CN1885099A - Dual-mode driving transflective liquid crystal display device - Google Patents
Dual-mode driving transflective liquid crystal display device Download PDFInfo
- Publication number
- CN1885099A CN1885099A CN 200510079526 CN200510079526A CN1885099A CN 1885099 A CN1885099 A CN 1885099A CN 200510079526 CN200510079526 CN 200510079526 CN 200510079526 A CN200510079526 A CN 200510079526A CN 1885099 A CN1885099 A CN 1885099A
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- crystal display
- transflective liquid
- mode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种双模驱动穿透反射式液晶显示装置,特别是涉及利用不同灰阶电压使穿透反射式液晶显示器产生最佳影像的技术。The invention relates to a dual-mode driving transflective liquid crystal display device, in particular to a technique for making the transflective liquid crystal display produce the best image by using different grayscale voltages.
背景技术Background technique
请参阅图1,图1为现有技术半反射式液晶显示装置2的横截面示意图。半反射式液晶显示装置2可通过两种光源来显示画面所需的光线。当环境光线充足时,利用半反射层4反射来自上方的光线以形成反射光线L1,穿透液晶层6以供显像之用。当环境光线不足时,可开启光源模块8提供穿透光线L2,穿透半反射层4后再穿透液晶层6,以供显像之用。Please refer to FIG. 1 . FIG. 1 is a schematic cross-sectional view of a semi-reflective liquid crystal display device 2 in the prior art. The semi-reflective liquid crystal display device 2 can use two kinds of light sources to display the light required for the picture. When the ambient light is sufficient, the light from above is reflected by the
以薄膜晶体管液晶显示器(TFT LCD)来说,其具有上下电极层5、10,其中下电极层为驱动阵列层,以超扭转向列型液晶显示器来说,其下电极层10为ITO电极层,以薄膜晶体管液晶显示器来说,其下电极层10为晶体管层。For a thin film transistor liquid crystal display (TFT LCD), it has upper and lower electrode layers 5, 10, wherein the lower electrode layer is a driving array layer, and for a super twisted nematic liquid crystal display, its lower electrode layer 10 is an ITO electrode layer In the case of a thin film transistor liquid crystal display, the lower electrode layer 10 is a transistor layer.
于半反射式液晶显示器现有技术的领域中,半反射层可设置在许多不同位置,一般而言,半反射层可配置于液晶显示器驱动阵列层与液晶层之间,或配置于下基板与驱动阵列层之间,也可以薄膜形式贴附于下基板的下侧。以薄膜晶体管液晶显示器为例,半反射层可配置于液晶显示器薄膜晶体管层与液晶层之间、或配置于下基板与薄膜晶体管层之间、亦或薄膜形式贴附于下基板的下侧。以超扭转向列型液晶显示器为例,半反射层设置在下基板与ITO电极层之间,或配置于下基板与ITO电极层之间、亦或薄膜形式贴附于下基板的下侧。In the field of the prior art of semi-reflective liquid crystal displays, the semi-reflective layer can be arranged in many different positions. Generally speaking, the semi-reflective layer can be arranged between the driving array layer and the liquid crystal layer of the liquid crystal display, or between the lower substrate and the liquid crystal layer. Between the driving array layers, a thin film may also be attached to the lower side of the lower substrate. Taking TFT-LCD as an example, the semi-reflective layer can be arranged between the TFT layer and the liquid crystal layer of the LCD, or between the lower substrate and the TFT layer, or attached in the form of a thin film to the lower side of the lower substrate. Taking the super twisted nematic liquid crystal display as an example, the semi-reflective layer is disposed between the lower substrate and the ITO electrode layer, or disposed between the lower substrate and the ITO electrode layer, or attached to the lower side of the lower substrate in the form of a film.
图1暂以薄膜晶体管液晶显示器作一说明,半反射层贴附配置于下基板下表面为例,以说明现有半反射式液晶显示装置2的结构与光线路径状况,其它半反射层置方式则不再赘述。Fig. 1 temporarily takes a thin film transistor liquid crystal display as an illustration. The semi-reflective layer is attached and arranged on the lower surface of the lower substrate as an example to illustrate the structure and light path conditions of the existing semi-reflective liquid crystal display device 2. Other semi-reflective layering methods I won't go into details.
再回到图1,液晶层6配置于上基板14与下基板12之间,而上、下基板14、12的外侧分别贴附上、下偏光片16、18,半反射层4贴附于下玻璃基板12与下偏光片18之间。透过上、下偏光片16、18分别提供相对应的偏光模式,使预定方向的偏振光线通过。Returning to Fig. 1 again, the liquid crystal layer 6 is disposed between the upper substrate 14 and the lower substrate 12, and the outer sides of the upper and lower substrates 14, 12 are respectively attached with upper and lower polarizers 16, 18, and the
液晶层6中含有多个液晶分子602,通过上下电极层5、10所产生的电压,于液晶层6形成电场,以改变液晶分子602的排列方向。不同液晶分子602的排列方向可控制偏振光线的方向,配合前述的上、下偏光片16、18以共同决定半反射式液晶显示装置2的光线穿透率。不同的电压可使液晶显示装置显示不同的光线穿透率,产生各种灰阶变化。The liquid crystal layer 6 contains a plurality of liquid crystal molecules 602 , and the voltage generated by the upper and lower electrode layers 5 and 10 forms an electric field in the liquid crystal layer 6 to change the arrangement direction of the liquid crystal molecules 602 . The alignment directions of different liquid crystal molecules 602 can control the direction of polarized light, and cooperate with the above-mentioned upper and lower polarizers 16 and 18 to jointly determine the light transmittance of the semi-reflective liquid crystal display device 2 . Different voltages can cause the liquid crystal display device to display different light transmittances and produce various gray scale changes.
