CN1860519A - Method of driving a shift register, a shift register, a liquid crystal display device having the shift register - Google Patents
Method of driving a shift register, a shift register, a liquid crystal display device having the shift register Download PDFInfo
- Publication number
- CN1860519A CN1860519A CNA038124777A CN03812477A CN1860519A CN 1860519 A CN1860519 A CN 1860519A CN A038124777 A CNA038124777 A CN A038124777A CN 03812477 A CN03812477 A CN 03812477A CN 1860519 A CN1860519 A CN 1860519A
- Authority
- CN
- China
- Prior art keywords
- signal
- clock signal
- pull
- shift register
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims description 21
- 230000004044 response Effects 0.000 claims description 49
- 239000003990 capacitor Substances 0.000 claims description 36
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 25
- 230000000630 rising effect Effects 0.000 claims description 5
- 230000003071 parasitic effect Effects 0.000 claims description 4
- 230000001143 conditioned effect Effects 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 239000000872 buffer Substances 0.000 abstract description 215
- 201000005569 Gout Diseases 0.000 description 114
- 238000010586 diagram Methods 0.000 description 57
- 239000010409 thin film Substances 0.000 description 31
- 239000000758 substrate Substances 0.000 description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 229920005591 polysilicon Polymers 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 101000685663 Homo sapiens Sodium/nucleoside cotransporter 1 Proteins 0.000 description 4
- 102100023116 Sodium/nucleoside cotransporter 1 Human genes 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 101000821827 Homo sapiens Sodium/nucleoside cotransporter 2 Proteins 0.000 description 3
- 102100021541 Sodium/nucleoside cotransporter 2 Human genes 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101000822028 Homo sapiens Solute carrier family 28 member 3 Proteins 0.000 description 1
- 102100021470 Solute carrier family 28 member 3 Human genes 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B5/00—Doors, windows, or like closures for special purposes; Border constructions therefor
- E06B5/10—Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
- E06B5/16—Fireproof doors or similar closures; Adaptations of fixed constructions therefor
- E06B5/164—Sealing arrangements between the door or window and its frame, e.g. intumescent seals specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B7/00—Special arrangements or measures in connection with doors or windows
- E06B7/16—Sealing arrangements on wings or parts co-operating with the wings
- E06B7/22—Sealing arrangements on wings or parts co-operating with the wings by means of elastic edgings, e.g. elastic rubber tubes; by means of resilient edgings, e.g. felt or plush strips, resilient metal strips
- E06B7/23—Plastic, sponge rubber, or like strips or tubes
- E06B7/2305—Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging
- E06B7/2307—Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging with a single sealing-line or -plane between the wing and the part co-operating with the wing
- E06B7/2309—Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging with a single sealing-line or -plane between the wing and the part co-operating with the wing with a hollow sealing part
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B7/00—Special arrangements or measures in connection with doors or windows
- E06B7/16—Sealing arrangements on wings or parts co-operating with the wings
- E06B7/22—Sealing arrangements on wings or parts co-operating with the wings by means of elastic edgings, e.g. elastic rubber tubes; by means of resilient edgings, e.g. felt or plush strips, resilient metal strips
- E06B7/23—Plastic, sponge rubber, or like strips or tubes
- E06B7/2305—Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging
- E06B7/2312—Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging with two or more sealing-lines or -planes between the wing and part co-operating with the wing
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Shift Register Type Memory (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
在一种可用于具有大屏幕尺寸和高分辨率的液晶显示设备中的移位寄存器和具有该移位寄存器的LCD设备中,该移位寄存器包括相互级联的级,并且每个级具有用于产生进位信号的进位缓冲器。移位寄存器的每个级的下拉晶体管分成第一下拉晶体管和第二下拉晶体管。大于施加于时钟产生器的电源电压Von的电源电压Vona施加于移位寄存器。由于栅极线的RC延迟而造成的信号延迟可被最小化,移位寄存器独立于TFT的阈值电压变化,并且图像显示质量可以不被恶化。
In a shift register usable in a liquid crystal display device having a large screen size and high resolution and an LCD device having the shift register, the shift register includes stages cascaded to each other, and each stage has a The carry buffer used to generate the carry signal. The pull-down transistors of each stage of the shift register are divided into first pull-down transistors and second pull-down transistors. A power voltage Vona higher than a power voltage Von applied to the clock generator is applied to the shift register. A signal delay due to an RC delay of a gate line can be minimized, a shift register is independent of a threshold voltage variation of a TFT, and image display quality can not be deteriorated.
Description
技术领域technical field
本发明涉及一种驱动移位寄存器的方法、移位寄存器和具有该移位寄存器的液晶显示(LCD)设备。更具体地说,本发明涉及一种可用于具有大显示屏的非晶硅(a-Si)薄膜晶体管液晶显示设备(非晶硅TFT LCD)中的移位寄存器的驱动方法、移位寄存器和具有该移位寄存器的液晶显示(LCD)设备。The present invention relates to a method of driving a shift register, a shift register, and a liquid crystal display (LCD) device having the same. More specifically, the present invention relates to a driving method, a shift register and a shift register usable in an amorphous silicon (a-Si) thin film transistor liquid crystal display device (a-Si TFT LCD) having a large display A liquid crystal display (LCD) device having the shift register.
背景技术Background technique
TFT LCD设备被分成非晶硅TFT LCD(或a-Si TFT LCD)设备和多晶硅TFT LCD设备两类。与非晶硅TFT LCD设备相比,多晶硅TFT LCD(或poly-Si TFT LCD)设备具有较低的功耗和低价格,但是通过复杂的工艺来制造。从而,多晶硅TFT LCD用于具有小显示屏的显示设备如移动电话中。TFT LCD devices are divided into two types: amorphous silicon TFT LCD (or a-Si TFT LCD) devices and polysilicon TFT LCD devices. Compared with amorphous silicon TFT LCD devices, polysilicon TFT LCD (or poly-Si TFT LCD) devices have lower power consumption and low price, but are manufactured through complicated processes. Thus, polysilicon TFT LCDs are used in display devices with small display screens such as mobile phones.
非晶硅TFT LCD设备可提供大显示屏和高成品率(或高生产率),并且用于具有大显示屏的显示设备如膝上型计算机、LCD监视器或高清晰电视(HDTV)中。Amorphous silicon TFT LCD devices can provide large display screens and high yield (or high productivity), and are used in display devices with large display screens such as laptop computers, LCD monitors, or high-definition televisions (HDTVs).
图1是示出传统多晶硅薄膜晶体管LCD的示意图,而图2是示出传统非晶硅薄膜晶体管LCD的示意图。FIG. 1 is a schematic diagram illustrating a conventional polysilicon thin film transistor LCD, and FIG. 2 is a schematic diagram illustrating a conventional amorphous silicon thin film transistor LCD.
如图1所示,多晶硅TFT LCD设备包括在玻璃基板10上形成的多晶硅TFT像素阵列。在玻璃基板10上形成数据驱动器电路12和栅极驱动器电路14。集成印刷电路板20通过薄膜电缆18连接到端子部分16,从而由于数据驱动器电路12和栅极驱动器电路14集成在玻璃基板10上而可降低多晶硅TFT LCD设备的制造成本,可减小多晶硅TFT LCD设备的厚度并且可最小化功耗。As shown in FIG. 1 , a polysilicon TFT LCD device includes a polysilicon TFT pixel array formed on a
然而,如图2所示,在非晶硅TFT LCD设备中,数据驱动器芯片34通过薄膜上的芯片(COF)安装在柔性印刷电路板32上,并且数据印刷电路板36通过柔性印刷电路板32连接到非晶硅TFT像素阵列上的数据线端子。栅极驱动器芯片404通过薄膜上的芯片(COF)安装在柔性印刷电路板32上,并且栅极印刷电路板42通过柔性印刷电路板40连接到非晶硅TFT像素阵列上的栅极线端子。However, as shown in FIG. 2, in an amorphous silicon TFT LCD device, a data driver chip 34 is mounted on a flexible printed circuit board 32 through a chip on film (COF), and a data printed circuit board 36 is mounted on a flexible printed circuit board 32 through a flexible printed circuit board 32. Connect to the data line terminal on the amorphous silicon TFT pixel array. The gate driver chip 404 is mounted on the flexible printed circuit board 32 through a chip on film (COF), and the gate printed circuit board 42 is connected to gate line terminals on the amorphous silicon TFT pixel array through the flexible printed circuit board 40 .
非晶硅TFT LCD设备具有成品率(或生产率)方面的优点,但是具有制造成本和厚度方面的缺点。Amorphous silicon TFT LCD devices have advantages in terms of yield (or productivity), but have disadvantages in terms of manufacturing cost and thickness.
另外,在用于在具有高分辨率的大显示屏上显示图像的非晶硅TFT LCD设备中,栅极驱动器电路需要对在连接到像素的栅极线上累积(或充电)的电荷进行快速放电。栅极线具有电容性负载。In addition, in an amorphous silicon TFT LCD device used to display images on a large display screen with high resolution, a gate driver circuit needs to perform fast discharge. The gate lines have a capacitive load.
然而,当传统栅极驱动器电路用于具有大显示屏的非晶硅TFT LCD设备中时,可能发生显示质量的恶化。However, when conventional gate driver circuits are used in amorphous silicon TFT LCD devices with large display screens, deterioration of display quality may occur.
发明内容Contents of the invention
从而,本发明被提供用来基本上消除由于相关技术领域的限制和缺点而造成的一个或多个问题。Accordingly, the present invention is provided to substantially obviate one or more problems due to limitations and disadvantages of the related art.
本发明的一方面是提供一种移位寄存器,其可驱动用于在具有高分辨率的大显示屏上显示图像的非晶硅TFT LCD设备。An aspect of the present invention is to provide a shift register that can drive an amorphous silicon TFT LCD device for displaying images on a large display screen with high resolution.
本发明的另一方面是提供一种具有上述移位寄存器的液晶显示设备。Another aspect of the present invention is to provide a liquid crystal display device having the above shift register.
本发明的另一方面是提供一种驱动上述移位寄存器的方法。Another aspect of the present invention is to provide a method of driving the above shift register.
在本发明的一方面,提供了一种移位寄存器,其包括多个级联(cascade-connected)的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。每个级包括进位缓冲器(carry buffer)、上拉(pull-up)部分、下拉(pull-down)部分、上拉驱动器部分和下拉驱动器部分。进位缓冲器向下一级提供对应于第一时钟信号或第二时钟信号的进位信号,并且第二时钟信号具有与第一时钟信号相反的相位。上拉部分向输出端子提供对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。下拉部分向输出端子提供第一电源电压。上拉驱动器部分响应从前一级提供的进位信号而导通上拉部分,并且响应下一级的第二扫描线驱动信号而关断上拉部分。下拉驱动器部分响应从前一级提供的进位信号而关断下拉部分,并且响应下一级的第二扫描线驱动信号而导通上拉部分。In one aspect of the invention, a shift register comprising a plurality of cascade-connected stages is provided. The stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. Each stage includes a carry buffer, a pull-up section, a pull-down section, a pull-up driver section, and a pull-down driver section. The carry buffer supplies a carry signal corresponding to the first clock signal or the second clock signal to the next stage, and the second clock signal has an opposite phase to the first clock signal. The pull-up part supplies the first scan line driving signal corresponding to the first clock signal or the second clock signal to the output terminal. The pull-down part supplies the first power supply voltage to the output terminal. The pull-up driver part turns on the pull-up part in response to a carry signal supplied from a previous stage, and turns off the pull-up part in response to a second scan line driving signal of a next stage. The pull-down driver part turns off the pull-down part in response to a carry signal supplied from a previous stage, and turns on the pull-up part in response to a second scan line driving signal of a next stage.
在本发明的另一方面,提供了一种液晶显示设备,其包括显示单元阵列、数据驱动器电路和栅极驱动器电路。显示单元阵列形成在透明基板上并且包括多条栅极线、多条数据线和多个开关元件。开关元件耦合于栅极线和数据线。数据驱动器电路向每条数据线提供图像信号。栅极驱动器电路包括移位寄存器,并且该移位寄存器包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择栅极线的多个栅极线驱动信号。每个级包括进位缓冲器、上拉部分、下拉部分、上拉驱动器部分和下拉驱动器部分。进位缓冲器向下一级提供对应于第一时钟信号或第二时钟信号的进位信号,并且第二时钟信号具有与第一时钟信号相反的相位。上拉部分向输出端子提供对应于第一时钟信号或第二时钟信号的第一栅极驱动信号。下拉部分向输出端子提供第一电源电压。上拉驱动器部分响应从前一级提供的进位信号而导通上拉部分,并且响应下一级的第二栅极线驱动信号而关断上拉部分。下拉驱动器部分响应从前一级提供的进位信号而关断下拉部分,并且响应下一级的第二栅极线驱动信号而导通上拉部分。In another aspect of the present invention, there is provided a liquid crystal display device including a display cell array, a data driver circuit and a gate driver circuit. The display unit array is formed on a transparent substrate and includes a plurality of gate lines, a plurality of data lines and a plurality of switching elements. The switch element is coupled to the gate line and the data line. The data driver circuit supplies an image signal to each data line. The gate driver circuit includes a shift register, and the shift register includes a plurality of cascaded stages. The stages receive the first clock signal and the second clock signal to sequentially generate a plurality of gate line driving signals for selecting the gate lines. Each stage includes a carry buffer, a pull-up section, a pull-down section, a pull-up driver section, and a pull-down driver section. The carry buffer supplies a carry signal corresponding to the first clock signal or the second clock signal to the next stage, and the second clock signal has an opposite phase to the first clock signal. The pull-up part supplies a first gate driving signal corresponding to the first clock signal or the second clock signal to the output terminal. The pull-down part supplies the first power supply voltage to the output terminal. The pull-up driver part turns on the pull-up part in response to a carry signal supplied from a previous stage, and turns off the pull-up part in response to a second gate line driving signal of a next stage. The pull-down driver part turns off the pull-down part in response to a carry signal supplied from a previous stage, and turns on the pull-up part in response to a second gate line driving signal of a next stage.
在本发明的另一方面,提供了一种驱动移位寄存器的方法。该移位寄存器包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。向下一级提供对应于第一时钟信号或第二时钟信号的进位信号,并且第二时钟信号具有与第一时钟信号相反的相位。然后,响应从前一级输出的进位信号而产生对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。响应从下一级输出的第二扫描线驱动信号而降低从当前级输出的第一扫描线驱动信号的第一电压电平。In another aspect of the present invention, a method of driving a shift register is provided. The shift register includes multiple cascaded stages. The stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. A carry signal corresponding to the first clock signal or the second clock signal is supplied to the next stage, and the second clock signal has a phase opposite to that of the first clock signal. Then, a first scan line driving signal corresponding to the first clock signal or the second clock signal is generated in response to the carry signal output from the previous stage. The first voltage level of the first scan line driving signal output from the current stage is lowered in response to the second scan line driving signal output from the next stage.
在本发明的另一方面,提供了一种移位寄存器,其包括多个级联的级。第一级接收扫描启动信号,并且这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。每个级包括第一进位缓冲器、上拉部分、下拉部分、上拉驱动器部分和下拉驱动器部分以及第二进位缓冲器。第一进位缓冲器向下一级提供对应于第一时钟信号或第二时钟信号的第一进位信号,并且第二时钟信号具有与第一时钟信号相反的相位。上拉部分向第一输出端子提供对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。下拉部分向第一输出端子提供第一电源电压。上拉驱动器部分响应从前一级的第一进位缓冲器输出的第二进位信号而导通上拉部分,并且响应下一级的第二扫描线驱动信号而关断上拉部分。下拉驱动器部分响应从前一级的第一进位缓冲器提供的第一进位信号而关断下拉部分,并且响应下一级的第二扫描线驱动信号而导通上拉部分。第二进位缓冲器降低第二进位信号的第一电压电平,并且从前一级的第一进位缓冲器输出第一进位信号以施加于上拉部分。In another aspect of the present invention, a shift register comprising a plurality of cascaded stages is provided. The first stage receives a scan start signal, and the stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. Each stage includes a first carry buffer, a pull-up section, a pull-down section, a pull-up driver section and a pull-down driver section, and a second carry buffer. The first carry buffer supplies a first carry signal corresponding to a first clock signal or a second clock signal to a next stage, and the second clock signal has a phase opposite to that of the first clock signal. The pull-up part supplies the first scan line driving signal corresponding to the first clock signal or the second clock signal to the first output terminal. The pull-down part supplies the first power supply voltage to the first output terminal. The pull-up driver part turns on the pull-up part in response to the second carry signal output from the first carry buffer of the previous stage, and turns off the pull-up part in response to the second scan line driving signal of the next stage. The pull-down driver part turns off the pull-down part in response to the first carry signal supplied from the first carry buffer of the preceding stage, and turns on the pull-up part in response to the second scan line driving signal of the next stage. The second carry buffer lowers the first voltage level of the second carry signal, and outputs the first carry signal from the first carry buffer of the previous stage to be applied to the pull-up part.
在本发明的另一方面,提供了一种液晶显示设备,其包括显示单元阵列、数据驱动器电路和栅极驱动器电路。显示单元阵列形成在透明基板上并且包括多条栅极线、多条数据线和多个开关元件。开关元件耦合于栅极线和数据线。数据驱动器电路向每条数据线提供图像信号。栅极驱动器电路包括移位寄存器,并且该移位寄存器包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择栅极线的多个栅极线驱动信号。每个级包括第一进位缓冲器、上拉部分、下拉部分、上拉驱动器部分和下拉驱动器部分以及第二进位缓冲器。第一进位缓冲器向下一级提供对应于第一时钟信号或第二时钟信号的第一进位信号,并且第二时钟信号具有与第一时钟信号相反的相位。上拉部分向第一输出端子提供对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。下拉部分向第一输出端子提供第一电源电压。上拉驱动器部分响应从前一级的第一进位缓冲器输出的第二进位信号而导通上拉部分,并且响应下一级的第二扫描线驱动信号而关断上拉部分。下拉驱动器部分响应从前一级的第一进位缓冲器提供的第一进位信号而关断下拉部分,并且响应下一级的第二扫描线驱动信号而导通上拉部分。第二进位缓冲器降低第二进位信号的第一电压电平,并且从前一级的第一进位缓冲器输出第一进位信号,以施加于上拉部分。In another aspect of the present invention, there is provided a liquid crystal display device including a display cell array, a data driver circuit and a gate driver circuit. The display unit array is formed on a transparent substrate and includes a plurality of gate lines, a plurality of data lines and a plurality of switching elements. The switch element is coupled to the gate line and the data line. The data driver circuit supplies an image signal to each data line. The gate driver circuit includes a shift register, and the shift register includes a plurality of cascaded stages. The stages receive the first clock signal and the second clock signal to sequentially generate a plurality of gate line driving signals for selecting the gate lines. Each stage includes a first carry buffer, a pull-up section, a pull-down section, a pull-up driver section and a pull-down driver section, and a second carry buffer. The first carry buffer supplies a first carry signal corresponding to a first clock signal or a second clock signal to a next stage, and the second clock signal has a phase opposite to that of the first clock signal. The pull-up part supplies the first scan line driving signal corresponding to the first clock signal or the second clock signal to the first output terminal. The pull-down part supplies the first power supply voltage to the first output terminal. The pull-up driver part turns on the pull-up part in response to the second carry signal output from the first carry buffer of the previous stage, and turns off the pull-up part in response to the second scan line driving signal of the next stage. The pull-down driver part turns off the pull-down part in response to the first carry signal supplied from the first carry buffer of the preceding stage, and turns on the pull-up part in response to the second scan line driving signal of the next stage. The second carry buffer lowers the first voltage level of the second carry signal, and outputs the first carry signal from the first carry buffer of the previous stage to be applied to the pull-up part.
在本发明的另一方面,提供了一种移位寄存器,其包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。每个级包括上拉开关器件、第一上拉驱动器开关器件、第二上拉驱动器开关器件、第一下拉开关器件、下拉驱动器开关器件以及第二下拉开关器件。上拉开关器件向每个级的输出端子提供对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。第一上拉驱动器开关器件响应从前一级输出的扫描启动信号或第二扫描线驱动信号而导通上拉开关器件。第二上拉驱动器开关器件响应从下一级输出的第三扫描线驱动信号而关断上拉开关器件。第一下拉开关器件向输出端子提供第一电源电压。下拉驱动器开关器件响应从前一级输出的扫描启动信号或第二扫描线驱动信号而关断下拉开关器件。第二下拉开关器件响应第三扫描线驱动信号而导通以向输出端子提供第一电源电压。In another aspect of the present invention, a shift register comprising a plurality of cascaded stages is provided. The stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. Each stage includes a pull-up switching device, a first pull-up driver switching device, a second pull-up driver switching device, a first pull-down switching device, a pull-down driver switching device, and a second pull-down switching device. The pull-up switching device supplies the first scan line driving signal corresponding to the first clock signal or the second clock signal to the output terminal of each stage. The first pull-up driver switching device turns on the pull-up switching device in response to a scan start signal output from a previous stage or a second scan line driving signal. The second pull-up driver switching device turns off the pull-up switching device in response to the third scan line driving signal output from the next stage. The first pull-down switching device provides a first power supply voltage to the output terminal. The pull-down driver switching device turns off the pull-down switching device in response to a scan start signal output from a previous stage or a second scan line driving signal. The second pull-down switching device is turned on in response to the third scan line driving signal to supply the first power supply voltage to the output terminal.
