[go: up one dir, main page]

CN1862308A - modular scanning probe microscope - Google Patents

modular scanning probe microscope Download PDF

Info

Publication number
CN1862308A
CN1862308A CNA2006100277630A CN200610027763A CN1862308A CN 1862308 A CN1862308 A CN 1862308A CN A2006100277630 A CNA2006100277630 A CN A2006100277630A CN 200610027763 A CN200610027763 A CN 200610027763A CN 1862308 A CN1862308 A CN 1862308A
Authority
CN
China
Prior art keywords
module
microscope
scanning
probe
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100277630A
Other languages
Chinese (zh)
Other versions
CN100495109C (en
Inventor
赵虹霞
徐文东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CNB2006100277630A priority Critical patent/CN100495109C/en
Publication of CN1862308A publication Critical patent/CN1862308A/en
Application granted granted Critical
Publication of CN100495109C publication Critical patent/CN100495109C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

A modular scanning probe microscope in combination with an inverted fluorescence microscope, comprising five modules: the first module is an inverted fluorescence microscope; the second module is a three-jaw approximation device; the third module is a scan head; the fourth module comprises a transparent sample stage and an X, Y, Z three-dimensional scanner; the fifth module is a laser micro-expansion module. The modular structure of the invention utilizes each part of modules to easily build scanning probe microscopes with different structures, thereby greatly reducing the cost for purchasing various instruments; the three-dimensional scanner is used for realizing the original function of a fluorescence inverted microscope, and can also realize the special scanning near-field optical microscope function of microscope objective lens irradiation and collection, the observation of a determined area and a determined target, the detection of a laser confocal microscope and other operation and processing work mainly based on a probe or a microscope by combining all modules.

Description

模块化扫描探针显微镜Modular Scanning Probe Microscope

技术领域technical field

本发明涉及扫描探针显微镜,特别是一种与荧光倒置显微镜结合的模块化扫描探针显微镜。The invention relates to a scanning probe microscope, in particular to a modular scanning probe microscope combined with a fluorescent inverted microscope.

背景技术Background technique

扫描探针显微镜(以下简称SPM)是具有超高空间分辨率的表面测量仪器,使用方便,可进行纳米检测、操作和加工。大多数现有扫描探针显微镜都采用固定的结构,因此只适用于某些特定的应用,例如有的只适合小样品扫描,有的只适用于不透明样品检测。SPM与荧光倒置显微镜及三维扫描样品台的结合能够准确定位样品上的待扫描目标及针尖的位置,采用样品扫描针尖的方式可以在照明光斑很小的情况下保证针尖与照明光斑的高度重合,从而提高测试图像的对比度。物体的发光、物体的荧光标记、物体改变光特征的性质使光学显微镜成为生命科学和材料科学研究最重要的工具之一,而倒置显微镜是光学显微镜中功能最强大的显微镜,与SPM的结合将产生两者单独不能产生的功能。Scanning probe microscope (hereinafter referred to as SPM) is a surface measurement instrument with ultra-high spatial resolution, which is easy to use and can be used for nanometer detection, manipulation and processing. Most of the existing scanning probe microscopes adopt a fixed structure, so they are only suitable for some specific applications, such as some are only suitable for small sample scanning, and some are only suitable for opaque sample detection. The combination of SPM, fluorescent inverted microscope and three-dimensional scanning sample stage can accurately locate the target to be scanned on the sample and the position of the needle tip. The method of scanning the needle tip of the sample can ensure the high coincidence of the needle tip and the illumination spot when the illumination spot is small. Thereby improving the contrast of the test image. The luminescence of objects, the fluorescent labeling of objects, and the nature of objects to change light characteristics make optical microscopes one of the most important tools for life science and material science research, and inverted microscopes are the most powerful microscopes in optical microscopes. The combination with SPM will produce functionality that neither alone could produce.

在先技术结合光学显微镜的扫描探针显微镜(发明专利,专利号:USA005850038A)中,如图1、图2所示:整套装置由SPM测试元件114结合倒置光学显微镜130两部分组成。SPM测试元件114包括Z向扫描台116、位置探测系统118(包括激光光源120、分色镜122、光点位置感应器124)、悬臂支座126、悬臂探针128和样品台142,倒置光学显微镜130包括物镜132、目镜134、图像采集设备136、监视器138、激光开关150、分光装置166和反光镜168。工作时,由Z向扫描台116实现悬臂探针128向样品台142的逼近,然后开始样品扫描,扫描过程中光点位置感应器124检测悬臂探针128的Z向位移。对测量样品的观察和对悬臂探针128与样品台142间相对位置的观察通过监视器138来获得,而对于荧光观察是直接通过倒置光学显微镜130的目镜134来完成。该技术结构、原理简单,比较容易实现,但是明显存在以下不足:In the scanning probe microscope (invention patent, patent number: USA005850038A) of the prior art combined with an optical microscope, as shown in Figures 1 and 2: the entire device consists of two parts: an SPM test element 114 and an inverted optical microscope 130. The SPM test element 114 includes a Z-direction scanning stage 116, a position detection system 118 (including a laser light source 120, a dichroic mirror 122, and a light spot position sensor 124), a cantilever support 126, a cantilever probe 128, and a sample stage 142. The microscope 130 includes an objective lens 132 , an eyepiece 134 , an image acquisition device 136 , a monitor 138 , a laser switch 150 , a spectroscopic device 166 and a mirror 168 . During operation, the Z-direction scanning stage 116 realizes the approach of the cantilever probe 128 to the sample stage 142 , and then starts sample scanning, and the light spot position sensor 124 detects the Z-direction displacement of the cantilever probe 128 during the scanning process. The observation of the measurement sample and the observation of the relative position between the cantilever probe 128 and the sample stage 142 are obtained through the monitor 138 , while the fluorescence observation is directly accomplished through the eyepiece 134 of the inverted optical microscope 130 . The technical structure and principle are simple and relatively easy to implement, but it obviously has the following deficiencies:

1、倒置显微镜和扫描探针显微镜的简单结合只能完成两者原有的基本功能,不能根据不同需要进行特殊工作,无法降低仪器成本。1. The simple combination of an inverted microscope and a scanning probe microscope can only complete the original basic functions of the two, and cannot perform special work according to different needs, and cannot reduce the cost of the instrument.