液晶显示装置中液晶显示面板可连接至一控制系统(图中未示),该控制系统中具有该面板的灰阶-电压信息,针对欲显示的灰阶输出信号予液晶面板的上下电极层,由上下电极层产生电场驱动液晶分子,使液晶面板显示出所欲显示的灰阶。The liquid crystal display panel in the liquid crystal display device can be connected to a control system (not shown in the figure), which has the grayscale-voltage information of the panel, and outputs the signal to the upper and lower electrode layers of the liquid crystal panel for the grayscale output signal to be displayed. The electric field generated by the upper and lower electrode layers drives the liquid crystal molecules, so that the liquid crystal panel displays the desired gray scale.
请参阅图2,图2为现有技术穿透模式以及反射模式的光线穿透/反射率与电压的关系曲线图。其中当半反射式液晶显示装置2通过反射光线L1来提供显示画面所需的灰阶亮度时,处于一种反射模式,其光线通过液晶层、上偏光片前后的比率称为反射率。当半反射式液晶显示装置2通过穿透光线L2来提供显示画面所需的灰阶亮度时,处于一种穿透模式,其光线通过液晶层、上下偏光片前后的比率称为穿透率。Please refer to FIG. 2 . FIG. 2 is a graph showing the relationship between light penetration/reflectivity and voltage in the transmission mode and the reflection mode in the prior art. When the semi-reflective liquid crystal display device 2 provides the required grayscale brightness of the display screen by reflecting the light L1, it is in a reflection mode, and the ratio of the light passing through the liquid crystal layer and the upper polarizer before and after is called the reflectance. When the semi-reflective liquid crystal display device 2 provides the required grayscale brightness of the display screen by passing through the light L2, it is in a transmission mode, and the ratio of the light passing through the liquid crystal layer and the front and back of the upper and lower polarizers is called the transmittance.
注意到图中两种曲线关系图,于相同光线穿透/反射率所须的电压不相同。若以曲线的特性来说,在反射模式与穿透模式可显示的灰阶区域Z1、Z2中,穿透模式的曲线斜率α2,与反射模式的曲线斜率α1的乘积为负值(α1*α2<0)。Note that the two graphs in the figure require different voltages for the same light penetration/reflectivity. In terms of the characteristics of the curve, in the gray scale areas Z1 and Z2 that can be displayed in the reflection mode and the transmission mode, the product of the slope α2 of the transmission mode and the slope α1 of the reflection mode is a negative value (α1*α2 <0).
由图2可知,若施与一电压予液晶显示面板,则在反射模式与穿透模式所造成的灰阶不同。该电压如在反射模式中可造成高反射率的灰阶,则在穿透模式中将会造成较低穿透率的灰阶,反之亦然,这种同一电压在穿透模式与反射模式中所造成的穿透/反射率相异的现象,称为灰阶混淆现象,此现象会导致显示画面品质不佳。It can be known from FIG. 2 that if a voltage is applied to the liquid crystal display panel, the gray scales caused by the reflective mode and the transmissive mode are different. If the voltage can cause gray scales with high reflectivity in reflective mode, it will cause gray scales with lower transmittance in transmissive mode, and vice versa. The resulting difference in transmittance/reflectance is called grayscale aliasing, and this phenomenon will lead to poor display image quality.
为改善灰阶混淆现象的问题,现有技术会在上、下偏光片16、18间设置一层或多层的光学补偿膜(图中未示),同时搭配液晶层不同的相位延迟量的设计,以使前述的两种显示模式的电压-穿透/反射率曲线关系图趋于类似,使两种曲线的斜率α1、α2同为正值或同为负值,藉以改善灰阶混淆现象。In order to improve the problem of grayscale confusion, in the prior art, one or more layers of optical compensation films (not shown in the figure) are arranged between the upper and lower polarizers 16 and 18. Designed to make the voltage-transmission/reflectance curve relationship diagrams of the aforementioned two display modes tend to be similar, so that the slopes α1 and α2 of the two curves are both positive or negative, so as to improve gray scale confusion .
然而,即使两种曲线趋于类似,但仍旧有些许不同,使改善的效果有限度。此外,增加光学补偿膜除增加元件外,也影响光显示效率,更因于液晶层作不同的相位延迟量的设计,于制造来说更是增加额外成本与负担,且由于上述的种种补偿设计,使的原设计的显示效果间接的受到影响,造成显示品质不彰。However, even though the two curves tend to be similar, they are still slightly different, limiting the improvement. In addition, the addition of optical compensation film not only increases the number of elements, but also affects the light display efficiency, and because of the design of different phase retardation in the liquid crystal layer, it will increase additional costs and burdens in manufacturing, and due to the above-mentioned various compensation designs , so that the display effect of the original design is indirectly affected, resulting in poor display quality.
因此,本发明的主要目的在于提供一种双模驱动穿透反射式液晶显示装置,可在不需要补偿设计的状况下,解决灰阶混淆问题。Therefore, the main purpose of the present invention is to provide a dual-mode driving transflective liquid crystal display device, which can solve the problem of gray scale confusion without compensation design.
发明内容Contents of the invention
本发明的目的在设计一种双模驱动穿透反射式液晶显示装置,于穿透模式以及反射模式分别给予适当的电压,以精确、有效益的方式解决灰阶混淆现象的问题。The purpose of the present invention is to design a transflective liquid crystal display device with dual-mode driving, which provides appropriate voltages in the transmissive mode and the reflective mode respectively, so as to solve the problem of gray scale confusion in an accurate and effective manner.