在本发明的另一方面,提供了一种液晶显示设备,其包括显示单元阵列、数据驱动器电路和栅极驱动器电路。显示单元阵列形成在透明基板上并且包括多条栅极线、多条数据线和多个开关元件。开关元件耦合于栅极线和数据线。数据驱动器电路向每条数据线提供图像信号。栅极驱动器电路包括移位寄存器,并且该移位寄存器包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择栅极线的多个栅极线驱动信号。每个级包括上拉开关器件、第一上拉驱动器开关器件、第二上拉驱动器开关器件、第一下拉开关器件、下拉驱动器开关器件以及第二下拉开关器件。上拉开关器件向每个级的输出端子提供对应于第一时钟信号或第二时钟信号的第一栅极线驱动信号。第一上拉驱动器开关器件响应从前一级输出的扫描启动信号或第二栅极线驱动信号而导通上拉开关器件。第二上拉驱动器开关器件响应从下一级输出的第三栅极线驱动信号而关断上拉开关器件。第一下拉开关器件向输出端子提供第一电源电压。下拉驱动器开关器件响应从前一级输出的扫描启动信号或第二栅极线驱动信号而关断下拉开关器件。第二下拉开关器件响应第三栅极线驱动信号而导通以向输出端子提供第一电源电压。In another aspect of the present invention, there is provided a liquid crystal display device including a display cell array, a data driver circuit and a gate driver circuit. The display unit array is formed on a transparent substrate and includes a plurality of gate lines, a plurality of data lines and a plurality of switching elements. The switch element is coupled to the gate line and the data line. The data driver circuit supplies an image signal to each data line. The gate driver circuit includes a shift register, and the shift register includes a plurality of cascaded stages. The stages receive the first clock signal and the second clock signal to sequentially generate a plurality of gate line driving signals for selecting the gate lines. Each stage includes a pull-up switching device, a first pull-up driver switching device, a second pull-up driver switching device, a first pull-down switching device, a pull-down driver switching device, and a second pull-down switching device. The pull-up switching device supplies the first gate line driving signal corresponding to the first clock signal or the second clock signal to the output terminal of each stage. The first pull-up driver switching device turns on the pull-up switching device in response to a scan enable signal output from a previous stage or a second gate line driving signal. The second pull-up driver switching device turns off the pull-up switching device in response to a third gate line driving signal output from a next stage. The first pull-down switching device provides a first power supply voltage to the output terminal. The pull-down driver switching device turns off the pull-down switching device in response to a scan start signal output from a previous stage or a second gate line driving signal. The second pull-down switching device is turned on in response to the third gate line driving signal to supply the first power supply voltage to the output terminal.
在本发明的另一方面,提供了一种移位寄存器,其包括多个级联的级。这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。每个级包括第一上拉驱动器开关器件、上拉开关器件、第一下拉开关器件、第二下拉开关器件、电容器、第二上拉驱动器开关器件、第三上拉驱动器开关器件、第一上拉驱动器开关器件和第二下拉驱动器开关器件。第一上拉驱动器开关器件的第一电极接收第二电源电压,第一上拉驱动器开关器件的第二电极接收从前一级输出的扫描启动信号或第一扫描线驱动信号,并且第一上拉驱动器开关器件的第三电级耦合于第一节点。上拉开关器件的第四电极接收第一时钟信号或第二时钟信号,上拉开关器件的第五电极耦合于第一节点,并且上拉开关器件的第六电极耦合于输出端子。第一下拉开关器件的第七电极耦合于输出端子,第一下拉开关器件的第八电极耦合于第二节点,并且第一下拉开关器件的第九电极接收第一电源电压。第二下拉开关器件的第十电极耦合于输出端子,第二下拉开关器件的第十一电极接收从下一级输出的第二栅极线驱动信号,并且第二下拉开关器件的第十二电极接收第一电源电压。电容器耦合于第一节点与输出端子之间。第二上拉驱动器开关器件的第十三电极耦合于第一节点,第二上拉驱动器开关器件的第十四电极接收从下一级输出的第二栅极线驱动信号,并且第二上拉驱动器开关器件的第十五电极接收第一电源电压。第三上拉驱动器开关器件的第十六电极耦合于第一节点,第三上拉驱动器开关器件的第十七电极耦合于第二节点,并且第三上拉驱动器开关器件的第十八电极接收第一电源电压。第一上拉驱动器开关器件的第十九电极和第一上拉驱动器开关器件的第二十电极相互共同耦合并接收第二电源电压,并且第一上拉驱动器开关器件的第二十一电极耦合于第二节点。第二下拉驱动器开关器件的第二十二电极耦合于第二节点,第二下拉驱动器开关器件的第二十三电极耦合于第一节点,并且第二下拉驱动器开关器件的第二十四电极接收第一电源电压。In another aspect of the present invention, a shift register comprising a plurality of cascaded stages is provided. The stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. Each stage includes a first pull-up driver switching device, a pull-up switching device, a first pull-down switching device, a second pull-down switching device, a capacitor, a second pull-up driver switching device, a third pull-up driver switching device, a first A pull-up driver switching device and a second pull-down driver switching device. The first electrode of the first pull-up driver switching device receives the second power supply voltage, the second electrode of the first pull-up driver switching device receives the scan start signal or the first scan line drive signal output from the previous stage, and the first pull-up A third electrode of the driver switching device is coupled to the first node. The fourth electrode of the pull-up switching device receives the first clock signal or the second clock signal, the fifth electrode of the pull-up switching device is coupled to the first node, and the sixth electrode of the pull-up switching device is coupled to the output terminal. A seventh electrode of the first pull-down switching device is coupled to the output terminal, an eighth electrode of the first pull-down switching device is coupled to the second node, and a ninth electrode of the first pull-down switching device receives the first supply voltage. The tenth electrode of the second pull-down switching device is coupled to the output terminal, the eleventh electrode of the second pull-down switching device receives the second gate line drive signal output from the next stage, and the twelfth electrode of the second pull-down switching device A first supply voltage is received. A capacitor is coupled between the first node and the output terminal. The thirteenth electrode of the second pull-up driver switching device is coupled to the first node, the fourteenth electrode of the second pull-up driver switching device receives the second gate line drive signal output from the next stage, and the second pull-up A fifteenth electrode of the driver switching device receives the first supply voltage. The sixteenth electrode of the third pull-up driver switching device is coupled to the first node, the seventeenth electrode of the third pull-up driver switching device is coupled to the second node, and the eighteenth electrode of the third pull-up driver switching device receives first supply voltage. The nineteenth electrode of the first pull-up driver switching device and the twentieth electrode of the first pull-up driver switching device are mutually coupled and receive the second power supply voltage, and the twenty-first electrode of the first pull-up driver switching device is coupled at the second node. The twenty-second electrode of the second pull-down driver switching device is coupled to the second node, the twenty-third electrode of the second pull-down driver switching device is coupled to the first node, and the twenty-fourth electrode of the second pull-down driver switching device receives first supply voltage.
在本发明的另一方面,提供了一种驱动移位寄存器的方法。该移位寄存器包括多个级联的级,并且这些级接收第一时钟信号和第二时钟信号以顺序产生用于选择多条扫描线的多个扫描线驱动信号。接收第一时钟信号或第二时钟信号,并且向每个级提供第一时钟信号或第二时钟信号。第一时钟信号和第二时钟信号基本上具有与第一电源电压的第一电压电平对应的第一电压电平。产生第二电源电压,并且向每个级提供第二电源电压。第二电源电压具有比第一电压电平高预定电压电平的第二电压电平。产生用于选择耦合于当前级的第一扫描线的第一扫描线驱动信号。响应从下一级输出的第二扫描线驱动信号,将第一扫描线驱动信号的第三电压电平降至低于第三电压电平的第四电压电平。向第一扫描线提供具有第四电压电平的第一扫描线驱动信号。在降低第一扫描线驱动信号的第三电压电平之后,当下拉开关器件的输出信号的电压电平从第五电压电平变至高于第五电压电平的第六电压电平时,将第一扫描线驱动信号的第四电压电平保持预定周期。In another aspect of the present invention, a method of driving a shift register is provided. The shift register includes a plurality of cascaded stages, and the stages receive a first clock signal and a second clock signal to sequentially generate a plurality of scan line driving signals for selecting a plurality of scan lines. A first clock signal or a second clock signal is received and provided to each stage. The first clock signal and the second clock signal substantially have a first voltage level corresponding to the first voltage level of the first supply voltage. A second power supply voltage is generated and provided to each stage. The second power supply voltage has a second voltage level higher than the first voltage level by a predetermined voltage level. A first scan line driving signal for selecting the first scan line coupled to the current stage is generated. The third voltage level of the first scan line driving signal is lowered to a fourth voltage level lower than the third voltage level in response to the second scan line driving signal output from the next stage. A first scan line driving signal having a fourth voltage level is supplied to the first scan line. After reducing the third voltage level of the first scan line driving signal, when the voltage level of the output signal of the pull-down switching device changes from the fifth voltage level to a sixth voltage level higher than the fifth voltage level, the first The fourth voltage level of a scan line driving signal is maintained for a predetermined period.
在本发明的另一方面,提供了一种驱动移位寄存器的方法。该移位寄存器包括多个级联的级,并且这些级交替接收从时钟产生器产生的第一时钟信号和第二时钟信号,以顺序产生用于选择多条扫描线的多个扫描线驱动信号。第一和第二时钟信号基本上具有与第一电源电压的第一电压电平对应的第一电压电平。每个级包括上拉开关器件、第一上拉驱动器开关器件、第二上拉驱动器开关器件、下拉开关器件、以及下拉驱动器开关器件。上拉开关器件向每个级的输出端子提供对应于第一时钟信号或第二时钟信号的第一扫描线驱动信号。第一上拉驱动器开关器件响应从前一级输出的扫描启动信号或第二扫描线驱动信号而导通上拉开关器件。第二上拉驱动器开关器件响应从下一级输出的第三扫描线驱动信号而关断上拉开关器件。下拉开关器件向输出端子提供第三电源电压。下拉驱动器开关器件响应从前一级输出的扫描启动信号或第二扫描线驱动信号而关断下拉开关器件。接收第一时钟信号或第二时钟信号,并且向每个级提供第一时钟信号或第二时钟信号。产生第二电源电压,并且向每个级提供第二电源电压。第二电源电压具有比第一电压电平高预定电压电平的第二电压电平。在第一时钟信号或第二时钟信号的高电平周期期间,产生用于选择耦合于当前级的第一扫描线的第一扫描线驱动信号。响应从下一级输出的第三扫描线驱动信号,将第一扫描线驱动信号的第三电压电平降至低于第三电压电平的第四电压电平。向第一扫描线提供具有第四电压电平的第一扫描线驱动信号。在降低第一扫描线驱动信号的第三电压电平之后,当下拉开关器件的输出信号的电压电平从第五电压电平变至高于第五电压电平的第六电压电平时,将第一扫描线驱动信号的第四电压电平保持预定周期。In another aspect of the present invention, a method of driving a shift register is provided. The shift register includes a plurality of cascaded stages, and the stages alternately receive a first clock signal and a second clock signal generated from a clock generator to sequentially generate a plurality of scanning line driving signals for selecting a plurality of scanning lines . The first and second clock signals substantially have a first voltage level corresponding to the first voltage level of the first supply voltage. Each stage includes a pull-up switching device, a first pull-up driver switching device, a second pull-up driver switching device, a pull-down switching device, and a pull-down driver switching device. The pull-up switching device supplies the first scan line driving signal corresponding to the first clock signal or the second clock signal to the output terminal of each stage. The first pull-up driver switching device turns on the pull-up switching device in response to a scan start signal output from a previous stage or a second scan line driving signal. The second pull-up driver switching device turns off the pull-up switching device in response to the third scan line driving signal output from the next stage. The pull-down switching device provides the third supply voltage to the output terminal. The pull-down driver switching device turns off the pull-down switching device in response to a scan start signal output from a previous stage or a second scan line driving signal. A first clock signal or a second clock signal is received and provided to each stage. A second power supply voltage is generated and provided to each stage. The second power supply voltage has a second voltage level higher than the first voltage level by a predetermined voltage level. During the period of the high level of the first clock signal or the second clock signal, a first scan line driving signal for selecting the first scan line coupled to the current stage is generated. The third voltage level of the first scan line driving signal is lowered to a fourth voltage level lower than the third voltage level in response to the third scan line driving signal output from the next stage. A first scan line driving signal having a fourth voltage level is supplied to the first scan line. After reducing the third voltage level of the first scan line driving signal, when the voltage level of the output signal of the pull-down switching device changes from the fifth voltage level to a sixth voltage level higher than the fifth voltage level, the first The fourth voltage level of a scan line driving signal is maintained for a predetermined period.
如上所述,根据本发明的移位寄存器,该移位寄存器包括多个级以及用于产生进位信号的进位缓冲器晶体管。在具有大屏幕尺寸和高分辨率的液晶显示设备中可以最小化由于栅极线的RC延迟而造成的信号延迟。As described above, according to the shift register of the present invention, the shift register includes a plurality of stages and a carry buffer transistor for generating a carry signal. Signal delay due to RC delay of gate lines can be minimized in a liquid crystal display device having a large screen size and high resolution.
进位信号独立于从当前级的输出端子输出的输出信号,并且由位于当前级中的进位缓冲器晶体管传输到栅极线。因此,可以防止由于栅极线造成的RC负载的效应。The carry signal is independent of the output signal output from the output terminal of the current stage, and is transmitted to the gate line by the carry buffer transistor located in the current stage. Therefore, the effect of the RC load due to the gate line can be prevented.
另外,由于下一级不是由栅极线驱动信号复位而是由时钟信号复位,因此图像显示质量不会恶化。In addition, since the next stage is reset not by a gate line driving signal but by a clock signal, image display quality does not deteriorate.
另外,在具有大屏幕尺寸和高分辨率的液晶显示设备中,移位寄存器独立于薄膜晶体管的阈值电压的变化,因此即使当薄膜晶体管的阈值电压由于周围温度的变化而变化时,移位寄存器也可输出正常的栅极线驱动信号,并且可以防止由于薄膜晶体管阈值电压变化而造成的移位寄存器的异常操作。In addition, in a liquid crystal display device having a large screen size and high resolution, the shift register is independent of changes in the threshold voltage of thin film transistors, so even when the threshold voltage of the thin film transistor changes due to changes in ambient temperature, the shift register Normal gate line driving signals can also be output, and abnormal operation of the shift register due to variations in the threshold voltage of the thin film transistor can be prevented.
另外,由于在具有大屏幕尺寸和高分辨率的液晶显示设备中,移位寄存器独立于薄膜晶体管的阈值电压变化,因此其可被增强。In addition, since the shift register is independent of threshold voltage variation of the thin film transistor in a liquid crystal display device having a large screen size and high resolution, it can be enhanced.
另外,在大范围的周围温度内,可提高移位寄存器的可靠性。In addition, the reliability of the shift register can be improved over a wide range of ambient temperatures.
另外,由于可提高阈值电压变化的容限,因此可提高制造移位寄存器的成品率。In addition, since the tolerance of threshold voltage variation can be improved, the yield of manufacturing the shift register can be improved.
另外,移位寄存器的每个级的下拉晶体管分成第一下拉晶体管和第二下拉晶体管。因此,可以减小对移位寄存器的逆变器(inverter)的电容负载有影响的下拉晶体管的晶体管尺寸,可以提高逆变器的操作速度,因此图像显示质量不会恶化。In addition, the pull-down transistor of each stage of the shift register is divided into a first pull-down transistor and a second pull-down transistor. Therefore, the transistor size of the pull-down transistor which affects the capacitive load of the inverter of the shift register can be reduced, the operation speed of the inverter can be increased, and thus the image display quality is not deteriorated.
另外,大于施加于时钟产生器的电源电压Von的电源电压Vona施加于移位寄存器,因此即使在具有大屏幕尺寸和高分辨率的液晶显示设备中,图像显示质量也不会恶化。In addition, a power supply voltage Vona higher than a power supply voltage Von applied to the clock generator is applied to the shift register, so image display quality does not deteriorate even in a liquid crystal display device having a large screen size and high resolution.
附图说明Description of drawings
通过参照附图对本发明的优选实施例进行详细描述,本发明的上述和其它优点将会变得更加清楚,其中:The above and other advantages of the present invention will become more apparent by describing in detail preferred embodiments of the present invention with reference to the accompanying drawings, in which:
图1是传统多晶硅薄膜晶体管LCD的示意图;FIG. 1 is a schematic diagram of a conventional polysilicon thin film transistor LCD;
图2是示出传统非晶硅薄膜晶体管LCD的示意图;2 is a schematic diagram showing a conventional amorphous silicon thin film transistor LCD;
图3是示出根据本发明一个示例性实施例的非晶硅薄膜晶体管LCD的分解透视图;3 is an exploded perspective view illustrating an amorphous silicon thin film transistor LCD according to an exemplary embodiment of the present invention;
图4是示出图3的非晶硅薄膜晶体管基板的示意图;4 is a schematic diagram illustrating the amorphous silicon thin film transistor substrate of FIG. 3;
图5是示出图4的数据驱动器电路的方框图;FIG. 5 is a block diagram illustrating the data driver circuit of FIG. 4;
图6是示出用于图4的栅极驱动器电路中的移位寄存器的方框图;6 is a block diagram illustrating a shift register used in the gate driver circuit of FIG. 4;
图7是示出图6的移位寄存器的级的电路图;FIG. 7 is a circuit diagram illustrating stages of the shift register of FIG. 6;
图8是示出从图7的级输出的扫描线驱动信号的图;FIG. 8 is a diagram illustrating scan line driving signals output from the stages of FIG. 7;
图9是示出从图6的移位寄存器输出的扫描线驱动信号的图;FIG. 9 is a diagram illustrating scan line driving signals output from the shift register of FIG. 6;
图10是示出图6的移位寄存器以及栅极线的示意图;FIG. 10 is a schematic diagram showing the shift register and gate lines of FIG. 6;
图11是示出根据本发明第一示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图;11 is a block diagram showing a shift register used in a gate driver circuit according to a first exemplary embodiment of the present invention;
图12是示出图11的移位寄存器中的第N级的电路图;FIG. 12 is a circuit diagram showing an Nth stage in the shift register of FIG. 11;
图13是示出图11的移位寄存器中的最后级和伪级(dummy stage)的电路图;Fig. 13 is a circuit diagram showing the last stage and a dummy stage (dummy stage) in the shift register of Fig. 11;
图14是示出图11的移位寄存器以及栅极线的示意图;FIG. 14 is a schematic diagram showing the shift register and gate lines of FIG. 11;
图15A和15B是示出图11的移位寄存器的级中的上拉部分、下拉部分和进位缓冲器的布局图;15A and 15B are layout diagrams illustrating pull-up parts, pull-down parts and carry buffers in stages of the shift register of FIG. 11;
图15C是示出图15A的移位寄存器中的进位缓冲器的放大图;FIG. 15C is an enlarged view showing a carry buffer in the shift register of FIG. 15A;
图16A、16B和16C是示出从图7的移位寄存器输出的栅极线驱动信号的图;16A, 16B and 16C are diagrams showing gate line drive signals output from the shift register of FIG. 7;
图17是示出根据本发明第二示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图;17 is a block diagram showing a shift register used in a gate driver circuit according to a second exemplary embodiment of the present invention;
图18是示出根据本发明第三示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图;18 is a block diagram showing a shift register used in a gate driver circuit according to a third exemplary embodiment of the present invention;
图19A和19B是示出图18的移位寄存器的输出的图;19A and 19B are graphs showing outputs of the shift register of FIG. 18;
图20是示出根据本发明第四示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图;20 is a block diagram showing a shift register used in a gate driver circuit according to a fourth exemplary embodiment of the present invention;
图21是示出根据本发明第五示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图;21 is a block diagram showing a shift register used in a gate driver circuit according to a fifth exemplary embodiment of the present invention;
图22是在图21的电容器处测量的电压的图;Figure 22 is a graph of the voltage measured at the capacitor of Figure 21;
图23是示出从图7的移位寄存器输出的栅极线驱动信号的图;FIG. 23 is a diagram illustrating gate line driving signals output from the shift register of FIG. 7;
图24是示出根据本发明第六示例性实施例的用于栅极驱动器电路中的移位寄存器的单元级的方框图;24 is a block diagram showing a unit level of a shift register used in a gate driver circuit according to a sixth exemplary embodiment of the present invention;
图25是示出从图24的移位寄存器输出的栅极线驱动信号的图;FIG. 25 is a diagram illustrating gate line driving signals output from the shift register of FIG. 24;
图26是示出从图7的移位寄存器输出的栅极线驱动信号和从图24的移位寄存器输出的栅极线驱动信号的图;26 is a diagram illustrating a gate line driving signal output from the shift register of FIG. 7 and a gate line driving signal output from the shift register of FIG. 24;
图27是根据本发明第七示例性实施例的电源和时钟产生器的方框图;27 is a block diagram of a power supply and a clock generator according to a seventh exemplary embodiment of the present invention;
图28是示出当将与施加于图27的时钟产生器的电源电压相同的电源电压施加于移位寄存器时、从移位寄存器输出的栅极线驱动信号的图;28 is a diagram showing a gate line drive signal output from a shift register when the same power supply voltage as that applied to the clock generator of FIG. 27 is applied to the shift register;
图29是根据本发明第七示例性实施例的电源和时钟产生器的方框图;29 is a block diagram of a power supply and a clock generator according to a seventh exemplary embodiment of the present invention;
图30是图29的直流到直流转换器的示例电路图;30 is an example circuit diagram of the DC-to-DC converter of FIG. 29;
图31是示出当图29的电源和时钟产生器驱动移位寄存器时、从移位寄存器输出的栅极线驱动信号的图;以及FIG. 31 is a diagram showing gate line drive signals output from the shift register when the power and clock generator of FIG. 29 drives the shift register; and
图32是当图29和28的电源和时钟产生器驱动移位寄存器时、从移位寄存器输出的栅极线驱动信号的图。FIG. 32 is a diagram of gate line driving signals output from a shift register when the power and clock generators of FIGS. 29 and 28 drive the shift register.
