of a rectangular parallelepiped piezoelectric substrate to form a vibrating element, and its ends are supported by supporting members (for example, refer to JP-A 2000- Publication No. 321299, Shi Kaiping No. 7-36064).
在这种加速度传感器中,因赋予的加速度使得振动元件挠曲,由此在压电基板中产生应变,通过压电效果在形成于压电基板的两主面上的电荷检测电极中产生电荷。In such an acceleration sensor, the vibrating element is deflected by the applied acceleration, thereby generating strain in the piezoelectric substrate, and charges are generated in the charge detection electrodes formed on both main surfaces of the piezoelectric substrate by the piezoelectric effect.
通过该电荷或根据电荷而在电荷检测电极间产生的电压来检测加速度。Acceleration is detected by the charge or the voltage generated between the charge detection electrodes according to the charge.
利用电荷与电压中的哪一个检测加速度,因利用加速度传感器检测加速度的加速度检测装置而异,一般,将根据产生的电荷检测加速度时的加速度的检测灵敏度称作“电荷灵敏度”,将根据产生的电压检测加速度时的加速度的检测灵敏度称作“电压灵敏度”。作为加速度传感器,希望电荷灵敏度与电压灵敏度都比较高。Which one of charge and voltage is used to detect acceleration depends on the acceleration detection device that uses the acceleration sensor to detect acceleration. Generally, the detection sensitivity of acceleration when detecting acceleration from the generated charge is called "charge sensitivity". The detection sensitivity of the acceleration when the voltage detects the acceleration is called "voltage sensitivity". As an acceleration sensor, it is desirable that both the charge sensitivity and the voltage sensitivity are relatively high.
例如,由支撑构件将在厚度方向上贴合了两块长方体状的压电基板的双压电晶片型(bimorph)的振动元件的长度方向的一方端部夹持的加速度传感器中,若设压电基板的压电常数为D,设振动元件中的未由支撑构件夹持的自由振动区域的长度为L,设振动元件的宽度为W,设振动元件的厚度为T,则在施加由加速度引起的力F时的输出电压V成为For example, in an acceleration sensor in which one end in the longitudinal direction of a bimorph-type (bimorph) vibrating element in which two rectangular parallelepiped piezoelectric substrates are bonded in the thickness direction is sandwiched by a supporting member, if the pressure The piezoelectric constant of the electric substrate is D, the length of the free vibration region not clamped by the support member in the vibrating element is L, the width of the vibrating element is W, and the thickness of the vibrating element is T, then when the acceleration is applied induced force F when the output voltage V becomes
V=(3/2)·D·L·F/(W·T)V=(3/2)·D·L·F/(W·T)
输出电压V,与振动元件的自由振动区域的长度L成正比例,与振动元件的宽度W及厚度T成反比例。The output voltage V is proportional to the length L of the free vibration region of the vibrating element, and inversely proportional to the width W and thickness T of the vibrating element.
因此,为了提高加速度传感器的加速度的检测灵敏度,需要增大振动元件的自由振动区域的长度L并减小振动元件的宽度W及厚度T,但存在振动元件的自由振动区域的长度L的增大会导致加速度传感器的大型化,振动元件的宽度W及厚度T的减小会导致机械强度降低而使得可靠性降低的问题。Therefore, in order to improve the detection sensitivity of the acceleration of the acceleration sensor, it is necessary to increase the length L of the free vibration region of the vibration element and reduce the width W and thickness T of the vibration element, but the increase of the length L of the free vibration region of the vibration element will cause This results in an increase in the size of the acceleration sensor, and a reduction in the width and thickness T of the vibrating element leads to a reduction in mechanical strength and thus a reduction in reliability.
发明内容Contents of the invention
本发明的目的在于提供一种小型且加速度的检测灵敏度及可靠性高的加速度传感器及使用该加速度传感器的磁盘装置。An object of the present invention is to provide a compact acceleration sensor with high acceleration detection sensitivity and reliability, and a magnetic disk drive using the acceleration sensor.
本发明的加速度传感器,其包括:在长方体状的压电基板的两主面配置有互相对置的电荷检测电极的振动元件;和支撑所述振动元件的第1支撑构件。所述振动元件包含:与所述第1支撑构件接触而被支撑的支撑区域;和长度方向的长度比所述支撑区域长,未被所述第1支撑构件支撑的自由振动区域。并且,所述第1支撑构件是由弹性体构成的。An acceleration sensor according to the present invention includes: a vibrating element in which charge detection electrodes facing each other are arranged on both principal surfaces of a rectangular parallelepiped piezoelectric substrate; and a first support member supporting the vibrating element. The vibrating element includes: a support region supported by contact with the first support member; and a free vibration region that is longer in the longitudinal direction than the support region and is not supported by the first support member. In addition, the first supporting member is made of an elastic body.
在本发明的构成中,由于以弹性体构成第1支撑构件,因此位于压电基板的支撑区域内的部分也产生由振动元件的挠曲带来的应变。由此,与如以往的加速度传感器那样由非弹性体形成第1支撑构件的情况相比,压电基板中的产生应变的区域增大,产生的电荷量增加,输出电压增大,可提高加速度的检测灵敏度。而且,由于不增加振动元件的长度因此不会导致加速度传感器的大型化,由于不减小振动元件的宽度及厚度因此不会导致由机械强度不足引起的可靠性的降低。In the configuration of the present invention, since the first support member is made of an elastic body, strain due to deflection of the vibrating element is also generated in the portion located within the support region of the piezoelectric substrate. Therefore, compared with the case where the first support member is formed of a non-elastic body like the conventional acceleration sensor, the region where strain occurs in the piezoelectric substrate increases, the amount of generated charge increases, the output voltage increases, and the acceleration can be improved. detection sensitivity. Furthermore, since the length of the vibrating element is not increased, the size of the acceleration sensor is not increased, and since the width and thickness of the vibrating element are not reduced, there is no reduction in reliability due to insufficient mechanical strength.
所述振动元件的弯曲点,位于由第1支撑构件夹持的支撑区域内。此处“弯曲点”是指,在振动元件中产生挠曲的部分与未产生挠曲的部分的交界处。由此,与如以往的加速度传感器那样在支撑区域与自由振动区域的交界存在弯曲点的情况,即从支撑区域与自由振动区域的交界部开始挠曲的情况相比,压电基板中的产生应变的区域增大,产生的电荷量增加,输出电压增大,可提高加速度的检测灵敏度。The bending point of the vibrating element is located in the support area sandwiched by the first support member. Here, the "bending point" refers to a boundary between a deflected portion and a non-deflected portion of the vibrating element. Therefore, compared with the case where there is a bending point at the boundary between the support region and the free vibration region, that is, the case where the deflection starts from the boundary portion of the support region and the free vibration region, as in the conventional acceleration sensor, the generation of the piezoelectric substrate is less. The area of strain increases, the amount of charge generated increases, the output voltage increases, and the detection sensitivity of acceleration can be improved.
所述第1支撑构件的弹性模量优选为10MPa~10GPa。若将第1支撑构件的弹性模量设定在该范围,则第1支撑构件容易根据从振动元件接受的力而变形,在支撑区域内振动元件容易产生挠曲。The modulus of elasticity of the first supporting member is preferably 10 MPa to 10 GPa. If the modulus of elasticity of the first supporting member is set within this range, the first supporting member is likely to be deformed by the force received from the vibrating element, and the vibrating element is likely to be deflected in the supporting region.
本发明的加速度传感器,优选还包括从垂直于所述压电基板的两主面的方向支撑所述第1支撑构件的第2支撑构件,所述第1支撑构件的弹性模量比所述第2支撑构件的弹性模量小。The acceleration sensor of the present invention preferably further includes a second support member supporting the first support member from a direction perpendicular to both principal surfaces of the piezoelectric substrate, and the modulus of elasticity of the first support member is lower than that of the first support member. 2 The modulus of elasticity of the supporting member is small.
这样,还包括第2支撑构件,并将第2支撑构件的弹性模量设定为比第1支撑构件的弹性模量大时,第2支撑构件4不易产生变形。因此,不易发生“由第2支撑构件的变形而抑制振动元件2自身的变形,从而加速度的检测灵敏度降低”的问题。In this way, if the second supporting member is also included and the elastic modulus of the second supporting member is set to be larger than that of the first supporting member, the second supporting
所述第1支撑构件的弹性模量优选为10MPa~10GPa,所述第2支撑构件的弹性模量优选为10GPa~500GPa。The modulus of elasticity of the first support member is preferably 10 MPa to 10 GPa, and the modulus of elasticity of the second support member is preferably 10 GPa to 500 GPa.
本发明的加速度传感器,也可采用第1支撑构件比所述第2支撑构件更向所述振动元件的振幅最大区域伸出的结构。In the acceleration sensor according to the present invention, the first supporting member may be configured to protrude further toward the region of the vibration element having the largest amplitude than the second supporting member.
此处“振幅最大区域”是指,在将振动元件中挠曲振动的振幅最大的区域,在将振动元件的长度方向的一方端部附近作为支撑区域的情况下另一方端部附近成为振幅最大区域。在将振动元件的长度方向的中央部附近作为支撑区域的情况下,两端部附近成为振幅最大区域。在将振动元件的长度方向的两端部附近作为支撑区域的情况下,中央部附近成为振幅最大区域。Here, the "maximum amplitude region" refers to the region where the amplitude of the flexural vibration is the largest in the vibration element, and when the vicinity of one end in the longitudinal direction of the vibration element is used as the supporting region, the vibration amplitude becomes the largest near the other end. area. When the vicinity of the central portion in the longitudinal direction of the vibrating element is used as the support region, the vicinity of both end portions becomes the maximum amplitude region. When the vicinity of both end portions in the longitudinal direction of the vibrating element is used as the support region, the vicinity of the central portion becomes the region with the largest amplitude.
根据这种所述第1支撑构件比所述第2支撑构件更向所述振动元件的振幅最大区域伸出的结构,在第1支撑构件中存在未由第2支撑构件夹持的部分。由于该部分限制振动元件的挠曲并与振动元件一起产生某种程度的挠曲,因此即使在该部分也产生振动元件的挠曲。并且,在振动元件中,由于将由第1支撑构件夹持的区域的端部作为起点的挠曲、与将除第1支撑构件之外还由第2支撑构件夹持的区域的端部作为起点的挠曲,二者都会产生,因此,压电基板中的产生应变的区域增大,产生的电荷量增加,输出电压增大,可提高加速度的检测灵敏度。According to such a structure in which the first supporting member protrudes further toward the region of the vibration element having the maximum vibration amplitude than the second supporting member, there is a portion of the first supporting member that is not sandwiched by the second supporting member. Since this portion restricts the deflection of the vibrating element and generates some degree of deflection together with the vibrating element, deflection of the vibrating element occurs even at this portion. In addition, in the vibrating element, since the deflection starting from the end of the region sandwiched by the first supporting member and the end of the region sandwiched by the second supporting member in addition to the first supporting member Therefore, the region where the strain occurs in the piezoelectric substrate increases, the amount of generated charges increases, and the output voltage increases, which can improve the detection sensitivity of acceleration.
在所述振动元件的长度方向,设所述第1支撑构件比所述第2支撑构件更伸出的长度为α,设所述自由振动区域的长度为β时,希望0.05≤α/(α+β)≤0.1。In the longitudinal direction of the vibrating element, when the length of the first support member protruding beyond the second support member is α, and the length of the free vibration region is β, it is desirable that 0.05≦α/(α +β)≤0.1.