本发明为一种双模驱动穿透反射式液晶显示装置,其包括一穿透反射式液晶显示面板,具有反射及穿透两种显示模式,以及一控制系统,控制系统可控制穿透反射式液晶显示面板,并针对该穿透反射式液晶显示面板欲显示的灰阶,因应不同显示模式提供不同灰阶电压予该穿透反射式液晶显示面板。控制系统于穿透反射式液晶显示面板使用穿透模式时,提供一穿透灰阶电压。并可于穿透反射式液晶显示面板使用反射模式时,提供另一反射灰阶电压予穿透反射式液晶显示面板。该穿透/反射灰阶电压可使穿透反射式液晶显示面板不论在穿透膜式或反射模式时皆可精确显示其欲显示的灰阶,而不至于有混淆的现象产生。The present invention is a dual-mode driven transflective liquid crystal display device, which includes a transflective liquid crystal display panel with two display modes of reflection and transmissive, and a control system, which can control the transflective The liquid crystal display panel provides different gray scale voltages to the transflective liquid crystal display panel according to different display modes according to the gray scale to be displayed by the transflective liquid crystal display panel. When the transflective liquid crystal display panel uses the transmissive mode, the control system provides a transmissive grayscale voltage. And when the transflective liquid crystal display panel uses the reflective mode, another reflective grayscale voltage can be provided to the transflective liquid crystal display panel. The transmissive/reflective grayscale voltage enables the transflective liquid crystal display panel to accurately display the desired grayscale regardless of whether it is in the transmissive mode or in the reflective mode, without confusion.
本发明的穿透反射式液晶显示面板,包括上下基板、一液晶层、一半反射层、一上下电极层、以及一光源模块。The transflective liquid crystal display panel of the present invention includes upper and lower substrates, a liquid crystal layer, a semi-reflective layer, an upper and lower electrode layer, and a light source module.
透过该半反射层可反射环境光线,形成一反射光线,并使光源模块光线穿透,形成一穿透光线,配合该反射光线以形成一反射模式,配合该穿透光线以形成一穿透模式。Ambient light can be reflected through the semi-reflective layer to form a reflected light, and the light from the light source module can pass through to form a penetrating light, which can cooperate with the reflected light to form a reflection mode, and cooperate with the penetrating light to form a penetrating light. model.
该上下电极层分别配置于该液晶层与上下基板之间,该下电极层为一驱动阵列,可因应不同显示模式,针对其显示模式分别提供相异的灰阶电压予液晶显示面板,使液晶层在不同显示模式可精确显示欲显示的灰阶,于薄膜晶体管液晶显示器中该驱动阵列为晶体管层,于薄膜二极管液晶显示器中该驱动阵列为二极管层,超扭转向列型液晶显示器中该驱动阵列为ITO电极。The upper and lower electrode layers are respectively disposed between the liquid crystal layer and the upper and lower substrates. The lower electrode layer is a driving array, which can provide different grayscale voltages to the liquid crystal display panel in response to different display modes, so that the liquid crystal The layer can accurately display the gray scale to be displayed in different display modes. In the thin film transistor liquid crystal display, the driving array is a transistor layer, in the thin film diode liquid crystal display, the driving array is a diode layer, in the super twisted nematic liquid crystal display, the driving array is The arrays are ITO electrodes.
该双模驱动穿透反射式液晶显示装置的控制系统还可包括一光线感应装置,用以感应该穿透反射式液晶显示装置外的环境光线强度,根据该环境光线强度,控制系统控制光源模块的开启/关闭,光源模块开启时穿透反射式液晶显示装置为穿透模式,光源模块关闭时穿透反射式液晶显示装置为反射模式。且控制系统根据显示模式输送该显示模式相对应的灰阶电压至穿透反射式液晶显示装置。The control system of the dual-mode driving transflective liquid crystal display device may also include a light sensing device for sensing the ambient light intensity outside the transflective liquid crystal display device, and the control system controls the light source module according to the ambient light intensity When the light source module is turned on, the transflective liquid crystal display device is in the transmissive mode, and when the light source module is turned off, the transflective liquid crystal display device is in the reflective mode. And the control system sends the gray scale voltage corresponding to the display mode to the transflective liquid crystal display device according to the display mode.
进一步说明,该控制系统还包括一储存装置,该储存装置用以储存一比较值。其中,该光线感应装置所感应的环境光线强度超过该比较值时控制系统关闭光源模块,此时穿透反射式液晶显示装置为反射模式,通过反射环境光线作为显示光源,且控制系统施予一灰阶电压予穿透反射式液晶显示装置的上下电极层,该灰阶电压可使反射模式的穿透反射式液晶面板显示预定灰阶。当该光线感应装置所感应的环境光线强度不超过该比较值时,该控制系统开启光源模块,此时穿透反射式液晶显示装置为穿透模式,通过光源模块作为显示光源,且控制系统施予一灰阶电压予穿透反射式液晶显示装置的上下电极层,该灰阶电压可使反射模式的穿透反射式液晶面板显示预定灰阶。前述的控制系统除可控制光源模块的开启/关闭外,还可依据环境光线的强度调整光源的强弱。也就是当环境光线低于比较值后,控制系统开启光源模块,此时由于环境光线依旧存在,因此控制系统调整光源模块,提供一亮度大于环境光线的光源,使观察者可较强烈感知穿透模式所显示的灰阶,而不至于与环境光线所造成的反射模式灰阶混淆,此种可调变亮度的光源模块及搭配方式,可达到省电的效果。To further illustrate, the control system further includes a storage device for storing a comparison value. Wherein, when the ambient light intensity sensed by the light sensing device exceeds the comparison value, the control system turns off the light source module. At this time, the transflective liquid crystal display device is in the reflective mode, which reflects ambient light as a display light source, and the control system applies a The grayscale voltage is given to the upper and lower electrode layers of the transflective liquid crystal display device, and the grayscale voltage can make the transflective liquid crystal panel in reflective mode display predetermined grayscale. When the ambient light intensity sensed by the light sensing device does not exceed the comparison value, the control system turns on the light source module. At this time, the transflective liquid crystal display device is in the transmissive mode, and the light source module is used as the display light source, and the control system implements A grayscale voltage is given to the upper and lower electrode layers of the transflective liquid crystal display device, and the grayscale voltage can make the transflective liquid crystal panel in reflective mode display a predetermined grayscale. In addition to controlling the on/off of the light source module, the aforementioned control system can also adjust the intensity of the light source according to the intensity of the ambient light. That is, when the ambient light is lower than the comparison value, the control system turns on the light source module. At this time, because the ambient light still exists, the control system adjusts the light source module to provide a light source with a brightness greater than the ambient light, so that the observer can perceive the penetration more strongly. The gray scale displayed by the mode will not be confused with the gray scale of the reflection mode caused by ambient light. This kind of brightness-adjustable light source module and its matching method can achieve the effect of power saving.