具体实施方式Detailed ways
以下,将参照附图详细描述本发明的优选实施例。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
图3是示出根据本发明一个示例性实施例的非晶硅薄膜晶体管LCD的分解透视图。FIG. 3 is an exploded perspective view illustrating an amorphous silicon thin film transistor LCD according to an exemplary embodiment of the present invention.
参照图3,液晶显示设备100包括液晶显示板组件110、背光组件120、底盘(chassis)130和罩壳(cover case)140。Referring to FIG. 3 , the liquid
液晶显示板组件110包括液晶显示板112、柔性印刷电路板116和集成控制芯片118。液晶显示板112包括TFT基板112a和滤色器基板112b。The liquid crystal
在TFT基板112a上形成显示单元阵列、数据驱动器电路、栅极驱动器电路和外部连接端子。在滤色器基板112b上形成滤色器和透明公共电极。滤色器基板112b面对TFT基板112a,并且在滤色器基板112b与TFT基板112a之间填充液晶。A display cell array, a data driver circuit, a gate driver circuit, and external connection terminals are formed on the
集成控制芯片118通过柔性印刷电路116电气连接到在TFT基板112a的显示单元阵列上形成的薄膜晶体管。将数据信号、数据定时信号、栅极定时信号以及用于驱动栅极驱动器电路的电源电压提供给在TFT基板112a上形成的数据驱动器电路和栅极驱动器电路。显示单元阵列包括多条栅极线、多条数据线以及多个开关元件,并且开关元件分别连接到数据线的每一条和栅极线的每一条。栅极驱动器电路与栅极线连接,并且驱动开关元件。数据驱动器电路与数据线连接,并且向数据线提供图像信号。The
背光组件120包括灯组件122、光导片124、光片126、反射片128以及铸模框架(mold frame)129。The
图4是示出图3的非晶硅薄膜晶体管基板的示意图。FIG. 4 is a schematic diagram illustrating the amorphous silicon thin film transistor substrate of FIG. 3 .
参照图4,采用在TFT基板112a上形成TFT的相同工艺,在TFT基板112a上形成显示单元阵列150、数据驱动器电路160、栅极驱动器电路170、用于将数据驱动器电路160连接到集成控制芯片118的外部连接端子162和163、以及用于将栅极驱动器电路170连接到集成控制芯片118的另一个外部连接端子169。Referring to Fig. 4, adopt the same process of forming TFT on
显示单元阵列150包括m条数据线DL1、DL2、...、DLm和n条栅极线GL1、GL2、...、GLn。数据线DL1、DL2、...、DLm在列方向上延展,而栅极线GL1、GL2、...、GLn在行方向上延展。例如,具有2英寸屏幕尺寸的液晶显示板被公开。液晶显示板具有176条数据线和192条栅极线,从而提供点分辨率525(176×3)×192。The
在数据线和栅极线之间的交叉点上形成开关晶体管(ST;或者开关元件)。开关晶体管STi的漏极连接到数据线DLi,开关晶体管STi的栅极连接到栅极线GLi,并且开关晶体管STi的源极连接到像素电极PE。液晶LC位于像素电极PE与公共电极CE之间。在滤色器基板112b上形成公共电极CE。A switching transistor (ST; or a switching element) is formed at an intersection between the data line and the gate line. The drain of the switching transistor STi is connected to the data line DLi, the gate of the switching transistor STi is connected to the gate line GLi, and the source of the switching transistor STi is connected to the pixel electrode PE. The liquid crystal LC is located between the pixel electrode PE and the common electrode CE. The common electrode CE is formed on the
因此,施加于像素电极PE和公共电极CE的电压改变液晶分子的排列角度,调节通过液晶分子的光量,并且可显示图像。Accordingly, the voltage applied to the pixel electrode PE and the common electrode CE changes the alignment angle of the liquid crystal molecules, adjusts the amount of light passing through the liquid crystal molecules, and may display an image.
数据驱动器电路160包括移位寄存器164和528个开关晶体管(SWT)。8个数据线块BL1、BL2、...、BL8中的每一个包括66个开关晶体管(SWT)。The
每个数据线块的66个输入端子共同连接到外部连接端子163,并且66个输出端子分别连接到66条对应数据线。外部连接端子163具有66个数据输入端子。块选择端子连接到移位寄存器164的输出端子。The 66 input terminals of each data line block are commonly connected to the
528个开关晶体管(SWT)的源极分别连接到对应数据线,528个开关晶体管(SWT)的漏极分别连接到对应数据输入端子,并且528个开关晶体管(SWT)的栅极连接到块选择端子。528个开关晶体管(SWT)中的每一个均是非晶硅TFT MOS晶体管。The sources of the 528 switching transistors (SWT) are respectively connected to the corresponding data lines, the drains of the 528 switching transistors (SWT) are respectively connected to the corresponding data input terminals, and the gates of the 528 switching transistors (SWT) are connected to the block selection terminals. Each of the 528 switching transistors (SWT) is an amorphous silicon TFT MOS transistor.
从而,528条数据线中的66条数据线分成8个块,并且8个块选择信号可顺序选择每个块。Thus, 66 data lines out of 528 data lines are divided into 8 blocks, and 8 block selection signals can sequentially select each block.
移位寄存器164通过具有三个端子的外部连接端子162接收第一时钟CKH、第二时钟CKHB和块选择启动信号STH。移位寄存器164的每个输出端子连接到对应的数据线块的块选择端子。The
图5是示出图4的数据驱动器电路的方框图。FIG. 5 is a block diagram illustrating a data driver circuit of FIG. 4. Referring to FIG.
参照图5,根据本发明的移位寄存器164包括例如相互级联的9个级SRH1、SRH2、...、SRH9。每个级的输出端子OUT连接到下一级的输入端子IN。这些级包括8个级SRH1、SRH2、...、SRH8以及伪级(SRC9)。8个级SRH1、SRH2、...、SRH8对应于8个数据线块。每个级包括输入端子IN、输出端子OUT、控制端子CT、时钟端子CK、第一电源电压端子VSS和第二电源电压端子VDD。8个级SRH1、SRH2、...、SRH8分别向每个数据线块BL1、BL2、...、BL8的块选择端子提供块选择启动信号DE1、DE2、...、DE8。块选择启动信号DE1、DE2、...、DE8是用于选择每个数据线块的使能(enable)信号。Referring to FIG. 5 , the
第一时钟CKH施加于奇数级SRH1、SRH3、SRH5、SRH7和SRH9,而第二时钟CKHB施加于偶数级SRH2、SRH4、SRH6、SRH8。第一时钟CKH具有与第二时钟CKHB相反的相位。例如,第一时钟CKH和第二时钟CKHB的工作周期低于1/66ms。The first clock CKH is applied to the odd stages SRH 1 , SRH 3 , SRH 5 , SRH 7 and SRH 9 , and the second clock CKHB is applied to the even stages SRH 2 , SRH 4 , SRH 6 , SRH 8 . The first clock CKH has an opposite phase to the second clock CKHB. For example, the duty cycle of the first clock CKH and the second clock CKHB is lower than 1/66ms.
下一级的输出信号(或栅极线驱动信号)作为控制信号施加于控制端子CT。The output signal (or gate line driving signal) of the next stage is applied to the control terminal CT as a control signal.
每个级的输出信号顺序具有有源周期(或高电平周期),选择对应于有源周期的数据线块。The output signal of each stage has an active period (or a high level period) sequentially, and the data line block corresponding to the active period is selected.
伪级SRH9向前一级(SRH8)的控制端子CT提供控制信号。The dummy stage SRH 9 supplies a control signal to the control terminal CT of the previous stage (SRH 8 ).
图6是示出用于图4的栅极驱动器电路中的移位寄存器的方框图。FIG. 6 is a block diagram illustrating a shift register used in the gate driver circuit of FIG. 4 .
参照图6,栅极驱动器电路170包括移位寄存器,并且该移位寄存器包括相互级联的多个级SRC1、SRC2、...、SRC192和伪级SRC193。每个级的输出端子OUT连接到下一级的输入端子IN。这些级包括192个级SRC1、SRC2、...、SRC192和伪级SRC193。Referring to FIG. 6 , the
每个级包括输入端子IN、输出端子OUT、控制端子CT、时钟信号输入端子CK、第一电源电压端子VSS以及第二电源电压端子VDD。Each stage includes an input terminal IN, an output terminal OUT, a control terminal CT, a clock signal input terminal CK, a first power supply voltage terminal VSS, and a second power supply voltage terminal VDD.
第一级SRC1通过输入端子IN接收扫描启动信号STV。扫描启动信号STV是与垂直同步信号Vsync同步的脉冲。每个级SRC1、SRC2、...、SRC192分别产生栅极线驱动信号GOUT1、GOUT2、...、GOUT192,并且栅极线驱动信号GOUT1、GOUT2、...、GOUT192分别连接到栅极线,以便选择栅极线。The first stage SRC 1 receives a scan start signal STV through an input terminal IN. The scan start signal STV is a pulse synchronized with the vertical synchronization signal Vsync. Each stage SRC 1 , SRC 2 , . . . , SRC 192 generates gate line driving signals GOUT 1 , GOUT 2 , . , GOUT 192 are respectively connected to the gate lines so as to select the gate lines.
第一时钟信号ckv施加于奇数级(SRC1、SRC3、SRC5、...),并且第二时钟信号ckvb施加于偶数级(SRH2、SRH4、SRH6、...)。第一时钟ckb具有与第二时钟ckvb相反的相位。例如,第一时钟ckv和第二时钟ckvb的工作周期为约16.6/192ms。The first clock signal ckv is applied to odd stages (SRC 1 , SRC 3 , SRC 5 , . . . ), and the second clock signal ckvb is applied to even stages (SRH 2 , SRH 4 , SRH 6 , . . . ). The first clock ckb has an opposite phase to the second clock ckvb. For example, the duty cycle of the first clock ckv and the second clock ckvb is about 16.6/192ms.
用于数据驱动器电路的移位寄存器164中的时钟的工作周期大于用于栅极驱动器电路的移位寄存器170中的时钟的工作周期约8倍。The duty cycle of the clock in the
下一级SRC2、SRC3、SRC4的输出信号GOUT1、GOUT2、...、GOUT192作为控制信号分别施加于级SRC1、SRC2、SRC3的控制端子CT。 Output signals GOUT 1 , GOUT 2 , .
每个级的输出信号顺序具有有源周期(或高电平周期),并且选择对应于有源周期的栅极线。The output signal of each stage sequentially has an active period (or a high level period), and a gate line corresponding to the active period is selected.
伪级SRC193复位(或去激活)最后级(SRH192)。具体地说,伪级SRC193将最后级(SRC192)的输出信号的电压电平从高电压电平(HIGH)降低到低电压电平(LOW)。Pseudo-stage SRC 193 resets (or deactivates) the last stage (SRH 192 ). Specifically, the dummy stage SRC 193 lowers the voltage level of the output signal of the final stage (SRC 192 ) from a high voltage level (HIGH) to a low voltage level (LOW).
图7是示出图6的移位寄存器的级的电路图,而图8是示出从图7的级输出的扫描线驱动信号的图。FIG. 7 is a circuit diagram illustrating stages of the shift register of FIG. 6, and FIG. 8 is a diagram illustrating scan line driving signals output from the stages of FIG. 7. Referring to FIG.
参照图7,移位寄存器170的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173以及下拉驱动器部分174。Referring to FIG. 7 , each stage of the
上拉部分171包括第一NMOS晶体管M1,其漏极连接到时钟信号输入端子CK、栅极连接到第一节点N1,并且源极连接到输出端子GOUT[N]。The pull-up
下拉部分172包括第二NMOS晶体管M2,其漏极连接到输出端子OUT,栅极连接到第二节点N2,并且源极连接到第一电源电压端子VSS。The pull-down
上拉驱动器部分173包括电容器C和NMOS晶体管M3、M4和M5。电容器C连接在第一节点N1与输出端子GOUT[N]之间。第三NMOS晶体管M3的漏极连接到第二电源电压VON、其栅极连接到前一级的输出端子GOUT[N-1],并且其源极连接到第一节点N1。晶体管M4的漏极连接到第一节点N1,其栅极连接到第二节点N2,并且其源极连接到第一电源电压VOFF。晶体管M5的漏极连接到第一节点N1,其栅极连接到第二节点N2,并且其源极连接到第一电源电压VOFF。晶体管M3的晶体管尺寸大于晶体管M5约2倍。The pull-up
下拉驱动器部分174包括两个NMOS晶体管M6和M7。晶体管M6的漏极和栅极相互共同连接,并且连接到第二电源电压VON,其源极连接到第二节点N2。晶体管M7的漏极连接到第二节点N2,其栅极连接到第一节点N1,并且其源极连接到第一电源电压VOFF。晶体管M6的晶体管尺寸大于晶体管M7约16倍。Pull-
如图8所示,当第一和第二时钟信号ckv和ckvb以及扫描启动信号STV被提供给移位寄存器170时,第一级SRC1响应扫描启动信号STV的前(起始)沿而将第一时钟信号ckv的高电平周期延迟Tdr1的预定时间,从而输出延迟输出信号GOUT1。As shown in FIG. 8, when the first and second clock signals ckv and ckvb and the scan start signal STV are supplied to the
如上所述,在玻璃基板上形成的移位寄存器接收扫描启动信号STV、第一时钟ckv以及第二时钟ckvb,并且驱动在TFT基板上形成的TFT的栅极。As described above, the shift register formed on the glass substrate receives the scan start signal STV, the first clock ckv, and the second clock ckvb, and drives the gates of the TFTs formed on the TFT substrate.
以下将描述移位寄存器的每个级的操作。The operation of each stage of the shift register will be described below.
图9是示出从图6的移位寄存器输出的扫描线驱动信号的图。FIG. 9 is a diagram illustrating scan line driving signals output from the shift register of FIG. 6 .
参照图9,移位寄存器接收第一时钟信号ckv或第二时钟信号ckvb,并且向多条栅极线提供多个栅极线驱动信号(GOUT1、GOUT2、GOUT3、...)。第二时钟ckvb具有与第一时钟ckv相反的相位。第一和第二时钟信号在2H的周期内摆动(swing),如图9所示。从定时控制器(未示出)输出的信号具有0伏到3伏的范围内的电压,并且经过放大以具有-8伏到24伏的范围内的电压,从而获得第一和第二时钟信号。Referring to FIG. 9 , the shift register receives a first clock signal ckv or a second clock signal ckvb, and supplies a plurality of gate line driving signals (GOUT 1 , GOUT 2 , GOUT 3 , . . . ) to a plurality of gate lines. The second clock ckvb has an opposite phase to the first clock ckv. The first and second clock signals swing in a period of 2H, as shown in FIG. 9 . A signal output from a timing controller (not shown) has a voltage in the range of 0 volts to 3 volts and is amplified to have a voltage in the range of -8 volts to 24 volts, thereby obtaining the first and second clock signals .
再次参照图7,前一级的输出信号(或栅极线驱动信号)GOUTN-1对电容器C充电,并且设置(或激活)当前级。下一级的输出信号(或栅极线驱动信号)GOUTN+1对电容器C放电,并且复位(或去激活)当前级。Referring again to FIG. 7 , the output signal (or gate line driving signal) GOUT N-1 of the previous stage charges the capacitor C and sets (or activates) the current stage. The output signal (or gate line driving signal) GOUT N+1 of the next stage discharges the capacitor C and resets (or deactivates) the current stage.
当第一时钟信号ckv、第二时钟信号ckvb和扫描启动信号STV施加于第一级时,响应扫描启动信号STV的上升沿而将第一时钟信号ckv的高电平周期延迟预定周期,以在输出端子作为输出信号GOUT[1]输出。When the first clock signal ckv, the second clock signal ckvb, and the scan start signal STV are applied to the first stage, the high level period of the first clock signal ckv is delayed by a predetermined period in response to the rising edge of the scan start signal STV to The output terminal is output as an output signal GOUT[1].
电容器C响应通过输入端子IN输入到晶体管M1的栅极中的扫描启动信号STV的上升沿而开始充电。当在电容器C充电的电压Vc1大于晶体管M1的阈值电压时,导通上拉晶体管M1,并且在输出端子OUT输出第一时钟ckv的高电平周期。The capacitor C starts charging in response to a rising edge of the scan start signal STV input into the gate of the transistor M1 through the input terminal IN. When the voltage Vc1 charged at the capacitor C is greater than the threshold voltage of the transistor M1, the pull-up transistor M1 is turned on, and a high level period of the first clock ckv is output at the output terminal OUT.
当在输出端子OUT输出第一时钟信号CKV的高电平周期时,在电容器C引导(bootstrap)该输出电压或第一时钟信号ckv的高电平周期,从而上拉晶体管M1的栅极电压升至导通电压Von之上。从而,NMOS上拉晶体管M1保持完全导通状态。由于晶体管M3的晶体管尺寸大于晶体管M4约2倍,甚至当晶体管M4由扫描启动信号STV导通时,晶体管M2也导通。When the high-level period of the first clock signal CKV is output at the output terminal OUT, the output voltage or the high-level period of the first clock signal ckv is bootstrap at the capacitor C, so that the gate voltage of the pull-up transistor M1 rises above the conduction voltage Von. Thus, the NMOS pull-up transistor M1 remains fully turned on. Since the transistor M3 has a transistor size about twice larger than the transistor M4, even when the transistor M4 is turned on by the scan enable signal STV, the transistor M2 is turned on.
同时,在扫描启动信号STV输入到下拉驱动器部分174中之前,第一节点N1的电压通过晶体管M6升至第二电源电压Von,并且导通晶体管M2。从而,输出端子OUT的输出信号基本上具有第一电源电压Voff。当扫描启动信号STV输入到下拉驱动器部分174时,该晶体管导通,并且第二节点N2的电压降至基本上第一电源电压Voff。由于晶体管M7的晶体管尺寸大于晶体管M6约16倍,因此即使晶体管M6导通,第二节点N2也基本上保持第一电源电压Voff。从而,关断下拉晶体管M2。Meanwhile, before the scan start signal STV is input into the pull-down
当扫描启动信号STV施加于下拉驱动器部分74时,关断下拉晶体管M2,并且将第一时钟信号ckv延迟第一时钟信号ckv的工作周期,以在输出端子输出。When the scan start signal STV is applied to the pull-down driver part 74, the pull-down transistor M2 is turned off, and the first clock signal ckv is delayed by the duty cycle of the first clock signal ckv to be output at the output terminal.