希望在所述压电基板的两主面互相对置而配置的电荷检测电极,配置于所述振动元件的两主面的、所述自由振动区域及支撑区域内的靠近自由振动区域的部分。It is desirable that the charge detection electrodes arranged opposite to each other on both main surfaces of the piezoelectric substrate are arranged on portions of the two main surfaces of the vibrating element, in the free vibration region and the support region, close to the free vibration region.
该结构中,在振动元件的两主面,电荷检测电极配置于自由振动区域及支撑区域内的靠近自由振动区域的部分。当然,在支撑区域内的远离自由振动区域的部分未配置电荷检测电极。本发明的加速度传感器,在施加加速度时,由于除了在自由振动区域还在支撑区域内的靠近自由振动区域的部分在压电基板产生应变且产生由压电效果引起的电荷,因此,通过在支撑区域内的靠近自由振动区域的部分也配置电荷检测电极,从而除了在自由振动区域产生的电荷之外,在支撑区域内的靠近自由振动区域的部分产生的电荷也被吸引到电荷检测电极。因此,电荷检测电极中积累的电荷量增加,振动元件的两主面的电荷检测电极之间产生的电位差也增大。由于根据施加的加速度而产生的电荷及电压增大,因此可获得加速度的检测灵敏度高的加速度传感器。In this structure, on both main surfaces of the vibrating element, the charge detecting electrodes are arranged in the free vibration region and the part close to the free vibration region in the supporting region. Of course, no charge detection electrodes are arranged in the part of the support region away from the free vibration region. In the acceleration sensor of the present invention, when an acceleration is applied, since the piezoelectric substrate is strained and charges caused by the piezoelectric effect are generated in the part of the support region close to the free vibration region in addition to the free vibration region, therefore, by Charge detection electrodes are also arranged in the region near the free vibration region so that charges generated in the support region near the free vibration region are attracted to the charge detection electrodes in addition to the charges generated in the free vibration region. Therefore, the amount of charges accumulated in the charge detection electrodes increases, and the potential difference generated between the charge detection electrodes on both main surfaces of the vibrating element also increases. Since the charge and voltage generated by the applied acceleration increase, an acceleration sensor with high acceleration detection sensitivity can be obtained.
而且,通过在支撑区域内的远离自由振动区域的部分未配置电荷检测电极,从而若与在支撑区域中的远离自由振动区域的部分也配置电荷检测电极的情况相比,则电荷检测电极的整体面积减少,振动元件的两主面的电荷检测电极之间的静电电容也减少。Furthermore, since the charge detection electrode is not arranged in the part of the support region far from the free vibration region, compared with the case where the charge detection electrode is also arranged in the part of the support region far from the free vibration region, the overall charge detection electrode As the area decreases, the capacitance between the charge detection electrodes on both main surfaces of the vibrating element also decreases.
若设根据施加的加速度而在电荷检测电极积累的电荷量为Q,由此在振动元件的两主面的电荷检测电极之间产生的电位差为V,振动元件的两主面的电荷检测电极之间的静电电容为C,则V=Q/C,因此,电荷量Q为恒定时,若静电电容C减小则电位差V增加。即,通过在支撑区域内的远离自由振动区域的部分未配置电荷检测电极,从而根据施加的加速度而在电荷检测电极积累的电荷量Q几乎不变化,由于振动元件的两主面的电荷检测电极之间的静电电容C减小,因而振动元件的两主面的电荷检测电极之间产生的电位差V增大。由此,可获得由电压的变化检测施加的加速度时的电压灵敏度高的加速度传感器。If the amount of charge accumulated in the charge detection electrodes according to the applied acceleration is Q, the potential difference generated between the charge detection electrodes on the two main surfaces of the vibration element is V, and the charge detection electrodes on the two main surfaces of the vibration element The electrostatic capacitance between them is C, and then V=Q/C. Therefore, when the amount of charge Q is constant, if the electrostatic capacitance C decreases, the potential difference V increases. That is, by not disposing the charge detection electrode in the part away from the free vibration region in the supporting region, the amount of charge Q accumulated in the charge detection electrode hardly changes according to the applied acceleration, since the charge detection electrodes on both main surfaces of the vibration element The electrostatic capacitance C between them decreases, so the potential difference V generated between the charge detection electrodes on both main surfaces of the vibrating element increases. Accordingly, an acceleration sensor having high voltage sensitivity when detecting an applied acceleration from a change in voltage can be obtained.
在所述振动元件的长度方向,设在所述支撑区域中配置有所述电荷检测电极的部分的长度为γ,设所述自由振动区域的长度为δ时,希望0.15≤γ/δ≤0.3。In the longitudinal direction of the vibrating element, when the length of the part where the charge detection electrode is arranged in the support region is γ, and the length of the free vibration region is δ, it is desirable that 0.15≤γ/δ≤0.3 .
进而,根据本发明的加速度传感器,在所述构成中,所述振动元件也可设置为:在厚度方向上层叠多个压电基板,在各压电基板之间以经由压电基板与两主面(外侧主面)的电荷检测电极对置的方式还配置电荷检测电极。Furthermore, according to the acceleration sensor of the present invention, in the above configuration, the vibrating element may be provided in such a way that a plurality of piezoelectric substrates are stacked in the thickness direction, and the piezoelectric substrate and the two main substrates are connected between the piezoelectric substrates. The charge detection electrodes are also arranged on the surface (outer main surface) such that the charge detection electrodes face each other.
该情况下,配置于压电基板之间的电荷检测电极,以与配置于振动元件的外侧主面的电荷检测电极在厚度方向重叠的位置及形状而配置。由此在配置于各压电基板的两主面的电荷检测电极中产生电荷,在振动元件整体中产生的电荷量增加,因此可利用产生的电荷提高检测加速度时的电荷灵敏度。In this case, the charge detection electrodes arranged between the piezoelectric substrates are arranged in positions and shapes overlapping the charge detection electrodes arranged on the outer main surface of the vibrating element in the thickness direction. As a result, charges are generated in the charge detection electrodes disposed on both main surfaces of the piezoelectric substrates, and the amount of generated charges in the entire vibrating element increases. Therefore, the generated charges can be used to improve the charge sensitivity when detecting acceleration.
进而,根据本发明的加速度传感器,在所述构成中,也可以配置从压电基板的一方的主面的电荷检测电极引出到一方的侧面的第1引出电极,并配置从另一方主面的电荷检测电极引出到另一方的侧面的第2引出电极。Furthermore, according to the acceleration sensor of the present invention, in the above configuration, the first lead-out electrode drawn from the charge detection electrode on one main surface of the piezoelectric substrate to one side surface may be arranged, and the first lead-out electrode drawn from the other main surface may be arranged. The charge detection electrode is led out to the second lead-out electrode on the other side surface.
在这样的情况下,所有的电荷检测电极经由两个引出电极而引出到振动元件的两侧面,从而可容易地与振动元件的外部电连接。由此,由于无需在振动元件中形成用于将位于压电基板的层间的电荷检测电极与振动元件的外部电连接的通孔等,从而可获得具有简单的结构且制造工序也可简化的加速度传感器。In this case, all the charge detection electrodes are drawn out to both side surfaces of the vibrating element via the two lead-out electrodes, so that they can be easily electrically connected to the outside of the vibrating element. Thus, since there is no need to form a via hole or the like for electrically connecting the charge detection electrodes located between the layers of the piezoelectric substrate to the outside of the vibration element in the vibration element, a simple structure and a simplified manufacturing process can be obtained. Accelerometer.
而且,通过可在振动元件的两侧面与振动元件的外部电连接,从而若与“将引出电极引出到振动元件的端面使其露出,并在振动元件的端面与振动元件的外部进行电连接的情况”相比,则可增大与振动元件的外部的连接部彼此间的间隔。由此,在使用具有流动性的焊锡或导电性粘接剂等将引出电极与振动元件的外部连接的情况等,可降低在第1引出电极与第2引出电极之间发生电短路的可能性。Moreover, by being electrically connected to the outside of the vibration element on both sides of the vibration element, if the electrode is drawn out to the end surface of the vibration element to expose it, and the end surface of the vibration element is electrically connected to the outside of the vibration element In this case, the distance between the connecting parts to the outside of the vibrating element can be increased. This reduces the possibility of an electrical short between the first lead-out electrode and the second lead-out electrode when the lead-out electrode is connected to the outside of the vibrating element using fluid solder or a conductive adhesive. .
进而,本发明的磁盘装置,为了检测施加到磁盘装置的加速度而装载有所述本发明的加速度传感器。通过加速度传感器始终监视施加到磁盘装置的加速度,将该加速度数据与预先设定的阈值进行比较,在判断为超过了阈值时,通过使磁头躲避,从而在数据的读写中,即使对磁盘装置施加较强的加速度时,也能在发生故障前防止由磁头与磁盘的碰撞引起的磁盘装置的损坏。Furthermore, the magnetic disk device of the present invention is equipped with the acceleration sensor of the present invention in order to detect the acceleration applied to the magnetic disk device. The acceleration sensor always monitors the acceleration applied to the magnetic disk device, compares the acceleration data with a preset threshold value, and when it is judged that the threshold value is exceeded, the magnetic head is avoided, so that even the magnetic disk device is not damaged during data reading and writing. Even when strong acceleration is applied, damage to the magnetic disk device due to collision between the magnetic head and the magnetic disk can be prevented before failure occurs.
本发明中的上述的或进一步其它的优点、特征及效果,可参照附图并通过下述的实施方式的说明而明确。The above-mentioned or further other advantages, features, and effects of the present invention will be clarified through the description of the following embodiments with reference to the accompanying drawings.
附图说明Description of drawings
图1是示意地表示本发明的一实施方式涉及的加速度传感器的外观立体图;FIG. 1 is a perspective view schematically showing the appearance of an acceleration sensor according to an embodiment of the present invention;
图2是示意地表示本发明的一实施方式涉及的加速度传感器中使用的振动元件的外观立体图;2 is an external perspective view schematically showing a vibrating element used in an acceleration sensor according to an embodiment of the present invention;
图3是透视图2的振动检测元件的第1支撑构件的外观立体图;Fig. 3 is a perspective view of the appearance of the first support member of the vibration detection element of Fig. 2;
图4是示意地表示本发明的一实施方式涉及的加速度传感器中使用的第2支撑构件的外观立体图;4 is an external perspective view schematically showing a second supporting member used in the acceleration sensor according to the embodiment of the present invention;
图5是去除了图1中表示的加速度传感器的密封用树脂后的外观立体图;Fig. 5 is a perspective view of the external appearance of the acceleration sensor shown in Fig. 1 after the sealing resin is removed;
图6是图1的A-A’线剖面图;Fig. 6 is the A-A ' line sectional view of Fig. 1;
图7是本发明的其它实施方式涉及的加速度传感器的剖面图;7 is a cross-sectional view of an acceleration sensor according to another embodiment of the present invention;
图8是示意地表示本发明的又一实施方式涉及的加速度传感器中使用的振动元件及第1支撑构件的外观立体图;8 is an external perspective view schematically showing a vibrating element and a first supporting member used in an acceleration sensor according to still another embodiment of the present invention;
图9是图8所示的振动元件及第1支撑构件的分解立体图;Fig. 9 is an exploded perspective view of the vibrating element and the first supporting member shown in Fig. 8;
图10~图12分别是示意地表示构成图9所示的振动元件的压电基板及配置于压电基板的两主面上的导体膜的从上面看的透视图、俯视图、仰视图;10 to 12 are respectively a perspective view, a plan view, and a bottom view schematically showing the piezoelectric substrate constituting the vibrating element shown in FIG.