2、该技术没有独立的粗逼近机构,不方便通过简单地更换头部针尖在同一套粗逼近装置上实现AFM和SNOM功能,进而实现SPM基础上的其他功能,如激光共焦显微镜检测、以探针为主或以显微镜为主的操作和加工等。2. This technology does not have an independent rough approximation mechanism, and it is inconvenient to realize AFM and SNOM functions on the same rough approximation device by simply replacing the needle tip of the head, and then realize other functions based on SPM, such as laser confocal microscope detection, and Probe-based or microscope-based operations and processing, etc.

3、样品台XYZ三个方向不可扫描,不能实现微米水平待扫描区域的选择,由于采用探针扫描样品的方式,不利于针尖与照明光斑的准确重合,降低了扫描图像的对比度。3. The three directions of XYZ of the sample table cannot be scanned, and the selection of the area to be scanned at the micron level cannot be realized. Due to the way of scanning the sample with the probe, it is not conducive to the accurate coincidence of the needle tip and the illumination spot, which reduces the contrast of the scanned image.

4、荧光观察时,照明光没有经过透镜系统会聚后直接照在样品上,而是利用微悬臂探针末端未被反射的部分透射过样品的光进入物镜,这样不能均匀照明整个视场,且观察光非常弱,因此荧光成像不理想。4. During fluorescence observation, the illumination light is not directly irradiated on the sample after being converged by the lens system, but the light transmitted through the sample by the unreflected part of the end of the micro-cantilever probe enters the objective lens, so that the entire field of view cannot be uniformly illuminated, and The viewing light is very weak, so fluorescence imaging is not ideal.

发明内容Contents of the invention

本发明的目的在于克服上述在先技术的不足,提供一种模块化扫描探针显微镜,本发明与荧光倒置显微镜结合的模块化扫描近场探针显微镜的调整和更换方便,利用各部分模块又很容易搭建不同结构的扫描探针显微镜,大大降低了购买各项仪器的成本;三维扫描器的共用除了实现荧光倒置显微镜的原有功能外,结合所有模块还可实现显微镜物镜照射和收集的特殊扫描近场光学显微镜(SNOM)功能、确定区域和确定目标的观察、激光共焦显微镜检测以及其他一些以探针为主或以显微镜为主的操作和加工工作。The purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art, and provide a modular scanning probe microscope. The modular scanning near-field probe microscope combined with the fluorescence inverted microscope of the present invention is convenient to adjust and replace, and utilizes each part of the module and It is easy to build scanning probe microscopes with different structures, which greatly reduces the cost of purchasing various instruments; the sharing of three-dimensional scanners not only realizes the original functions of fluorescence inverted microscopes, but also realizes the special illumination and collection of microscope objective lenses by combining all modules. Scanning near-field optical microscopy (SNOM) capabilities, observation of defined areas and defined targets, laser confocal microscopy inspection, and some other probe-based or microscope-based operations and processing.

本发明的技术解决方案如下:Technical solution of the present invention is as follows:

一种模块化扫描探针显微镜,它由五个模块组成:第一模块为倒置荧光显微镜;第二模块是三爪逼近装置,包括步进电机、2个手动粗调结构、照明发光二极管和CCD;第三模块是扫描头部,第四模块包括透明样品台和X、Y、Z三维扫描器;第五模块是激光显微扩展模块,包括第三反射镜、分束镜、第三透镜、第一针孔、第四透镜、激光器、第五透镜、第二针孔和PMT探测器;A modular scanning probe microscope, which consists of five modules: the first module is an inverted fluorescence microscope; the second module is a three-jaw approximation device, including stepping motors, 2 manual coarse adjustment structures, lighting LEDs and CCD ; The third module is a scanning head, the fourth module includes a transparent sample stage and X, Y, Z three-dimensional scanners; the fifth module is a laser microscope extension module, including a third reflector, a beam splitter, a third lens, A first pinhole, a fourth lens, a laser, a fifth lens, a second pinhole and a PMT detector;

所述的第一模块的CCD摄像头和物镜系统组合在一起,CCD摄像头的输出信号供给监视器;第二模块(2)通过步进电机及两个手动粗调结构的轴端与第四模块接触联结;第三模块根据采用的扫描头部的不同而有所差别;第四模块的X、Y、Z向三维平板扫描器中间有方形通孔;透明样品台通过粘接固定在X、Y、Z向三维平板扫描器的方形通孔上方,再一起通过螺钉固定在第一模块上;第一模块(1)的物镜系统到探针针尖的距离等于第一模块的工作距离,第一模块的照明装置、物镜系统、样品和探针针尖同轴,第五模块通过螺钉固定在第一模块物镜系统下方,由激光器输出的激光束经第四透镜、第一针孔及第三透镜后,成为较均匀的准直光束,经分束镜、第三反射镜和物镜系统后会聚于透明样品台上的样品某一点,该点反射光(或透射光、或受激辐射的荧光)又经物镜系统后被反射镜和分束镜反射到探测光路,由第五透镜将其聚焦于第二针孔,被PMT探测器接收,并将其输入计算机进行存储。The CCD camera of the first module and the objective lens system are combined together, and the output signal of the CCD camera is supplied to the monitor; the second module (2) is in contact with the fourth module through the shaft ends of the stepper motor and two manual coarse adjustment structures connection; the third module is different according to the scanning head used; the fourth module has a square through hole in the middle of the X, Y, Z three-dimensional flatbed scanner; the transparent sample stage is fixed on the X, Y, Z Above the square through hole of the Z-direction three-dimensional flatbed scanner, they are fixed together on the first module by screws; the distance from the objective lens system of the first module (1) to the probe tip is equal to the working distance of the first module, and the The illumination device, the objective lens system, the sample and the probe tip are coaxial, the fifth module is fixed under the objective lens system of the first module by screws, the laser beam output by the laser passes through the fourth lens, the first pinhole and the third lens, and becomes The relatively uniform collimated beam converges to a certain point of the sample on the transparent sample stage after passing through the beam splitter, the third mirror and the objective lens system, and the reflected light (or transmitted light, or fluorescence of stimulated radiation) at this point passes through the objective lens After the system is reflected to the detection optical path by the reflector and the beam splitter, the fifth lens focuses it on the second pinhole, is received by the PMT detector, and is input into the computer for storage.

所述的第三模块是扫描头为扫描近场光学显微镜扫描头,或原子力显微镜扫描头,或弯曲的无孔径探针扫描头。The third module is that the scanning head is a scanning near-field optical microscope scanning head, or an atomic force microscope scanning head, or a curved non-aperture probe scanning head.

所述的扫描近场光学显微镜扫描头包括探针针尖。The scanning head of the scanning near-field optical microscope includes a probe tip.

所述的原子力显微镜(AFM)扫描头,包括微悬臂探针针尖、第一透镜、第一反射镜、第二反射镜和第二透镜。The atomic force microscope (AFM) scanning head includes a micro-cantilever probe tip, a first lens, a first mirror, a second mirror and a second lens.

所述的弯曲的无孔径探针扫描头,包括弯曲的无孔径探针和振动压电台。The curved non-aperture probe scanning head includes a curved non-aperture probe and a vibrating piezoelectric table.

将第一模块、第四模块、第五模块组合可以实现共焦扫描激光显微镜检测功能;将第一模块、第二模块、第三模块扫描近场光学显微镜扫描头、第四模块组合可以实现扫描近场光学显微镜的功能;模块第一模块、第二模块、第三模块的原子力显微镜(AFM)扫描头和第四模块组合,可以实现样品扫描针尖的原子力显微镜;将第一模块、第二模块、第三模块的弯曲的无孔径探针扫描头和第四模块组合可以实现显微镜照明、收集模式的特殊扫描近场光学显微镜。The combination of the first module, the fourth module, and the fifth module can realize the detection function of the confocal scanning laser microscope; the combination of the first module, the second module, the third module scanning near-field optical microscope scanning head, and the fourth module can realize scanning The function of the near-field optical microscope; the combination of the first module, the second module, the atomic force microscope (AFM) scanning head of the third module and the fourth module can realize the atomic force microscope of the sample scanning tip; the first module, the second module The combination of the curved non-aperture probe scanning head of the third module and the fourth module can realize the special scanning near-field optical microscope of microscope illumination and collection mode.

与现有技术相比,本发明的技术效果如下:Compared with prior art, technical effect of the present invention is as follows:

1.本发明把组成扫描探针显微镜的各单元器件集成为具有一定功能的较小模块,可以在不破坏倒置显微镜原有结构的基础上方便利用这些模块快速搭建成不同结构的显微镜,以适应各种不同功能的需要,大大降低了购买各个仪器的费用;1. The present invention integrates each unit device of the scanning probe microscope into smaller modules with certain functions, and can conveniently use these modules to quickly build microscopes with different structures without destroying the original structure of the inverted microscope, so as to adapt to The needs of various functions greatly reduce the cost of purchasing various instruments;

2.采用可拆卸微位移扫描样品台,在不破坏原结构基础上采用XYZ三维扫描器替换倒置显微镜样品台,可以带较大重量的负载,而且在带负载的情况下还可以保证很高的共振频率,不会影响到整个显微镜系统的性能,在探针扰动下,通过中间有通孔的XYZ三维扫描器样品台,采用样品扫描针尖模式,可以实现显微镜物镜照射和收集的特殊扫描近场光学显微镜(SNOM)功能;2. The detachable micro-displacement scanning sample stage is used, and the XYZ three-dimensional scanner is used to replace the inverted microscope sample stage on the basis of not destroying the original structure, which can carry a heavy load, and can also guarantee a high load The resonant frequency will not affect the performance of the entire microscope system. Under the disturbance of the probe, through the XYZ three-dimensional scanner sample stage with a through hole in the middle, the sample scanning needle tip mode can be used to realize the special scanning near-field irradiation and collection of the microscope objective lens Optical microscope (SNOM) function;

3.三爪粗逼近结构作为一个模块,可以承载AFM头部和SNOM头部,并在此基础上实现SPM所有功能,进行高分辨率观察样品的形貌和研究其他表面特征;3. As a module, the three-jaw rough approximation structure can carry the AFM head and the SNOM head, and on this basis, realize all the functions of the SPM, observe the morphology of the sample with high resolution and study other surface features;

4.光学显微镜与XYZ三维扫描器的结合,可实现确定区域和确定目标的观察及微米水平待扫描区域的选择;4. The combination of optical microscope and XYZ three-dimensional scanner can realize the observation of the determined area and the determined target and the selection of the area to be scanned at the micron level;

5.在荧光倒置显微镜的基础上,通过光谱分光棱镜和其他自行设计光学元件,加入激光光束和带小孔的光电倍增管,使之成为激光共焦扫描显微镜,结构更为小型化,荧光成像更为理想。5. On the basis of the fluorescent inverted microscope, through the spectroscopic beam splitter and other self-designed optical components, adding laser beams and photomultiplier tubes with small holes to make it a laser confocal scanning microscope with a more miniaturized structure and fluorescence imaging more ideal.

附图说明Description of drawings

图1是在先技术结合光学显微镜的扫描探针显微镜原理示意图。Fig. 1 is a schematic diagram of the principle of a scanning probe microscope combined with an optical microscope in the prior art.

图2是在先技术结合光学显微镜的扫描探针显微镜测试元件结构示意图。Fig. 2 is a schematic diagram of the structure of a scanning probe microscope test element combined with an optical microscope in the prior art.

图3是本发明与荧光倒置显微镜结合的模块化扫描探针显微镜的原理示意图Fig. 3 is the schematic diagram of the principle of the modular scanning probe microscope combined with the fluorescence inverted microscope of the present invention

图4是本发明第五模块激光显微扩展模块的原理结构示意图Fig. 4 is a schematic structural diagram of the principle structure of the fifth module laser microscope extension module of the present invention

图5是本发明实施例1的原理示意图Figure 5 is a schematic diagram of the principle of Embodiment 1 of the present invention

图6是本发明实施例2的原理示意图Figure 6 is a schematic diagram of the principle of Embodiment 2 of the present invention

图7是本发明实施例3的原理示意图Figure 7 is a schematic diagram of the principle of Embodiment 3 of the present invention

图8是本发明实施例4的原理示意图Figure 8 is a schematic diagram of the principle of Embodiment 4 of the present invention

具体实施方式Detailed ways

请先参阅图3和图4,图3为本发明与荧光倒置显微镜结合的模块化扫描探针显微镜的原理示意图,图4为本发明第五模块激光显微扩展模块的结构示意图。由图可见,本发明与倒置显微镜结合的模块化扫描探针显微镜,由五个模块组成:第一模块1包括照明装置101、目镜筒102、物镜系统103、数码相机104和CCD摄像头105;第二模块2包括步进电机201、2个手动粗调结构202、照明LED203和CCD204;第三模块3是扫描头部,之一为扫描近场光学显微镜(SNOM)扫描头,包括探针针尖301,之二为原子力显微镜(AFM)扫描头,包括微悬臂探针针尖302、第一透镜303、第一反射镜304、第二反射镜305和第二透镜306,之三为弯曲的无孔径探针扫描头,包括弯曲的无孔径探针307和振动压电台308;第四模块4包括透明样品台401和X、Y、Z三维扫描器402;第五模块5是激光显微扩展模块,包括第三反射镜501、分束镜502、第三透镜503、第一针孔504、第四透镜505、激光器506、第五透镜507、第二针孔508和PMT探测器509;Please refer to Figure 3 and Figure 4 first, Figure 3 is a schematic diagram of the principle of the modular scanning probe microscope combined with a fluorescence inverted microscope of the present invention, and Figure 4 is a schematic structural diagram of the fifth module of the laser microscope extension module of the present invention. As can be seen from the figure, the modular scanning probe microscope combined with the inverted microscope of the present invention is made up of five modules: the first module 1 includes an illumination device 101, eyepiece tube 102, objective lens system 103, digital camera 104 and CCD camera 105; The second module 2 includes a stepper motor 201, two manual coarse adjustment structures 202, lighting LED203 and CCD204; the third module 3 is a scanning head, one of which is a scanning near-field optical microscope (SNOM) scanning head, including a probe tip 301 , the second is an atomic force microscope (AFM) scanning head, including a microcantilever probe tip 302, a first lens 303, a first mirror 304, a second mirror 305 and a second lens 306, and the third is a curved non-aperture probe The needle scanning head includes a curved non-aperture probe 307 and a vibrating pressure stage 308; the fourth module 4 includes a transparent sample stage 401 and X, Y, and Z three-dimensional scanners 402; the fifth module 5 is a laser microscope extension module, including The third mirror 501, the beam splitter 502, the third lens 503, the first pinhole 504, the fourth lens 505, the laser 506, the fifth lens 507, the second pinhole 508 and the PMT detector 509;

所述的第一模块1的CCD摄像头105和物镜系统103组合在一起,CCD摄像头105的输出信号供给监视器(图中未示);第二模块2通过步进电机201及两个手动粗调结构202的轴端与第四模块4接触联结;第三模块3根据采用的扫描头部的不同而有所差别;第四模块4的X、Y、Z向三维平板扫描器402中间有方形通孔;透明样品台401通过粘接固定在X、Y、Z向三维平板扫描器402的方形通孔上方,再一起通过螺钉固定在第一模块1上;第一模块1的物镜系统103到探针针尖的距离等于第一模块1的工作距离,第一模块1的照明装置101、物镜系统103、样品和探针针尖同轴,第五模块5通过螺钉固定在第一模块1物镜系统103下方,由激光器506输出的激光束经第四透镜505、第一针孔504及第三透镜503后,成为较均匀的准直光束,经分束镜502、第三反射镜501和物镜系统103后会聚于透明样品台401上的样品某一点,该点反射光、或透射光、或受激辐射的荧光又经物镜系统103后被第三反射镜501和分束镜502反射到探测光路,由第五透镜507将其聚焦于第二针孔508,被PMT探测器509接收,并将其输入计算机(图中未示)进行存储。The CCD camera head 105 of the first module 1 and the objective lens system 103 are combined together, and the output signal of the CCD camera head 105 is supplied to a monitor (not shown); The shaft end of the structure 202 is in contact with the fourth module 4; the third module 3 is different according to the scanning head used; there is a square channel in the middle of the X, Y, Z direction three-dimensional flatbed scanner 402 of the fourth module 4. holes; the transparent sample stage 401 is fixed above the square through hole of the X, Y, and Z three-dimensional flatbed scanner 402 by bonding, and then is fixed on the first module 1 by screws together; the objective lens system 103 of the first module 1 reaches the probe The distance of the needle tip is equal to the working distance of the first module 1, the illumination device 101, the objective lens system 103, the sample and the probe tip of the first module 1 are coaxial, and the fifth module 5 is fixed under the first module 1 objective lens system 103 by screws , the laser beam output by the laser 506 passes through the fourth lens 505, the first pinhole 504 and the third lens 503 to become a relatively uniform collimated beam, and passes through the beam splitter 502, the third mirror 501 and the objective lens system 103 Converging at a certain point of the sample on the transparent sample stage 401, the reflected light, or transmitted light, or the fluorescence of stimulated radiation at this point is reflected to the detection optical path by the third reflector 501 and the beam splitter 502 after passing through the objective lens system 103, and then The fifth lens 507 focuses it on the second pinhole 508, is received by the PMT detector 509, and is input to a computer (not shown) for storage.

所述的第三模块(3)是扫描头为扫描近场光学显微镜扫描头,或原子力显微镜扫描头,或弯曲的无孔径探针扫描头。The third module (3) is that the scanning head is a scanning near-field optical microscope scanning head, or an atomic force microscope scanning head, or a curved non-aperture probe scanning head.

所述的扫描近场光学显微镜扫描头包括探针针尖301。The scanning head of the scanning near-field optical microscope includes a probe tip 301 .

所述的原子力显微镜(AFM)扫描头,包括微悬臂探针针尖302、第一透镜303、第一反射镜304、第二反射镜305和第二透镜306。The atomic force microscope (AFM) scanning head includes a micro-cantilever probe tip 302 , a first lens 303 , a first mirror 304 , a second mirror 305 and a second lens 306 .

所述的弯曲的无孔径探针扫描头,包括弯曲的无孔径探针307和振动压电台308。The curved non-aperture probe scanning head includes a curved non-aperture probe 307 and a vibrating piezoelectric stage 308 .

实施例1Example 1

实施例1原理示意图如图5所示,采用将第一模块1、第四模块4、第五模块5组合。第一模块1采用的是Nikon公司的TE2000研究用万能生物显微镜,此显微镜具有多端口输出设计、超精密Z轴方向控制和NIKON独特的CFI60光学系统,并配有新型电动附件,在这种无限远光路中可增加选配光源和其他附件,消杂光机构有效阻挡杂散光、消除了由于周围温度的变化对显微镜棱镜的影响,具有很高的防振性能。第四模块4是xyz向的扫描器402采用PI公司的P-733.3DD器件,扫描范围30×30×10μm,器件中心是50×50cm的通光孔,无负载共振频率为1200Hz。在第四模块4的透明样品台上放置样品,由第四模块4带动样品进行扫描,由激光器506输出的激光束经第四透镜505、第一针孔504及第三透镜503后,成为较均匀的准直光束,经分束镜502、第三反射镜501和物镜系统103后会聚于透明样品台401上样品某一点,该点反射光又经物镜系统103后被第三反射镜501和分束镜502反射到探测光路,由第五透镜507将其聚焦于第二针孔508,被PMT探测器509接收,并将其输入计算机进行存储。因为第四模块4的扫描器有通光孔,通过二维扫描得到物体某一层面的二维断层图像,再经轴向扫描得到大量断层图像,经计算机图像重构,合成三维立体图像,其扫描装置也由计算机进行控制,可以实现共焦扫描激光显微镜检测功能。The schematic diagram of the principle of Embodiment 1 is shown in FIG. 5 , which adopts the combination of the first module 1 , the fourth module 4 and the fifth module 5 . The first module 1 uses Nikon’s TE2000 universal biological microscope for research. This microscope has multi-port output design, ultra-precise Z-axis direction control and NIKON’s unique CFI60 optical system, and is equipped with new motorized accessories. Optional light sources and other accessories can be added to the far light path. The stray light elimination mechanism effectively blocks stray light and eliminates the influence of the surrounding temperature on the microscope prism, and has high anti-vibration performance. The fourth module 4 is a scanner 402 in xyz direction using P-733.3DD device of PI Company, the scanning range is 30×30×10 μm, the center of the device is a 50×50 cm light hole, and the no-load resonance frequency is 1200 Hz. The sample is placed on the transparent sample stage of the fourth module 4, and the sample is driven by the fourth module 4 to scan, and the laser beam output by the laser 506 passes through the fourth lens 505, the first pinhole 504 and the third lens 503, and becomes a relatively The uniform collimated light beam is converged at a certain point of the sample on the transparent sample stage 401 after passing through the beam splitter 502, the third reflecting mirror 501 and the objective lens system 103, and the reflected light at this point is passed through the objective lens system 103 and then is transmitted by the third reflecting mirror 501 and the objective lens system 103. The beam splitter 502 is reflected to the detection optical path, focused by the fifth lens 507 on the second pinhole 508, received by the PMT detector 509, and input to the computer for storage. Because the scanner of the fourth module 4 has a light hole, a two-dimensional tomographic image of a certain layer of the object is obtained by two-dimensional scanning, and then a large number of tomographic images are obtained by axial scanning, and a three-dimensional stereoscopic image is synthesized by computer image reconstruction. The scanning device is also controlled by a computer, which can realize the detection function of the confocal scanning laser microscope.

实施例2Example 2

实施例2是扫描近场光学显微镜,原理示意图如图6所示,采用将第一模块、第二模块、第三模块扫描近场光学显微镜扫描头、第四模块组合。第二模块2的步进电机201采用PI公司的M-235.5DG,它的单向可重复精度为100nm;照明LED固定在第二模块2上,调整以一定角度照射探针针尖。第三模块3固定在第二模块2上,探针针尖301垂直于样品表面。工作时,第一模块1完成微米量级的对针尖和样品的实时观测,第二模块2完成粗逼近,第四模块4完成细逼近和执行反馈任务,同时完成扫描功能。Embodiment 2 is a scanning near-field optical microscope. The schematic diagram of the principle is shown in FIG. 6 , and the scanning head of the scanning near-field optical microscope is combined with the first module, the second module, and the third module, and the fourth module. The stepping motor 201 of the second module 2 adopts M-235.5DG of PI Company, and its one-way repeatability accuracy is 100nm; the lighting LED is fixed on the second module 2, and is adjusted to irradiate the probe tip at a certain angle. The third module 3 is fixed on the second module 2, and the probe tip 301 is perpendicular to the surface of the sample. When working, the first module 1 completes the real-time observation of the needle tip and the sample at the micron level, the second module 2 completes the rough approximation, and the fourth module 4 completes the fine approximation and performs feedback tasks, and at the same time completes the scanning function.

实施例3Example 3

实施例3原理示意图如图7所示,将第一模块、第二模块、第三模块扫描近场光学显微镜扫描头、第四模块组合,所述的扫描近场光学显微镜扫描头,包括微悬臂探针针尖302、第一透镜303、第一反射镜304、第二反射镜305和第二透镜306,在第四模块4的透明样品台上放置样品,由第二模块2带动第三模块3对样品进行粗逼近,第四模块4的X、Y、Z向三维平板扫描器对样品进行细逼近及扫描,这样就构成样品扫描针尖的原子力显微镜,其照明光可以从样品上面照射的反射式,也可以是照明光从样品下面照射的透射式,因为模块四的扫描器有通光孔。The schematic diagram of the principle of Embodiment 3 is shown in Figure 7. The first module, the second module, the third module scanning near-field optical microscope scanning head, and the fourth module are combined. The scanning near-field optical microscope scanning head includes a microcantilever The probe tip 302, the first lens 303, the first mirror 304, the second mirror 305 and the second lens 306 place the sample on the transparent sample stage of the fourth module 4, and the third module 3 is driven by the second module 2 The sample is roughly approximated, and the X, Y, and Z three-dimensional flatbed scanners of the fourth module 4 perform fine approximation and scanning of the sample, thus forming an atomic force microscope with a sample scanning tip, whose illumination light can be irradiated from the sample. , it can also be a transmission type in which the illumination light is irradiated from below the sample, because the scanner of module four has a light-through hole.

实施例4Example 4

实施例4原理示意图如图8所示,采用采用第一模块1、第二模块2、第三模块3的弯曲的无孔径探针扫描头和第四模块组合,在第一模块1中的101可以安装显微操作设备对第四模块4进行显微镜照明,因为模块四的扫描器有通光孔,所以可以用第一模块中的103进行荧光信号收集,去掉第二模块2中的照明LED203和CCD204,第三模块3采用的是弯曲的无孔探针307和振动压电台308,在第四模块4的透明样品台上放置样品,由第二模块2带动第三模块3对样品进行粗逼近,第四模块4的X、Y、Z向三维平板扫描器对样品进行细逼近,扫描时第三模块3中的振动压电台308驱动无孔探针307只在垂直方向上以Tapping模式振动,由第四模块4的三维平板扫描器带动样品进行扫描,并由第三模块3和第四模块4同时完成信号反馈来控制样品探针间距,这样就构成显微镜照明、收集模式的特殊扫描近场光学显微镜(SNOM)。The principle schematic diagram of Embodiment 4 is shown in Figure 8, using the combination of the curved non-aperture probe scanning head and the fourth module using the first module 1, the second module 2, and the third module 3, and the 101 in the first module 1 Micromanipulation equipment can be installed to carry out microscope illumination to the fourth module 4, because the scanner of module 4 has a light hole, so can use 103 in the first module to carry out fluorescence signal collection, remove the illuminating LED203 and 203 in the second module 2 CCD204, the third module 3 uses a curved non-porous probe 307 and a vibrating pressure station 308. The sample is placed on the transparent sample stage of the fourth module 4, and the third module 3 is driven by the second module 2 to make a rough approximation of the sample. , the X, Y, Z of the fourth module 4 approach the sample finely to the three-dimensional flatbed scanner, and the vibrating piezoelectric stage 308 in the third module 3 drives the non-porous probe 307 to vibrate only in the Tapping mode in the vertical direction during scanning, The sample is scanned by the three-dimensional flat-bed scanner of the fourth module 4, and the signal feedback is completed by the third module 3 and the fourth module 4 to control the distance between the sample probes, thus forming a special scanning near-field of microscope illumination and collection mode Optical Microscopy (SNOM).

Claims (5)

1、一种模块化扫描探针显微镜,其特征在于它由五个模块组成:第一模块(1)为倒置荧光显微镜;第二模块(2)是三爪逼近装置,包括步进电机(201)、2个手动粗调结构(202)、照明发光二极管(203)和CCD(204);第三模块(3)是扫描头部,第四模块(4)包括透明样品台(401)和X、Y、Z三维扫描器(402);第五模块(5)是激光显微扩展模块,包括第三反射镜(501)、分束镜(502)、第三透镜(503)、第一针孔(504)、第四透镜(505)、激光器(506)、第五透镜(507)、第二针孔(508)和PMT探测器(509);1. A modular scanning probe microscope is characterized in that it is made up of five modules: the first module (1) is an inverted fluorescence microscope; the second module (2) is a three-jaw approximation device, including a stepping motor (201 ), 2 manual coarse adjustment structures (202), lighting LEDs (203) and CCD (204); the third module (3) is a scanning head, and the fourth module (4) includes a transparent sample stage (401) and X , Y, Z three-dimensional scanner (402); the fifth module (5) is a laser microscope expansion module, including a third reflector (501), a beam splitter (502), a third lens (503), a first needle Aperture (504), fourth lens (505), laser (506), fifth lens (507), second pinhole (508) and PMT detector (509); 所述的第一模块(1)的CCD摄像头(105)和物镜系统(103)组合在一起,CCD摄像头(105)的输出信号供给监视器;第二模块(2)通过步进电机(201)及两个手动粗调结构(202)的轴端与第四模块(4)接触联结;第三模块(3)根据采用的扫描头部的不同而有所差别;第四模块(4)的X、Y、Z向三维平板扫描器(402)中间有方形通孔;透明样品台(401)通过粘接固定在X、Y、Z向三维平板扫描器(402)的方形通孔上方,再一起通过螺钉固定在第一模块(1)上;第一模块(1)的物镜系统(103)到探针针尖的距离等于第一模块(1)的工作距离,第一模块(1)的照明装置(101)、物镜系统(103)、样品和探针针尖同轴,第五模块(5)通过螺钉固定在第一模块(1)物镜系统(103)下方,由激光器(506)输出的激光束经第四透镜(505)、第一针孔(504)及第三透镜(503)后,成为较均匀的准直光束,经分束镜(502)、第三反射镜(501)和物镜系统(103)后会聚于透明样品台(401)上的样品某一点,该点反射光(或透射光、或受激辐射的荧光)又经物镜系统(103)后被反射镜(501)和分束镜(502)反射到探测光路,由第五透镜(507)将其聚焦于第二针孔(508),被PMT探测器(509)接收,并将其输入计算机进行存储。The CCD camera (105) of the first module (1) and the objective lens system (103) are combined together, and the output signal of the CCD camera (105) is supplied to the monitor; the second module (2) passes through a stepping motor (201) And the shaft ends of the two manual coarse adjustment structures (202) are in contact with the fourth module (4); the third module (3) is different according to the scanning head used; the X of the fourth module (4) There is a square through hole in the middle of the three-dimensional flatbed scanner (402) in the directions of X, Y, and Z; It is fixed on the first module (1) by screws; the distance from the objective lens system (103) of the first module (1) to the probe tip is equal to the working distance of the first module (1), and the lighting device of the first module (1) (101), the objective lens system (103), the sample and the probe tip are coaxial, the fifth module (5) is fixed below the first module (1) objective lens system (103) by screws, and the laser beam output by the laser (506) After passing through the fourth lens (505), the first pinhole (504) and the third lens (503), it becomes a relatively uniform collimated light beam, which passes through the beam splitter (502), the third mirror (501) and the objective lens system (103) converges on a certain point of the sample on the transparent sample stage (401), and the reflected light (or transmitted light, or fluorescence of stimulated radiation) at this point is passed through the objective lens system (103) and then is reflected by the reflective mirror (501) and the analyzer. The beam mirror (502) is reflected to the detection optical path, focused on the second pinhole (508) by the fifth lens (507), received by the PMT detector (509), and input to the computer for storage. 2、根据权利要求1所述的模块化扫描探针显微镜,其特征在于所述的第三模块(3)是扫描头为扫描近场光学显微镜扫描头,或原子力显微镜扫描头,或弯曲的无孔径探针扫描头。2. The modular scanning probe microscope according to claim 1, characterized in that the scanning head of the third module (3) is a scanning near-field optical microscope scanning head, or an atomic force microscope scanning head, or a curved non- Aperture probe scan head. 3、根据权利要求2所述的模块化扫描探针显微镜,其特征在于所述的扫描近场光学显微镜扫描头包括探针针尖(301)。3. The modular scanning probe microscope according to claim 2, characterized in that the scanning head of the scanning near-field optical microscope comprises a probe tip (301). 4、根据权利要求2所述的模块化扫描探针显微镜,其特征在于所述的原子力显微镜(AFM)扫描头,包括微悬臂探针针尖(302)、第一透镜(303)、反射镜一(304)、第二反射镜(305)和第二透镜(306)。4. The modular scanning probe microscope according to claim 2, characterized in that the scanning head of the atomic force microscope (AFM) comprises a microcantilever probe tip (302), a first lens (303), a mirror (304), second mirror (305) and second lens (306). 5、根据权利要求2所述的模块化扫描探针显微镜,其特征在于所述的弯曲的无孔径探针扫描头,包括弯曲的无孔径探针(307)和振动压电台(308)。5. The modular scanning probe microscope according to claim 2, characterized in that said curved non-aperture probe scanning head comprises a curved non-aperture probe (307) and a vibrating piezoelectric stage (308).
CNB2006100277630A 2006-06-19 2006-06-19 Modular Scanning Probe Microscope Expired - Fee Related CN100495109C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100277630A CN100495109C (en) 2006-06-19 2006-06-19 Modular Scanning Probe Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100277630A CN100495109C (en) 2006-06-19 2006-06-19 Modular Scanning Probe Microscope

Publications (2)

Publication Number Publication Date
CN1862308A true CN1862308A (en) 2006-11-15
CN100495109C CN100495109C (en) 2009-06-03

Family

ID=37389776

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100277630A Expired - Fee Related CN100495109C (en) 2006-06-19 2006-06-19 Modular Scanning Probe Microscope

Country Status (1)

Country Link
CN (1) CN100495109C (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281219B (en) * 2007-04-06 2010-09-29 国家纳米科学中心 A Method for Measuring the Characteristic Capacitance of a Conductive Tip of a Scanning Probe Microscope
CN101515003B (en) * 2008-02-22 2011-02-09 国家纳米科学中心 Method for Measuring Surface Charge Density of Materials
CN101515006B (en) * 2008-02-22 2011-07-27 国家纳米科学中心 Method for measuring nonlinear susceptibility of materials
CN106950686A (en) * 2017-04-14 2017-07-14 苏州影睿光学科技有限公司 A kind of near-infrared fluorescent inverted microscope system and its application
CN107850620A (en) * 2015-06-25 2018-03-27 布鲁克纳米公司 Sample container retainer for scanning probe microscopy
CN108168932A (en) * 2017-12-15 2018-06-15 江苏鲁汶仪器有限公司 Pinpoint slice systems and method
CN109682995A (en) * 2019-01-21 2019-04-26 仪晟科学仪器(嘉兴)有限公司 A kind of scattering formula low-temperature scanning near-field optical microscope
CN109799368A (en) * 2019-03-20 2019-05-24 国家纳米科学中心 A kind of invention provides a double-probe atomic power
CN110045122A (en) * 2019-05-22 2019-07-23 杭州铂赛生物科技有限公司 Novel early cancer diagnosis and treatment nano probe of DNA aptamer-fluorescent silicon nano particle
CN110146898A (en) * 2019-03-22 2019-08-20 中国科学院重庆绿色智能技术研究院 A probe trajectory monitoring and control method based on image capture and image analysis
CN110967525A (en) * 2018-09-30 2020-04-07 中国计量科学研究院 Scanning probe
WO2020151039A1 (en) * 2019-01-26 2020-07-30 殷跃锋 Cell detection microscope
CN112198652A (en) * 2020-09-09 2021-01-08 安徽九陆生物科技有限公司 Inverted automatic slide scanner device and using method thereof
CN113466493A (en) * 2021-08-17 2021-10-01 广州中源仪器技术有限公司 Scanning probe microscope system
CN114018921A (en) * 2021-11-02 2022-02-08 仪晟科学仪器(嘉兴)有限公司 A near-field optical microscope based on a probe optical positioning system
US11268978B2 (en) 2018-09-30 2022-03-08 National Institute Of Metrology, China Tip-enhanced Raman spectroscope system
CN114594283A (en) * 2022-03-08 2022-06-07 厦门大学 Anti-crosstalk scanning tunnel microscope scanning device
CN116203535A (en) * 2023-04-28 2023-06-02 枣庄科技职业学院 Computer-aided optical scanning three-dimensional imaging system
CN116930130A (en) * 2023-09-19 2023-10-24 清华大学 Nano-region photoluminescence detection system and method based on probe scanning
CN117849399A (en) * 2023-11-10 2024-04-09 北京航空航天大学 Open and modular scanning probe microscope control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166602A (en) * 1995-12-14 1997-06-24 Olympus Optical Co Ltd Scanning probe microscope integrated with optical microscope
CN1156720C (en) * 2002-05-17 2004-07-07 中国科学院上海光学精密机械研究所 Observation device matched with atomic force microscope
CN1175297C (en) * 2002-05-17 2004-11-10 中国科学院上海光学精密机械研究所 Observation microscopes for scanning probe microscopy
CN1259558C (en) * 2004-09-07 2006-06-14 中国科学院上海光学精密机械研究所 Modular atomic force microscope
CN2729693Y (en) * 2004-09-15 2005-09-28 中国科学院上海光学精密机械研究所 Complete optical fiber probe scanning type near-field optical microscope
CN2916659Y (en) * 2006-06-19 2007-06-27 中国科学院上海光学精密机械研究所 Modular Scanning Probe Microscope

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281219B (en) * 2007-04-06 2010-09-29 国家纳米科学中心 A Method for Measuring the Characteristic Capacitance of a Conductive Tip of a Scanning Probe Microscope
CN101515003B (en) * 2008-02-22 2011-02-09 国家纳米科学中心 Method for Measuring Surface Charge Density of Materials
CN101515006B (en) * 2008-02-22 2011-07-27 国家纳米科学中心 Method for measuring nonlinear susceptibility of materials
CN107850620B (en) * 2015-06-25 2020-11-17 布鲁克纳米公司 Sample container holder for scanning probe microscope
CN107850620A (en) * 2015-06-25 2018-03-27 布鲁克纳米公司 Sample container retainer for scanning probe microscopy
CN106950686A (en) * 2017-04-14 2017-07-14 苏州影睿光学科技有限公司 A kind of near-infrared fluorescent inverted microscope system and its application
CN108168932A (en) * 2017-12-15 2018-06-15 江苏鲁汶仪器有限公司 Pinpoint slice systems and method
US11579169B2 (en) 2018-09-30 2023-02-14 National Institute Of Metrology, China Scanning probe having micro-tip, method and apparatus for manufacturing the same
CN110967525B (en) * 2018-09-30 2022-07-01 中国计量科学研究院 Scanning Probe
US11268978B2 (en) 2018-09-30 2022-03-08 National Institute Of Metrology, China Tip-enhanced Raman spectroscope system
CN110967525A (en) * 2018-09-30 2020-04-07 中国计量科学研究院 Scanning probe
CN109682995A (en) * 2019-01-21 2019-04-26 仪晟科学仪器(嘉兴)有限公司 A kind of scattering formula low-temperature scanning near-field optical microscope
WO2020151039A1 (en) * 2019-01-26 2020-07-30 殷跃锋 Cell detection microscope
CN109799368B (en) * 2019-03-20 2021-12-17 国家纳米科学中心 Double-probe atomic force microscope
CN109799368A (en) * 2019-03-20 2019-05-24 国家纳米科学中心 A kind of invention provides a double-probe atomic power
CN110146898B (en) * 2019-03-22 2023-10-20 中国科学院重庆绿色智能技术研究院 Probe track monitoring and controlling method based on image shooting and image analysis
CN110146898A (en) * 2019-03-22 2019-08-20 中国科学院重庆绿色智能技术研究院 A probe trajectory monitoring and control method based on image capture and image analysis
CN110045122A (en) * 2019-05-22 2019-07-23 杭州铂赛生物科技有限公司 Novel early cancer diagnosis and treatment nano probe of DNA aptamer-fluorescent silicon nano particle
CN112198652A (en) * 2020-09-09 2021-01-08 安徽九陆生物科技有限公司 Inverted automatic slide scanner device and using method thereof
CN113466493A (en) * 2021-08-17 2021-10-01 广州中源仪器技术有限公司 Scanning probe microscope system
CN114018921A (en) * 2021-11-02 2022-02-08 仪晟科学仪器(嘉兴)有限公司 A near-field optical microscope based on a probe optical positioning system
CN114594283A (en) * 2022-03-08 2022-06-07 厦门大学 Anti-crosstalk scanning tunnel microscope scanning device
CN116203535B (en) * 2023-04-28 2023-08-22 枣庄科技职业学院 Computer-aided optical scanning three-dimensional imaging system
CN116203535A (en) * 2023-04-28 2023-06-02 枣庄科技职业学院 Computer-aided optical scanning three-dimensional imaging system
CN116930130A (en) * 2023-09-19 2023-10-24 清华大学 Nano-region photoluminescence detection system and method based on probe scanning
CN116930130B (en) * 2023-09-19 2024-01-09 清华大学 Nano-region photoluminescence detection system and method based on probe scanning
CN117849399A (en) * 2023-11-10 2024-04-09 北京航空航天大学 Open and modular scanning probe microscope control system

Also Published As

Publication number Publication date
CN100495109C (en) 2009-06-03

Similar Documents

Publication Publication Date Title
CN1862308A (en) modular scanning probe microscope
CN2916659Y (en) Modular Scanning Probe Microscope
CN1267721C (en) Complete optical fiber probe scanning type near-field optical microscope
US5859364A (en) Scanning probe microscope
US9347969B2 (en) Compound microscope
US20090059362A1 (en) Microscope and three-dimensional information acquisition method
Gumpp et al. Ultrastable combined atomic force and total internal fluorescence microscope
CN1815186A (en) Multifunction chip-detecting apparatus
CN115291381A (en) Large-field-of-view high-resolution microscope and microscopic imaging method thereof
GB2553420A (en) Objective lens attachment
CN1259558C (en) Modular atomic force microscope
US20070236786A1 (en) Systems and methods for a scanning boom microscope
CN1358999A (en) Automatic focus regulator for laser cofocal scanner
CN116735562B (en) Three-dimensional dynamic microscopic imaging system, method and storage medium
CN107884599B (en) Scanning Probe-Elliptical Polarization Multifunctional Coupled In-situ Measurement Device
CN1249419C (en) Light spot tracking device of atomic force microscope
EP1927845A1 (en) Cantilever holder and scanning probe microscope including the same
CN116027536A (en) Super-resolution fluorescence microscope for single-molecule positioning
CN2729693Y (en) Complete optical fiber probe scanning type near-field optical microscope
CN2733342Y (en) Modular atomic force microscope
JP4461250B2 (en) Scanning microscope capable of acquiring confocal image and evanescence illumination image information
CN110794567A (en) Rotatable optical microscope sample clamping device
JPH0954099A (en) Scanning probe microscope
CN219202043U (en) Super-resolution fluorescence microscope for single-molecule positioning
JP4262621B2 (en) Atomic force microscope

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090603

Termination date: 20110619