当从输出端子OUT输出的输出信号的电压降至关断电压Voff或Vss)时,晶体管M7关断。When the voltage of the output signal output from the output terminal OUT falls to the off voltage Voff or Vss), the transistor M7 is turned off.
由于只有第二电源电压Von通过晶体管M6提供给第二节点N2,因此第二节点N2的电压开始从第一电源电压Voff升至第二电源电压Von。当第四节点的电压开始上升时,晶体管M4导通,并且电容器的电荷通过晶体管M4放电。因此,上拉晶体管M1开始关断。Since only the second power voltage Von is supplied to the second node N2 through the transistor M6, the voltage of the second node N2 starts to increase from the first power voltage Voff to the second power voltage Von. When the voltage of the fourth node starts to rise, the transistor M4 is turned on, and the charge of the capacitor is discharged through the transistor M4. Therefore, the pull-up transistor M1 starts to turn off.
然后,由于从下一级输出的输出信号GOUT[N+1]上升至导通电压Von,因此晶体管M5导通。由于晶体管M5的晶体管尺寸大于晶体管M4约两倍,因此与仅晶体管M4导通的情况相比,第一节点N1的电压更快速地降至第一电源电压Voff。Then, since the output signal GOUT[N+1] output from the next stage rises to the on-voltage Von, the transistor M5 is turned on. Since the transistor size of the transistor M5 is about twice larger than that of the transistor M4, the voltage of the first node N1 drops to the first power voltage Voff more quickly than when only the transistor M4 is turned on.
另外,当第二节点N2的电压升至第二电源电压Von时,下拉晶体管M2导通,并且从输出端子OUT输出的输出电压从导通电压Von变至关断电压Voff。In addition, when the voltage of the second node N2 rises to the second power supply voltage Von, the pull-down transistor M2 is turned on, and the output voltage output from the output terminal OUT changes from the on voltage Von to the off voltage Voff.
由于第二节点N2连接到晶体管M6,因此即使施加于控制端子CT的下一级的输出信号GOUT[N+1]降至低电压电平、并且晶体管M5关断,第二节点N2也保持第二电源电压Von。从而,防止由于下拉晶体管M2的关断而造成的故障。Since the second node N2 is connected to the transistor M6, even if the output signal GOUT[N+1] of the next stage applied to the control terminal CT falls to a low voltage level and the transistor M5 is turned off, the second node N2 remains at the first Two supply voltage Von. Thus, malfunction due to the turn-off of the pull-down transistor M2 is prevented.
如图8所示,顺序产生输出信号GOUT[1]、GOUT[2]、GOUT[3]、...。As shown in FIG. 8 , the output signals GOUT[1], GOUT[2], GOUT[3], . . . are sequentially generated.
如上所述,电容器C响应前一级的输出信号而充电,施加于上拉部分或下拉部分的时钟信号作为当前级的输出信号而输出。当在连接到下一级的输出端子的栅极线上产生下一级的输出信号时,下一级的输出信号导通放电晶体管M5,并且对电容器C放电,从而终止移位寄存器的操作循环。As described above, the capacitor C is charged in response to the output signal of the previous stage, and the clock signal applied to the pull-up part or the pull-down part is output as the output signal of the current stage. When the output signal of the next stage is generated on the gate line connected to the output terminal of the next stage, the output signal of the next stage turns on the discharge transistor M5, and discharges the capacitor C, thereby terminating the operation cycle of the shift register .
上述移位寄存器用作具有小或中显示尺寸的液晶显示设备中的栅极驱动器电路,但是由于因存在于栅极线中的电阻和电容而造成的RC延迟,其不可用作具有大显示屏的液晶显示设备中的栅极驱动器电路。The shift register described above is used as a gate driver circuit in a liquid crystal display device having a small or medium display size, but it cannot be used as a display device with a large display due to RC delay due to resistance and capacitance present in the gate line. A gate driver circuit in a liquid crystal display device.
如图6所示,每个级接收具有2H周期的第一时钟ckv或第二时钟ckvb,并且将第一时钟ckv或第二时钟ckvb施加于栅极线。As shown in FIG. 6, each stage receives the first clock ckv or the second clock ckvb having a period of 2H, and applies the first clock ckv or the second clock ckvb to the gate line.
具体地说,第N级通过输入端子接收第(N-1)栅极导通电压(或第(N-1)栅极线驱动信号),并且响应第(N-1)栅极导通电压而产生第N栅极导通电压(或第N栅极线驱动信号)。第N级通过控制端子接收第(N+1)栅极线驱动信号,并且响应第(N+1)栅极线驱动信号而向栅极线提供栅极关断电压。Specifically, the Nth stage receives the (N-1)th gate turn-on voltage (or (N-1)th gate line drive signal) through the input terminal, and responds to the (N-1)th gate turn-on voltage Thus, an Nth gate turn-on voltage (or an Nth gate line driving signal) is generated. The Nth stage receives the (N+1)th gate line driving signal through the control terminal, and supplies the gate turn-off voltage to the gate line in response to the (N+1)th gate line driving signal.
由于第(N-1)栅极导通电压与第(N-1)栅极线电气耦接,因此第(N-1)栅极线的负载电气地影响第N级的输入端子。因此,产生信号延迟,并且每个级受栅极线的负载的影响。Since the (N−1)th gate turn-on voltage is electrically coupled to the (N−1)th gate line, the load of the (N−1)th gate line electrically affects the input terminal of the Nth stage. Therefore, a signal delay is generated, and each stage is affected by the load of the gate line.
如图10所示,每一条栅极线具有多个电阻元件以及多个电容元件,并且第N级的输入端子接收第(N-1)级的第(N-1)输出信号。由于第N级的输入端子连接到第(N-1)栅极线,因此由于栅极线的RC负载而可能发生信号延迟(例如,RC延迟)。As shown in FIG. 10 , each gate line has multiple resistive elements and multiple capacitive elements, and the input terminal of the Nth stage receives the (N−1)th output signal of the (N−1)th stage. Since the input terminal of the Nth stage is connected to the (N−1)th gate line, signal delay (eg, RC delay) may occur due to RC load of the gate line.
另外,由于每个级相互级联,因此信号延迟由于连接到前面级(第一级、第二级、...、第(N-1)级)的前面栅极线(第一栅极线、第二栅极线、...、第(N-1)栅极线)的RC负载而可随着N的增大而增大。因此,显示质量可能被严重恶化。在具有小或中屏幕尺寸的液晶显示设备中,由于栅极线的RC负载小,并且显示栅极导通电压的周期长,因此信号延迟可以不导致上述严重恶化的显示质量。然而,在具有大显示屏尺寸的液晶显示设备中,信号延迟可导致上述严重恶化的显示质量。In addition, since each stage is cascaded with each other, the signal delay is caused by the preceding gate line (first gate line) connected to the preceding stage (first stage, second stage, ..., (N-1)th stage) , the second gate line, . Therefore, display quality may be seriously deteriorated. In a liquid crystal display device with a small or medium screen size, since the RC load of the gate line is small and the period of the display gate conduction voltage is long, the signal delay may not cause the above-mentioned seriously deteriorated display quality. However, in a liquid crystal display device having a large screen size, signal delay can lead to the above-mentioned severely deteriorated display quality.
可使用外部信号来代替从前一级输出的栅极线驱动信号以激活(或设置)下一级。An external signal may be used instead of the gate line driving signal output from the previous stage to activate (or set) the next stage.
图11是示出根据本发明第一示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图。FIG. 11 is a block diagram showing a shift register used in a gate driver circuit according to a first exemplary embodiment of the present invention.
参照图11,根据本发明第一示例性实施例的栅极驱动器电路包括相互级联的多个级SRC1、SRC2、SRC3、...、SRCN、SRCN+1以及多个进位缓冲器CB1、CB2、...、CBN。进位缓冲器CB1、CB2、...、CBN介于两个相邻级之间。每个级的输出端子OUT连接到下一级的输入端子IN。这些级包括N个级SRC1、SRC2、SRC3、...、SRCN以及伪级SRCN+1。Referring to FIG. 11 , the gate driver circuit according to the first exemplary embodiment of the present invention includes a plurality of stages SRC 1 , SRC 2 , SRC 3 , . . . , SRC N , SRC N+1 and a plurality of carry Buffers CB 1 , CB 2 , . . . , CB N . Carry buffers CB 1 , CB 2 , . . . , CB N are interposed between two adjacent stages. The output terminal OUT of each stage is connected to the input terminal IN of the next stage. These stages include N stages SRC 1 , SRC 2 , SRC 3 , . . . , SRC N and a dummy stage SRC N+1 .
每个级包括输入端子IN、输出端子OUT、控制端子CT、时钟信号输入端子CK、第一电源电压端子VSS、第二电源电压端子VDD和进位输出端子CRR。Each stage includes an input terminal IN, an output terminal OUT, a control terminal CT, a clock signal input terminal CK, a first power supply voltage terminal VSS, a second power supply voltage terminal VDD, and a carry output terminal CRR.
第一级SRC1通过输入端子IN接收扫描启动信号STV。扫描启动信号STV是与从外部图形控制器(未示出)提供的垂直同步信号Vsync同步的脉冲信号。The first stage SRC 1 receives a scan start signal STV through an input terminal IN. The scan start signal STV is a pulse signal synchronized with a vertical synchronization signal Vsync supplied from an external graphics controller (not shown).
级SRC2、...、SRCN通过进位缓冲器接收从前一级的进位输出端子CRR提供的进位电压。The stages SRC 2 , . . . , SRC N receive the carry voltage supplied from the carry output terminal CRR of the previous stage through the carry buffer.
每个级SRC1、SRC2、...、SRC192分别产生栅极线驱动信号GOUT1、GOUT2、...、GOUT192,并且栅极线驱动信号GOUT1、GOUT2、...、GOUT192分别连接到栅极线,以便选择栅极线。Each stage SRC 1 , SRC 2 , . . . , SRC 192 generates gate line driving signals GOUT 1 , GOUT 2 , . , GOUT 192 are respectively connected to the gate lines so as to select the gate lines.
第一时钟信号ckv施加于奇数级(SRC1、SRC3、SRC5、...),并且第二时钟信号ckvb施加于偶数级(SRH2、SRH4、SRH6、...)。第一时钟ckb具有与第二时钟ckvb相反的相位。例如,第一时钟ckv和第二时钟ckvb的工作周期为约16.6/192ms。The first clock signal ckv is applied to odd stages (SRC 1 , SRC 3 , SRC 5 , . . . ), and the second clock signal ckvb is applied to even stages (SRH 2 , SRH 4 , SRH 6 , . . . ). The first clock ckb has an opposite phase to the second clock ckvb. For example, the duty cycle of the first clock ckv and the second clock ckvb is about 16.6/192ms.
用于数据驱动器电路的移位寄存器164中的时钟的工作周期大于用于栅极驱动器电路的移位寄存器170中的时钟约8倍。The duty cycle of the clock in the
下一级SRC2、SRC3、SRC4的输出信号GOUT2、...、GOUT192作为控制信号分别施加于级SRC1、SRC2、SRC3的控制端子CT。The output signals GOUT 2 , . . . , GOUT 192 of the next stages SRC 2 , SRC 3 , SRC 4 are respectively applied as control signals to the control terminals CT of the stages SRC 1 , SRC 2 , SRC 3 .
进位缓冲器CB1、CB2、...、CBN使用从外部电源提供的时钟信号而非从前一级输出的栅极线驱动信号作为进位信号,以便激活(或设置)下一级。进位缓冲器CB1、CB2、...、CBN可安装在每个级的内部。The carry buffers CB 1 , CB 2 , . . . , CB N use a clock signal supplied from an external power source instead of a gate line driving signal output from a previous stage as a carry signal in order to activate (or set) the next stage. A carry buffer CB 1 , CB 2 , . . . , CB N may be installed inside each stage.
图12是示出图11的移位寄存器中的第N级的电路图。FIG. 12 is a circuit diagram showing an Nth stage in the shift register of FIG. 11 .
参照图12,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174以及进位缓冲器275。Referring to FIG. 12 , each stage of the shift register includes a pull-up
上拉部分171包括第一NMOS晶体管M1,其漏极连接到时钟信号输入端子CK,其栅极连接到第一节点N1,并且其源极连接到输出端子GOUT[N]。The pull-up
下拉部分172包括第二NMOS晶体管M2,其漏极连接到输出端子GOUT[N],其栅极连接到第二节点N2,并且其源极连接到第一电源电压端子VSS。The pull-down
上拉驱动器部分173包括电容器C和NMOS晶体管M3、M4和M5。电容器C连接在第一节点N1与输出端子GOUT[N]之间。第三NMOS晶体管M3的漏极连接到第二电源电压VON,其栅极连接到前一级的输出端子GOUT[N-1],并且其源极连接到第一节点N1。晶体管M4的漏极连接到第一节点N1,其栅极连接到第二节点N2,并且其源极连接到第一电源电压VOFF。晶体管M5的漏极连接到第一节点N1,其栅极连接到第二节点N2,并且其源极连接到第一电源电压VOFF。晶体管M3的晶体管尺寸大于晶体管M5约2倍。The pull-up
下拉驱动器部分174包括两个NMOS晶体管M6和M7。晶体管M6的漏极和栅极相互共同连接,并且连接到第二电源电压VON,其源极连接到第二节点N2。晶体管M7的漏极连接到第二节点N2,其栅极连接到第一节点N1,并且其源极连接到第一电源电压VOFF。晶体管M6的晶体管尺寸大于晶体管M7约16倍。Pull-
进位缓冲器275包括进位缓冲器晶体管TR1,并且将第一时钟ckv或第二时钟ckvb输出到下一级。具体地说,进位缓冲器晶体管TR1的栅极连接到下拉驱动器部分174的输入端子,进位缓冲器晶体管TR1的漏极连接到时钟端子CKV或CKVB,并且进位缓冲器晶体管TR1的源极连接到下一级的上拉部分173的第三晶体管M3的栅极。The
前一级的进位缓冲器晶体管TR1接收第一时钟ckv或第二时钟ckvb,并且将第一时钟ckv或第二时钟ckvb作为进位信号传输到当前级。由于具有基本上一致的电压电平的时钟信号用作进位信号,因此可以不发生由于栅极线的RC负载而造成的RC延迟。The carry buffer transistor TR1 of the previous stage receives the first clock ckv or the second clock ckvb, and transmits the first clock ckv or the second clock ckvb as a carry signal to the current stage. Since a clock signal having a substantially uniform voltage level is used as a carry signal, an RC delay due to an RC load of a gate line may not occur.
图13是示出图11的移位寄存器中的最后级和伪级的电路图。FIG. 13 is a circuit diagram showing a final stage and a dummy stage in the shift register of FIG. 11 .
参照图13,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174以及进位缓冲器275。在图13中,相同的标号表示图12中的相同元件,因此将省略相同元件的详细描述。Referring to FIG. 13 , each stage of the shift register includes a pull-up
如图13所示,由于前一级的输出信号受栅极线的RC负载的影响,因此前一级的输出信号不施加于每个级的输入端子,将时钟信号作为进位信号施加于每个级的输入端子。因此,由于用作进位信号的时钟信号独立于前一级的输出信号,因此可以不发生由于栅极线的RC负载而造成的RC延迟。As shown in Figure 13, since the output signal of the previous stage is affected by the RC load of the gate line, the output signal of the previous stage is not applied to the input terminal of each stage, and the clock signal is applied to each stage as a carry signal. level input terminals. Therefore, since the clock signal used as the carry signal is independent from the output signal of the previous stage, RC delay due to RC load of the gate line may not occur.
以下,将图13的上面级称作前一级SRCN,将图13的下面级称作当前级SRCN+1,以便描述本发明的移位寄存器的操作。Hereinafter, the upper stage of FIG. 13 is referred to as the previous stage SRC N , and the lower stage of FIG. 13 is referred to as the current stage SRC N+1 in order to describe the operation of the shift register of the present invention.
前一级SRCN的进位缓冲器晶体管TR1接收用于激活(或设置)当前级SRCN+1的第一时钟ckv(或上拉晶体管M1的控制信号),并且基本上将第一时钟ckv作为进位信号传输到当前级SRCN+1。由于具有基本上一致的电压电平的时钟信号ckv用作进位信号,因此可以不发生由于栅极线的RC负载而造成的RC延迟。The carry buffer transistor TR1 of the previous stage SRC N receives the first clock ckv (or the control signal of the pull-up transistor M1) for activating (or setting) the current stage SRC N+1 , and basically uses the first clock ckv as The carry signal is transmitted to the current stage SRC N+1 . Since the clock signal ckv having a substantially uniform voltage level is used as a carry signal, RC delay due to RC load of the gate line may not occur.
在进位信号CA[N]施加于第三晶体管M3的栅极之前,第三晶体管M3保持于关断状态。当进位信号CA[N]施加于第三晶体管M3的栅极时,在预定周期之后,第三晶体管M3导通,以形成通过其对电容器C充电第二电源电压Von的电流路径。Before the carry signal CA[N] is applied to the gate of the third transistor M3, the third transistor M3 remains in an off state. When the carry signal CA[N] is applied to the gate of the third transistor M3, the third transistor M3 is turned on after a predetermined period to form a current path through which the capacitor C is charged with the second power supply voltage Von.
当将具有低电平的时钟ckv或第一电源电压Voff的电压电平施加于第三晶体管M3的栅极时,第三晶体管M3关断。When the clock ckv having a low level or the voltage level of the first power voltage Voff is applied to the gate of the third transistor M3, the third transistor M3 is turned off.
图14是示出图11的移位寄存器以及栅极线的示意图。FIG. 14 is a schematic diagram illustrating the shift register and gate lines of FIG. 11 .
参照图14,每个级(SRC1、SRC2、SRC3、...)通过每个级的输出端子分别施加多个栅极线驱动信号(GOUT1、GOUT2、GOUT3、...),以便选择液晶显示板150的栅极线。14, each stage (SRC 1 , SRC 2 , SRC 3 , . . . ) applies a plurality of gate line driving signals (GOUT 1 , GOUT 2 , GOUT 3 , . . . ) to select the gate lines of the liquid
另外,每个级(SRC1、SRC2、SRC3、...)通过进位输出端子CA将进位信号施加于下一级的输入端子。进位信号是第一时钟ckv或第二时钟ckvb。第一时钟ckv或第二时钟ckvb从外部电源提供,并且独立于每个级。第二时钟ckvb具有与第一时钟ckv相反的相位。In addition, each stage (SRC 1 , SRC 2 , SRC 3 , . . . ) applies a carry signal to the input terminal of the next stage through the carry output terminal CA. The carry signal is the first clock ckv or the second clock ckvb. The first clock ckv or the second clock ckvb is supplied from an external power source and is independent of each stage. The second clock ckvb has an opposite phase to the first clock ckv.
由于代替从前一级的输出端子OUT输出的栅极线驱动信号而将从前一级的进位输出端子输出的进位信号施加于当前级的输入端子以便激活当前级,因此可以防止由于栅极线的RC负载而造成的显示质量恶化。Since the carry signal output from the carry output terminal of the previous stage is applied to the input terminal of the current stage instead of the gate line drive signal output from the output terminal OUT of the previous stage to activate the current stage, it is possible to prevent the RC due to the gate line. Display quality deterioration due to load.
图15A和15B是示出图11的移位寄存器的级中的上拉部分、下拉部分和进位缓冲器的布局图,而图15C是示出图15A的移位寄存器中的进位缓冲器的放大图。15A and 15B are layout diagrams showing the pull-up part, the pull-down part and the carry buffer in the stages of the shift register of FIG. 11, and FIG. 15C is an enlargement showing the carry buffer in the shift register of FIG. 15A picture.
图12的上拉NMOS晶体管M1和下拉NMOS晶体管M2的晶体管尺寸大于上拉驱动器NMOS晶体管M3、M4、M5以及下拉驱动器NMOS晶体管M6、M7,以便驱动连接到上拉晶体管M1和下拉晶体管M2的栅极线。The transistor size of the pull-up NMOS transistor M1 and the pull-down NMOS transistor M2 of FIG. polar line.