本发明的双模驱动穿透反射式液晶显示装置亦可不透过光线感应装置,直接由控制系统控制光源模块的开启/关闭。于光源模块开启时,控制系统针对欲显示的灰阶施予穿透模式的灰阶电压予穿透反射式液晶显示面板的上下电极层。于光源模块关闭时,控制系统针对欲显示的灰阶施予反射模式的灰阶电压予穿透反射式液晶显示面板的上下电极层。此时控制系统依据不同状态控制光源模块的亮度,亦具有省电的效果。The dual-mode driven transflective liquid crystal display device of the present invention can also be directly controlled by the control system to turn on/off the light source module without passing through the light sensing device. When the light source module is turned on, the control system applies a transmissive grayscale voltage to the upper and lower electrode layers of the transflective liquid crystal display panel for the grayscale to be displayed. When the light source module is turned off, the control system applies gray scale voltages in reflective mode to the upper and lower electrode layers of the transflective liquid crystal display panel for the gray scale to be displayed. At this time, the control system controls the brightness of the light source module according to different states, which also has the effect of saving power.
此外,该穿透反射式液晶显示装置还包括上/下基板、以及上/下偏光片。上/下基板用以包夹上述除光源模块、光线感应装置外的各种元件。上/下偏光片分别贴附设置于上/下基板的外侧表面,用以对应预定的偏光模式使预定方向的偏振光线通过。In addition, the transflective liquid crystal display device also includes upper/lower substrates and upper/lower polarizers. The upper/lower substrates are used to clamp the above-mentioned various components except the light source module and the light sensing device. The upper/lower polarizers are respectively attached to the outer surfaces of the upper/lower substrates, and are used to pass polarized light in a predetermined direction corresponding to a predetermined polarization mode.
前述的半反射层有多种配置位置,若于薄膜晶体管液晶显示器中,其下电极层为薄膜晶体管层,半反射层可配置于该薄膜晶体管层上,而介于该薄膜晶体管层与该液晶层间,或是薄膜晶体管层与下片基板之间。此外,亦也可将半反射层配置于下基板的下侧。若于超扭转向列型液晶显示器中,其电极层为ITO电极层,半反射层配置于下片基板与ITO电极层之间。The aforementioned semi-reflective layer has multiple configuration positions. If in a thin film transistor liquid crystal display, the lower electrode layer is a thin film transistor layer, the semi-reflective layer can be configured on the thin film transistor layer, and between the thin film transistor layer and the liquid crystal. Between layers, or between the thin film transistor layer and the underlying substrate. In addition, the semi-reflective layer may also be disposed on the lower side of the lower substrate. In a super twisted nematic liquid crystal display, the electrode layer is an ITO electrode layer, and the semi-reflective layer is disposed between the lower substrate and the ITO electrode layer.
因此,通过本发明的双模驱动穿透反射式液晶显示装置,配合穿透模式以及反射模式施予适当的电压,可有效的解决灰阶混淆现象的问题。Therefore, through the dual-mode driving transflective liquid crystal display device of the present invention, the problem of gray scale confusion can be effectively solved by applying appropriate voltages in conjunction with the transmissive mode and the reflective mode.
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.
附图说明Description of drawings
图1为现有技术半反射式液晶显示装置的横截面示意图;1 is a schematic cross-sectional view of a semi-reflective liquid crystal display device in the prior art;
图2为现有技术反射模式以及穿透模式的光线穿透率与电压的关系曲线图;FIG. 2 is a graph showing the relationship between light transmittance and voltage in reflection mode and transmission mode in the prior art;
图3为本发明双模驱动穿透反射式液晶显示装置的第一具体实施例的横截面示意图;3 is a schematic cross-sectional view of a first embodiment of a dual-mode driven transflective liquid crystal display device of the present invention;
图4为本发明双模驱动穿透反射式液晶显示装置的第二具体实施例的横截面示意图;4 is a schematic cross-sectional view of a second embodiment of a dual-mode driven transflective liquid crystal display device of the present invention;
图5为本发明双模驱动穿透反射式液晶显示装置的第三具体实施例的横截面示意图;5 is a schematic cross-sectional view of a third embodiment of a dual-mode driven transflective liquid crystal display device of the present invention;
图6为本发明双模驱动穿透反射式液晶显示装置的广视角膜的横截面示意图;6 is a schematic cross-sectional view of a wide viewing angle film of a dual-mode driven transflective liquid crystal display device of the present invention;
图7为本发明双模驱动穿透反射式液晶显示装置的扩散片的横截面示意图;7 is a schematic cross-sectional view of a diffuser of a dual-mode driven transflective liquid crystal display device of the present invention;
图8为本发明以二电路单元控制一单位像素的示意图;以及FIG. 8 is a schematic diagram of controlling a unit pixel with two circuit units in the present invention; and
图9为本发明电路单元的侧向剖视图。Fig. 9 is a side sectional view of the circuit unit of the present invention.