图13~图15分别是示意地表示构成图9所示的振动元件的其它的压电基板及配置于压电基板的两主面上的导体膜的从上面看的透视图、俯视图、仰视图;13 to 15 are respectively a perspective view, a top view, and a bottom view schematically showing another piezoelectric substrate constituting the vibrating element shown in FIG. ;
图16是示意地表示本发明的又一实施方式涉及的加速度传感器的剖面图;16 is a cross-sectional view schematically showing an acceleration sensor according to still another embodiment of the present invention;
图17是示意地表示图16所示的加速度传感器中使用的振动元件及第1支撑构件的外观立体图;17 is a perspective view schematically showing the appearance of a vibrating element and a first supporting member used in the acceleration sensor shown in FIG. 16;
图18~图20分别是示意地表示构成图17所示的振动元件的压电基板及配置于压电基板的两主面上的导体膜的从上面看的透视图、俯视图、仰视图;18 to 20 are respectively a perspective view, a top view, and a bottom view schematically showing the piezoelectric substrate constituting the vibrating element shown in FIG. 17 and the conductor films disposed on both main surfaces of the piezoelectric substrate, viewed from above;
图21~图23分别是示意地表示构成图17所示的振动元件的其它的压电基板及配置于压电基板的两主面上的导体膜的从上面看的透视图、俯视图、仰视图;21 to 23 are respectively a perspective view, a top view, and a bottom view schematically showing another piezoelectric substrate constituting the vibrating element shown in FIG. ;
图24是示意地表示本发明的又一实施方式涉及的加速度传感器的剖面图;24 is a cross-sectional view schematically showing an acceleration sensor according to still another embodiment of the present invention;
图25是示意地表示图24所示的加速度传感器中使用的振动元件及第1支撑构件的外观立体图;Fig. 25 is a perspective view schematically showing the appearance of a vibrating element and a first supporting member used in the acceleration sensor shown in Fig. 24;
图26~图28分别是示意地表示构成图25所示的振动元件的压电基板的从上面看的透视图、俯视图、仰视图;26 to 28 are respectively a perspective view, a top view, and a bottom view schematically showing the piezoelectric substrate constituting the vibrating element shown in FIG. 25 viewed from above;
图29~图31分别是示意地表示构成图25所示的振动元件的其它的压电基板的从上面看的透视图、俯视图、仰视图;29 to 31 are respectively a perspective view, a plan view, and a bottom view schematically showing other piezoelectric substrates constituting the vibrating element shown in FIG. 25 viewed from above;
图32~图34是表示对加速度传感器赋予冲击时在振动元件的表面产生的电荷的分布的仿真(simulation)结果图;32 to 34 are diagrams showing simulation results of the distribution of charges generated on the surface of the vibrating element when an impact is applied to the acceleration sensor;
图35~图37是示意地表示振动元件2的变形的情况的部分剖面图;35 to 37 are partial cross-sectional views schematically showing the state of deformation of the
图38是表示在本发明的图7所示的实施方式涉及的加速度传感器中使第1支撑构件的伸出量改变时的加速度的检测灵敏度的变化的仿真结果的图表;38 is a graph showing simulation results of changes in detection sensitivity of acceleration when the extension amount of the first supporting member is changed in the acceleration sensor according to the embodiment shown in FIG. 7 of the present invention;
图39是表示对本发明的图1~图6所示的实施方式涉及的加速度传感器赋予加速度时在振动元件的表面产生的电荷的分布的仿真结果图;39 is a diagram showing simulation results of distribution of charges generated on the surface of the vibrating element when acceleration is applied to the acceleration sensor according to the embodiment shown in FIGS. 1 to 6 of the present invention;
图40是表示在本发明的图8~图15所示的实施方式涉及的加速度传感器中,使电荷检测电极的向支撑区域内的伸出量变化时的电压灵敏度的变化的仿真结果的图表;40 is a graph showing simulation results of changes in voltage sensitivity when the amount of protrusion of the charge detection electrode into the supporting region is changed in the acceleration sensor according to the embodiment shown in FIGS. 8 to 15 of the present invention;
图41是表示本发明的加速度传感器中,在两块压电基板的层间配置有一块电荷检测电极的实施方式中的振动元件及第1支撑构件的分解立体图;41 is an exploded perspective view showing a vibrating element and a first support member in an embodiment in which one charge detection electrode is disposed between two piezoelectric substrates in the acceleration sensor of the present invention;
图42表示安装有加速度传感器的磁盘装置的内部结构的立体图;42 is a perspective view showing the internal structure of the magnetic disk device on which the acceleration sensor is installed;
图43是表示对加速度传感器的加速度检测信号进行处理的电路的框图。FIG. 43 is a block diagram showing a circuit for processing an acceleration detection signal of an acceleration sensor.
图中:1-外壳,1a、1b-引导(lead)电极,1h-开口部,2-振动元件,21、22-压电基板,26~29-导体膜,23-粘接剂,3a、3b-第1支撑构件,4-第2支撑构件,4a、4b-凹部,4h-贯通孔,5-密封用树脂,6a、6b-导电性粘接材料,7a、7b-引导电极的端部,8a、8b-树脂的围堰,91-支撑区域,92-自由振动区域,C-电荷检测电极,E-引出电极。In the figure: 1-housing, 1a, 1b-lead electrodes, 1h-opening, 2-vibration element, 21, 22-piezoelectric substrate, 26-29-conductor film, 23-adhesive, 3a, 3b-first support member, 4-second support member, 4a, 4b-recess, 4h-through hole, 5-resin for sealing, 6a, 6b-conductive adhesive material, 7a, 7b-end of lead electrode , 8a, 8b-resin cofferdam, 91-support area, 92-free vibration area, C-charge detection electrode, E-extraction electrode.
具体实施方式Detailed ways
<加速度传感器的结构1><
图1是表示本发明的一实施方式涉及的加速度传感器的外观立体图。该加速度传感器具有的结构是,将振动元件2(图2所示)收纳于具有引导电极1a、1b的外壳1内,并由密封用树脂5密封外壳1的开口部1h。FIG. 1 is a perspective view showing the appearance of an acceleration sensor according to an embodiment of the present invention. This acceleration sensor has a structure in which a vibrating element 2 (shown in FIG. 2 ) is accommodated in a
外壳1是长方体状、一端侧具有开口部1h的容器。作为其材质适宜使用例如液晶聚合物(LCP)、聚亚苯基硫醚(PPS)、聚醚醚酮(PEEK)等高强度的塑料材料或氧化铝等陶瓷材料。The
在外壳1中安装有提供将加速度传感器向安装基板等的机械固定与电连接的引导电极1a、1b。引导电极1a、1b,用于通过焊锡等进行与外部的电路布线基板(未图示)的电连接及固定。
作为引导电极1a、1b的材质,使用例如磷青铜等,其厚度设定为例如0.1~0.5mm。另外,在本实施方式的加速度传感器中,引导电极1a、1b通过夹物模压(insert mold)而与外壳1一体成形。As a material of the
密封用树脂5以堵塞外壳1的开口部1h的方式形成,作为密封用树脂5的材质使用例如环氧树脂等。The sealing
图2是示意地表示本实施方式的加速度传感器中使用的振动元件2及用于夹持振动元件2的一方端部侧的第1支撑构件3a、3b的外观立体图。2 is an external perspective view schematically showing the vibrating
图3是从其它角度表示振动元件2的立体图,透视地表示第1支撑构件3a、3b。FIG. 3 is a perspective view showing the vibrating
振动元件2采用的结构是,将在两主面包覆有一对导体膜26、27的长方体状的压电基板21、和在两主面包覆有一对导体膜28、29的长方体状的压电基板22,隔着绝缘性的粘接剂而贴合。导体膜27、28由粘接剂23而互相绝缘。该构造一般称作“双压电晶片形”。The vibrating
压电基板21、22,以各自的极化(polarization)的方向相反的方式在厚度方向上极化,作为其材质,可使用例如钛酸锆酸铅或钛酸铅等压电陶瓷材料。压电基板21、22,形成为例如长度为0.5~5.0mm、宽度为0.2~1.0mm、厚度为0.1~1.0mm的长方体状。The
在压电基板21、22的制作中采用下面的制造方法。该制造方法包括:(1)在原料粉末中添加粘合剂(binder)并按压成形,或使用球磨机将原料粉末与水、分散剂一起混合及干燥,并添加粘合剂、溶剂、增塑剂等通过刮刀(doctor blade)法成形并构成板状的工序,(2)将所述成形体在1100℃~1400℃的峰值温度下烧制10分钟~几个小时而形成基板的工序,(3)在所述基板的厚度方向上,例如在60℃~150℃的温度下施加3kV/mm~15kV/mm的电压而进行极化处理的工序。The following manufacturing method is employed in manufacturing the
在压电基板21、22的两主面上包覆的导体膜26、27、28、29,是通过对例如金、银、铜、铬、镍、锡、铅、铝等良导电性的金属材料进行真空镀膜或喷镀(sputtering)法等形成于压电基板21、22的两主面上,或由现有公知的印刷法等将包含上述的金属材料的规定的导体膏涂敷成规定的图案,并通过在高温下烧接到一起而包覆形成。希望厚度在0.1~3μm的范围。The
贴合压电基板21、22的粘接剂23,作为其材质使用玻璃布基材环氧树脂、无机玻璃、环氧树脂等绝缘材料。The adhesive 23 for bonding the
在由玻璃布基材环氧树脂实现的接合中,将压电基板上下重叠,其间夹入在玻璃纤维之间浸渗了环氧树脂的层压材料(pre-preg),通过一边加压一边加热,将环氧树脂压缩成规定的厚度而使其固化。In bonding with glass cloth base epoxy resin, piezoelectric substrates are stacked up and down, and a laminate material (pre-preg) impregnated with epoxy resin between glass fibers is sandwiched between them. Heating compresses the epoxy resin to a predetermined thickness and cures it.
在由无机玻璃实现的接合中,在印刷涂敷玻璃膏之后,重叠压电基板、施加负荷,同时使用烧制炉在300~700℃下加热而进行熔融一体化。在烧制时,若预先在真空炉中进行烧制,则可抑制玻璃接合中间层中的气泡混入。特别是,在300℃以上的高温度下接合时,压电基板的极化由于去极化作用而需要在接合后再次进行极化处理。In bonding with inorganic glass, after printing and applying glass paste, the piezoelectric substrates are superimposed and a load is applied, while heating at 300 to 700° C. using a firing furnace to melt and integrate them. At the time of firing, if the firing is performed in a vacuum furnace in advance, the inclusion of air bubbles in the glass bonding interlayer can be suppressed. In particular, when bonding is performed at a high temperature of 300° C. or higher, the polarization of the piezoelectric substrate needs to be re-polarized after bonding due to depolarization.