如图15A、15B和15C所示,在绝缘基板上的预定区域内顺序形成栅极布线(gate wiring)和有源图案(active pattern),并且在栅极布线上以‘分支’型形状(或‘手指’型形状)形成多个漏电极和多个源电极,以便形成上拉晶体管(M1[N]和M1[N+1])和下拉晶体管(M2[N]和M2[N+1])。栅极布线包括一个栅电极(或多个栅电极)和一条栅极线(或多条栅极线)。M1[N]是第N级的上拉晶体管M1,并且M1[N+1]是第(N+1)级的上拉晶体管M1。M2[N]是第N级的下拉晶体管M2,并且M2[N+1]是第(N+1)级的下拉晶体管M2。在本发明的‘分支’型形状中,漏电极从主漏极布线分支,并且每个漏电极插入到各漏电极的分支中。例如,有源图案由非晶硅组成。以下,将第N级称作当前级,而将第(N+1)级称作下一级。As shown in FIGS. 15A, 15B and 15C, a gate wiring (gate wiring) and an active pattern (active pattern) are sequentially formed in a predetermined area on an insulating substrate, and a 'branch' shape (or 'finger' shape) to form multiple drain electrodes and multiple source electrodes to form pull-up transistors (M1[N] and M1[N+1]) and pull-down transistors (M2[N] and M2[N+1] ). The gate wiring includes a gate electrode (or gate electrodes) and a gate line (or gate lines). M1[N] is the pull-up transistor M1 of the Nth stage, and M1[N+1] is the pull-up transistor M1 of the (N+1)th stage. M2[N] is the pull-down transistor M2 of the Nth stage, and M2[N+1] is the pull-down transistor M2 of the (N+1)th stage. In the 'branch' type shape of the present invention, the drain electrodes are branched from the main drain wiring, and each drain electrode is inserted into a branch of each drain electrode. For example, the active pattern is composed of amorphous silicon. Hereinafter, the Nth stage is referred to as the current stage, and the (N+1)th stage is referred to as the next stage.
具体地说,在用来限定第一预定面积的第一预定区域内形成上拉晶体管(M1[N]和M1[N+1])的栅极布线。例如,第一预定区域可具有矩形形状。在上拉晶体管(M1[N]和M1[N+1])的栅极布线上形成上拉晶体管(M1[N]和M1[N+1])的有源图案。上拉晶体管(M1[N]和M1[N+1])的漏电极从在向下方向上延展的主漏极布线300分支,并且在上拉晶体管(M1[N]和M1[N+1])的有源图案上形成。在漏电极的分支(漏极线)之间形成上拉晶体管(M1[N]和M1[N+1])的每个源极。也就是,在漏电极的分支(或漏极线)之间形成源电极的每个分支(源极线)。还可在上拉晶体管(M1[N]和M1[N+1])的漏电极的外部形成上拉晶体管(M1[N]和M1[N+1])的源电极。上拉晶体管(M1[N]和M1[N+1])的每个源电极通过接触孔(CNT1、CNT2)电气连接到栅极线。例如,每条漏极线的宽度可以为大约5μm,并且每条栅极线的宽度可以为大约5μm。例如,主漏极线的宽度可大于约5μm。漏极线与源极线之间的距离(L)越小,薄膜晶体管(TFT)的特性就越好。例如,漏极线与源极线之间的距离(L)越小,晶体管尺寸(W/L)就越大。Specifically, gate wirings of the pull-up transistors (M1[N] and M1[N+1]) are formed in a first predetermined area defining a first predetermined area. For example, the first predetermined area may have a rectangular shape. Active patterns of the pull-up transistors (M1[N] and M1[N+1]) are formed on gate wirings of the pull-up transistors (M1[N] and M1[N+1]). The drain electrodes of the pull-up transistors (M1[N] and M1[N+1]) are branched from the
具体地说,在用来限定第二预定面积的第二预定区域内形成下拉晶体管(M2[N]和M2[N+1])的栅极布线。例如,第二预定区域可具有矩形形状。在下拉晶体管(M2[N]和M2[N+1])的栅极布线上形成下拉晶体管(M2[N]和M2[N+1])的有源图案。下拉晶体管(M2[N]和M2[N+1])的漏电极从在向上方向上延展的主漏极布线300分支,并且形成在下拉晶体管(M2[N]和M2[N+1])的有源图案上。下拉晶体管(M2[N]和M2[N+1])的每个漏电极通过接触孔(CNT1、CNT2)电气连接到栅极线。在漏电极的分支(或漏极线)之间形成下拉晶体管(M2[N]和M2[N+1])的每个源电极。也就是,在漏电极的分支(或漏极线)之间形成源电极的每个分支(或源极线)。还可在上拉晶体管(M2[N]和M2[N+1])的漏电极的外部形成上拉晶体管(M2[N]和M2[N+1])的源电极。Specifically, gate wirings of the pull-down transistors (M2[N] and M2[N+1]) are formed in a second predetermined area defining a second predetermined area. For example, the second predetermined area may have a rectangular shape. Active patterns of pull-down transistors (M2[N] and M2[N+1]) are formed on gate wirings of the pull-down transistors (M2[N] and M2[N+1]). The drain electrodes of the pull-down transistors (M2[N] and M2[N+1]) are branched from the
具体地说,上拉晶体管(M1[N]和M1[N+1])的多个源电极和下拉晶体管(M2[N]和M2[N+1])的多个漏电极共同连接到第一接触孔CNT1,使得上拉晶体管(M1[N]和M1[N+1])的源电极和下拉晶体管(M2[N]和M2[N+1])的多个漏电极可共同连接到栅极线。由于上拉晶体管(M1[N]和M1[N+1])的源电极的高度或者下拉晶体管(M2[N]和M2[N+1])的源电极的高度不同于栅极线的高度,因此上拉晶体管(M1[N]和M1[N+1])或下拉晶体管(M2[N]和M2[N+1])的源电极通过在第一氧化铟锡(ITO1)层与第二接触孔CNT2之间形成的桥连接到栅极线。第一氧化铟锡(ITO1)层包括导电材料。第一氧化铟锡(ITO1)层连接到第一接触孔CNT1。Specifically, the plurality of source electrodes of the pull-up transistors (M1[N] and M1[N+1]) and the plurality of drain electrodes of the pull-down transistors (M2[N] and M2[N+1]) are commonly connected to the first A contact hole CNT1, so that the source electrodes of the pull-up transistors (M1[N] and M1[N+1]) and the drain electrodes of the pull-down transistors (M2[N] and M2[N+1]) can be commonly connected to gate line. Since the height of the source electrode of the pull-up transistor (M1[N] and M1[N+1]) or the height of the source electrode of the pull-down transistor (M2[N] and M2[N+1]) is different from the height of the gate line , so the source electrodes of the pull-up transistors (M1[N] and M1[N+1]) or the pull-down transistors (M2[N] and M2[N+1]) pass between the first indium tin oxide (ITO1) layer and the second A bridge formed between the two contact holes CNT2 is connected to a gate line. The first indium tin oxide (ITO1) layer includes a conductive material. The first indium tin oxide (ITO1) layer is connected to the first contact hole CNT1.
在相邻于上拉晶体管M1的位置上形成进位缓冲器晶体管TR1,以便将施加于当前级的上拉晶体管M1的漏电极的第一时钟ckv或第二时钟ckvb提供给下一级的第三晶体管M3的栅电极。A carry buffer transistor TR1 is formed adjacent to the pull-up transistor M1 so as to supply the first clock ckv or the second clock ckvb applied to the drain electrode of the pull-up transistor M1 of the current stage to the third clock of the next stage. Gate electrode of transistor M3.
具体地说,进位缓冲器晶体管TR1的栅电极共同连接到上拉晶体管(M1[N]和M1[N+1])的栅电极。进位缓冲器晶体管TR1的漏电极可从上拉晶体管(M1[N]和M1[N+1])的主漏极布线分支。进位缓冲器晶体管TR1的源电极绕开(绕过)上拉晶体管(M1[N]和M1[N+1])和下拉晶体管(M2[N]和M2[N+1]),以延伸到下一级的第三晶体管M3的栅电极。Specifically, the gate electrode of the carry buffer transistor TR1 is commonly connected to the gate electrodes of the pull-up transistors (M1[N] and M1[N+1]). The drain electrode of the carry buffer transistor TR1 may branch from the main drain wiring of the pull-up transistors (M1[N] and M1[N+1]). The source electrode of carry buffer transistor TR1 bypasses (bypasses) the pull-up transistors (M1[N] and M1[N+1]) and pull-down transistors (M2[N] and M2[N+1]) to extend to The gate electrode of the third transistor M3 of the next stage.
由于进位缓冲器晶体管TR1的源电极的分支(或源极线)的高度不同于连接到下一级的第三晶体管M3的栅电极的栅极布线的高度,因此进位缓冲器晶体管TR1的源电极通过在第二氧化铟锡(ITO2)层与第四接触孔CNT4之间形成的桥连接到与第三晶体管M3的栅电极连接的栅极布线。第二氧化铟锡(ITO2)层包括导电材料。第二氧化铟锡(ITO2)层通过第三接触孔CNT3连接到进位缓冲器晶体管TR1的源极线。Since the height of the branch (or source line) of the source electrode of the carry buffer transistor TR1 is different from the height of the gate wiring connected to the gate electrode of the third transistor M3 of the next stage, the source electrode of the carry buffer transistor TR1 The gate wiring connected to the gate electrode of the third transistor M3 is connected through a bridge formed between the second indium tin oxide (ITO2) layer and the fourth contact hole CNT4. The second indium tin oxide (ITO2) layer includes a conductive material. The second indium tin oxide (ITO2) layer is connected to the source line of the carry buffer transistor TR1 through the third contact hole CNT3.
图7和8的移位寄存器用于具有小或中屏幕尺寸如525(176×3)×192的液晶显示板中,但是图7和8的移位寄存器由于信号延迟问题而不可用于具有大屏幕尺寸的液晶显示板中。The shift registers of Figures 7 and 8 are used in liquid crystal display panels with small or medium screen sizes such as 525 (176 x 3) x 192, but the shift registers of Figures 7 and 8 cannot be used for large screens due to signal delay issues. screen size of the LCD panel.
上拉或下拉晶体管(M1或M2)的晶体管尺寸需要增大,以便图7和8的移位寄存器可用于具有大屏幕尺寸的液晶显示板中。然而,由于移位寄存器的芯片面积的限制,上拉或下拉晶体管(M1或M2)的晶体管尺寸的增大存在限制。The transistor size of the pull-up or pull-down transistor (M1 or M2) needs to be increased so that the shift register of FIGS. 7 and 8 can be used in a liquid crystal display panel with a large screen size. However, there is a limit to increase the transistor size of the pull-up or pull-down transistor (M1 or M2) due to the limit of the chip area of the shift register.
因此,制造液晶显示设备的可靠性和成品率可能得不到保证,因为薄膜晶体管的阈值电压由于上拉或下拉晶体管(M1或M2)的晶体管尺寸的限制和非晶硅薄膜晶体管的特性而变化。Therefore, the reliability and yield of manufacturing liquid crystal display devices may not be guaranteed because the threshold voltage of the thin film transistor varies due to the limitation of the transistor size of the pull-up or pull-down transistor (M1 or M2) and the characteristics of the amorphous silicon thin film transistor .
图16A、16B和16C是示出从图7的移位寄存器输出的栅极线驱动信号的图。16A, 16B and 16C are diagrams illustrating gate line driving signals output from the shift register of FIG. 7 .
参照图16A,当移位寄存器的薄膜晶体管在室温下具有正常阈值电压时,栅极线驱动信号(GOUT1、GOUT2、GOUT3、...)类似于方波,并且具有约25伏的一致峰值电压电平。Referring to FIG. 16A , when the thin film transistors of the shift register have normal threshold voltages at room temperature, the gate line driving signals (GOUT 1 , GOUT 2 , GOUT 3 , . . . ) are similar to square waves and have an Consistent peak voltage levels.
参照图16B,移位寄存器的薄膜晶体管的阈值电压随着温度的升高而降低,栅极线驱动信号(GOUT’1、GOUT’2、GOUT’3、...)类似于方波,但是栅极线驱动信号(GOUT’1、GOUT’2、GOUT’3、...)具有降低的峰值电压电平。也就是,第一栅极线驱动信号GOUT’1的峰值电压电平具有约20伏,并且第二栅极线驱动信号GOUT’2的峰值电压电平低于20伏。Referring to FIG. 16B, the threshold voltage of the thin film transistor of the shift register decreases as the temperature increases, and the gate line driving signals (GOUT' 1 , GOUT' 2 , GOUT' 3 , ...) are similar to square waves, but The gate line drive signals (GOUT' 1 , GOUT' 2 , GOUT' 3 , . . . ) have reduced peak voltage levels. That is, the peak voltage level of the first gate line driving signal GOUT'1 has about 20 volts, and the peak voltage level of the second gate line driving signal GOUT'2 is lower than 20 volts.
如图16B所示,其波形如同火花的重叠信号(override signal)施加于特定栅极线。栅极线驱动信号(GOUT’1、GOUT’2、GOUT’3、...)由于重叠信号而具有降低的峰值电压电平,使得产生具有异常波形的栅极线驱动信号。As shown in FIG. 16B, an override signal whose waveform is like a spark is applied to a specific gate line. The gate line driving signals (GOUT' 1 , GOUT' 2 , GOUT' 3 , . . . ) have reduced peak voltage levels due to overlapping signals, so that the gate line driving signals having abnormal waveforms are generated.
参照图16C,移位寄存器的薄膜晶体管的阈值电压随着温度的降低而升高,栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)不类似于方波,并且栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)具有降低的峰值电压电平。也就是,第一栅极线驱动信号GOUT”1的峰值电压电平具有约22伏,并且第二栅极线驱动信号GOUT”2的峰值电压电平低于22伏。Referring to FIG. 16C , the threshold voltage of the thin film transistor of the shift register increases as the temperature decreases, and the gate line driving signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , ...) are not similar to square waves, And the gate line drive signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , . . . ) have reduced peak voltage levels. That is, the peak voltage level of the first gate line driving signal GOUT" 1 has about 22 volts, and the peak voltage level of the second gate line driving signal GOUT" 2 is lower than 22 volts.
当移位寄存器的薄膜晶体管在室温下具有正常阈值电压时,移位寄存器正常工作,并且从移位寄存器输出的栅极线驱动信号类似于方波,并且具有一致峰值电压电平。When the thin film transistor of the shift register has a normal threshold voltage at room temperature, the shift register works normally, and the gate line driving signal output from the shift register is similar to a square wave and has a consistent peak voltage level.
然而,当移位寄存器的薄膜晶体管的阈值电压随着温度降低(或升高)而变化时,从移位寄存器输出的栅极线驱动信号具有异常波形,或者一致峰值电压电平。因此,具有异常波形的栅极线驱动信号不正常导通位于液晶显示板上的开关器件(开关元件),并且液晶显示设备的显示质量恶化。However, when the threshold voltage of the thin film transistor of the shift register changes as the temperature decreases (or increases), the gate line driving signal output from the shift register has an abnormal waveform, or a uniform peak voltage level. Therefore, the gate line drive signal having an abnormal waveform does not normally turn on the switching device (switching element) on the liquid crystal display panel, and the display quality of the liquid crystal display device deteriorates.
如图6所示,移位寄存器具有这样的电路结构,其中从前一级输出的栅极线驱动信号影响从当前级输出的栅极线驱动信号,尤其是在具有大显示屏尺寸的液晶显示设备中,当移位寄存器的各个薄膜晶体管的阈值电压变换并且每个级由移位寄存器顺序驱动时,某些级可能不输出栅极线驱动信号。As shown in Figure 6, the shift register has a circuit structure in which the gate line drive signal output from the previous stage affects the gate line drive signal output from the current stage, especially in liquid crystal display devices with a large display screen size Among them, when the threshold voltages of the respective thin film transistors of the shift register are switched and each stage is sequentially driven by the shift register, some stages may not output gate line driving signals.
图17是示出根据本发明第二示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图。FIG. 17 is a block diagram showing a shift register used in a gate driver circuit according to a second exemplary embodiment of the present invention.
参照图17,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174、第一进位缓冲器275以及第二进位缓冲器276。在图17中,相同的标号表示图7中的相同元件,因此将省略相同元件的详细描述。Referring to FIG. 17 , each stage of the shift register includes a pull-up
第一进位缓冲器275包括第一进位缓冲器晶体管TR1,并且将第一时钟ckv或第二时钟ckvb输出到下一级。The
具体地说,第一进位缓冲器晶体管TR1的栅极连接到下拉驱动器部分174的输入端子,第一进位缓冲器晶体管TR1的漏极连接到时钟端子CKV或CKVB,并且第一进位缓冲器晶体管TR1的源极连接到下一级的第二进位缓冲器276。Specifically, the gate of the first carry buffer transistor TR1 is connected to the input terminal of the pull-down
第二进位缓冲器276包括由下拉驱动器部分174或逆变器控制的第二进位缓冲器晶体管TR2。具体地说,缓冲器晶体管M3由从第一进位缓冲器275提供以施加于上拉部分171的第一时钟ckv或第二时钟ckvb导通,然后下拉驱动器部分174(或逆变器)的输出电压具有低电压电平,并且第二进位缓冲器276关断。因此,当进位信号被传输到第二进位缓冲器晶体管TR2时,进位信号的电压电平可以不被降低。The
第二进位缓冲器晶体管TR2的漏极连接到当前级的上拉驱动器部分173的输入端子,并且还连接到第一进位缓冲器晶体管TR1的源极。第二进位缓冲器晶体管TR2的栅极连接到第二晶体管M2或下拉部分172的栅极,并且第二进位缓冲器晶体管TR2的源极通过第一电源电压端子VOFF接收第一电源电压。The drain of the second carry buffer transistor TR2 is connected to the input terminal of the pull-up
另外,在1H周期之后,第二进位缓冲器晶体管TR2保持导通状态,同时下拉驱动器部分174导通,并且将第一电源电压Voff施加于缓冲器晶体管M3,以便关断缓冲器晶体管M3。第一电源电压端子VOFF相同于图5的电源电压端子VSS。In addition, after the 1H period, the second carry buffer transistor TR2 maintains the on state while the pull-down
由于使用时钟信号代替从前一级输出的栅极线驱动信号作为进位信号,因此从每个级输出的栅极线驱动信号独立于前一级的栅极线驱动信号。Since the clock signal is used instead of the gate line driving signal output from the previous stage as the carry signal, the gate line driving signal output from each stage is independent of the gate line driving signal of the previous stage.
以下,将图17的上面一级称作前一级SRCN,将图17的下面一级称作当前级SRCN+1,以便描述本发明的移位寄存器的操作。Hereinafter, the upper stage of FIG. 17 is referred to as the previous stage SRC N , and the lower stage of FIG. 17 is referred to as the current stage SRC N+1 in order to describe the operation of the shift register of the present invention.
前一级SRCN的进位缓冲器晶体管TR1接收第一时钟ckv或第二时钟ckvb,并且将第一时钟ckv或第二时钟ckvb作为进位信号传输到当前级SRCN+1。由于使用具有基本上一致的电压电平的时钟信号作为进位信号,因此可以不发生由于栅极线的RC负载而造成的RC延迟。The carry buffer transistor TR1 of the previous stage SRC N receives the first clock ckv or the second clock ckvb, and transmits the first clock ckv or the second clock ckvb as a carry signal to the current stage SRC N+1 . Since a clock signal having a substantially uniform voltage level is used as a carry signal, an RC delay due to an RC load of a gate line may not occur.
在进位信号CA[N]施加于第三晶体管M3的栅极之前,第三晶体管M3保持于关断状态。当进位信号CA[N]施加于第三晶体管M3的栅极时,在预定周期之后,第三晶体管M3导通以形成电流路径,通过该电流路径在电容器C上充电第二电源电压Von。Before the carry signal CA[N] is applied to the gate of the third transistor M3, the third transistor M3 remains in an off state. When the carry signal CA[N] is applied to the gate of the third transistor M3, after a predetermined period, the third transistor M3 is turned on to form a current path through which the capacitor C is charged with the second power supply voltage Von.
当对当前级的上拉驱动器部分173的电容器C充电时,第二进位缓冲器晶体管TR2关断。当当前级具有空闲状态时,施加于第二进位缓冲器晶体管TR2的电源电压Voff施加于缓冲器晶体管M3的栅极,并且保持缓冲器晶体管M3的关断状态。When charging the capacitor C of the pull-up
具体地说,当前级的上拉驱动器部分173的第三晶体管M3保持关断状态,并且当进位信号通过前一级的第一进位缓冲器晶体管TR1施加于第三晶体管M3时,其变至空闲状态。因此,第三晶体管M3的栅极具有与由第一进位缓冲器晶体管TR1的电阻和第二晶体管M2的电阻形成的分压电压对应的电压电平。Specifically, the third transistor M3 of the pull-up
当第二进位缓冲器晶体管TR2关断并且诸如时钟信号的进位信号施加于缓冲器晶体管M3的栅极时,缓冲器晶体管M3导通,并且电压Von施加于电容器C。When the second carry buffer transistor TR2 is turned off and a carry signal such as a clock signal is applied to the gate of the buffer transistor M3, the buffer transistor M3 is turned on, and the voltage Von is applied to the capacitor C.
图18是示出根据本发明第三示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图。FIG. 18 is a block diagram showing a shift register used in a gate driver circuit according to a third exemplary embodiment of the present invention.
参照图18,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174、第一进位缓冲器275以及第二进位缓冲器376。在图18中,相同的标号表示图7中的相同元件,因此将省略相同元件的详细描述。Referring to FIG. 18 , each stage of the shift register includes a pull-up
第一进位缓冲器275包括第一进位缓冲器晶体管TR1,并且将第一时钟ckv或第二时钟ckvb输出到下一级。The
具体地说,第一进位缓冲器晶体管TR1的栅极连接到下拉驱动器部分174的输入端子,第一进位缓冲器晶体管TR1的漏极连接到时钟端子CKV或CKVB,并且进位缓冲器晶体管TR1的源极连接到下一级的第二进位缓冲器376。Specifically, the gate of the first carry buffer transistor TR1 is connected to the input terminal of the pull-down
第二进位缓冲器376包括第二和第三进位缓冲器晶体管TR2和TR3。具体地说,当下拉驱动器部分174(或逆变器)的输出具有低电压电平时,第二进位缓冲器376关断。因此,当进位信号被传输到第二进位缓冲器376时,进位信号的电压电平可以不被降低。另外,在1H周期之后,第二进位缓冲器376保持导通状态,同时下拉驱动器部分174导通,以便关断缓冲器晶体管M3。The
第二进位缓冲器晶体管TR2的漏极连接到当前级的上拉驱动器部分173的输入端子,并且还连接到前一级的第一进位缓冲器晶体管TR1的源极。第二进位缓冲器晶体管TR2的栅极连接到第二晶体管M2或下拉部分172的栅极,并且第二进位缓冲器晶体管TR2的源极连接到第三进位缓冲器晶体管TR3的漏极。第一电源电压端子VOFF相同于图5的电源电压端子VSS。The drain of the second carry buffer transistor TR2 is connected to the input terminal of the pull-up
以下,将图18的上面一级称作前一级SRCN,将图18的下面一级称作当前级SRCN+1,以便描述本发明的移位寄存器的操作。Hereinafter, the upper stage of FIG. 18 is referred to as the previous stage SRC N , and the lower stage of FIG. 18 is referred to as the current stage SRC N+1 in order to describe the operation of the shift register of the present invention.
前一级SRCN的进位缓冲器晶体管TR1接收第一时钟ckv,并且将第一时钟ckv作为进位信号传输到当前级SRCN+1。由于时钟信号具有基本上一致的电压电平,因此可以不发生由于栅极线的RC负载而造成的RC延迟。The carry buffer transistor TR1 of the previous stage SRC N receives the first clock ckv, and transmits the first clock ckv as a carry signal to the current stage SRC N+1 . Since the clock signal has a substantially uniform voltage level, RC delay due to RC load of the gate line may not occur.
当对当前级的上拉驱动器部分173的电容器C充电时,第二进位缓冲器晶体管TR2关断。当当前级具有空闲状态时,第三进位缓冲器晶体管TR3的电压(Voff+Vth)施加于缓冲器晶体管M3的栅极,并且保持缓冲器晶体管M3的关断状态。When charging the capacitor C of the pull-up
具体地说,当前级的上拉驱动器部分173的第三晶体管M3保持关断状态,并且当进位信号通过前一级的第一进位缓冲器晶体管TR1施加于第三晶体管M3时,其变至空闲状态。因此,第三晶体管M3的栅极具有与由第一进位缓冲器晶体管TR1的电阻、第二进位缓冲器晶体管TR2的电阻和第三进位缓冲器晶体管TR3的阈值电压形成的分电压对应的电压电平。Specifically, the third transistor M3 of the pull-up
当第二进位缓冲器晶体管TR2关断并且进位信号施加于缓冲器晶体管M3的栅极时,缓冲器晶体管M3导通,并且电压Von施加于电容器C。When the second carry buffer transistor TR2 is turned off and a carry signal is applied to the gate of the buffer transistor M3, the buffer transistor M3 is turned on, and the voltage Von is applied to the capacitor C.
当具有低电压电平如电压电平Voff的时钟施加于缓冲器晶体管M3的栅极时,该缓冲器晶体管关断。缓冲器晶体管M3的导通或关断时间点依赖于施加于缓冲器晶体管M3的栅极的电压的电压电平。When a clock having a low voltage level, such as voltage level Voff, is applied to the gate of buffer transistor M3, the buffer transistor is turned off. The turn-on or turn-off time point of the buffer transistor M3 depends on the voltage level of the voltage applied to the gate of the buffer transistor M3.
缓冲器晶体管M3的导通或关断时间点与缓冲器晶体管M3的阈值电压成反比。当缓冲器晶体管M3的阈值电压由于周围温度的升高而降低时,与缓冲器晶体管M3具有正常阈值电压的情况相比,缓冲器晶体管M3的导通或关断时间点变得更早。当缓冲器晶体管M3的阈值电压由于周围温度的降低而升高时,缓冲器晶体管M3的导通或关断时间点被延迟。因此,在电容器C中充电的电荷随着周围温度的变化而变化,并且栅极线驱动信号随着由于在电容器C中充电的电荷而产生的电压而变化。The turn-on or turn-off time point of the buffer transistor M3 is inversely proportional to the threshold voltage of the buffer transistor M3. When the threshold voltage of the buffer transistor M3 decreases due to an increase in ambient temperature, the turn-on or turn-off time point of the buffer transistor M3 becomes earlier than in the case where the buffer transistor M3 has a normal threshold voltage. When the threshold voltage of the buffer transistor M3 increases due to a decrease in ambient temperature, the turn-on or turn-off time point of the buffer transistor M3 is delayed. Therefore, the charge charged in the capacitor C varies with the ambient temperature, and the gate line driving signal varies with the voltage due to the charge charged in the capacitor C.
可以防止重叠信号的产生。当阈值电压变低并且第二进位缓冲器晶体管TR2未被完全关断时,产生重叠信号。重叠信号可导通前一级的放电晶体管M5,并且降低前一级的上拉晶体管M1的输出电压,使得可降低从前一级输出的栅极线驱动信号。The generation of overlapping signals can be prevented. The overlapping signal is generated when the threshold voltage becomes low and the second carry buffer transistor TR2 is not fully turned off. The overlapping signal may turn on the discharge transistor M5 of the previous stage, and lower the output voltage of the pull-up transistor M1 of the previous stage, so that the gate line driving signal output from the previous stage may be lowered.
根据本发明的第三示例性实施例,缓冲器晶体管M3的栅极具有与由第二和第三进位缓冲器晶体管TR1的电阻、缓冲器晶体管M3的阈值以及第一进位缓冲器晶体管TR1的电阻形成的分电压对应的电压电平。即使缓冲器晶体管M3的阈值电压根据周围温度的变化而变化,第三进位缓冲器晶体管TR3的阈值电压也根据周围温度的变化而变化,进位信号的电压电平依赖于周围温度,并且进位信号施加于缓冲器晶体管M3的栅极,从而抵消由于阈值电压的变化而造成的效应。栅极线驱动信号的电压电平变化可以被防止。According to the third exemplary embodiment of the present invention, the gate of the buffer transistor M3 has the same resistance as the resistance of the second and third carry buffer transistor TR1, the threshold of the buffer transistor M3 and the resistance of the first carry buffer transistor TR1. The voltage level corresponding to the divided voltage formed. Even if the threshold voltage of the buffer transistor M3 changes according to the change of the surrounding temperature, the threshold voltage of the third carry buffer transistor TR3 changes according to the change of the surrounding temperature, the voltage level of the carry signal depends on the surrounding temperature, and the carry signal is applied on the gate of the buffer transistor M3, thereby canceling the effect due to the variation of the threshold voltage. A voltage level change of the gate line driving signal can be prevented.
图19A和19B是示出图18的移位寄存器的输出的图。19A and 19B are graphs showing outputs of the shift register of FIG. 18 .
如图16A所示,当移位寄存器的薄膜晶体管在室温下具有正常阈值电压时,栅极线驱动信号(GOUT1、GOUT2、GOUT3、...)类似于方波。As shown in FIG. 16A , when the thin film transistors of the shift register have normal threshold voltages at room temperature, the gate line driving signals (GOUT 1 , GOUT 2 , GOUT 3 , . . . ) resemble square waves.
参照图19A,移位寄存器的薄膜晶体管的阈值电压随着温度的升高而降低,栅极线驱动信号(GOUT’1、GOUT’2、GOUT’3、...)类似于方波,并且栅极线驱动信号(GOUT’1、GOUT’2、GOUT’3、...)具有约25伏。图19A所示的重叠信号的电压电平大大小于图16B所示的重叠信号。正常栅极线驱动信号被输出。Referring to FIG. 19A, the threshold voltage of the thin film transistor of the shift register decreases as the temperature increases, the gate line driving signals (GOUT' 1 , GOUT' 2 , GOUT' 3 , ...) are similar to square waves, and The gate line drive signals (GOUT' 1 , GOUT' 2 , GOUT' 3 , . . . ) have about 25 volts. The voltage level of the overlapping signal shown in FIG. 19A is much smaller than that of the overlapping signal shown in FIG. 16B. A normal gate line driving signal is output.
参照图19B,移位寄存器的薄膜晶体管的阈值电压随着温度的降低而升高,栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)类似于方波,栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)具有约25伏的均匀电压电平。与图16C的栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)相比,图19B的栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)更类似于方波,并且栅极线驱动信号(GOUT”1、GOUT”2、GOUT”3、...)的电压电平更一致。Referring to FIG. 19B, the threshold voltage of the thin film transistor of the shift register increases as the temperature decreases, and the gate line driving signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , ...) are similar to square waves, and the gate line The polar line drive signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , . . . ) have a uniform voltage level of about 25 volts. Compared with the gate line driving signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , ...) of FIG. 16C , the gate line driving signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , ...) is more similar to a square wave, and the voltage levels of the gate line drive signals (GOUT" 1 , GOUT" 2 , GOUT" 3 , ...) are more consistent.
如图19A和19B所示,由于移位寄存器在每个级中包括进位缓冲器,因此即使当薄膜晶体管的阈值电压由于周围温度的变化而变化时,移位寄存器也可输出正常栅极线驱动信号。As shown in FIGS. 19A and 19B, since the shift register includes a carry buffer in each stage, even when the threshold voltage of the thin film transistor varies due to changes in ambient temperature, the shift register can output normal gate line drive Signal.
根据本发明的第三示例性实施例,由于每个级包括第一、第二和第三进位缓冲器晶体管TR1、TR2和TR3,因此当前级接收具有一致电压电平的第一时钟ckv或第二时钟ckvb作为进位信号,并且从当前级输出的栅极线驱动信号可以独立于从前一级输出的栅极线驱动信号。进位信号补偿阈值电压的变化。因此,移位寄存器独立于薄膜晶体管的阈值电压变化,并且可以提高制造具有大屏幕尺寸的液晶显示设备的可靠性、生产率和成品率。According to the third exemplary embodiment of the present invention, since each stage includes the first, second, and third carry buffer transistors TR1, TR2, and TR3, the current stage receives the first clock ckv or the third clock with a consistent voltage level. The second clock ckvb serves as a carry signal, and the gate line driving signal output from the current stage can be independent of the gate line driving signal output from the previous stage. The carry signal compensates for variations in threshold voltage. Therefore, the shift register is independent of threshold voltage variation of the thin film transistor, and can improve reliability, productivity, and yield in manufacturing a liquid crystal display device having a large screen size.
图20是示出根据本发明第四示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图。FIG. 20 is a block diagram showing a shift register used in a gate driver circuit according to a fourth exemplary embodiment of the present invention.
参照图20,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174、第一进位缓冲器275以及第二进位缓冲器476。在图20中,相同的标号表示图7中的相同元件,因此将省略相同元件的详细描述。Referring to FIG. 20 , each stage of the shift register includes a pull-up
第二进位缓冲器476包括第二和第四进位缓冲器晶体管TR2和TR4。具体地说,当下拉驱动器部分174(或逆变器)的输出具有低电压电平时,第二进位缓冲器476关断。因此,当进位信号被传输到第二进位缓冲器476时,进位信号的电压电平可以不被降低。另外,在1H周期之后,第二进位缓冲器476保持导通状态,同时下拉驱动器部分174导通,以便关断缓冲器晶体管M3。The
第二进位缓冲器晶体管TR2的漏极连接到当前级的上拉驱动器部分173的输入端子,并且还连接到前一级的第一进位缓冲器晶体管TR1的源极。第二进位缓冲器晶体管TR2的栅极连接到第二晶体管M2或者下拉部分172的栅极,并且第二进位缓冲器晶体管TR2的源极通过第一电源电压端子VOFF接收第一电源电压Voff。第一电源电压端子VOFF相同于图5的电源电压端子VSS。The drain of the second carry buffer transistor TR2 is connected to the input terminal of the pull-up
第四进位缓冲器晶体管TR4的漏极连接到第二进位缓冲器晶体管TR2的栅极,第四进位缓冲器晶体管TR4的栅极连接到第二进位缓冲器晶体管TR2的漏极,并且第四进位缓冲器晶体管TR4的源极通过第一电源电压端子VOFF接收第一电源电压Voff。The drain of the fourth carry buffer transistor TR4 is connected to the gate of the second carry buffer transistor TR2, the gate of the fourth carry buffer transistor TR4 is connected to the drain of the second carry buffer transistor TR2, and the fourth carry The source of the buffer transistor TR4 receives the first power voltage Voff through the first power voltage terminal VOFF.
以下,将图20的上面一级称作前一级SRCN,将图20的下面一级称作当前级SRCN+1,以便描述根据本发明第四示例性实施例的移位寄存器的操作。Hereinafter, the upper stage of FIG. 20 is referred to as the previous stage SRC N , and the lower stage of FIG. 20 is referred to as the current stage SRC N+1 in order to describe the operation of the shift register according to the fourth exemplary embodiment of the present invention. .
前一级SRCN的进位缓冲器晶体管TR1接收第一时钟ckv,并且将第一时钟ckv作为进位信号传输到当前级SRCN+1。由于时钟信号具有基本上一致的电压电平,因此可以不发生由于栅极线的RC负载而造成的RC延迟。The carry buffer transistor TR1 of the previous stage SRC N receives the first clock ckv, and transmits the first clock ckv as a carry signal to the current stage SRC N+1 . Since the clock signal has a substantially uniform voltage level, RC delay due to RC load of the gate line may not occur.
当对当前级的上拉驱动器部分173的电容器C电气充电时,第二进位缓冲器晶体管TR2关断。当当前级处于空闲状态时,第二进位缓冲器晶体管TR2的电压(Voff)施加于缓冲器晶体管M3的栅极,并且保持缓冲器晶体管M3的关断状态。When electrically charging the capacitor C of the pull-up
具体地说,当前级的上拉驱动器部分173的第三晶体管M3保持关断状态。当进位信号通过前一级的第一进位缓冲器晶体管TR1施加于第三晶体管M3时,第三晶体管M3的栅极具有与由第一进位缓冲器晶体管TR1的电阻和第二进位缓冲器晶体管TR2的电阻形成的分压电压对应的电压电平。Specifically, the third transistor M3 of the pull-up
当第二进位缓冲器晶体管TR2关断并且进位信号施加于缓冲器晶体管M3的栅极时,缓冲器晶体管M3导通,并且在缓冲器晶体管M3和电容器C之间形成电流路径,使得将电压Von施加于电容器C。When the second carry buffer transistor TR2 is turned off and the carry signal is applied to the gate of buffer transistor M3, buffer transistor M3 is turned on and a current path is formed between buffer transistor M3 and capacitor C such that the voltage Von Applied to capacitor C.
当具有低电压电平如电压电平Voff的时钟施加于缓冲器晶体管M3的栅极时,缓冲器晶体管M3关断。When a clock having a low voltage level, such as voltage level Voff, is applied to the gate of buffer transistor M3, buffer transistor M3 is turned off.
当从前一级产生的进位信号施加于第四进位缓冲器晶体管TR4的栅极时,第四进位缓冲器晶体管TR4导通,从而快速降低第二进位缓冲器晶体管TR2的栅极的电压电平。也就是,第四进位缓冲器晶体管TR4提高第二进位缓冲器晶体管TR2的开关速度。因此,可提高进位缓冲器的操作速度。When the carry signal generated from the previous stage is applied to the gate of the fourth carry buffer transistor TR4, the fourth carry buffer transistor TR4 is turned on, thereby rapidly reducing the voltage level of the gate of the second carry buffer transistor TR2. That is, the fourth carry buffer transistor TR4 increases the switching speed of the second carry buffer transistor TR2. Therefore, the operation speed of the carry buffer can be increased.
图21是示出根据本发明第五示例性实施例的用于栅极驱动器电路中的移位寄存器的方框图。FIG. 21 is a block diagram showing a shift register used in a gate driver circuit according to a fifth exemplary embodiment of the present invention.
参照图21,移位寄存器的每个级包括上拉部分171、下拉部分172、上拉驱动器部分173、下拉驱动器部分174、第一进位缓冲器275以及第二进位缓冲器576。在图21中,相同的标号表示图7中的相同元件,因此将省略相同元件的详细描述。Referring to FIG. 21 , each stage of the shift register includes a pull-up
第一进位缓冲器275包括第一进位缓冲器晶体管TR1,并且将第一时钟ckv或第二时钟ckvb输出到下一级。具体地说,第一进位缓冲器晶体管TR1的栅极连接到下拉驱动器部分174的输入端子,第一进位缓冲器晶体管TR1的漏极连接到时钟端子CKV或CKVB,并且进位缓冲器晶体管TR1的源极连接到下一级的第二进位缓冲器576。The
第二进位缓冲器576包括第二、第三和第四进位缓冲器晶体管TR2、TR3和TR4。具体地说,当下拉驱动器部分174(或逆变器)的输出具有低电压电平时,第二进位缓冲器576关断。因此,当进位信号被传输到第二进位缓冲器576时,进位信号的电压电平可以不被降低。另外,在1H周期之后,第二进位缓冲器576保持导通状态,同时下拉驱动器部分174导通,以便关断缓冲器晶体管M3。The
第二进位缓冲器晶体管TR2的漏极连接到当前级的上拉驱动器部分173的输入端子,并且还连接到前一级的第一进位缓冲器晶体管TR1的源极。第二进位缓冲器晶体管TR2的栅极连接到第二晶体管M2或下拉部分172的栅极,并且第二进位缓冲器晶体管TR2的源极连接到第三进位缓冲器晶体管TR3的漏极。The drain of the second carry buffer transistor TR2 is connected to the input terminal of the pull-up
第三进位缓冲器晶体管TR3的漏极和栅极相互共同连接,并且连接到第二进位缓冲器晶体管TR2的源极以及第三进位缓冲器晶体管TR3的源极。第三进位缓冲器晶体管TR3的源极通过第一电源电压端子VOFF接收第一电源电压Voff。 第一电源电压端子VOFF相同于图5的电源电压端子VSS。The drain and gate of the third carry buffer transistor TR3 are commonly connected to each other, and are connected to the source of the second carry buffer transistor TR2 and the source of the third carry buffer transistor TR3. The source of the third carry buffer transistor TR3 receives the first power voltage Voff through the first power voltage terminal VOFF. The first power supply voltage terminal VOFF is the same as the power supply voltage terminal VSS of FIG. 5 .
第四进位缓冲器晶体管TR4的漏极连接到第二进位缓冲器晶体管TR2的栅极,第四进位缓冲器晶体管TR4的栅极连接到第二进位缓冲器晶体管TR2的漏极,并且第四进位缓冲器晶体管TR4的源极通过第一电源电压端子VOFF接收第一电源电压Voff。The drain of the fourth carry buffer transistor TR4 is connected to the gate of the second carry buffer transistor TR2, the gate of the fourth carry buffer transistor TR4 is connected to the drain of the second carry buffer transistor TR2, and the fourth carry The source of the buffer transistor TR4 receives the first power voltage Voff through the first power voltage terminal VOFF.
当从前一级产生的进位信号施加于第四进位缓冲器晶体管TR4的栅极时,第四进位缓冲器晶体管TR4导通,从而快速降低第二进位缓冲器晶体管TR2的栅极的电压电平。也就是,第四进位缓冲器晶体管TR4提高第二进位缓冲器晶体管TR2的开关速度。因此,可提高进位缓冲器的操作速度。When the carry signal generated from the previous stage is applied to the gate of the fourth carry buffer transistor TR4, the fourth carry buffer transistor TR4 is turned on, thereby rapidly reducing the voltage level of the gate of the second carry buffer transistor TR2. That is, the fourth carry buffer transistor TR4 increases the switching speed of the second carry buffer transistor TR2. Therefore, the operation speed of the carry buffer can be increased.
根据本发明的第五示例性实施例,由于进位缓冲器还包括用于控制第二进位缓冲器晶体管TR2的导通或关断的第四进位缓冲器晶体管TR4,因此可提高第二进位缓冲器晶体管TR2的开关速度。According to the fifth exemplary embodiment of the present invention, since the carry buffer further includes the fourth carry buffer transistor TR4 for controlling the turn-on or turn-off of the second carry buffer transistor TR2, the second carry buffer can be improved. The switching speed of transistor TR2.
图22是示出在图21的电容器测量的电压的图。特别地,部分‘A’表示当进位缓冲器具有第四进位缓冲器晶体管TR4时在电容器处测量的电压,而部分‘B’表示当进位缓冲器没有第四进位缓冲器晶体管TR4时在电容器处测量的电压。FIG. 22 is a graph showing voltages measured at the capacitor of FIG. 21 . In particular, part 'A' represents the voltage measured at the capacitor when the carry buffer has the fourth carry buffer transistor TR4, and part 'B' represents the voltage measured at the capacitor when the carry buffer does not have the fourth carry buffer transistor TR4 measured voltage.
如图22所示,当将第四进位缓冲器晶体管TR4添加到进位缓冲器时,可降低第二进位缓冲器晶体管TR2的关断时间,可降低第三晶体管M3的导通或关断时间,从而可提高在电容器处测量的电压。因此,具有第四进位缓冲器晶体管TR4的进位缓冲器可用于具有大显示屏尺寸和高分辨率的液晶显示设备中,第三晶体管M3的导通或关断可以由最大电压进行控制,并且可提高移位寄存器的性能。As shown in FIG. 22, when the fourth carry buffer transistor TR4 is added to the carry buffer, the turn-off time of the second carry buffer transistor TR2 can be reduced, and the turn-on or turn-off time of the third transistor M3 can be reduced, The voltage measured at the capacitor can thus be increased. Therefore, the carry buffer having the fourth carry buffer transistor TR4 can be used in a liquid crystal display device with a large display size and high resolution, the turn-on or turn-off of the third transistor M3 can be controlled by the maximum voltage, and can be Improve the performance of shift registers.
如本发明的上面实施例所述,代替从前一级的输出端子OUT输出的输出信号(或栅极线驱动信号),将用于产生独立于前一级的输出信号的进位信号的进位缓冲器安设在每个级中,从而防止由于薄膜晶体管的阈值电压变化而造成的移位寄存器异常操作。另外,可以在大范围的周围温度内提高移位寄存器的可靠性,并且由于可提高阈值电压的变化容限,因此可提高制造移位寄存器的成品率。As described in the above embodiments of the present invention, instead of the output signal (or gate line drive signal) output from the output terminal OUT of the previous stage, a carry buffer for generating a carry signal independent of the output signal of the previous stage will be used Installed in each stage, thereby preventing abnormal operation of the shift register due to variation in threshold voltage of the thin film transistor. In addition, the reliability of the shift register can be improved over a wide range of ambient temperatures, and since the variation tolerance of the threshold voltage can be improved, the yield of manufacturing the shift register can be improved.
图23是示出从图7的移位寄存器输出的栅极线驱动信号的图。图23表示当时钟信号V[CKVB]施加于每个级时、从下拉驱动器部分(或逆变器)输出的输出电压(或节点N2的电压)的波形。V[GOUT(1)]表示根据从逆变器输出的输出电压变化的第一级的输出电压,并且V[GOUT(2)]表示根据逆变器的输出电压变化的第二级的输出电压。FIG. 23 is a diagram showing gate line driving signals output from the shift register of FIG. 7 . FIG. 23 shows the waveform of the output voltage (or the voltage of the node N2) output from the pull-down driver section (or inverter) when the clock signal V[CKVB] is applied to each stage. V[GOUT(1)] represents the output voltage of the first stage varying according to the output voltage output from the inverter, and V[GOUT(2)] represents the output voltage of the second stage varying according to the output voltage of the inverter .
参照图23,从逆变器输出的输出电压具有较缓的斜度,或者从低电压电平缓慢升至高电压电平。也就是,逆变器的操作速度慢。Referring to FIG. 23, the output voltage output from the inverter has a gentle slope, or rises slowly from a low voltage level to a high voltage level. That is, the operation speed of the inverter is slow.
逆变器的斜度依赖于逆变器的电阻和下拉晶体管M2的寄生电容C1。R×C1值越大,逆变器的斜度就越缓,并且逆变器的操作速度就越慢。The slope of the inverter depends on the resistance of the inverter and the parasitic capacitance C1 of the pull-down transistor M2. The larger the value of R×C1, the gentler the slope of the inverter, and the slower the operating speed of the inverter.
特别地,当栅极驱动器电路或移位寄存器驱动与位于具有大显示屏尺寸的液晶显示板上的薄膜晶体管连接的栅极线时,由于上拉和下拉晶体管M1和M2的晶体管尺寸增大,因此上拉和下拉晶体管M1和M2的寄生电容也增大。晶体管尺寸是指晶体管的沟道宽度(W)与晶体管的沟道长度(L)的比率(W/L)。从而,R×C1增大,并且逆变器的斜度变缓。In particular, when a gate driver circuit or a shift register drives a gate line connected to a thin film transistor on a liquid crystal display panel having a large display size, since the transistor sizes of the pull-up and pull-down transistors M1 and M2 increase, Therefore, the parasitic capacitances of the pull-up and pull-down transistors M1 and M2 also increase. The transistor size refers to the ratio (W/L) of the channel width (W) of the transistor to the channel length (L) of the transistor. Consequently, R×C1 increases, and the slope of the inverter becomes gentle.
逆变器的尺寸需要增大,以便提高逆变器的操作速度。为了增大逆变器的尺寸,需要较大的布局面积,并且逆变器的功耗增大。因此,逆变器的尺寸需要最小化。然而,当逆变器被设计成具有最小尺寸时,逆变器的操作速度慢。The size of the inverter needs to be increased in order to increase the operating speed of the inverter. In order to increase the size of the inverter, a larger layout area is required, and the power consumption of the inverter increases. Therefore, the size of the inverter needs to be minimized. However, when the inverter is designed to have a minimum size, the operation speed of the inverter is slow.
如图23所示,当逆变器的操作速度慢,特别是逆变器的输出电压从低电压电平缓慢变至高电压电平时,栅极线驱动信号例如V[Gout(1)]、V[Gout(2)]的脉冲宽度大于1H。1H是指时钟信号的脉冲宽度。从数据驱动器电路160输出的灰度级电压的脉冲宽度也为1H。As shown in Figure 23, when the operation speed of the inverter is slow, especially when the output voltage of the inverter changes slowly from a low voltage level to a high voltage level, the gate line driving signals such as V[Gout(1)], V The pulse width of [Gout(2)] is greater than 1H. 1H refers to the pulse width of the clock signal. The pulse width of the grayscale voltage output from the
例如,连接到第一栅极线的输出端子OUT的像素受施加于连接到与下一级连接的下一栅极线的数据线的灰度级电压的影响。因此,当V[Gout(1)]的脉冲宽度大于1H时,图像显示质量被恶化。通常,灰度级电压的最小值为约0伏,栅极线驱动信号V[Gout(n)]的有效脉冲宽度最好小于或等于1H。栅极线驱动信号V[Gout(n)]的有效脉冲宽度是指栅极线驱动信号V[Gout(n)]中具有大于0伏的电压电平的部分的脉冲宽度。特别地,为了减轻图像显示质量恶化,当逆变器的电压电平从低电平变至高电平时,栅极线驱动信号的电压电平需要快速地从高电平变至低电平,并且栅极线驱动信号V[Gout(n)]的有效脉冲宽度最好小于或等于H。For example, a pixel connected to an output terminal OUT of a first gate line is affected by a grayscale voltage applied to a data line connected to a next gate line connected to a next stage. Therefore, when the pulse width of V[Gout(1)] is larger than 1H, the image display quality is deteriorated. Usually, the minimum value of the gray level voltage is about 0V, and the effective pulse width of the gate line driving signal V[Gout(n)] is preferably less than or equal to 1H. The effective pulse width of the gate line driving signal V[Gout(n)] refers to the pulse width of a portion of the gate line driving signal V[Gout(n)] having a voltage level greater than 0 volts. In particular, in order to reduce the deterioration of image display quality, when the voltage level of the inverter changes from a low level to a high level, the voltage level of the gate line driving signal needs to change from a high level to a low level quickly, and The effective pulse width of the gate line driving signal V[Gout(n)] is preferably less than or equal to H.
以下,描述在布局面积的限制下具有最小逆变器尺寸并可防止图像显示质量恶化的移位寄存器。Hereinafter, a shift register that has the smallest inverter size under the constraint of the layout area and can prevent image display quality from deteriorating is described.
图24是示出根据本发明第六示例性实施例的用于栅极驱动器电路中的移位寄存器的单元级的方框图。24 is a block diagram showing a unit stage of a shift register used in a gate driver circuit according to a sixth exemplary embodiment of the present invention.
参照图24,单元级包括缓冲器晶体管808、保持晶体管806、放电晶体管804、逆变器808、上拉晶体管810以及下拉晶体管812。图24的单元级与图7的单元级具有一些区别。Referring to FIG. 24 , the cell stage includes a buffer transistor 808 , a hold transistor 806 , a discharge transistor 804 , an inverter 808 , a pull-up transistor 810 , and a pull-down transistor 812 . The cell level of FIG. 24 has some differences from the cell level of FIG. 7 .
首先,图24的逆变器808的尺寸、上拉晶体管M1的尺寸和下拉晶体管M2的尺寸与图7相同。然而,下拉晶体管M2分成第一下拉晶体管M2a和第二下拉晶体管M2b。例如,当图7的下拉晶体管M2的晶体管尺寸为1时,第一下拉晶体管M2a与第二下拉晶体管M2b之间的晶体管尺寸比率可以为0.1∶0.9。最好,第二下拉晶体管M2b的晶体管尺寸大于第一下拉晶体管M2a的尺寸。First, the size of the inverter 808 of FIG. 24 , the size of the pull-up transistor M1 , and the size of the pull-down transistor M2 are the same as those of FIG. 7 . However, the pull-down transistor M2 is divided into a first pull-down transistor M2a and a second pull-down transistor M2b. For example, when the transistor size of the pull-down transistor M2 of FIG. 7 is 1, the transistor size ratio between the first pull-down transistor M2a and the second pull-down transistor M2b may be 0.1:0.9. Preferably, the transistor size of the second pull-down transistor M2b is larger than that of the first pull-down transistor M2a.
第二,第一下拉晶体管M2a由逆变器808的输出电压驱动,第二下拉晶体管M2b由上拉驱动器晶体管M5和从下一级输出的栅极线驱动信号V[Gout(n+1)]驱动。第二上拉驱动器晶体管M5对在电容器C内充电的电荷放电。Second, the first pull-down transistor M2a is driven by the output voltage of the inverter 808, and the second pull-down transistor M2b is driven by the pull-up driver transistor M5 and the gate line drive signal V[Gout(n+1) output from the next stage. ]drive. The charge charged in the capacitor C is discharged by the second pull-up driver transistor M5.
由于第二下拉晶体管M2b由从下一级输出的栅极线驱动信号V[Gout(n+1)]驱动,因此栅极线驱动信号V[Gout(n)]的有效脉冲宽度可以小于或等于1H。另外,具有电容负载的第一下拉晶体管M2a的晶体管尺寸减小,并且逆变器的操作速度提高。Since the second pull-down transistor M2b is driven by the gate line drive signal V[Gout(n+1)] output from the next stage, the effective pulse width of the gate line drive signal V[Gout(n)] can be less than or equal to 1H. In addition, the transistor size of the first pull-down transistor M2a having a capacitive load is reduced, and the operation speed of the inverter is increased.
图25是示出从图24的移位寄存器输出的栅极线驱动信号的图。特别地,图25示出当第一下拉晶体管M2a与第二下拉晶体管M2b之间的晶体管尺寸比率为约0.1∶0.9时、从移位寄存器输出的栅极线驱动信号。FIG. 25 is a diagram showing gate line driving signals output from the shift register of FIG. 24 . In particular, FIG. 25 shows gate line driving signals output from the shift register when the transistor size ratio between the first pull-down transistor M2a and the second pull-down transistor M2b is about 0.1:0.9.
参照图25,从图25的移位寄存器输出的栅极线驱动信号V[Gout(n)]的有效脉冲宽度小于或等于1H,并且图25的逆变器的输出电压斜度陡于图23的逆变器的输出电压斜度。图25的逆变器的操作速度快于图23的逆变器的操作速度。Referring to FIG. 25, the effective pulse width of the gate line driving signal V[Gout(n)] output from the shift register of FIG. 25 is less than or equal to 1H, and the output voltage slope of the inverter of FIG. 25 is steeper than that of FIG. 23 The output voltage slope of the inverter. The operation speed of the inverter of FIG. 25 is faster than that of the inverter of FIG. 23 .
图26是示出从图7的移位寄存器输出的栅极线驱动信号和从图24的移位寄存器输出的栅极线驱动信号的图。图26同时示出图23和25的逆变器的输出电压。图23的逆变器的输出电压为V[INVERTER’],图23的移位寄存器的输出电压为V[Gout’],图25的逆变器的输出电压为V[INVERTER],并且图25的移位寄存器的输出电压为V[Gout]。FIG. 26 is a diagram illustrating a gate line driving signal output from the shift register of FIG. 7 and a gate line driving signal output from the shift register of FIG. 24 . FIG. 26 shows the output voltages of the inverters of FIGS. 23 and 25 simultaneously. The output voltage of the inverter of Fig. 23 is V[INVERTER'], the output voltage of the shift register of Fig. 23 is V[Gout'], the output voltage of the inverter of Fig. 25 is V[INVERTER], and Fig. 25 The output voltage of the shift register is V[Gout].
参照图26,图24的逆变器808的输出电压V[INVERTER]的斜度在输出电压的上升沿大于图23的逆变器的输出电压V[INVERTER’]。参照图26的‘A’和‘A”,与图23的移位寄存器的输出电压V[Gout’]的电压电平相比,图24的移位寄存器的输出电压V[Gout]的电压电平更快速地从高电平变至低电平,从而栅极线驱动信号V[Gout(n)]的有效脉冲宽度可以小于或等于1H。Referring to FIG. 26 , the slope of the output voltage V[INVERTER] of the inverter 808 in FIG. 24 is greater than the output voltage V[INVERTER'] of the inverter in FIG. 23 at the rising edge of the output voltage. Referring to 'A' and 'A' of FIG. 26, compared with the voltage level of the output voltage V[Gout'] of the shift register of FIG. 23, the voltage level of the output voltage V[Gout] of the shift register of FIG. The level changes from high level to low level more rapidly, so that the effective pulse width of the gate line driving signal V[Gout(n)] can be less than or equal to 1H.
图27是根据本发明第七示例性实施例的电源和时钟产生器的方框图。FIG. 27 is a block diagram of a power supply and clock generator according to a seventh exemplary embodiment of the present invention.
参照图27,电源可以是直流到直流转换器710,并且直流到直流转换器710的输出电源电压Von施加于时钟产生器720和移位寄存器170。时钟产生器720接收电源电压Von和Voff,并且产生时钟信号ckv和ckvb,以向移位寄存器170提供时钟信号ckv和ckvb。也就是,时钟产生器720和移位寄存器170由相同电源电压Von驱动。Referring to FIG. 27 , the power supply may be a DC-to-
图28是示出当将与施加于图27的时钟产生器的电源电压相同的电源电压施加于移位寄存器时、从移位寄存器输出的栅极线驱动信号的图。FIG. 28 is a diagram showing gate line drive signals output from the shift register when the same power supply voltage as that applied to the clock generator of FIG. 27 is applied to the shift register.
参照图28,当相同电源电压Von施加于时钟产生器720和移位寄存器170时,从第一级输出的栅极线驱动信号V[Gout(1)′]被示出为根据第一级的逆变器808(或下拉驱动晶体管M6和M7)的输出电压的变化而变化,并且从第二级输出的栅极线驱动信号V[Gout(2)′]被示出为根据第二级的逆变器808(或下拉驱动晶体管M6和M7)的输出电压的变化而变化。Referring to FIG. 28, when the same power supply voltage Von is applied to the
当相同电源电压Von施加于时钟产生器720和移位寄存器170时,时钟信号的最大电压电平基本上相同于电源电压Von的高电平。When the same power voltage Von is applied to the
当相同电源电压Von施加于具有大显示屏尺寸的液晶显示设备中的时钟产生器720和移位寄存器170时,图像显示质量可随着由于栅极线的电容负载增大而恶化。When the same power supply voltage Von is applied to the
如图28所示,栅极线驱动信号V[Gout(1)′]的脉冲宽度大于1H(时钟信号的脉冲宽度)。通常,灰度级电压的最小值为约0伏,栅极线驱动信号V[Gout(n)]的有效脉冲宽度最好小于或等于1H。特别地,为了减轻图像显示质量的恶化,当从逆变器808输出的输出电压的电压电平从低电平变至高电平时,栅极线驱动信号的电压电平需要快速地从高电平变至低电平,并且栅极线驱动信号V[Gout(n)]的有效脉冲宽度最好小于或等于1H。As shown in FIG. 28, the pulse width of the gate line drive signal V[Gout(1)'] is greater than 1H (the pulse width of the clock signal). Usually, the minimum value of the gray level voltage is about 0V, and the effective pulse width of the gate line driving signal V[Gout(n)] is preferably less than or equal to 1H. In particular, in order to reduce the deterioration of image display quality, when the voltage level of the output voltage output from the inverter 808 changes from low level to high level, the voltage level of the gate line driving signal needs to rapidly change from high level to high level. Change to low level, and the effective pulse width of the gate line driving signal V[Gout(n)] is preferably less than or equal to 1H.
由于逆变器808(或下拉晶体管M6和M7)的操作速度慢,因此栅极线驱动信号V[Gout(1)′]的脉冲宽度大于1H。如图28的部分A1’和A2’所示,由于从逆变器808输出的输出电压具有缓斜度或者从低电平缓慢升至高电平,因此,栅极线驱动信号V[Gout(1)′]和V[Gout(2)′]的电压电平在部分A1’和A2’的附近缓慢降至低电平之下。因此,栅极线驱动信号V[Gout(1)′]和V[Gout(2)′]的有效脉冲宽度大于1H。Since the operation speed of the inverter 808 (or the pull-down transistors M6 and M7 ) is slow, the pulse width of the gate line driving signal V[Gout(1)'] is greater than 1H. As shown in parts A1' and A2' of FIG. 28, since the output voltage from the inverter 808 has a gentle slope or rises slowly from a low level to a high level, the gate line driving signal V[Gout(1 )'] and the voltage levels of V[Gout(2)'] slowly drop below the low level in the vicinity of portions A1' and A2'. Therefore, the effective pulse width of the gate line driving signals V[Gout(1)'] and V[Gout(2)'] is greater than 1H.
当V[Gout(n)′]的有效脉冲宽度大于1H时,连接到第n栅极线的输出端子OUT的像素受施加于连接到与下一级连接的下一栅极线(第(n+1)栅极线)的数据线的灰度级电压的影响。因此,图像显示质量可被恶化。逆变器808的输出电压的电压电平需要从低电平快速地变至高电平,使得V[Gout(n)′]的有效脉冲宽度可以不大于1H。也就是,逆变器的输出电压的斜度需要大。可增大逆变器的输出电压的幅度,使得可增大逆变器的输出电压斜度。When the effective pulse width of V[Gout(n)'] is greater than 1H, the pixel connected to the output terminal OUT of the n-th gate line is subjected to the voltage applied to the next gate line connected to the next stage (the (nth (n)th gate line) +1) Influence of the gray scale voltage of the data line of the gate line). Therefore, image display quality may be deteriorated. The voltage level of the output voltage of the inverter 808 needs to change from low level to high level quickly, so that the effective pulse width of V[Gout(n)′] may not be greater than 1H. That is, the gradient of the output voltage of the inverter needs to be large. The magnitude of the output voltage of the inverter can be increased so that the output voltage slope of the inverter can be increased.
图29是根据本发明第七示例性实施例的电源和时钟产生器的方框图。FIG. 29 is a block diagram of a power supply and clock generator according to a seventh exemplary embodiment of the present invention.
参照图29,直流到直流转换器910产生电源电压Von,并且将电源电压Von施加于时钟产生器720。直流到直流转换器910产生另一电源电压Vona,并且将电源电压Vona施加于移位寄存器170。电源电压Vona具有与电源电压Von不同的电压电平。也就是,不同于电源电压Von的电源电压Vona施加于移位寄存器170。Referring to FIG. 29 , the DC-to-
最好,电源电压Vona的幅度大于电源电压Von的幅度,以便保持逆变器808的最大输出电压大于图28的逆变器的最大输出电压。Preferably, the magnitude of the supply voltage Vona is greater than the magnitude of the supply voltage Von in order to maintain the maximum output voltage of the inverter 808 greater than that of the inverter of FIG. 28 .
图30是示出图29的直流到直流转换器的示例电路图。图30示出用于产生大于电源电压Von的电源电压Vona的直流到直流转换器。FIG. 30 is an example circuit diagram illustrating the DC-to-DC converter of FIG. 29 . Fig. 30 shows a DC to DC converter for generating a supply voltage Vona greater than the supply voltage Von.
参照图30,直流到直流转换器接收直流电压VDD,并且通过电荷泵电路产生电源电压Von(VDD+ΔV)和电源电压Vona(VDD+2ΔV)。例如,电荷泵电路包括相互串联的多个二极管D1、D2、D3和D4以及多个电容器C2、C3、C4和C5。Referring to FIG. 30 , the DC-to-DC converter receives a DC voltage VDD, and generates a power supply voltage Von (VDD+ΔV) and a power supply voltage Vona (VDD+2ΔV) through a charge pump circuit. For example, the charge pump circuit includes a plurality of diodes D1 , D2 , D3 and D4 and a plurality of capacitors C2 , C3 , C4 and C5 connected in series.
直流电压VDD施加于二极管D1的阳极,ΔV施加于电容器C2,并且从二极管D2的阴极输出Von(VDD+ΔV)。Von施加于二极管D3的阳极,ΔV施加于电容器C4,并且从二极管D4的阴极输出Vona(VDD+2ΔV)。因此,Vona(>Von)和Von可通过电荷泵电路来产生。另外,Vona(>Von)和Von可通过电压电平偏移器(shifter)电路来产生。Von可以变化,并且Vona也可以独立于Von而变化。A DC voltage VDD is applied to the anode of the diode D1, ΔV is applied to the capacitor C2, and Von (VDD+ΔV) is output from the cathode of the diode D2. Von is applied to the anode of the diode D3, ΔV is applied to the capacitor C4, and Vona (VDD+2ΔV) is output from the cathode of the diode D4. Therefore, Vona (>Von) and Von can be generated by the charge pump circuit. In addition, Vona (>Von) and Von can be generated by a voltage level shifter (shifter) circuit. Von can vary, and Vona can also vary independently of Von.
当Vona(>Von)施加于移位寄存器170时,如图7和29所示,逆变器808由通过晶体管M6的漏极施加于移位寄存器的Vona驱动。从而,由Vona驱动的逆变器808的输出电压增大由Von驱动的逆变器的输出电压。另外,逆变器的输出电压的电压电平从低电平快速地变至高电平。因此,V[Gout(n)]的有效脉冲宽度基本上为1H或不大于1H,并且图像显示质量可以不被恶化。When Vona (>Von) is applied to the
图31是示出当图29的电源和时钟产生器驱动移位寄存器时、从移位寄存器输出的栅极线驱动信号的图。FIG. 31 is a diagram illustrating a gate line driving signal output from a shift register when the power supply and clock generator of FIG. 29 drives the shift register.
在图28中,约25伏的Von施加于逆变器808,并且逆变器808的最大输出电压为约15伏。在图31中,约45伏的Von施加于逆变器808,并且逆变器808的最大输出电压为约35伏。因此,关于逆变器的输出电压的上升沿的部分B1和B1’,V[Gout(1)]和V[Gout(1)]的有效脉冲宽度小于图28中的有效脉冲宽度。In FIG. 28, a Von of about 25 volts is applied to the inverter 808, and the maximum output voltage of the inverter 808 is about 15 volts. In FIG. 31, a Von of about 45 volts is applied to the inverter 808, and the maximum output voltage of the inverter 808 is about 35 volts. Therefore, the effective pulse widths of V[Gout(1)] and V[Gout(1)] are smaller than those in FIG. 28 with respect to portions B1 and B1' of the rising edge of the output voltage of the inverter.
图32是示出当图29和28的电源和时钟产生器驱动移位寄存器时、从移位寄存器输出的栅极线驱动信号的图。FIG. 32 is a diagram showing gate line driving signals output from the shift register when the power and clock generators of FIGS. 29 and 28 drive the shift register.
参照图32,V[Gout’]表示当时钟产生器和移位寄存器由相同电源电压Von驱动时的栅极线驱动信号。V[Gout]表示当Von施加于时钟产生器而大于Von的Vona施加于移位寄存器时的栅极线驱动信号。Referring to FIG. 32, V[Gout'] represents a gate line driving signal when the clock generator and the shift register are driven by the same power supply voltage Von. V[Gout] represents a gate line driving signal when Von is applied to the clock generator and Vona greater than Von is applied to the shift register.
关于逆变器的输出电压的下降沿的部分A和A’,V[Gout]的有效脉冲宽度窄于V[Gout’]的有效脉冲宽度。Regarding portions A and A' of the falling edge of the output voltage of the inverter, the effective pulse width of V[Gout] is narrower than that of V[Gout'].
虽然上述实施例讨论了用于驱动液晶显示设备的栅极线的移位寄存器,但是本发明也可用于有机场致发光显示设备中。Although the above-described embodiments discuss a shift register for driving gate lines of a liquid crystal display device, the present invention can also be used in an organic electroluminescence display device.
虽然详细描述了本发明的示例性实施例及其优点,但是应当理解,在不脱离由所附权利要求限定的本发明的范围的情况下,可以对其进行各种改变、替换和变更。Although the exemplary embodiments of the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the scope of the invention as defined by the appended claims.
Claims (31)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020033455A KR100853720B1 (en) | 2002-06-15 | 2002-06-15 | Amorphous-silicon thin film transistor gate drive shift register and liquid crystal display having the same |
KR1020020033455 | 2002-06-15 | ||
KR1020020037946 | 2002-07-02 | ||
KR1020020039129 | 2002-07-06 | ||
KR1020030006683 | 2003-02-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1860519A true CN1860519A (en) | 2006-11-08 |
CN100476941C CN100476941C (en) | 2009-04-08 |
Family
ID=32387144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038124777A Expired - Lifetime CN100476941C (en) | 2002-06-15 | 2003-06-13 | Method for driving shift register, shift register, liquid crystal display device with shift register |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100853720B1 (en) |
CN (1) | CN100476941C (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101335050A (en) * | 2007-06-26 | 2008-12-31 | 上海天马微电子有限公司 | Shift register and liquid crystal display using the same |
CN101303896B (en) * | 2008-06-17 | 2010-07-28 | 友达光电股份有限公司 | Shift register and shift register unit to reduce frequency coupling effect |
CN101408684B (en) * | 2007-10-12 | 2010-08-25 | 群康科技(深圳)有限公司 | Liquid crystal display apparatus and drive method thereof |
CN101515431B (en) * | 2008-02-22 | 2011-01-19 | 财团法人工业技术研究院 | Shift Registers for Gate Drivers |
CN101567160B (en) * | 2009-05-31 | 2011-02-09 | 上海广电光电子有限公司 | GIP type liquid crystal display panel and detecting method thereof |
CN102013244A (en) * | 2010-11-10 | 2011-04-13 | 友达光电股份有限公司 | Liquid crystal display driving circuit and related driving method |
CN101556831B (en) * | 2008-04-10 | 2011-04-13 | 北京京东方光电科技有限公司 | Shift register |
CN101408700B (en) * | 2007-10-08 | 2011-07-13 | 中华映管股份有限公司 | flat panel display |
CN102222488A (en) * | 2011-06-27 | 2011-10-19 | 福建华映显示科技有限公司 | Amorphous silicon display device |
CN101556832B (en) * | 2008-04-10 | 2012-05-30 | 北京京东方光电科技有限公司 | Shift register and liquid crystal display grid electrode driving device |
CN102486909A (en) * | 2010-12-06 | 2012-06-06 | 奇美电子股份有限公司 | monitor |
CN102682699A (en) * | 2012-04-20 | 2012-09-19 | 京东方科技集团股份有限公司 | Grid electrode driving circuit and display |
CN103021466A (en) * | 2012-12-14 | 2013-04-03 | 京东方科技集团股份有限公司 | Shift register, as well as work method, grid drive device and display device thereof |
CN103366690A (en) * | 2012-03-30 | 2013-10-23 | 群康科技(深圳)有限公司 | An image display system and a display panel |
CN104282269A (en) * | 2014-10-17 | 2015-01-14 | 京东方科技集团股份有限公司 | Display circuit, driving method of display circuit and display device |
CN104658466A (en) * | 2015-01-27 | 2015-05-27 | 京东方科技集团股份有限公司 | GOA circuit and driving method thereof, as well as display panel and display device |
CN103218962B (en) * | 2012-01-20 | 2015-10-28 | 群康科技(深圳)有限公司 | Shift register |
CN105895011A (en) * | 2015-01-26 | 2016-08-24 | 上海和辉光电有限公司 | Shift register unit, gate driving circuit, and display panel |
CN106683606A (en) * | 2015-08-13 | 2017-05-17 | 乐金显示有限公司 | Gate driving unit and display device including the same |
US9892676B2 (en) | 2014-10-17 | 2018-02-13 | Boe Technology Group Co., Ltd. | Gate driving circuit providing a matched gate driving signal, corresponding driving method, display circuit and display apparatus |
CN107959492A (en) * | 2016-10-17 | 2018-04-24 | 英飞凌科技股份有限公司 | For driving the method and drive circuit and electrical fuse circuit of electronic switch |
CN108694921A (en) * | 2017-03-29 | 2018-10-23 | 三星显示有限公司 | Display device |
CN112233622A (en) * | 2020-10-22 | 2021-01-15 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and display panel |
CN114079447A (en) * | 2020-08-14 | 2022-02-22 | 美国亚德诺半导体公司 | Boost switch driver for high speed signal switching |
CN115346467A (en) * | 2016-04-15 | 2022-11-15 | 三星显示有限公司 | Display device |
TWI849017B (en) * | 2018-12-12 | 2024-07-21 | 南韓商三星顯示器有限公司 | Scan driver and display device having the same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101016739B1 (en) * | 2003-12-29 | 2011-02-25 | 엘지디스플레이 주식회사 | Shift register |
KR100705628B1 (en) * | 2003-12-30 | 2007-04-11 | 비오이 하이디스 테크놀로지 주식회사 | Driving circuit of liquid crystal display device |
KR101027827B1 (en) * | 2004-04-30 | 2011-04-07 | 엘지디스플레이 주식회사 | Shift register and its driving method |
KR101019416B1 (en) * | 2004-06-29 | 2011-03-07 | 엘지디스플레이 주식회사 | Shift register and flat panel display device including the same |
JP2006164477A (en) * | 2004-12-10 | 2006-06-22 | Casio Comput Co Ltd | Shift register, drive control method of same, and display driving device provided with same |
KR101146425B1 (en) * | 2004-12-31 | 2012-05-17 | 엘지디스플레이 주식회사 | Shift register |
KR101143004B1 (en) | 2005-06-13 | 2012-05-11 | 삼성전자주식회사 | Shift register and display device including shifter register |
KR101137846B1 (en) * | 2005-12-06 | 2012-04-20 | 엘지디스플레이 주식회사 | Shift register |
KR101232155B1 (en) * | 2006-05-16 | 2013-02-15 | 엘지디스플레이 주식회사 | A shift register |
KR101327840B1 (en) * | 2006-12-29 | 2013-11-20 | 엘지디스플레이 주식회사 | A liquid crystal display device |
KR101329791B1 (en) * | 2007-07-16 | 2013-11-15 | 삼성디스플레이 주식회사 | Liquid crystal display |
KR101335678B1 (en) * | 2013-03-11 | 2013-12-03 | 한양대학교 산학협력단 | Level Shifter using oxide TFTs and Scan Driving Circuit having the Level Shifter |
KR102208397B1 (en) * | 2014-08-05 | 2021-01-27 | 엘지디스플레이 주식회사 | Gate driver of display device |
KR102643465B1 (en) | 2017-01-17 | 2024-03-05 | 삼성디스플레이 주식회사 | Display device and driving method thereof |
KR102551295B1 (en) * | 2018-10-24 | 2023-07-05 | 삼성디스플레이 주식회사 | Gate driver and display apparatus having the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1156491B1 (en) * | 1996-01-11 | 2005-03-23 | Thales Avionics LCD S.A. | Improvements in shift registers using single type "MIS" transistors |
KR100242244B1 (en) * | 1997-08-09 | 2000-02-01 | 구본준 | Scanning circuit |
KR100281336B1 (en) * | 1998-10-21 | 2001-03-02 | 구본준 | Shift register circuit |
KR100752602B1 (en) * | 2001-02-13 | 2007-08-29 | 삼성전자주식회사 | Shift resister and liquid crystal display using the same |
-
2002
- 2002-06-15 KR KR1020020033455A patent/KR100853720B1/en active IP Right Grant
-
2003
- 2003-06-13 CN CNB038124777A patent/CN100476941C/en not_active Expired - Lifetime
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101335050A (en) * | 2007-06-26 | 2008-12-31 | 上海天马微电子有限公司 | Shift register and liquid crystal display using the same |
CN101335050B (en) * | 2007-06-26 | 2011-02-09 | 上海天马微电子有限公司 | Shift register and liquid crystal display using the same |
CN101408700B (en) * | 2007-10-08 | 2011-07-13 | 中华映管股份有限公司 | flat panel display |
CN101408684B (en) * | 2007-10-12 | 2010-08-25 | 群康科技(深圳)有限公司 | Liquid crystal display apparatus and drive method thereof |
CN101515431B (en) * | 2008-02-22 | 2011-01-19 | 财团法人工业技术研究院 | Shift Registers for Gate Drivers |
CN101556832B (en) * | 2008-04-10 | 2012-05-30 | 北京京东方光电科技有限公司 | Shift register and liquid crystal display grid electrode driving device |
CN101556831B (en) * | 2008-04-10 | 2011-04-13 | 北京京东方光电科技有限公司 | Shift register |
CN101303896B (en) * | 2008-06-17 | 2010-07-28 | 友达光电股份有限公司 | Shift register and shift register unit to reduce frequency coupling effect |
CN101567160B (en) * | 2009-05-31 | 2011-02-09 | 上海广电光电子有限公司 | GIP type liquid crystal display panel and detecting method thereof |
CN102013244A (en) * | 2010-11-10 | 2011-04-13 | 友达光电股份有限公司 | Liquid crystal display driving circuit and related driving method |
CN102486909A (en) * | 2010-12-06 | 2012-06-06 | 奇美电子股份有限公司 | monitor |
CN102486909B (en) * | 2010-12-06 | 2014-03-26 | 群康科技(深圳)有限公司 | Displayer |
CN102222488A (en) * | 2011-06-27 | 2011-10-19 | 福建华映显示科技有限公司 | Amorphous silicon display device |
CN103218962B (en) * | 2012-01-20 | 2015-10-28 | 群康科技(深圳)有限公司 | Shift register |
CN103366690B (en) * | 2012-03-30 | 2016-01-20 | 群康科技(深圳)有限公司 | Image display system and display pannel |
CN103366690A (en) * | 2012-03-30 | 2013-10-23 | 群康科技(深圳)有限公司 | An image display system and a display panel |
CN102682699B (en) * | 2012-04-20 | 2014-12-17 | 京东方科技集团股份有限公司 | Grid electrode driving circuit and display |
CN102682699A (en) * | 2012-04-20 | 2012-09-19 | 京东方科技集团股份有限公司 | Grid electrode driving circuit and display |
CN103021466A (en) * | 2012-12-14 | 2013-04-03 | 京东方科技集团股份有限公司 | Shift register, as well as work method, grid drive device and display device thereof |
US9898991B2 (en) | 2012-12-14 | 2018-02-20 | Boe Technology Group Co., Ltd. | Shift register, gate driver and display device |
US9892676B2 (en) | 2014-10-17 | 2018-02-13 | Boe Technology Group Co., Ltd. | Gate driving circuit providing a matched gate driving signal, corresponding driving method, display circuit and display apparatus |
US9997136B2 (en) | 2014-10-17 | 2018-06-12 | Boe Technology Group Co., Ltd. | Display circuit and driving method and display apparatus thereof |
CN104282269A (en) * | 2014-10-17 | 2015-01-14 | 京东方科技集团股份有限公司 | Display circuit, driving method of display circuit and display device |
CN105895011A (en) * | 2015-01-26 | 2016-08-24 | 上海和辉光电有限公司 | Shift register unit, gate driving circuit, and display panel |
CN104658466B (en) * | 2015-01-27 | 2017-05-10 | 京东方科技集团股份有限公司 | GOA circuit and driving method thereof, as well as display panel and display device |
CN104658466A (en) * | 2015-01-27 | 2015-05-27 | 京东方科技集团股份有限公司 | GOA circuit and driving method thereof, as well as display panel and display device |
CN106683606A (en) * | 2015-08-13 | 2017-05-17 | 乐金显示有限公司 | Gate driving unit and display device including the same |
CN115346467A (en) * | 2016-04-15 | 2022-11-15 | 三星显示有限公司 | Display device |
CN107959492A (en) * | 2016-10-17 | 2018-04-24 | 英飞凌科技股份有限公司 | For driving the method and drive circuit and electrical fuse circuit of electronic switch |
CN108694921A (en) * | 2017-03-29 | 2018-10-23 | 三星显示有限公司 | Display device |
TWI849017B (en) * | 2018-12-12 | 2024-07-21 | 南韓商三星顯示器有限公司 | Scan driver and display device having the same |
CN114079447A (en) * | 2020-08-14 | 2022-02-22 | 美国亚德诺半导体公司 | Boost switch driver for high speed signal switching |
CN112233622A (en) * | 2020-10-22 | 2021-01-15 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and display panel |
CN112233622B (en) * | 2020-10-22 | 2022-04-05 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and display panel |
Also Published As
Publication number | Publication date |
---|---|
KR100853720B1 (en) | 2008-08-25 |
KR20030095854A (en) | 2003-12-24 |
CN100476941C (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1860519A (en) | Method of driving a shift register, a shift register, a liquid crystal display device having the shift register | |
CN1385825A (en) | Pulse output circuit, shift register and display device | |
CN1218288C (en) | Shift register and image display device | |
CN1197050C (en) | Signal drive circuit, display, electrooptical apparatus and signal driving method | |
CN1526141A (en) | Shift register and liquid crystal display using it | |
CN1043702C (en) | Semiconductor device | |
CN1183405C (en) | Operational amplifier circuit, drive circuit, and drive method | |
CN1178191C (en) | display device | |
CN1198252C (en) | Display device and driving method thereof, and display pattern evaluation for sub-element of picture | |
CN1277247C (en) | Electrical level shifting circuit and display device including it | |
CN1255777C (en) | Method of driving image display deivce, driving device for image display device, and image display device | |
CN1248031C (en) | Display device and portable apparatus | |
CN1191565C (en) | Operational amplifier circuit and drive circuit | |
CN1589461A (en) | Display device | |
CN1595243A (en) | Display device | |
CN1892753A (en) | Integrated circuit device and electronic instrument | |
CN1416110A (en) | Displaying device | |
CN1892796A (en) | Integrated circuit device and electronic instrument | |
CN1523547A (en) | Semiconductor device, display device and electronic device using the same | |
CN1868003A (en) | Shift register, liquid crystal display device having the shift register and method of driving scan lines using the same | |
CN1480952A (en) | Shift register and liquid crystal display with the same shift register | |
CN1892750A (en) | Integrated circuit device and electronic instrument | |
CN1822087A (en) | Liquid crystal display device and driving method thereof | |
CN1940651A (en) | Display device | |
CN1224509A (en) | Active Matrix Liquid Crystal Display Device Driving Circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SAMSUNG MONITOR CO., LTD. Free format text: FORMER OWNER: SAMSUNG ELECTRONICS CO., LTD. Effective date: 20121029 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20121029 Address after: Gyeonggi Do, South Korea Patentee after: SAMSUNG DISPLAY Co.,Ltd. Address before: Gyeonggi Do, South Korea Patentee before: Samsung Electronics Co.,Ltd. |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20090408 |