简单符号说明simple notation
L1:反射光线 L2:穿透光线L1: reflected light L2: penetrating light
2、30:半反射式液晶显示装置2, 30: semi-reflective liquid crystal display device
32:穿透反射式液晶显示面板32: Transflective LCD panel
14、34:上基板14, 34: upper substrate
12、36:下基板 6、38:液晶层12, 36: Lower substrate 6, 38: Liquid crystal layer
602、3802:液晶分子 4、40:半反射层602, 3802:
10、42:下电极层 5、15:上电极层10, 42: Lower electrode layer 5, 15: Upper electrode layer
16、44:上偏光片 45:控制系统16, 44: Upper polarizer 45: Control system
18、46:下偏光片 47:光线感应装置18, 46: lower polarizer 47: light sensing device
48:储存装置 8、50:光源模块48:
60:上广视角膜 62:下广视角膜60: Upper wide viewing angle film 62: Lower wide viewing angle film
70:散乱层 80:单位像素70: scattered layer 80: unit pixel
82:电路单元 4002:反射片82: Circuit unit 4002: Reflector
4004:通孔 90:薄膜晶体管4004: Through hole 90: Thin film transistor
92:储存电容 94:第一金属层92: storage capacitor 94: first metal layer
96:第二金属层 98:介电层96: Second metal layer 98: Dielectric layer
具体实施方式Detailed ways
本发明双模驱动穿透反射式液晶显示装置所述结构可由以下各实施例所组成。The structure of the dual-mode driven transflective liquid crystal display device of the present invention can be composed of the following embodiments.
第一实施例:First embodiment:
请参阅图3,图3为本发明双模驱动穿透反射式液晶显示装置30的第一具体实施例的横截面示意图。第一实施例的双模驱动穿透反射式液晶显示装置以薄膜晶体管液晶显示器(Thin Film Transistor LCD;TFT LCD)为例,所对应的下电极层42为一薄膜晶体管层。双模驱动穿透反射式液晶显示装置30包括光源模块50以及穿透反射式液晶显示面板32。穿透反射式液晶显示面板32由上、下基板34、36包夹一液晶层38、以及上下电极层15、42而成,并由上、下偏光片44、46分别贴附设置于上、下基板34、36的外侧表面。Please refer to FIG. 3 . FIG. 3 is a schematic cross-sectional view of a first embodiment of a dual-mode driving transflective liquid
液晶层38中包括多个液晶分子3802。上下电极层15、42配置于液晶层38的上下方,一半反射层40以贴附方式配置于下玻璃基板36下侧,而介于下偏光片46以及下基板36之间。The
光源模块50设置于液晶显示面板32下方,于开启状态的光源模块50用以提供一穿透光线,该穿透光线穿过穿透反射式液晶显示面板32以于液晶显示面板32上表面显像。The
半反射层40可允许穿透光线自下方向上穿透,也可让来自上方的光线反射回去。配合该反射光线以形成一反射模式,配合该穿透光线以形成一穿透模式。The
上偏光片44用以提供一第一偏光模式,使预定方向的偏振光线通过。下偏光片46用以提供一第二偏光模式,使预定方向的偏振光线通过。上下电极层15、42提供电压于液晶层38中产生电场,以控制液晶分子3802的排列方式。同时,配合上、下偏光片44、46,以共同决定半反射式液晶显示装置30的光线穿透率。The
首先,测试出如图2所示的穿透模式以及反射模式的光线穿透/反射率与电压关系曲线图,即可以得知穿透模式中各灰阶的对应电压,以及反射模式中各灰阶的对应电压,并将此穿透灰阶电压与反射灰阶电压储存于一控制系统45中。该控制系统45可输送电压予穿透反射式液晶显示面板,使穿透反射式液晶显示面板呈现所需的画面。且当穿透反射式液晶显示面板为穿透显示模式时,控制系统45送出穿透模式的灰阶对应电压,穿透反射式液晶显示面板为反射显示模式时,控制系统45送出反射模式的灰阶对应电压,使穿透反射式液晶显示面板可于不同显示模式时依旧精确显示出欲显示的灰阶。First, test the light penetration/reflectivity and voltage relationship curves of the transmission mode and the reflection mode as shown in Figure 2, that is, you can know the corresponding voltage of each gray level in the transmission mode, and the corresponding voltage of each gray level in the reflection mode. The corresponding voltage of the level, and store the penetrating gray scale voltage and reflected gray scale voltage in a control system 45 . The control system 45 can deliver voltage to the transflective liquid crystal display panel, so that the transflective liquid crystal display panel can display the desired image. And when the transflective liquid crystal display panel is in the transmissive display mode, the control system 45 sends out the gray scale corresponding voltage of the transmissive mode; The level corresponds to the voltage, so that the transflective liquid crystal display panel can still accurately display the gray scale to be displayed in different display modes.
进一步,该控制系统45具有一储存装置48与光线感应装置47,储存装置48储存一比较值。光线感应装置47用以感应穿透反射式液晶显示装置30外的环境光线强度,当光线感应装置47所感应的环境光线强度超过该比较值时,表示环境光线明亮,穿透反射式液晶显示面板适合处于反射模式,此时控制系统45关闭光源模块,使穿透反射式液晶显示装置30进入反射模式。光线感应装置47所感应的环境光线强度不超过该比较值时,表示环境光线晦暗而穿透反射式液晶显示面板适合处于穿透模式,控制系统45开启光源模块,使穿透反射式液晶显示装置30进入穿透模式。Further, the control system 45 has a
控制系统45可控制光源模块提供不同亮度的光线予穿透反射式液晶显示面板,以适用于各种不同的环境及状况下。The control system 45 can control the light source module to provide light with different brightness to penetrate the reflective liquid crystal display panel, so as to be suitable for various environments and conditions.