第1支撑构件3a、3b是用于将振动元件2从其两主面侧进行夹持的构件。将由该第1支撑构件3a、3b夹持的振动元件2的区域称作“支撑区域91”。将未由该第1支撑构件3a、3b夹持的振动元件2的区域称作“自由振动区域92”。The
所述自由振动区域92的长度方向(x方向)的长度,比所述支撑区域91的长度方向(x方向)的长度更长。The length of the
希望第1支撑构件3a、3b的弹性模量在10MPa~10GPa的范围,特别希望在1~10GPa的范围。The modulus of elasticity of the first supporting
作为第1支撑构件3a、3b的材质,适宜使用例如弹性模量为6GPa左右的硅酮树脂或环氧系树脂等。而且,其厚度优选为20~100μm。希望第1支撑构件3a、3b的宽度方向(y方向)跨过振动元件2的整体,并希望长度方向(x方向)在距离振动元件2的一方端部(安装有第1支撑构件3a、3b的端部)0.5~1.5mm的范围内形成。As a material of the first supporting
下面说明这种第1支撑构件3a、3b的形成方法。(1)首先,准备具有成为多个压电基板21、22的部分的压电板,在板的各主面的规定位置以丝网印刷来印刷作为第1支撑构件3a、3b的材质的树脂膏并使其固化。根据需要可以多次重复丝网印刷,或为了获得厚度的精度,也可以研磨固化后的树脂膏的表面。(2)然后,确认固化后的树脂膏的位置,使用切割锯(dicing saw)等切断压电板,以获得规定长度的第1支撑构件3a、3b与振动元件2。由此,可获得安装有第1支撑构件3a、3b的振动元件2。Next, a method of forming such
这样获得的振动元件2的形状,例如长度为3mm、宽度为0.5mm、厚度为0.3mm。由第1支撑构件3a、3b夹持的支撑区域91的长度为1mm、未由第1支撑构件3a、3b夹持的自由振动区域92的长度为2mm。另外,在后面的说明中,将振动元件2的一方端部(由第1支撑构件3a、3b夹持的侧的端部)称作“固定端”,将另一方端部称作“自由端”。The shape of the
图4是本实施方式的加速度传感器使用的第2支撑构件4的外观立体图。FIG. 4 is an external perspective view of the
第2支撑构件4设置于外壳1内的开口部1h附近,夹持振动元件2的第1支撑构件3a、3b的外侧,作为发挥支撑振动元件2的作用的构件。The
在第2支撑构件4中设置有插入振动元件2的贯通孔4h。将所述振动元件2从自由端插入到该贯通孔4h中,并通过将安装于固定端侧的第1支撑构件3a、3b压入到贯通孔4h中,由第2支撑构件4进一步夹持第1支撑构件3a、3b的外侧,从而可将振动元件2固定到外壳1中。A through
在第2支撑构件4中,设置有用于灌封(potting)后述的导电性粘接材料6a、6b的凹部4a、4b,在凹部4a、4b设置有用于使通过外壳1的内部而伸出的引导电极1a、1b的端部7a、7b露出的孔。In the second supporting
图5是去除图1所示的加速度传感器的密封用树脂5来表示的立体图。FIG. 5 is a perspective view showing the sealing
形成于压电基板21、22的导体膜26、27的一部分,如图3所示,延伸到压电基板21、22的侧方侧周缘部而形成,将该部分称作导体膜的“引出电极E”。Parts of the
如图5所示,引出电极E在第2支撑构件4的凹部4a、4b中,经由导电性粘接材料6a、6b与引导电极1a、1b的端部7a、7b电连接。由此,在导体膜26、27及导体膜28、29之间产生的输出电压由引导电极1a、1b输出到外部。As shown in FIG. 5 , the lead electrodes E are electrically connected to the
导电性粘接剂6a、6b,是在粘接剂树脂中含有导电性填充物的粘接剂,希望导电性填充物是银、铜等导电性良好的金属。由于希望粘接剂树脂是在低于300℃的条件下固化的树脂,以便消除压电基板21、22的去极化作用,因此适宜使用例如环氧树脂等。The
另外,导电性粘接材料6a、6b,通过凹部4a、4b抑制灌封时的延展。In addition, the conductive
而且,从第2支撑构件4的表面到一对的第1支撑构件3a、3b设置有树脂的围堰8a、8b。围堰8a、8b,用于抑制导电性粘合材料6a(6b)流动而到达导电性粘合材料6b(6a),由此可防止在引导电极1a、1b间发生短路。Furthermore,
图6是图1的A-A’线剖面图。第2支撑构件4设置于外壳1内的开口部1h附近,使用与外壳1相同的材料并作为外壳1的一部分而一体地形成。若这样一体地形成,则制造变得容易。还有,也可以与外壳1分开来制作第2支撑构件4,使第2支撑构件4嵌入外壳1的开口部1h。Fig. 6 is a sectional view taken along line A-A' of Fig. 1 . The
第2支撑构件4,在振动元件2的长度方向(x方向)的长度d为0.5~1.5mm,以该长度d夹持第1支撑构件3a、3b的外侧。The
本实施方式的压力传感器的特征之一在于由弹性体形成第1支撑构件3a、3b。由此,第1支撑构件3a、3b,根据从振动元件2接受的力而变形,振动元件2,不仅在自由振动区域92,而且即使在支撑区域91内也可能挠曲。在该情况下,振动元件2的弯曲点P,如图36、37所示,位于由第1支撑构件3a、3b夹持的支撑区域91内。由此,在位于支撑区域91内的压电基板21、22也会产生由振动元件2的挠曲带来的应变。One of the characteristics of the pressure sensor of this embodiment is that the first supporting
因此,与如以往的加速度传感器那样在支撑区域91与自由振动区域92的交界上存在弯曲点P的情况(图35)相比,压电基板21、22中的产生应变的区域增大,产生的电荷增加,输出电压增大,从而可提高加速度的检测灵敏度。Therefore, compared with the case where there is a bending point P at the boundary between the
而且,由于不增加振动元件2的自由振动区域的长度,因此不会导致加速度传感器的大型化,由于不减小振动元件2的宽度及厚度,因此不会导致由机械强度不足引起的可靠性的降低。Moreover, since the length of the free vibration region of the vibrating
本实施方式的压力传感器的附加的特征在于,第2支撑构件4的弹性模量设为比第1支撑构件3a、3b的弹性模量更大。希望第2支撑构件4的弹性模量在第1支撑构件3a、3b的弹性模量的2倍以上。通过这样将第2支撑构件4的弹性模量设得比第1支撑构件3a、3b的弹性模量更大,从而在第2支撑构件4不易产生变形。An additional feature of the pressure sensor of this embodiment is that the elastic modulus of the
若设第2支撑构件4的弹性模量为与第1支撑构件3a、3b的弹性模量相同的程度或设为比其更小,则在对加速度传感器施加冲击时,除第1支撑构件3a、3b之外,第2支撑构件4也会明显变形。由此,原本对振动元件2施加的冲击由第2支撑构件4吸收。因此,振动元件2的变形减小,加速度的检测灵敏度降低。If the modulus of elasticity of the second supporting
在本实施方式中,由于将第2支撑构件4的弹性模量设得比第1支撑构件3a、3b的弹性模量更大,因此对振动元件2直接施加冲击,振动元件2的变形增大,可防止加速度的检测灵敏度的降低。In this embodiment, since the elastic modulus of the second supporting
希望作为第2支撑构件4的弹性模量的值在10~500GPa左右,优选在20~500GPa左右,特别优选在20~400GPa左右即可。It is desirable that the value of the modulus of elasticity of the second supporting
此处,说明测定第1支撑构件3a、3b的材质及第2支撑构件4的材质的弹性模量的方法。Here, a method of measuring the modulus of elasticity of the material of the first supporting
作为弹性模量的一例有“弯曲弹性模量(modulus of elasticity in flexure;flexural modulus)Ef”。所谓弯曲弹性模量Ef是指,在将规定的两点的应变ε1=0.0005,及ε2=0.0025对应的应力分别设为σ1、σ2时,用应变的差(ε2-ε1)除应力的差(σ2-σ1)后的值,即An example of the modulus of elasticity is "modulus of elasticity in flexure (flexural modulus) Ef". The so-called flexural modulus of elasticity Ef refers to, when the stresses corresponding to the strains ε1=0.0005 and ε2=0.0025 of the specified two points are set as σ1 and σ2 respectively, the difference of the stress (ε2-ε1) is divided by the difference of the strain (ε2-ε1) σ2-σ1), the value after
Ef=(σ2-σ1)/(ε2-ε1)Ef=(σ2-σ1)/(ε2-ε1)
弯曲弹性模量Ef的单位是MPa。The unit of the flexural modulus of elasticity Ef is MPa.
在该说明书中,若无特殊问题则基于JIS K7171的标准实施。JIS K7171是与ISO 178;1993(Plastics-Determination of flexural properties)同等的标准。即,使用与欲测定弹性模量的构件相同的材料制作试验片并测定其弯曲弹性模量。基本的是,制作长度为80.0mm、宽度为10.0mm、厚度为4.0mm的标准试验片,并设支点间距离L为64mm,设压头的半径R1为5.0mm,设支撑台的半径R2为5.0mm,在温度23℃、湿度50%RH的条件下测定弯曲弹性模量Ef。In this specification, if there is no special problem, it will be implemented based on the standard of JIS K7171. JIS K7171 is a standard equivalent to ISO 178; 1993 (Plastics-Determination of flexible properties). That is, a test piece is prepared using the same material as that of the member whose modulus of elasticity is to be measured, and its modulus of elasticity is measured. Basically, make a standard test piece with a length of 80.0mm, a width of 10.0mm, and a thickness of 4.0mm, and set the distance L between fulcrums to 64mm, set the radius R1 of the indenter to 5.0mm, and set the radius R2 of the support table to 5.0mm, and measure the flexural modulus Ef under the conditions of
作为第2支撑构件4的材质,可使用氧化铝等陶瓷材料,但也适宜使用例如液晶聚合物(LCP)、聚亚苯基硫醚(PPS)、聚醚醚酮(PEEK)等具有所希望的弹性模量的树脂。As the material of the second supporting
通过这样将容易加工的树脂作为第2支撑构件4的材质而使用,可容易地形成具有所希望的弹性模量及形状的第2支撑构件4,并可容易地获得具有高检测灵敏度的加速度传感器。By using a resin that is easy to process as the material of the
如以上那样固定的振动元件2,若从外部施加物理性的冲击(加速度),则未由第1支撑构件3a、3b夹持的自由振动区域92挠曲,并通过贴合的压电基板21、22中产生应变而产生电荷,从而在包覆于压电基板21的两主面的导体膜26、27之间、及包覆于压电基板22的两主面的导体膜28、29之间产生电位差,通过将此作为输出电压而取出来检测加速度。When the vibrating
另外,在本实施方式的加速度传感器中,如图4、5所示,振动元件2固定为相对于水平方向倾斜,从而不仅是其垂直方向,而且还可感知来自横向方向的冲击。具体为,外壳1的安装面(x-y面)与垂直于振动元件2主面的面所成的角(成为锐角侧的角)θ,根据用途而设定在20°~50°的范围内。In addition, in the acceleration sensor of this embodiment, as shown in FIGS. 4 and 5 , the vibrating
<加速度传感器的结构2><Structure of
图7是示意地表示本发明的其他实施方式涉及的加速度传感器的剖面图。另外,在本实施方式的加速度传感器中,仅对与所述的实施方式不同的方面进行说明,对相同的构成要素采用同一参照符号并省略重复的说明。7 is a cross-sectional view schematically showing an acceleration sensor according to another embodiment of the present invention. In addition, in the acceleration sensor of this embodiment, only the point which differs from the above-mentioned embodiment is demonstrated, the same reference numeral is used for the same component, and overlapping description is abbreviate|omitted.