补充说明,第一实施例中的半反射层40,可采用多层不同折射率膜所迭合而成,而形成所述的半反射层40,藉以控制半反射层40的光线穿透与反射,如DBEF、CBEF等。此外,第一实施例中的半反射层40,也可利用镀膜的方式镀上具有反射效果的金属或非金属并控制半反射层40的厚度,以控制穿透、反射的比率。It is supplemented that the
第二实施例:Second embodiment:
请参阅图4,图4为本发明双模驱动穿透反射式液晶显示装置30的第二具体实施例的横截面示意图。第二实施例的双模驱动穿透反射式液晶显示装置为薄膜晶体管液晶显示器(Thin Film Transistor LCD;TFT LCD),所对应的下电极层42为一薄膜晶体管层。第二具体实施例中各式元件的功能与第一具体实施例无异,在此不再赘述。所不同的是各元件配置的位置,说明如后。Please refer to FIG. 4 . FIG. 4 is a schematic cross-sectional view of a second embodiment of a dual-mode driving transflective liquid
穿透反射式液晶显示面板32同样由上、下基板34、36包夹一液晶层38、一半反射层40、以及一上下电极层15、42,上、下偏光片44、46分别贴附设置于上、下基板34、36的外侧表面。The transflective liquid
其中,下电极层42邻近设置于液晶层38下方。半反射层40设置于下电极层42的上表面,也就是说半反射层40介于下电极层42与液晶层38间。Wherein, the
同样通过在不同显示模式输出该显示模式相对应的灰阶电压,达到解决灰阶混淆现象的问题。Also, by outputting the gray-scale voltage corresponding to the display mode in different display modes, the problem of gray-scale confusion can be solved.
第三实施例:Third embodiment:
请参阅图5,图5为本发明双模驱动穿透反射式液晶显示装置30的第三具体实施例的横截面示意图。第三实施例的双模驱动穿透反射式液晶显示装置以彩色超扭转向列型液晶显示器(Color Super Twisted Nematic LCD;CSTN LCD)或是超扭转向列型液晶显示器(Super Twisted Nematic LCD;STN LCD)。第三具体实施与第一、二具体实施例结构位置所不同的是半反射层40配置于下基板36与下电极层42之间。Please refer to FIG. 5 . FIG. 5 is a schematic cross-sectional view of a third embodiment of a dual-mode driving transflective liquid
第三具体实施例同样通过在不同模式输出该模式相对应的灰阶,以达到解决灰阶混淆现象的问题。The third specific embodiment also solves the problem of gray scale confusion by outputting gray scales corresponding to the modes in different modes.
配合图3的第一实施例,请进一步参阅图6,图6为本发明双模驱动穿透反射式液晶显示装置30搭配广视角膜60、62的横截面示意图。如第一实施例的双模驱动穿透反射式液晶显示装置30,穿透反射液晶显示面板32中还包括一上广视角膜(wide view film)60以及一下广视角膜(wide view film)62,其中上广视角膜60以及下广视角膜62需分别紧邻贴附设置于上、下基板34、36的外侧表面,因而分别于上偏光片44、半反射层40与上、下基板34、36之间。上、下广视角膜60、62配置于穿透反射式液晶显示装置30中,具有拓宽液晶显示面板视角范围的功能。In conjunction with the first embodiment shown in FIG. 3 , please refer to FIG. 6 . FIG. 6 is a schematic cross-sectional view of a dual-mode driven transflective liquid
于其它第二、第三实施例皆可设置上、下广视角膜60、62,惟第二实施例以及第三实施例的半反射层40皆在上、下基板34、36之间,故上、下广视角膜60、62皆分别紧邻贴附设置于上、下基板34、36的外侧表面,而分别于上、下偏光片44、46与上、下基板34、36之间。In other second and third embodiments, the upper and lower wide
此外,配合图3的第一实施例,请进一步参阅图7,图7为本发明双模驱动穿透反射式液晶显示装置30搭配散乱层70的横截面示意图。双模驱动穿透反射式液晶显示装置30的穿透反射式液晶显示面板32中另配置散乱层70,散乱层70可均匀反射光线,减少镜像反射的问题。于图3的第一实施例中,散乱层70可配置于下片基板36与半反射层40之间,或是配置于上偏光片44的上或下侧。In addition, referring to the first embodiment of FIG. 3 , please refer to FIG. 7 . FIG. 7 is a schematic cross-sectional view of a dual-mode driving transflective liquid
于第二、三实施例中,由于半反射层40皆在上、下基板34、36之间,散乱层70可配置于上偏光片44的上或下侧,也就是半反射层40上方,亦可邻近配置于半反射层40下侧。散乱层可为扩散材、扩散片、扩散胶或散乱结构,期皆具有均匀光线的效果。进一步,配合第一实施例,搭配上、下广视角膜60、62,散乱层70可于下片广视角膜与半反射层40之间。配合所有的实施例,或是于上广视角膜60与上偏光片44间另配置散乱层70,或设置于上偏光片44之上。In the second and third embodiments, since the
根据图4的双模驱动穿透反射式液晶显示器请参阅图8,其中后述的下电极层42以薄膜晶体管层来说明,图8为本发明以二电路单元82控制一单位像素80的示意图。彩色的穿透反射式液晶显示装置30利用彩色滤光片(图中未示)以显示彩色,彩色滤光片由许多单位像素80所组成,如红单位像素(R)、蓝单位像素(B)、绿单位像素(G)。进一步,半反射层40由许多反射片4002与通孔4004所组成,一般以互相等距间隔排列来组成,但通孔4004也可以散乱排列于整个半反射层40中。其中,反射片4002用以反射来自上方的光线以形成反射光线,通孔4004以使来自光源模块50的光线穿透而形成穿透光线。Please refer to FIG. 8 for the dual-mode driving transflective liquid crystal display according to FIG. 4 , wherein the
一般来说,一个单位像素80的投影中具备一个电路单元82即可。本发明可为一种进一步的实施例,即于同一个单位像素80的投影中,于薄膜晶体管层42中具有二个电路单元82,分别投影对应反射片4002以及通孔4004。补充说明,图8的二个电路单元82分别投影对应反射片4002以及通孔4004,实务上,可将电路单元82设置于同一边(如同为反射片4002的垂直投影区域中),此二电路单元82在非投影的分别对应反射片4002以及通孔4004即可。In general, one
进一步说明,请参阅图9,图9为本发明电路单元82的侧向剖视图。双模驱动穿透反射式液晶显示器中薄膜晶体管层42的电路单元82包括一薄膜晶体管90以及一储存电容92,在同一工艺步骤下,同时分别于薄膜晶体管90和储存电容92形成第一金属层94。此外再另一工艺步骤下,同时分别于薄膜晶体管90和储存电容92形成第二金属层96,其间设置介电层98。For further description, please refer to FIG. 9 , which is a side cross-sectional view of the
第一金属层94于薄膜晶体管90中形成栅极,第二金属层96于薄膜晶体管90中形成漏极以及源极。第一金属层94以及第二金属层96于储存电容92中形成电容的主结构。其中,由于薄膜晶体管90以及储存电容92所存在的区域与其它区域的相位延迟量不同,故会造成灰阶混淆现像。现有技术以调整液晶层相位延迟量改善此现象,本发明为分别运用穿透模式与反射模式下的对应灰阶电压以提供各别所需的灰阶显示,决解此灰阶混淆的现象,因此于元件中不须增加额外制作成本情况下则可利用储存电容92中的第一金属层94或是第二金属层96作为反射片4002,不但可节省元件成本,还可于即有制作流程的情况下形成反射的区域以供利用。The first metal layer 94 forms a gate in the TFT 90 , and the second metal layer 96 forms a drain and a source in the TFT 90 . The first metal layer 94 and the second metal layer 96 form the main structure of the capacitor in the storage capacitor 92 . Wherein, since the area where the thin film transistor 90 and the storage capacitor 92 exist has a different phase delay from other areas, gray scale aliasing will be caused. The existing technology improves this phenomenon by adjusting the phase retardation of the liquid crystal layer. The present invention uses the corresponding gray-scale voltages in the transmissive mode and the reflective mode to provide the required gray-scale display and solve the gray-scale confusion phenomenon. Therefore, the first metal layer 94 or the second metal layer 96 in the storage capacitor 92 can be used as the
此外,透过调整储存电容92中第一金属层94或是第二金属层96的大小,可以控制反射光线的比率。特别说明,若采用储存电容92中的第一金属层94或是第二金属层96作为反射片4002,严格说来将半反射层40制作于薄膜晶体管层42中,但其与图4所述的第二实施例精神一致,符合该实施例所述半反射层40介于薄膜晶体管层42与液晶层38间,而不另行以新的实施例赘述说明。In addition, the ratio of reflected light can be controlled by adjusting the size of the first metal layer 94 or the second metal layer 96 in the storage capacitor 92 . In particular, if the first metal layer 94 or the second metal layer 96 in the storage capacitor 92 is used as the
补充说明,第二、三实施例中的半反射层40,可利用控制半反射层40的厚度,以控制穿透、反射的比率。此外,针对图9配合第二实施例所述的半反射层40,为一中具反射片4002以及通孔4004的半反射层40,通过控制反射片4002以及通孔4004的大小,以控制穿透、反射的比率。As a supplementary note, the thickness of the
另外,更可于电路单元82的介电层98上设置多个凸块,藉以使光线均匀化,如此,可替代散乱层的效果,或与散乱层一起发挥更加光线均匀化的效果。In addition, a plurality of bumps can be provided on the dielectric layer 98 of the
因此,穿透反射式液晶显示装置30可于通孔4004对应的电路单元82施以穿透模式的灰阶电压,而以反射片4002对应的电路单元82施以反射模式的灰阶电压。如此可在穿透模式中同时利用反射片4002反射模式的效果,充分发挥反射片4002所产生的反射模式以及充分发挥通孔4004所产生的穿透模式,进而使半反射式液晶显示装置30得到更佳的光线利用率,亦可节省光源模块的耗电,达到省电的效果。Therefore, the transflective liquid
进一步说明,本发明并未改变穿透反射式液晶显示器于穿透模式下的电压-穿透率曲线与反射模式下的电压-反射率曲线,于所可显示的灰阶区域Z1、Z2中,穿透模式曲线斜率α2与反射模式曲线斜率α1的乘积仍旧保持为负值(α1*α2<0)。To further illustrate, the present invention does not change the voltage-transmittance curve of the transflective liquid crystal display in the transmissive mode and the voltage-reflectance curve in the reflective mode. In the displayable gray scale areas Z1 and Z2, The product of the slope α2 of the transmission mode curve and the slope α1 of the reflection mode curve still maintains a negative value (α1*α2<0).