图7所示的加速度传感器的特征的部分在于,第1支撑构件3a、3b相对于第2支撑构件4朝向振动元件2的振幅最大区域即自由端而伸出。The characteristic part of the acceleration sensor shown in FIG. 7 is that the first supporting
通过设为这种形状,第1支撑构件3a、3b中的未由第2支撑构件4夹持的部分(由α表示),会限制振动元件2的挠曲,同时与振动元件2一起产生某种程度的挠曲,因而即使在该部分,振动元件2也产生挠曲。By adopting such a shape, the portion (indicated by α) of the first supporting
并且,在振动元件2中,由于以由第1支撑构件3a、3b夹持的区域的端部(图37中由P1表示)为起点的挠曲,和除第1支撑构件3a、3b之外还由第2支撑构件4夹持的区域的端部(图37中由P2表示)为起点的挠曲,二者均会发生,因此产生压电基板中的应变而产生电荷的区域增大,产生的电荷增加,输出电压增大,从而可提高加速度的检测灵敏度。In addition, in the vibrating
进而,本实施方式的加速度传感器,在所述构成中,将所述第1支撑构件3a、3b的弹性模量设为比所述第2支撑构件4的弹性模量更小。Furthermore, in the acceleration sensor of the present embodiment, in the above configuration, the modulus of elasticity of the
因此,第1支撑构件3a、3b中的未由第2支撑构件4夹持的部分(α)与振动元件2一起进一步变得容易挠曲,并且即使在由第2支撑构件4夹持的区域内,根据从振动元件接受的力使得第1支撑构件3a、3b变形,从而振动元件2也可产生挠曲。由此,产生压电基板21、22中的应变而产生电荷的区域增大,产生的电荷增加,输出电压增大,可提高加速度的检测灵敏度。Therefore, the portion (α) of the first supporting
<加速度传感器的结构3><Structure of Acceleration Sensor 3>
图8是示意地表示本发明的又一实施方式涉及的加速度传感器使用的振动元件2及夹持振动元件2的长度方向(x方向)中的一方端部的两主面的第1支撑构件3a、3b的外观立体图。以透射由虚线表示的第1支撑构件3a、3b的状态来表示。8 schematically shows a vibrating
而且,图9是示意地表示图8所示的振动元件2及第1支撑构件3a、3b的分解立体图。9 is an exploded perspective view schematically showing the vibrating
图10、11、12分别是示意地表示构成图9所示的振动元件2的压电基板21及配置于压电基板21的两主面的导体膜26、27的从上面看的透视图、俯视图、仰视图。10, 11, and 12 are perspective views schematically showing the
图13、14、15分别是示意地表示构成图9所示的振动元件2的其它的压电基板22及配置于压电基板22的两主面上的导体膜28、29的从上面看的透视图、俯视图、仰视图。13, 14, and 15 schematically show other
另外,导体膜26由电荷检测电极C26及引出电极E26构成,导体膜27由电荷检测电极C27及引出电极E27构成。导体膜28由电荷检测电极C28及引出电极E28构成,导体膜29由电荷检测电极C29及引出电极E29构成。In addition, the
如图10、11、12所示,在长方体状的压电基板21的上面,从未由第1支撑构件3a、3b夹持的区域即自由振动区域92到作为由第1支撑构件3a、3b夹持的区域即支撑区域91的途中,配置有电荷检测电极C26,从电荷检测电极C26引出的引出电极E26被配置于支撑区域91内,并露出到压电基板21的一方的侧面。As shown in FIGS. 10, 11, and 12, on the upper surface of the rectangular parallelepiped
而且,在压电基板21的下面,从自由振动区域92到支撑区域91的途中配置有电荷检测电极C27,从电荷检测电极C27引出的引出电极E27被配置于支撑区域91内并露出到压电基板21的另一方的侧面。Furthermore, on the lower surface of the
并且,电荷检测电极C26、C27经由压电基板21以互相对置的方式配置,若压电基板21中产生应变,则根据压电效果而在电荷检测电极C26、27中产生不同符号的电荷,从而在电荷检测电极C26、27之间产生电位差。另外,引出电极E26、27具有分别将电荷检测电极C26、27与振动元件2的外部电连接的功能,并经由压电基板21而以不对置的方式配置,从而防止在引出电极E26、27之间产生较大的静电电容。Furthermore, the charge detection electrodes C26 and C27 are arranged to face each other via the
同样,如图13、14、15所示,在另外的长方体状的压电基板22的上面,从自由振动区域92到支撑区域91的途中配置有电荷检测电极C28,从电荷检测电极C28引出的引出电极E28配置于支撑区域91内并露出到压电基板22的一方的侧面。而且,在压电基板22的下面,从自由振动区域92到支撑区域91的途中配置有电荷检测电极C29,从电荷检测电极C29引出的引出电极E29配置于支撑区域91内并露出到压电基板22的另一方的侧面。Similarly, as shown in FIGS. 13, 14, and 15, on another rectangular parallelepiped
而且,电荷检测电极C28、29经由压电基板22而以互相对置的方式配置,若压电基板22中产生应变,则根据压电效果而在电荷检测电极C28、29中产生不同符号的电荷,从而在电荷检测电极C28、29之间产生电位差。另外,引出电极E28、29具有分别将电荷检测电极C28、29与振动元件2的外部电连接的功能,并经由压电基板22而以不对置的方式配置,从而防止在引出电极E28、29之间产生较大的静电电容。Furthermore, the charge detection electrodes C28 and 29 are arranged to face each other via the
另外,压电基板21、22,以电荷检测电极C27、C28经由绝缘性的粘接材料23而对置的方式贴合,引出电极E26、E28露出到振动元件2的一方的侧面,引出电极E27、E29露出到振动元件2的另一方的侧面上。In addition, the
如图8所示,位于振动元件2的一方端部的支撑区域91由第1支撑构件3a、3b夹持,并且第1支撑构件3a、3b由所述的第2支撑构件4夹持,由此振动元件2的支撑区域91被支撑而作为加速度传感器发挥作用。即,通过施加的加速度而使得振动元件2的自由振动区域92产生挠曲,从而在压电基板21、22中产生应变,根据压电效果而在电荷检测电极C26、27、28、29中产生电荷,由此在电荷检测电极C26、27之间、及电荷检测电极C28、29之间产生电位差。这样,可根据产生的电荷或电压检测加速度。As shown in FIG. 8, the supporting
按照所述的那样,希望第1支撑构件3a、3b的弹性模量在10MPa~10GPa左右,希望作为第2支撑构件4的弹性模量的值在10~500GPa左右。As described above, the modulus of elasticity of the first supporting
引出电极E26、28,露出到压电基板21、22的一方的侧面,经由导电性粘接剂6a而与在外壳1内伸出到振动元件2的一方的侧面附近的引导电极1a的端部7a电连接。而且,引出电极E27、29露出到压电基板21、22的另一方的侧面,经由导电性粘接剂6b而与在外壳1内伸出到振动元件2的另一方的侧面附近的引导电极1b的端部7b电连接。The lead electrodes E26, 28 are exposed to one side of the
由此,在电荷检测电极C26、27之间及电荷检测电极C28、29之间产生的输出电压由引导电极1a、1b而输出到外部。Accordingly, output voltages generated between the charge detection electrodes C26 and 27 and between the charge detection electrodes C28 and 29 are output to the outside through the
另外,由于振动元件2在主面进行机械的固定并在侧面进行电连接,有效地利用了空间,因此可形成更小型的加速度传感器。In addition, since the vibrating
<加速度传感器的结构4><
在上述的实施方式中,采用了由支撑构件夹持振动元件的长度方向的一方端部附近的结构,但也可以采用由支撑构件夹持振动元件的两端部的结构,还可以采用由支撑构件夹持振动元件的中央部附近的结构。In the above-mentioned embodiment, the structure in which one end of the vibrating element in the longitudinal direction is sandwiched by the supporting member is adopted, but a structure in which both ends of the vibrating element are sandwiched by the supporting member may also be adopted. The member clamps the structure near the central portion of the vibrating element.
图16是示意地表示本发明的又一实施方式涉及的加速度传感器的剖面图。图17是示意地表示图16所示的加速度传感器使用的振动元件2及第1支撑构件3a、3b的外观立体图。图18、19、20分别是示意地表示构成图17所示的振动元件2的压电基板21及配置于压电基板21的两主面上的导体膜26、27的从上面看的透视图、俯视图、仰视图。图21、22、23分别是示意地表示构成图17所示的振动元件2的其它的压电基板22及配置于压电基板22的两主面上的导体膜28、29的从上面看的透视图、俯视图、仰视图。16 is a cross-sectional view schematically showing an acceleration sensor according to still another embodiment of the present invention. FIG. 17 is an external perspective view schematically showing the vibrating
另外,在本实施方式中,仅对与所述的例子不同的方面进行说明,对相同的构成要素采用同一参照符号并省略重复的说明。In addition, in this embodiment, only the point which differs from the said example is demonstrated, the same reference numeral is used for the same component, and the overlapping description is abbreviate|omitted.
本实施方式的加速度传感器的特征的部分在于,振动元件2的长度方向的两端部,成为由第1支撑构件3a、3b及第2支撑构件4夹持的支撑区域91,中央部成为自由振动区域92。并且,自由振动区域92的长度方向的长度比各支撑区域91的长度更长,该自由振动区域92的长度方向的中央部成为振幅最大区域。即使在该情况下,通过从自由振动区域92到支撑区域91的途中配置电荷检测电极C26、27、28、29,从而也可由与所述的例子同样的机构提高加速度的检测灵敏度。The characteristic part of the acceleration sensor of this embodiment is that both ends in the longitudinal direction of the vibrating
<加速度传感器的结构5><
图24是示意地表示本发明的又一实施方式涉及的加速度传感器的剖面图。图25是示意地表示图24所示的加速度传感器使用的振动元件2及第1支撑构件3a、3b的外观立体图。图26、27、28分别是示意地表示构成图25所示的振动元件2的压电基板21及配置于压电基板21的两主面上的导体膜26、27的从上面看的透视图、俯视图、仰视图。图29、30、31分别是示意地表示构成图25所示的振动元件2的其它的压电基板22及配置于压电基板22的两主面上的导体膜28、29的从上面看的透视图、俯视图、仰视图。24 is a cross-sectional view schematically showing an acceleration sensor according to still another embodiment of the present invention. FIG. 25 is an external perspective view schematically showing the vibrating
另外,在本实施方式中,也仅对与所述的例子不同的方面进行说明,对相同的构成要素采用同一参照符号并省略重复的说明。In addition, also in this embodiment, only the point which differs from the above-mentioned example is demonstrated, the same reference numeral is used for the same component, and overlapping description is abbreviate|omitted.
本实施方式的加速度传感器中的特征的部分在于,振动元件2的长度方向的中央部,成为由第1支撑构件3a、3b及第2支撑构件4夹持的支撑区域91,其两侧成为自由振动区域92。另外,该情况下,振动元件2的长度方向的两端部成为振幅最大区域。即使在该情况下,通过从自由振动区域92到支撑区域91的途中配置电荷检测电极C26、27、28、29,从而也可由与所述的例子同样的机构提高加速度的检测灵敏度。The characteristic part of the acceleration sensor of this embodiment is that the central portion in the longitudinal direction of the vibrating
<制造例><Manufacturing example>
下面,对本发明的加速度传感器的制造例进行说明。Next, a manufacturing example of the acceleration sensor of the present invention will be described.
首先,在钛酸锆酸铅的原料粉末中添加粘合剂并按压,设峰值温度为1200℃,烧制24小时从而获得压电体块。First, a binder was added to the raw material powder of lead zirconate titanate, pressed, and fired at a peak temperature of 1200° C. for 24 hours to obtain a piezoelectric body.
然后,使用线状锯(wire saw)切割块,进而通过使用精研机研磨两面,制作只要被分割后便成为压电基板的压电母基板。设压电母基板的厚度为100μm。Then, the block is cut with a wire saw, and both sides are ground with a lapping machine to produce piezoelectric mother substrates that become piezoelectric substrates once divided. The thickness of the piezoelectric mother substrate was set to be 100 μm.
继而,使用溅射装置在压电母基板的两主面上形成了分割后成为导体膜26~29的金属薄膜。各金属薄膜成为铬与银的两层结构,在以0.3μm的厚度形成铬薄膜后,其上以0.3μm的厚度形成银薄膜。Next, metal thin films divided to become
接着,将压电母基板投入到极化槽中,并施加10秒钟300V的电压对压电母基板在厚度方向进行极化处理。Next, the piezoelectric mother substrate was put into the polarization tank, and a voltage of 300V was applied for 10 seconds to perform polarization treatment on the piezoelectric mother substrate in the thickness direction.
然后,使用丝网印刷法在金属薄膜的表面形成抗蚀图案之后,浸渍到蚀刻液中进行金属薄膜的图案形成,之后浸渍到甲苯中去除抗蚀层。Then, after forming a resist pattern on the surface of the metal thin film by the screen printing method, the metal thin film was dipped into an etching solution to form a pattern of the metal thin film, and then dipped in toluene to remove the resist layer.
继而,将两主面上形成有金属薄膜的图案的两块压电母基板投入到真空烘箱中,在二者之间夹入含有玻璃纤维的环氧树脂的层压材料并贴合,施加负荷并在180℃的条件下保持2小时而接合。另外,在贴合两块压电母基板时,使两块压电基板的极化的方向为相反的方向。Next, two piezoelectric mother substrates with metal thin film patterns formed on both main surfaces are placed in a vacuum oven, and a laminate material of epoxy resin containing glass fibers is sandwiched between them and bonded together, and a load is applied. And they were bonded by keeping under the condition of 180 degreeC for 2 hours. In addition, when laminating two piezoelectric mother substrates, the directions of polarization of the two piezoelectric substrates are opposite to each other.
接着,使用丝网印刷机在压电母基板上的规定的位置涂敷成为第1支撑构件3a、3b的环氧树脂,并以150℃保持2小时使其固化。Next, an epoxy resin to be the first supporting
然后,使用切割锯将压电母基板分割成单片,同时获得多个如图8所示的、第1支撑构件3a、3b被包覆于长度方向的端部的两主面上的振动元件2。Then, use a dicing saw to divide the piezoelectric mother substrate into individual pieces, and simultaneously obtain a plurality of vibration elements, as shown in FIG. 2.
继而,准备包括被夹物模压的由磷青铜构成的引导电极1a、1b、并在开口部1h附近一体地形成有第2支撑构件4的由LCP(液晶聚合物)构成的外壳1,如图5及图6所示,将包覆有第1支撑构件3a、3b的振动元件2压入到第2支撑构件4的贯通孔4h中并固定。Next, a
接着,如图5所示,使用分配器(dispenser)分别在露出的第1支撑构件3a、3b的上面的中央部附近及第1支撑构件3b的下面的中央部附近涂敷由环氧树脂构成的围堰8a、8b、和在第2支撑构件4的凹部4a、4b内露出的振动元件2的两侧面涂敷由环氧树脂与银填充物构成的导电性粘接材料6a、6b,并以200℃保持30分钟使其固化。Next, as shown in FIG. 5 , use a dispenser (dispenser) to coat the vicinity of the central portion of the upper surface of the exposed
然后,如图1所示,在外壳1的开口部1h,使用分配器涂敷由环氧树脂构成的密封用树脂5,以覆盖振动元件2、第1支撑构件3a、3b、围堰8a、8b、导电性粘接剂6a、6b及第2支撑部4,并以150℃保持2小时使其固化从而完成加速度传感器。Then, as shown in FIG. 1, a sealing
对这样制作的加速度传感器赋予冲击来评价电特性,确认了具有比以往更优良的特性。The electric characteristics were evaluated by applying a shock to the acceleration sensor produced in this way, and it was confirmed that the acceleration sensor had better characteristics than conventional ones.
<仿真例1><Simulation example 1>
图32、图33、图34是表示为了确认提高本发明的加速度传感器具有的压力检测灵敏度的效果而进行的采用有限元法的仿真例的图。32 , 33 , and 34 are diagrams showing simulation examples using the finite element method performed to confirm the effect of improving the pressure detection sensitivity of the acceleration sensor of the present invention.
由白色区域表示在对加速度传感器赋予冲击时在振动元件2的表面产生的电荷的分布。产生的电荷的密度越高的区域显示得越白。The distribution of charges generated on the surface of the vibrating
另外,在这些仿真中,设振动元件2的长度为3mm,宽度为0.5mm,厚度为0.3mm,设由第1支撑构件3a、3b夹持的支撑区域91的长度为1mm,设未由第1支撑构件3a、3b夹持的自由振动区域92的长度为2mm,设支撑构件1的厚度为30μm。In addition, in these simulations, the length of the vibrating
图33是表示图1~图6所示的本发明的加速度传感器的仿真结果图,虚线左侧是支撑区域91,虚线右侧是自由振动区域92,设第1支撑构件的弹性模量为4GPa,设第2支撑构件的弹性模量为500GPa。33 is a graph showing the simulation results of the acceleration sensor of the present invention shown in FIGS. 1 to 6. The left side of the dotted line is the
而且,图32是表示用于比较的以往的加速度传感器的仿真结果的图,虚线左侧是支撑区域91,虚线右侧是自由振动区域92,设支撑构件的弹性模量为500GPa。32 is a diagram showing simulation results of a conventional acceleration sensor for comparison. The left side of the dotted line is the
在图32所示的以往的加速度传感器中,几乎仅在自由振动区域92产生电荷,而且集中于支撑区域91附近。这是表示在支撑区域91内压电基板21、22中未产生应变,即在支撑区域91内振动元件2未产生挠曲。并且表示在振动元件2的自由振动区域92中,在压电基板21、22产生的应变越靠近支撑区域91越大,相反,在振动元件2的自由端附近几乎未产生应变,可认为这是由对各区域施加的力矩不同而引起的。并可认为振动元件的自由端附近几乎是仅作为铅坠而发挥作用。In the conventional acceleration sensor shown in FIG. 32 , charges are generated almost only in the
对此,在图33所示的本发明的加速度传感器中,即使在支撑区域91内的自由振动区域92附近也产生有电荷。这是表示在支撑区域91内的压电基板21、22中也产生了应变,即在支撑区域91内振动元件2产生了挠曲。可认为这是由于第1支撑构件3a、3b由弹性体构成,并具有比第2支撑构件4更小的弹性模量,从而第1支撑构件3a、3b容易根据从振动元件2接受的力而变形,因此即使在支撑区域91内振动元件2也可产生挠曲。In contrast, in the acceleration sensor of the present invention shown in FIG. 33 , charges are generated even in the vicinity of the
图35、36、37是示意地表示本发明的加速度传感器与以往的加速度传感器中的振动元件2的变形的情况的部分剖面图。35 , 36 , and 37 are partial cross-sectional views schematically showing states of deformation of the
可认为由于在图35所示的以往的加速度传感器中,振动元件2的挠曲主要产生于自由振动区域92中的由L0表示的极有限的范围内,而在图36所示的本发明的加速度传感器中,振动元件2的挠曲产生在从支撑区域91的途中到自由振动区域92的由L1表示的较宽的范围内,因而获得了图32、33所示的仿真结果。It can be considered that in the conventional acceleration sensor shown in FIG. 35, the deflection of the vibrating
这样,在本发明的加速度传感器中,由于在支撑区域91内的一部分也产生电荷,因此与以往的加速度传感器相比,由于振动元件2中的电荷的产生区域变宽,在振动元件2产生的电荷量增大,从而不改变振动元件2的尺寸,而且不降低振动元件2的机械强度,便可提高加速度检测灵敏度。In this way, in the acceleration sensor of the present invention, since charges are also generated in a part of the supporting
在图1~图6所示的本发明的加速度传感器中,表1中表示对使第1支撑构件3a、3b的弹性模量与第2支撑构件4的弹性模量改变时的加速度的检测灵敏度(每1G的加速度在电荷检测电极产生的电荷量)的变化进行仿真的结果。另外,该仿真中的弹性模量以外的各种条件按照所述的设置。In the acceleration sensor of the present invention shown in FIGS. 1 to 6 , Table 1 shows the detection sensitivity to acceleration when the modulus of elasticity of the
[表1]
在表1中,当第1支撑构件3a、3b的弹性模量为3GPa时,随着第2支撑构件4的弹性模量增大为3GPa、30GPa、300GPa,电荷灵敏度也提高为0.282、0.311、0.313。第1支撑构件3a、3b的弹性模量为30GPa、300GPa时也同样,随着第2支撑构件4的弹性模量的增大使得电荷灵敏度提高。由此得知电荷灵敏度根据第2支撑构件4的弹性模量的增大而提高。In Table 1, when the modulus of elasticity of the
而且,当第2支撑构件4的弹性模量为3GPa时,随着第1支撑构件3a、3b的弹性模量增大为3GPa、30GPa、300GPa,电荷灵敏度恶化为0.282、0.267、0.251。第2支撑构件4的弹性模量为30GPa、300GPa时也同样,随着第1支撑构件3a、3b的弹性模量的增大使得电荷灵敏度恶化。由此得知电荷灵敏度根据第1支撑构件3a、3b的弹性模量的降低而提高。Furthermore, when the modulus of elasticity of the
进而,若将表1的电荷灵敏度从较小值开始排列,则成为0.251、0.26、0.267、0.269、0.282、0.283、0.287、0.311、0.313,0.251、0.26、0.267是第1支撑构件3a、3b的弹性模量比第2支撑构件4的弹性模量大的情况下(第1>第2)的电荷灵敏度,0.269、0.282、0.283是第1支撑构件3a、3b的弹性模量与第2支撑构件4的弹性模量相等的情况下(第1=第2)的电荷灵敏度,0.287、0.311、0.313是第1支撑构件3a、3b的弹性模量比第2支撑构件4的弹性模量小的情况下(第1<第2)的电荷灵敏度。由该结果,可确认对电荷灵敏度赋予支配性的影响的是第1支撑构件3a、3b的弹性模量与第2支撑构件4的弹性模量的大小关系,通过将第1支撑构件3a、3b的弹性模量设为比第2支撑构件4的弹性模量小,从而提高加速度的检测灵敏度。Furthermore, when the charge sensitivities in Table 1 are arranged from the smaller values, 0.251, 0.26, 0.267, 0.269, 0.282, 0.283, 0.287, 0.311, 0.313, 0.251, 0.26, 0.267 are the values of the first supporting
图34是表示在对图7所示的第1支撑构件3a、3b比第2支撑构件4更向自由端伸出的结构的加速度传感器赋予冲击时,在振动元件2的表面产生的电荷的分布的仿真结果。34 shows the distribution of charges generated on the surface of the vibrating
在图34中,比左侧的虚线更靠左侧是由第1支撑构件3a、3b与第2支撑构件4夹持的区域,在左侧与右侧的虚线之间是仅由第1支撑构件3a、3b夹持的区域,比右侧的虚线更靠右侧的是自由振动区域92。In Fig. 34, the left side of the dotted line on the left side is the area sandwiched by the
另外,在该仿真中,与图33的情况同样,设第1支撑构件3a、3b的弹性模量为4GPa,设第2支撑构件4的弹性模量为500GPa。In addition, in this simulation, the modulus of elasticity of the
由与图33的比较可明确,与图1~图6所示的结构的加速度传感器相比,产生电荷的区域进一步增大。即,如在图37中示意地表示图7所示的结构的加速度传感器中的振动元件2的变形的情况,可认为通过振动元件2的挠曲在同图的L2所示的较宽的范围内产生,从而电荷的产生区域也进一步变宽。As can be seen from comparison with FIG. 33 , the region where charges are generated is further enlarged compared with the acceleration sensor having the structure shown in FIGS. 1 to 6 . That is, as in FIG. 37 schematically shows the deformation of the vibrating
而且,在图7所示的结构的加速度传感器中,由于第2支撑构件4的弹性模量设定得比第1支撑构件3a、3b的弹性模量更大,因此在第2支撑构件4中几乎不产生变形,也不产生“由第2支撑构件4的变形而振动元件2的变形被抑制,使得加速度的检测灵敏度降低”的问题。Moreover, in the acceleration sensor with the structure shown in FIG. There is almost no deformation, and there is no problem that "the deformation of the
图38是表示在图7所示的加速度传感器中,表示使第1支撑构件3a、3b相对于第2支撑构件4的伸出量α变化时的加速度的检测灵敏度的变化的仿真结果的图表。另外,由β表示从第1支撑构件3a、3b的端面到振动元件2的自由端的长度。38 is a graph showing simulation results showing changes in acceleration detection sensitivity when the protrusion amount α of the first supporting
在该图表中,横轴表示第1支撑构件3a、3b的伸出量相对于从第2支撑构件4的端面到振动元件2的自由端的长度的比(图7中的α/(α+β)),纵轴表示加速度的检测灵敏度(每1G的加速度在电荷检测电极产生的电荷量)。In this graph, the horizontal axis represents the ratio of the protruding amount of the first supporting
另外,在该仿真中,设振动元件2的长度为3mm,宽度为0.5mm,厚度为0.3mm,设支撑构件1的厚度为30μm,设第2支撑构件4的弹性模量为300GPa,设由第2支撑构件4夹持的区域的长度为1mm来计算。In addition, in this simulation, the length of the vibrating
根据该仿真可确认,如图38所示,通过使第1支撑构件3a、3b相对于第2支撑构件4向自由端侧伸出,从而可提高加速度的检测灵敏度。From this simulation, it was confirmed that, as shown in FIG. 38 , the acceleration detection sensitivity can be improved by protruding the first supporting
特别是可知,第1支撑构件3a、3b为1GPa时比为10GPa时加速度的检测灵敏度更高。另外,如从图38所示的图可明确,通过优选第1支撑构件3a、3b相对于第2支撑构件4的伸出量在5~10%的范围,从而可进一步提高加速度的检测灵敏度。In particular, it can be seen that the acceleration detection sensitivity is higher when the
<仿真例2><Simulation example 2>
图39是示意地表示使用有限源法对具有图1~图6所示的结构的加速度传感器赋予加速度时,在振动元件2的表面产生的电荷的分布进行仿真的结果图。产生的电荷的密度越高的区域由越密的剖面线显示。39 is a diagram schematically showing the result of simulation of the distribution of charges generated on the surface of the vibrating
在该仿真中,设振动元件2的长度为3mm,宽度为0.5mm,厚度为0.3mm,设由第1支撑构件3a、3b夹持的支撑区域91的长度为1mm,设未由第1支撑构件3a、3b夹持的自由振动区域92的长度为2mm,设第1支撑构件3a、3b的厚度分别为30μm。而且,设第1支撑构件3a、3b的弹性模量为4GPa,设第2支撑构件4的弹性模量为500GPa。In this simulation, the length of the vibrating
另外,在图中,点划线左侧是支撑区域91,点划线右侧是自由振动区域92。In addition, in the drawing, the left side of the dotted line is the
如从图39所示的结果可知,能够确认不仅是自由振动区域92,在靠近支撑区域91内的自由振动区域92的部分也有电荷产生。这表示在支撑区域91内的压电基板中也产生应变,即使在支撑区域91内振动元件2也产生挠曲。As can be seen from the results shown in FIG. 39 , it was confirmed that charges were generated not only in the
而且,还可确认与此相反,在自由振动区域92的前端部或支撑区域91内的与自由振动区域92相反侧的部分中,振动元件2不挠曲,因此由于在压电基板不产生应变,从而几乎不产生电荷。Furthermore, it was also confirmed that, on the contrary, in the tip portion of the
在具有图8~图15所示的电极结构的加速度传感器中,从振动元件2的自由振动区域92到支撑区域91的途中经由压电基板21、22而配置有互相对置的电荷检测电极C26、27、28、29。即,在支撑区域91内的靠近自由振动区域92的部分配置有电荷检测电极C26、27、28、29,在支撑区域91内的远离自由振动区域92的部分未配置电荷检测电极C26、27、28、29。In the acceleration sensor having the electrode structure shown in FIGS. 8 to 15 , charge detection electrodes C26 facing each other are arranged via
通过在支撑区域91内的靠近自由振动区域92的部分也配置有电荷检测电极C26、27、28、29,从而由于除了在自由振动区域92产生的电荷之外,在支撑区域91内的靠近自由振动区域92的部分产生的电荷也被吸引到电荷检测电极C26、27、28、29,因此电荷检测电极C26、27、28、29中积累的电荷量增加,电荷检测电极C26、27之间及电荷检测电极C28、29之间产生的电位差也增大。由于根据所施加的加速度而产生的电荷及电压增大,因此可获得加速度的检测灵敏度高的加速度传感器。Since the charge detection electrodes C26, 27, 28, and 29 are also arranged in the part close to the
而且,通过在支撑区域91内的远离自由振动区域92的部分未配置电荷检测电极C26、27、28、29,若与在支撑区域91中的远离自由振动区域92的部分也配置电荷检测电极C26、27、28、29的情况相比,则电荷检测电极C26、27、28、29的面积减少,从而电荷检测电极C26、27之间及电荷检测电极C28、29之间的静电电容也减少。Moreover, since the charge detection electrodes C26, 27, 28, and 29 are not arranged in the part of the
并且,即使在支撑区域91中的远离自由振动区域92的部分不配置电荷检测电极C26、27、28、29,与在支撑区域91中的远离自由振动区域92的部分配置电荷检测电极C26、27、28、29的情况相比,电荷检测电极C26、27、28、29中积累的电荷也几乎不减少。In addition, even if the charge detection electrodes C26, 27, 28, and 29 are not arranged in the part of the
因此,在电荷检测电极C26、27之间及电荷检测电极C28、29之间产生的电位差增大,可获得由电压检测施加的加速度时的灵敏度(电压灵敏度)高的加速度传感器。Therefore, the potential difference generated between the charge detection electrodes C26 and 27 and between the charge detection electrodes C28 and 29 increases, and an acceleration sensor having high sensitivity (voltage sensitivity) when detecting an applied acceleration by a voltage can be obtained.
图40是表示在具有图8~图15所示的电极结构的加速度传感器中,对使电荷检测电极C26、27、28、29的向支撑区域91内的伸出量γ变化时的加速度的检测灵敏度的变化进行仿真的结果的图表。FIG. 40 shows the detection of acceleration when the amount γ of protrusion of the charge detection electrodes C26, 27, 28, and 29 into the
在该图表中,横轴表示电荷检测电极C26、27、28、29向支撑区域91内的伸出量γ相对于振动元件2的自由振动区域92的长度δ的比(图10~15所示的γ与δ的比γ/δ),纵轴表示电压灵敏度(每1G的加速度在电荷检测电极C26、28和电荷检测电极C27、29之间产生的电压)。另外,在该仿真中,设振动元件2的长度为3mm,宽度为0.5mm,厚度为0.3mm,设支撑区域91的长度为1mm,设自由振动区域92的长度为2mm,设第1支撑构件3a、3b的厚度为30μm,设第2支撑构件4的弹性模量为300GPa来计算。In this graph, the horizontal axis represents the ratio of the protruding amount γ of the charge detection electrodes C26, 27, 28, and 29 into the
根据图40所示的图表可确认,程度因第1支撑构件3a、3b的弹性模量而不同,但通过使电荷检测电极C26、27、28、29伸出到支撑区域91的途中而可提高电压灵敏度。From the graph shown in FIG. 40, it can be confirmed that the degree varies depending on the modulus of elasticity of the
而且,电荷检测电极C26、27、28、29向支撑区域91内的伸出量γ的最佳值,第1支撑构件3a、3b的弹性模量小时增大,与此相伴,最佳值的电压灵敏度也有增大的倾向。可认为这是由于:若第1支撑构件3a、3b的弹性模量变小,则第1支撑构件3a、3b因从振动元件2接受的力而变得容易变形,因而支撑区域91内的振动元件2的挠曲量增大,支撑区域91内的压电基板21、22中产生应变的区域即产生电荷的区域扩大。而且,优选电荷检测电极C26、27、28、29向支撑区域91内的伸出量γ相对于自由振动区域92的长度δ的比在15~30%的范围,由此能够确认可进一步提高加速度的检测灵敏度。Furthermore, the optimum value of the protrusion amount γ of the charge detection electrodes C26, 27, 28, and 29 into the
并且,根据本例的加速度传感器,由于与振动元件2接触的一侧的第1支撑构件3a、3b的弹性模量设得比第2支撑构件4的弹性模量更小,因此可进一步提高加速度的检测灵敏度。即,由于第1支撑构件3a、3b具有比第2支撑构件4更小的弹性模量,因此第1支撑构件3a、3b因从振动元件2接受的力而变得容易变形,从而支撑区域91内的振动元件2变得容易挠曲。因而,支撑区域91内的压电基板21、22中产生应变的区域增大,由此,产生的电荷及输出电压增大,可进一步提高加速度的检测灵敏度。而且,由于第2支撑构件4的弹性模量设得比第1支撑构件3a、3b的弹性模量更大,因此第2支撑构件4中不易产生变形。通过使第2支撑构件4不易变形,从而可抑制在对加速度传感器施加冲击时第2支撑构件4明显变形而吸收冲击,由此可抑制“根据振动元件2的变形减小而产生的加速度的检测灵敏度下降”。And, according to the acceleration sensor of this example, since the elastic modulus of the first supporting
进而,根据本发明的加速度传感器,振动元件2在厚度方向层叠压电基板21、22,在压电基板21、22之间以经由压电基板21、22与两主面的电荷检测电极C26、29对置的方式还配置有电荷检测电极C27、28。由此,根据施加的加速度而在配置于各压电基板21、22的两主面的电荷检测电极C26、27、28、29中产生电荷,与不存在电荷检测电极C28、29的情况相比,由于在振动元件2的整体产生的电荷量增加,因此可提高电荷灵敏度。Furthermore, according to the acceleration sensor of the present invention, the vibrating
再有,根据本发明的加速度传感器,在各压电基板21、22中,分别在一方的主面上配置从电荷检测电极C26、28引出到一方的侧面的第1引出电极E26、28,在另一方的主面上配置从电荷检测电极C27、29引出到另一方的侧面的第2引出电极E27、29。由此,即使在将压电基板21、22在厚度方向层叠,在其层间配置电荷检测电极C27、28的结构中,也可将所有的电荷检测电极C26、27、28、29经由引出电极E26、27、28、29而在振动元件2的两侧面上与导电性粘接剂6a、6b连接,进而可经由引导电极1a、1b而将所有的电荷检测电极C26、27、28、29与加速度传感器的外部电连接。因此,由于无需在振动元件2形成用于将位于层间的电荷检测电极C27、28与外部电连接的通孔(via hole)等,从而可获得具有简单的结构且制造工序也可简化的加速度传感器。而且,通过在振动元件2的两侧面可将引出电极E26、27、28、29与导电性粘接剂6a、6b连接,若与将引出电极E26、27、28、29引出到振动元件2的端面使其露出,并在振动元件2的端面与导电性粘接剂6a、6b连接的情况相比,则可增大导电性粘接剂6a、6b彼此间的间隔。由此,可降低由固化前的导电性粘接剂6a、6b的流动而在第1引出电极E26、28与第2引出电极E27、29之间发生电短路的可能性。Furthermore, according to the acceleration sensor of the present invention, in each of the
另外,本发明并非限定于上述的实施方式,在不脱离本发明的宗旨的范围内可进行各种变更、改良。In addition, this invention is not limited to the said embodiment, Various changes and improvements are possible in the range which does not deviate from the summary of this invention.
例如,在上述的实施方式的例子中,使用了将两块压电基板贴合的双压电晶片形的振动元件,但也可以层叠更多的压电基板,相反也可采用单体电晶片(monomorph)形或单压电晶片(unimorph)形的振动元件。采用单体电晶片形时,使压电基板在厚度方向上极化翻转即可,采用单压电晶片形时,在压电基板的一方主面上包覆由金属等构成的振动板即可。For example, in the example of the above-mentioned embodiment, a bimorph-shaped vibrating element in which two piezoelectric substrates are laminated is used, but more piezoelectric substrates may be stacked, or a single-body transistor may be used instead. (monomorph)-shaped or unimorph-shaped vibration element. In the case of a monomorph type, it is sufficient to reverse the polarization of the piezoelectric substrate in the thickness direction. In the case of a unimorph type, it is sufficient to cover one main surface of the piezoelectric substrate with a vibrating plate made of metal or the like. .
在上述的实施方式的例子中,如图9所示,采用了在层叠了两块压电基板21、22的层叠体中,将与相互不同的电位连接的两个电荷检测电极C27、28配置于压电基板21、22之间的构成,但如图41所示,也可采用在两块压电基板的层间配置电荷检测电极C30的构成。该情况下,使配置于压电基板21、22的外侧主面的电荷检测电极C26、29连接到同一电位,从而使两块压电基板21、22的极化的方向相同即可。In the example of the embodiment described above, as shown in FIG. 9 , two charge detection electrodes C27 and 28 connected to mutually different potentials are arranged in a laminated body in which two
并且,在上述的实施方式的例子中,采用了由第1支撑构件3a、3b夹持振动元件2的两主面的结构,但也可使用粘接剂等仅将振动元件2的一方的主面固定于支撑构件从而支撑振动元件2。In addition, in the example of the above-mentioned embodiment, the structure in which both main surfaces of the vibrating
而且,在上述的实施方式的例子中,将第1支撑构件3a、3b分成3a与3b两部分而形成,但以包围振动元件2的上下面及侧面的方式一体地形成也可。In addition, in the example of the above-mentioned embodiment, the
并且,在上述的实施方式的例子中,由第1支撑构件3a、3b与第2支撑构件4的材质不同的两个构件构成了支撑构件,但根据情况,也可由单一的材质构成支撑构件。但是认为与将第1支撑构件3a、3b的弹性模量设为比第2支撑构件4的弹性模量更小的情况相比,加速度的检测灵敏度会有某种程度的降低。In addition, in the example of the above-mentioned embodiment, the support members are constituted by two members of different materials, the
<磁盘装置><disk device>
图42是表示磁盘装置的内部结构的立体图。Fig. 42 is a perspective view showing the internal structure of the magnetic disk device.
磁盘装置(以下,称为HDD),具有上面开口的矩形箱状的外壳40。The magnetic disk device (hereinafter referred to as HDD) has a rectangular box-shaped
在外壳40内收纳有:作为磁记录介质的多个磁盘41;支撑这些磁盘41并使磁盘旋转的主轴电动机43;对磁盘41进行信息的记录/再生的磁头42;支撑磁头42并进行其定位的磁头调节器(actuator)45;电路基板44等。在电路基板44中,安装有用于检测对HDD施加的加速度的本发明的加速度传感器S。
进而,在电路基板44中,如图43所示,包括:将来自加速度传感器S的模拟信号变换为数字信号的A/D变换电路46;和基于来自A/D变换电路46的信号进行使磁头42躲避的判断的控制电路47。Furthermore, in the
加速度传感器S始终监视施加到HDD的加速度,由A/D变换电路46将该加速度数据变换为数字值,并提供到控制电路47。控制电路47,将加速度数据与预先设定的阈值进行比较,在判断为超过了阈值时,将躲避信号送到磁头调节器45,使磁头42躲避。由此,在数据的读写中,对HDD施加较强的加速度时可使磁头42躲避,从而可在未发生故障前防止HDD的故障。The acceleration sensor S constantly monitors the acceleration applied to the HDD, and the acceleration data is converted into a digital value by the A/D conversion circuit 46 and supplied to the control circuit 47 . The control circuit 47 compares the acceleration data with a preset threshold, and when it is judged that the acceleration data exceeds the threshold, sends an avoidance signal to the
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005188978A JP2007010377A (en) | 2005-06-28 | 2005-06-28 | Acceleration sensor |
JP2005188978 | 2005-06-28 | ||
JP2005247394 | 2005-08-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1892231A true CN1892231A (en) | 2007-01-10 |
CN100588970C CN100588970C (en) | 2010-02-10 |
Family
ID=37597315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610100053A Expired - Fee Related CN100588970C (en) | 2005-06-28 | 2006-06-27 | Acceleration sensor and magnetic disk device using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007010377A (en) |
CN (1) | CN100588970C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105322953A (en) * | 2014-07-30 | 2016-02-10 | 精工爱普生株式会社 | Vibration devices, electronic equipment, and moving bodies |
CN106461486A (en) * | 2014-07-04 | 2017-02-22 | 株式会社村田制作所 | Piezoelectric sensor and piezoelectric element |
CN107251251A (en) * | 2015-05-29 | 2017-10-13 | 株式会社村田制作所 | Piezo-electric device and electronic equipment |
CN109269626A (en) * | 2018-11-26 | 2019-01-25 | 苏州中科速衡电子有限公司 | A kind of piezoelectric vibration pickup |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6545918B1 (en) * | 2019-05-22 | 2019-07-17 | Imv株式会社 | Acceleration sensor core unit, method for preventing deflection of substrate on which acceleration sensor is mounted |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61155700A (en) * | 1984-12-28 | 1986-07-15 | Toshiba Corp | Blower using piezo-electric bimorph vibrating plate |
JP3221596B2 (en) * | 1994-03-31 | 2001-10-22 | 松下電器産業株式会社 | Acceleration sensor and method of manufacturing the same |
JP2000321299A (en) * | 1999-05-14 | 2000-11-24 | Matsushita Electric Ind Co Ltd | Acceleration sensor |
JP2001074467A (en) * | 1999-09-07 | 2001-03-23 | Tokin Corp | Energy confinement piezoelectric vibrator and piezoelectric vibration gyro |
JP2001148522A (en) * | 1999-09-07 | 2001-05-29 | Matsushita Electric Ind Co Ltd | Anisotropic piezoelectric plate and piezoelectric application device using the same |
-
2005
- 2005-06-28 JP JP2005188978A patent/JP2007010377A/en active Pending
-
2006
- 2006-06-27 CN CN200610100053A patent/CN100588970C/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106461486A (en) * | 2014-07-04 | 2017-02-22 | 株式会社村田制作所 | Piezoelectric sensor and piezoelectric element |
CN106461486B (en) * | 2014-07-04 | 2019-06-28 | 株式会社村田制作所 | Piezoelectric transducer and piezoelectric element |
CN105322953A (en) * | 2014-07-30 | 2016-02-10 | 精工爱普生株式会社 | Vibration devices, electronic equipment, and moving bodies |
CN105322953B (en) * | 2014-07-30 | 2020-07-28 | 精工爱普生株式会社 | Vibration devices, electronic equipment, and moving objects |
CN107251251A (en) * | 2015-05-29 | 2017-10-13 | 株式会社村田制作所 | Piezo-electric device and electronic equipment |
CN107251251B (en) * | 2015-05-29 | 2019-11-29 | 株式会社村田制作所 | Piezo-electric device and electronic equipment |
CN109269626A (en) * | 2018-11-26 | 2019-01-25 | 苏州中科速衡电子有限公司 | A kind of piezoelectric vibration pickup |
Also Published As
Publication number | Publication date |
---|---|
CN100588970C (en) | 2010-02-10 |
JP2007010377A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5528404B2 (en) | Fluid control device | |
CN1145206C (en) | Film carrier tape, semiconductor assembly, semiconudctor device, manufacturing method therefor, mounting board and electronic equipment | |
CN1287130C (en) | Sensor device and ceramic encapsulated outer hull for electronic component | |
CN1169236C (en) | Manufacturing method of semiconductor device | |
CN1305682C (en) | Mounting structure, module and liquid container | |
CN1653850A (en) | capacitive sensor | |
CN1532860A (en) | Electronic part | |
CN1856403A (en) | Liquid injection head and method of producing the same and liquid injection device | |
CN1203543C (en) | Semiconductor device and semiconductor module | |
CN1258096A (en) | Semiconductor device contactor, detection device and method thereby and cleaning method | |
CN1834997A (en) | Adapter for a memory card and a memory card | |
CN1160206A (en) | Semiconductor acceleration sensor | |
CN1507150A (en) | Method for manufacturing piezoelectric component and piezoelectric component | |
CN1321983A (en) | Magnetic head supporting mechanism and film piezoelectric actuator | |
CN1138777A (en) | Resonators and Resonant Elements Using Wide Vibration Modes | |
CN1298612C (en) | Narrow-pitch connector, electrostatic actuator, piezoelectric actuator, ink-jet head, ink-jet printer, micromachine, liquid crystal panel, and electronic apparatus | |
CN1439144A (en) | Semiconductor device and its manufacturing method | |
CN1180477C (en) | Semiconductor device and semiconductor assembly | |
CN1892231A (en) | Acceleration sensor and magnetic disk device using same | |
CN1197548A (en) | Piezoelectric vibrator component, piezoelectric vibrator support structure, and piezoelectric vibrator mounting method | |
CN1220260C (en) | Semiconductor device and making method, and printing mask | |
CN1873421A (en) | Semiconductor acceleration sensor device and fabrication method thereof | |
CN1575996A (en) | Ink-jet printer, ink-jet head and method of manufacturing the ink-jet head | |
CN1905168A (en) | Semiconductor device and its making method and used jointing material and its making method | |
CN1894999A (en) | Piezoelectric electro-acoustic converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100210 Termination date: 20180627 |