补充说明的是,本发明所述的双模驱动穿透反射式液晶显示装置30特别适用于彩色超扭转向列型液晶显示器(Color Super Twisted Nematic LCD;CSTN LCD)、超扭转向列型液晶显示器(Super Twisted Nematic;STN LCD)、薄膜晶体管液晶显示器(Thin Film Transistor LCD;TFT LCD)、以及薄膜二极管液晶显示器(Thin Film Diode LCD;TFD LCD)、扭转向列型液晶显示器(TN LCD)、低温多晶硅薄膜晶体管液晶显示器(LTPS LCD)、电控双折射式显示器(ECB LCD)、混合扭转式液晶显示器、垂直排列式液晶显示器(VALCD)、平面切换式液晶显示器(IPS LCD)。It is supplemented that the dual-mode driving transflective liquid
通过以上优选具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的优选具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的权利要求的范畴内。Through the detailed description of the preferred specific embodiments above, it is hoped that the characteristics and spirit of the present invention can be described more clearly, rather than the scope of the present invention is limited by the preferred specific embodiments disclosed above. On the contrary, the intention is to cover various modifications and equivalent arrangements within the scope of the appended claims of the present invention.
Claims (34)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200510079526 CN1885099A (en) | 2005-06-23 | 2005-06-23 | Dual-mode driving transflective liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200510079526 CN1885099A (en) | 2005-06-23 | 2005-06-23 | Dual-mode driving transflective liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1885099A true CN1885099A (en) | 2006-12-27 |
Family
ID=37583346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200510079526 Pending CN1885099A (en) | 2005-06-23 | 2005-06-23 | Dual-mode driving transflective liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1885099A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101231397B (en) * | 2007-01-24 | 2011-06-01 | 奇美电子股份有限公司 | Image display system |
CN101231403B (en) * | 2007-01-10 | 2011-10-05 | Nec液晶技术株式会社 | Transflective LCD device with excellent image quality |
CN101409056B (en) * | 2007-10-09 | 2012-07-04 | 奇美电子股份有限公司 | Half-transmissive half-reflective liquid crystal display device and driving control method thereof |
CN106020416A (en) * | 2016-05-16 | 2016-10-12 | 安徽华米信息科技有限公司 | Screen display method and device and intelligent equipment |
CN110782806A (en) * | 2019-06-17 | 2020-02-11 | 錼创显示科技股份有限公司 | Display device |
US11392007B2 (en) | 2019-06-17 | 2022-07-19 | PlayNitride Display Co., Ltd. | Display apparatus with a micro lite-emmitting diode panel overlapped with a reflective display panel |
-
2005
- 2005-06-23 CN CN 200510079526 patent/CN1885099A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101231403B (en) * | 2007-01-10 | 2011-10-05 | Nec液晶技术株式会社 | Transflective LCD device with excellent image quality |
CN101231397B (en) * | 2007-01-24 | 2011-06-01 | 奇美电子股份有限公司 | Image display system |
CN101409056B (en) * | 2007-10-09 | 2012-07-04 | 奇美电子股份有限公司 | Half-transmissive half-reflective liquid crystal display device and driving control method thereof |
CN106020416A (en) * | 2016-05-16 | 2016-10-12 | 安徽华米信息科技有限公司 | Screen display method and device and intelligent equipment |
CN106020416B (en) * | 2016-05-16 | 2019-05-07 | 安徽华米信息科技有限公司 | Screen display method, device and smart machine |
CN110782806A (en) * | 2019-06-17 | 2020-02-11 | 錼创显示科技股份有限公司 | Display device |
US11392007B2 (en) | 2019-06-17 | 2022-07-19 | PlayNitride Display Co., Ltd. | Display apparatus with a micro lite-emmitting diode panel overlapped with a reflective display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101634773B (en) | Display apparatus | |
US8872746B2 (en) | Display operable in both reflective and transmissive modes | |
TWI437325B (en) | Transparent liquid crystal display device | |
JP3962397B2 (en) | Liquid crystal display device having dual light unit | |
CN102116963B (en) | Liquid crystal display apparatus | |
TWI417611B (en) | Transparent display device | |
US20080030656A1 (en) | Transflective lc display with internal reflector and reflective polarizer | |
KR101338998B1 (en) | Transflective liquid crystal display device | |
CN101290415A (en) | Liquid crystal display and method of operating and manufacturing the same | |
EP2453299A2 (en) | Display device having color filter | |
CN101029981A (en) | Semi-transmissive liquid crystal display device and portable terminal device | |
WO2010137377A1 (en) | Liquid crystal display device | |
TWI235268B (en) | Dual display structure and driving method | |
WO2013127181A1 (en) | Transparent display device | |
CN113589579A (en) | Semi-transparent semi-reflection display device | |
CN1885099A (en) | Dual-mode driving transflective liquid crystal display device | |
CN1802597A (en) | Transflective liquid crystal display device | |
CN1256614C (en) | Cholesteric liquid crystal display device with nematic characteristics | |
JP5053374B2 (en) | Liquid crystal display panel and liquid crystal display device | |
TWI459087B (en) | Liquid crystal display | |
JP2006510939A (en) | Low power consumption LCD device in standby mode | |
CN115561939A (en) | Liquid crystal display device having a plurality of pixel electrodes | |
CN2662288Y (en) | LCD display in dual display mode | |
JP3858708B2 (en) | Liquid crystal drive device | |
KR101396938B1 (en) | Liquid crystal display device and the method for designing liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: JINGSHI CO., LTD. Free format text: FORMER OWNER: WISTRON OPTRONICS CORP. Effective date: 20070323 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20070323 Address after: Taipei City, Taiwan, China Applicant after: Crystalline Limited by Share Ltd Address before: Hsinchu city of Taiwan Province Applicant before: Wistron Optronics Corp. |
|
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |