CN1815218A - Ultraviolet-ray visible absorbing/fluorescent dual-purpose flow cell - Google Patents
Ultraviolet-ray visible absorbing/fluorescent dual-purpose flow cell Download PDFInfo
- Publication number
- CN1815218A CN1815218A CN 200610009153 CN200610009153A CN1815218A CN 1815218 A CN1815218 A CN 1815218A CN 200610009153 CN200610009153 CN 200610009153 CN 200610009153 A CN200610009153 A CN 200610009153A CN 1815218 A CN1815218 A CN 1815218A
- Authority
- CN
- China
- Prior art keywords
- flow cell
- ultraviolet
- quartz
- optical fiber
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010453 quartz Substances 0.000 claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000013307 optical fiber Substances 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 21
- 239000004696 Poly ether ether ketone Substances 0.000 claims abstract description 20
- 229920002530 polyetherether ketone Polymers 0.000 claims abstract description 20
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000004642 Polyimide Substances 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000012856 packing Methods 0.000 claims 2
- 210000004027 cell Anatomy 0.000 abstract description 39
- 210000005056 cell body Anatomy 0.000 abstract description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 abstract description 3
- 150000002576 ketones Chemical class 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 6
- 238000001917 fluorescence detection Methods 0.000 description 6
- 238000004811 liquid chromatography Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Optical Measuring Cells (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
紫外-可见吸收/荧光两用流通池,涉及一种用于液相色谱仪的部件,尤其是涉及一种用于便携式液相色谱仪检测器的紫外-可见吸收/荧光两用流通池。提供一种一体化的紫外-可见吸收/荧光两用流通池,设有池体、光导石英毛细管、聚醚醚酮衬管、自聚焦透镜、密封垫圈、垫片、光纤和液体流路管路。光导石英毛细管安装在聚醚醚酮衬管内并装填在池体的管腔中;自聚焦透镜设置在光线入口方向,与池体以密封垫圈密封并固定;垫片位于自聚焦透镜和聚醚醚酮衬管之间,垫片的缺口对准流路方向,其作用是填补二者之间行成的多余空间;入口光纤和出口光纤及进出液管分别由接头和卡套固定在池体上构成密封流路。
The ultraviolet-visible absorption/fluorescence dual-purpose flow cell relates to a component used for a liquid chromatograph, in particular to an ultraviolet-visible absorption/fluorescence dual-purpose flow cell for a portable liquid chromatograph detector. Provides an integrated UV-visible absorption/fluorescence dual-purpose flow cell, which is equipped with a cell body, a photoconductive quartz capillary, a polyether ether ketone liner, a self-focusing lens, a sealing gasket, a gasket, an optical fiber, and a liquid flow line . The light-guiding quartz capillary is installed in the polyetheretherketone liner and filled in the lumen of the cell body; the self-focusing lens is arranged in the direction of the light entrance, and is sealed and fixed with the cell body with a sealing gasket; the gasket is located between the self-focusing lens and the polyetherether ether Between the ketone liners, the notch of the gasket is aligned with the direction of the flow path, and its function is to fill the excess space formed between the two; the inlet and outlet fibers and the inlet and outlet pipes are respectively fixed on the cell body by joints and ferrules Form a sealed flow path.
Description
技术领域technical field
本发明涉及一种用于液相色谱仪的部件,尤其是涉及一种用于便携式液相色谱仪检测器的光纤式紫外-可见吸收/荧光两用流通池。The invention relates to a component for a liquid chromatograph, in particular to an optical fiber type ultraviolet-visible absorption/fluorescence dual-purpose flow cell for a portable liquid chromatograph detector.
背景技术Background technique
紫外-可见吸收检测器和荧光检测器是液相色谱仪器上最常见的两种检测器。在紫外-可见吸收检测器和荧光检测器中,流通池都是重要的部件。在高效液相色谱紫外-可见吸收检测器中来自光源的光穿过流通池中一定长度的样品溶液后,部分光能量被样品分子吸收,测量出射光强度经过换算可以得到吸光度的数据。常见的一种Z型紫外-可见吸收流通池示意图见图1。在高效液相色谱荧光检测器中,来自光源的光照射荧光池中的样品溶液,部分光能量被样品分子吸收,样品分子受到激发而发射出荧光光,从与入射光路成一定角度(通常为直角)的方向检测发射出荧光的强度。常见的一种荧光流通池结构见图2。UV-Vis absorption detectors and fluorescence detectors are the two most common detectors found on liquid chromatography instruments. Flow cells are important components in both UV-Vis absorption and fluorescence detectors. After the light from the light source in the HPLC UV-Vis absorption detector passes through a certain length of the sample solution in the flow cell, part of the light energy is absorbed by the sample molecules, and the measured light intensity can be converted to obtain the absorbance data. A schematic diagram of a common Z-type UV-Vis absorption flow cell is shown in Figure 1. In the HPLC fluorescence detector, the light from the light source irradiates the sample solution in the fluorescence cell, part of the light energy is absorbed by the sample molecules, and the sample molecules are excited to emit fluorescent light, which forms a certain angle (usually The direction of the right angle) detects the intensity of the emitted fluorescence. A common fluorescent flow cell structure is shown in Figure 2.
对检测器本身来说,流通池光程越长,灵敏度越高;对高效液相色谱检测器来说,池体积越小,检测器死体积越小,对柱分离效果影响越小。这就构成了一对矛盾,为提高灵敏度而加长流通池长度会造成池体积增大,柱外效应增大而降低色谱分离效果;为减小池体积而缩小流通池通路截面又会对光路设计等方面带来问题。For the detector itself, the longer the optical path of the flow cell, the higher the sensitivity; for the HPLC detector, the smaller the cell volume, the smaller the dead volume of the detector, and the smaller the impact on the separation effect of the column. This constitutes a pair of contradictions. Extending the length of the flow cell to improve sensitivity will increase the volume of the cell, increase the extra-column effect and reduce the chromatographic separation effect; reduce the channel cross section of the flow cell to reduce the volume of the cell and affect the design of the optical path, etc. bring about problems.
便携式仪器系统对每个部件的大小、重量、功耗等参数都有严格的限制,通常色谱仪器所用的紫外-可见吸收检测器和荧光检测器检测器体积相对较大、结构复杂,紫外-可见吸收流通池和荧光流通池不能通用,要实现紫外-可见吸收检测和荧光检测必须分别配备两种检测器。目前还没有集紫外-可见吸收检测和荧光检测功能于一体的两用流通池及相应的两用检测器出现。受上述因素的限制,目前常见的液相色谱紫外-可见吸收检测器和荧光检测器在便携式色谱系统中应用有较大困难。Portable instrument systems have strict restrictions on the size, weight, power consumption and other parameters of each component. Usually, the UV-visible absorption detectors and fluorescence detectors used in chromatographic instruments are relatively large in size and complex in structure. Absorption flow cells and fluorescence flow cells cannot be used universally, and two detectors must be equipped to realize UV-visible absorption detection and fluorescence detection respectively. At present, there is no dual-purpose flow cell and corresponding dual-purpose detector integrating the functions of ultraviolet-visible absorption detection and fluorescence detection. Due to the limitations of the above factors, it is difficult to apply the common liquid chromatography UV-visible absorption detector and fluorescence detector in the portable chromatography system.
发明内容Contents of the invention
本发明针对便携式液相色谱仪器使用微型毛细管整体柱,进样量非常少,这要求检测器必须具有很小的体积和较高的检测灵敏度。另外,便携式液相色谱仪器要求检测系统体积小、重量轻、功耗低。为此本发明提供一种一体化的紫外-可见吸收/荧光两用微型流通池,与微型发光二极管光源、微型光栅光谱仪、配套光纤组件配合使用,在同一个流通池进行紫外-可见-吸收与荧光两种检测方式,实现了紫外-可见吸收检测器和荧光检测器检测器合二为一。The invention uses a micro-capillary monolithic column for the portable liquid chromatography instrument, and the injection volume is very small, which requires the detector to have a small volume and high detection sensitivity. In addition, portable liquid chromatography instruments require detection systems with small volume, light weight, and low power consumption. For this reason, the present invention provides an integrated ultraviolet-visible absorption/fluorescence dual-purpose micro-flow cell, which is used in conjunction with a micro-LED light source, a micro-grating spectrometer, and supporting optical fiber components to perform ultraviolet-visible-absorption and fluorescence in the same flow cell. Two fluorescence detection methods realize the combination of ultraviolet-visible absorption detector and fluorescence detector.
本发明设有池体、光导石英毛细管、聚醚醚酮(PEEK)衬管、自聚焦透镜、密封垫圈、垫片、光纤和液体流路管路。光导石英毛细管安装在聚醚醚酮衬管内并装填在池体的管腔中;自聚焦透镜设置在光线入口方向,与池体以密封垫圈密封并固定;垫片位于自聚焦透镜和聚醚醚酮衬管之间,垫片的缺口对准流路方向,其作用是填补二者之间行成的多余空间;入口光纤和出口光纤及进出液管分别由接头和卡套固定在池体上构成密封流路。The invention is provided with a pool body, a photoconductive quartz capillary, a polyether ether ketone (PEEK) liner, a self-focusing lens, a sealing gasket, a spacer, an optical fiber and a liquid flow pipeline. The light-guiding quartz capillary is installed in the polyetheretherketone liner and filled in the lumen of the cell body; the self-focusing lens is arranged in the direction of the light entrance, and is sealed and fixed with the cell body with a sealing gasket; the gasket is located between the self-focusing lens and the polyetherether ether Between the ketone liners, the notch of the gasket is aligned with the direction of the flow path, and its function is to fill the excess space formed between the two; the inlet and outlet fibers and the inlet and outlet pipes are respectively fixed on the cell body by joints and ferrules Form a sealed flow path.
光导石英毛细管的管壁为三层同心管状结构,外层为聚酰亚胺涂层,向内依次是掺杂石英层和纯石英内壁层,掺杂石英层与纯石英内壁层之间的界面为全反射界面。The wall of the light-guiding quartz capillary is a three-layer concentric tubular structure, the outer layer is polyimide coating, and the inner layer is doped quartz layer and pure quartz inner wall layer, and the interface between doped quartz layer and pure quartz inner wall layer is a fully reflective interface.
由于本发明选用了光导石英毛细管作为流通池光路部分的内壁,其管壁为三层同心管状结构,外层为聚酰亚胺涂层,起支撑保护作用;向内依次是掺杂石英层和纯石英内壁,两层石英之间的界面形成了全反射界面,当从管内射向管壁的光线入射角大于某临界角时会发生全反射。用内径很小的光导石英毛细管作为流通池的内壁,可以在维持池体积微小的同时拥有较长的光程长度。Because the present invention selects the photoconductive quartz capillary tube as the inner wall of the optical path part of the flow cell, its tube wall is a three-layer concentric tubular structure, and the outer layer is a polyimide coating, which plays a supporting and protective role; inwards are doped quartz layer and In the inner wall of pure quartz, the interface between the two layers of quartz forms a total reflection interface. When the incident angle of light from the inside of the tube to the tube wall is greater than a certain critical angle, total reflection will occur. Using a light-guiding quartz capillary with a small inner diameter as the inner wall of the flow cell can have a longer optical path length while maintaining a small cell volume.
在本发明中,为了解决因光导石英毛细管内径较小造成的光路连接困难问题,采用了光导纤维连接流通池光路,光导纤维和光导毛细管之间的光路耦合使用了自聚焦透镜作为聚光器件。自聚焦透镜又称为梯度变折射率透镜,是指其折射率分布是沿径向渐变的柱状光学透镜。通过自聚焦透镜将光纤射出的具有一定发散角的光汇聚进入光导石英毛细管,由于光导石英毛细管内壁能够使光线沿管内全反射传导,不会被管壁吸收而损失,可以在较小的光路截面上保持较高的光密度。In the present invention, in order to solve the difficult problem of optical path connection caused by the small inner diameter of the optical quartz capillary, an optical fiber is used to connect the optical path of the flow cell, and the optical coupling between the optical fiber and the optical capillary uses a self-focusing lens as a light concentrating device. Self-focusing lens, also known as gradient variable refractive index lens, refers to a cylindrical optical lens whose refractive index distribution is gradually changed along the radial direction. Through the self-focusing lens, the light with a certain divergence angle emitted by the optical fiber is converged into the light-guiding quartz capillary. Since the inner wall of the light-guiding quartz capillary can completely reflect and transmit the light along the tube, it will not be absorbed and lost by the tube wall, and can be used in a small optical path section. maintain a high optical density.
附图说明Description of drawings
图1为现有常用的Z型紫外-可见吸收流通池结构示意图。Fig. 1 is a schematic diagram of the structure of a commonly used Z-type ultraviolet-visible absorption flow cell.
图2为现有常用的荧光流通池示结构意图。Fig. 2 is a schematic structural diagram of an existing commonly used fluorescent flow cell.
图3为本发明实施例的结构组成示意图。在图3中各部分名称标记:池体31;光导石英毛细管32;PEEK衬管33;C字型垫片34;自聚焦透镜35;密封垫圈36;垫片37;光路进口光纤及接头38;光路出口光纤及接头39;流路进口管路及接头310;流路进口管路及接头311。Fig. 3 is a schematic diagram of the structural composition of an embodiment of the present invention. In Fig. 3, the name marks of each part:
图4为本发明的紫外可见检测模式原理图。Fig. 4 is a schematic diagram of the ultraviolet-visible detection mode of the present invention.
图5为本发明的荧光检测模式原量图。Fig. 5 is a schematic diagram of the fluorescence detection mode of the present invention.
图6为本发明实施例的光导石英毛细管结构图。Fig. 6 is a structural diagram of a photoconductive quartz capillary according to an embodiment of the present invention.
图7为本发明实施例的自聚焦透镜聚光原理图。Fig. 7 is a schematic diagram of the light-gathering principle of the self-focusing lens of the embodiment of the present invention.
图8为本发明实施例的池体结构示意图。Fig. 8 is a schematic diagram of the structure of the cell body according to the embodiment of the present invention.
图9为本发明实施例的流通池光路入口端零件图。在图9中各部分名称标记:PEEK衬管33;光导石英毛细管32;C字型垫片34;自聚焦透镜35;密封垫圈36;垫片37;光路进口光纤及接头38。Fig. 9 is a component diagram of the entrance end of the optical path of the flow cell according to the embodiment of the present invention. In Fig. 9, the names of each part are marked:
图10为本发明实施例的流通池光路入口端零件装配细节图。在图10中各部分名称标记:池体31;PEEK衬管33;光导石英毛细管32;C字型垫片34;自聚焦透镜35;流路出口管路310;密封垫圈36;垫片37;光纤套管41;锥形卡套42;手紧接头43。Fig. 10 is a detailed assembly diagram of parts at the entrance end of the optical path of the flow cell according to the embodiment of the present invention. In Fig. 10, the name marks of each part:
具体实施方式Detailed ways
以下将结合附图对本发明的结构组成及其工作模式与原理作进一步说明。The structural composition, working mode and principle of the present invention will be further described below in conjunction with the accompanying drawings.
流通池的主要部件及装配位置关系见图3,本发明设有池体31、光导石英毛细管32、聚醚醚酮(PEEK)衬管33、C字型垫片34、自聚焦透镜35、密封垫圈36与37、光纤38与39、液体流路管路310与311等零部件。光导石英毛细管32安装在PEEK衬管33内并装填在池体31的管腔中;自聚焦透镜35设置在光线入口方向,与池体31以密封垫圈36与37密封并固定;C字型垫片34位于自聚焦透镜35和PEEK衬管33之间,C字型垫片34的缺口对准流路方向,其作用是填补二者之间行成的多余空间;入口光纤38和出口光纤39及进出液管310、311分别由接头和卡套固定在池体上构成密封流路。The main components and assembly positions of the flow cell are shown in Figure 3. The present invention is provided with a
紫外可见吸收和荧光检测两种工作模式的工作原理如图4和5所示。在紫外-可见吸收检测模式下,从光源发出的光由双股分岔光纤的一股导入流通池,经过样品溶液吸收后由出口单股光纤导入微型光栅光谱仪,测定其吸光度;在荧光检测模式下,从光源发出的光由双股分岔光纤的一股导入流通池,照射激发样品中的荧光活性物质,荧光活性物质受激发后发出的荧光沿与入射光相反的方向沿双股分岔光纤的另一股进入微型光栅光谱仪,测定其光强度,扣除杂散光背景后得到荧光强度。The working principles of the two working modes of UV-Vis absorption and fluorescence detection are shown in Figures 4 and 5. In the ultraviolet-visible absorption detection mode, the light emitted from the light source is introduced into the flow cell by one branch of the bifurcated optical fiber, and after being absorbed by the sample solution, it is introduced into the micro-grating spectrometer by the single-strand optical fiber at the outlet to measure its absorbance; in the fluorescence detection mode Next, the light emitted from the light source is introduced into the flow cell by one branch of the bifurcated optical fiber, and irradiates and excites the fluorescent active substance in the sample. The other strand of the optical fiber enters the micro-grating spectrometer to measure its light intensity, and obtain the fluorescence intensity after deducting the stray light background.
参见图6,光导石英毛细管的管壁为三层同心管状结构,外层为聚酰亚胺涂层,向内依次是掺杂石英层和纯石英内壁层,掺杂石英层与纯石英内壁层之间的界面为全反射界面。Referring to Figure 6, the wall of the light-guiding quartz capillary is a three-layer concentric tubular structure, the outer layer is a polyimide coating, and the inner layer is a doped quartz layer and a pure quartz inner wall layer, and the doped quartz layer and a pure quartz inner wall layer The interface between them is a total reflection interface.
参见图7,在本发明中,为了解决因光导石英毛细管内径较小造成的光路连接困难问题,采用了光导纤维连接流通池光路,光导纤维和光导毛细管之间的光路耦合使用了自聚焦透镜作为聚光器件。通过自聚焦透镜将光纤射出的具有一定发散角的光汇聚进入光导石英毛细管,由于光导石英毛细管内壁能够使光线沿管内全反射传导,不会被管壁吸收而损失,可以在较小的光路截面上保持较高的光密度。Referring to Fig. 7, in the present invention, in order to solve the difficult problem of optical path connection caused by the small inner diameter of the light-guiding quartz capillary, an optical fiber is used to connect the optical path of the flow cell, and the optical path coupling between the optical fiber and the light-guiding capillary uses a self-focusing lens as Concentrating devices. Through the self-focusing lens, the light with a certain divergence angle emitted by the optical fiber is converged into the light-guiding quartz capillary. Since the inner wall of the light-guiding quartz capillary can completely reflect and transmit the light along the tube, it will not be absorbed and lost by the tube wall, and can be used in a small optical path section. maintain a high optical density.
参见图8,池体由聚酰亚胺材料整体加工而成,长宽高尺寸分别为47.2mm×22.4mm×20mm。沿池体中轴线有一内径1.6mm的通孔,孔两端内径加粗并加工有与光纤接头配合的内螺纹。池体两个侧面上各有一条内径1.6mm的条孔道,与中心孔道相通,构成一条Z字型流路,这两条孔道的外端也加工有内螺纹,用于连接液体流路管路接头。在池体顶面对角位置钻有两个通孔,用于固定流通池时穿过螺栓。这两个螺栓孔不与池体内部的孔道连通。Referring to Fig. 8, the pool body is integrally processed from polyimide material, and the dimensions of length, width and height are 47.2mm×22.4mm×20mm. There is a through hole with an inner diameter of 1.6mm along the central axis of the pool body. The inner diameters of both ends of the hole are thickened and processed with inner threads for matching with optical fiber connectors. There is a channel with an inner diameter of 1.6mm on each side of the pool body, which communicates with the central channel to form a Z-shaped flow path. The outer ends of these two channels are also processed with internal threads for connecting liquid flow lines. connector. There are two through holes drilled at the opposite corners of the top of the cell body, which are used to pass through the bolts when fixing the flow cell. These two bolt holes are not connected with the channel inside the pool body.
参见图9,流通池光路进口处各零部件介绍如下:PEEK衬管33内径0.38mm,外径1.58mm,长20mm;光导石英毛细管32内径0.25mm,外径0.375mm,长20mm;C字型垫片34为聚四氟乙烯材料制成,其上开有一条宽的0.6mm的缺口;自聚焦透镜35为特种光学玻璃制成,直径1.8mm,长5.8mm;密封垫圈36以橡胶制成;垫片37为聚四氟乙烯材料制成,光路进口光纤及接头38包括光纤衬管、锥形卡套和手紧接头,具体结构另行描述。Referring to Figure 9, the components at the entrance of the optical path of the flow cell are introduced as follows:
参见图10,流通池光路进口处各零部件安装位置关系介绍如下:PEEK衬管33装填在池体31的中央孔道中;光导石英毛细管32装填在PEEK衬管33中。C字型垫片34位于PEEK衬管33和自聚焦透镜35之间,被二者夹持固定,其缺口对准流路管路;自聚焦透镜35插入池体31中央孔道的一端约一半长度;流路出口管路310插入池体中一端出口正好对准PEEK衬管出口;密封垫圈36两个为一组套在自聚焦透镜的柱体上;垫片37两个为一组套在自聚焦透镜的柱体上;光纤套管41靠手紧接头43上的螺纹旋入池体中央孔道一端的螺纹孔中,锥形卡套42向内压紧自聚焦透镜及垫片,垫片压迫密封圈变形使自聚焦透镜与池体之间得以密封。Referring to FIG. 10 , the installation positions of the components at the entrance of the optical path of the flow cell are introduced as follows: the
流通池光路出口端与进口端类似,但没有安装自聚焦透镜及密封圈、垫片,靠光纤接头上的锥形卡套和手紧接头与池体连接密封。进出流通池的流路管路靠锥形卡套和手紧接头与池体连接密封。The outlet end of the optical path of the flow cell is similar to the inlet end, but there is no self-focusing lens, sealing ring, and gasket installed, and it is sealed with the cell body by the tapered ferrule and finger-tight joint on the optical fiber connector. The flow pipes entering and exiting the flow cell are connected and sealed with the cell body by tapered ferrules and finger-tight fittings.
该流通池光程长度为20mm,大于目前常见的大多数流通池。池体积约为1μL,可以满足毛细管微柱色谱的使用要求。The optical path length of this flow cell is 20mm, which is larger than most of the flow cells currently common. The volume of the pool is about 1 μL, which can meet the requirements of capillary microcolumn chromatography.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100091538A CN100359318C (en) | 2006-02-15 | 2006-02-15 | UV-vis absorption/fluorescence dual-purpose flow cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100091538A CN100359318C (en) | 2006-02-15 | 2006-02-15 | UV-vis absorption/fluorescence dual-purpose flow cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1815218A true CN1815218A (en) | 2006-08-09 |
CN100359318C CN100359318C (en) | 2008-01-02 |
Family
ID=36907506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100091538A Expired - Fee Related CN100359318C (en) | 2006-02-15 | 2006-02-15 | UV-vis absorption/fluorescence dual-purpose flow cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100359318C (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871923A (en) * | 2009-04-22 | 2010-10-27 | 北京普源精仪科技有限责任公司 | Liquid phase measurement device |
CN102648498A (en) * | 2009-10-08 | 2012-08-22 | 通用电气健康护理有限公司 | Chromatography components |
CN103207254A (en) * | 2013-03-13 | 2013-07-17 | 杭州纽蓝科技有限公司 | Reflecting ultraviolet-visible absorption and fluorescence integrated flow cell |
CN103389269A (en) * | 2013-07-25 | 2013-11-13 | 浙江清华长三角研究院 | Multifunctional optical detection flow cell device |
CN103698276A (en) * | 2013-12-18 | 2014-04-02 | 中国科学院过程工程研究所 | Fluorescence and ultraviolet-visible absorption integrated flow cell |
CN103969187A (en) * | 2014-05-07 | 2014-08-06 | 大连理工大学 | Fluorescence spectrophotometer flow cell assembly for fluorescent online quantitative detection |
CN104181105A (en) * | 2013-05-23 | 2014-12-03 | 中国科学院大连化学物理研究所 | Sample tank used for observation of liquid oxygen fluorescence spectrum |
CN104596935A (en) * | 2015-01-26 | 2015-05-06 | 力合科技(湖南)股份有限公司 | Adjustable type detection light path device |
CN104792700A (en) * | 2015-05-07 | 2015-07-22 | 云南师范大学 | Novel online high-precision polarimetric detection pool |
CN105424603A (en) * | 2015-12-14 | 2016-03-23 | 重庆川仪分析仪器有限公司 | Detection cell assembly based on spectrophotometry |
CN105510228A (en) * | 2014-10-10 | 2016-04-20 | 中国科学院大连化学物理研究所 | Sample cell with purifying function for observing fluorescence spectrum of liquid oxygen |
CN109073535A (en) * | 2016-04-21 | 2018-12-21 | 株式会社堀场先进技术 | Measure pool structure and optical assay device |
CN109870523A (en) * | 2019-04-08 | 2019-06-11 | 山东悟空仪器有限公司 | Light source assembly, fluorescence detector, and liquid chromatography system |
CN110006859A (en) * | 2019-03-05 | 2019-07-12 | 北京雪迪龙科技股份有限公司 | A kind of fluorescent material detection device and the method for detecting fluorescent material |
CN110346461A (en) * | 2018-04-03 | 2019-10-18 | 中国科学院大连化学物理研究所 | A kind of light detection flow cell |
CN111289660A (en) * | 2019-11-28 | 2020-06-16 | 北京东西分析仪器有限公司 | Liquid chromatogram optical path detection pool |
CN116087105A (en) * | 2022-12-26 | 2023-05-09 | 上海富科思分析仪器有限公司 | Variable optical path flow cell in ultraviolet-visible spectral range and control method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1095543C (en) * | 1998-07-01 | 2002-12-04 | 吉林大学 | All wavelength surface plasma excimer resonance photochemical sensor |
ATE267047T1 (en) * | 1999-12-17 | 2004-06-15 | Zeptosens Ag | ARRANGEMENT OF SAMPLE CONTAINERS AND THEIR USE FOR MULTIANALYTE DETERMINATION |
CN2689227Y (en) * | 2004-04-08 | 2005-03-30 | 上海伍丰科学仪器有限公司 | Detector flowing pool of liquid-phase chromatograph |
-
2006
- 2006-02-15 CN CNB2006100091538A patent/CN100359318C/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871923A (en) * | 2009-04-22 | 2010-10-27 | 北京普源精仪科技有限责任公司 | Liquid phase measurement device |
CN101871923B (en) * | 2009-04-22 | 2014-12-10 | 北京普源精电科技有限公司 | Liquid phase measurement device |
CN102648498A (en) * | 2009-10-08 | 2012-08-22 | 通用电气健康护理有限公司 | Chromatography components |
CN103207254A (en) * | 2013-03-13 | 2013-07-17 | 杭州纽蓝科技有限公司 | Reflecting ultraviolet-visible absorption and fluorescence integrated flow cell |
CN103207254B (en) * | 2013-03-13 | 2014-08-27 | 杭州纽蓝科技有限公司 | Reflecting ultraviolet-visible absorption and fluorescence integrated flow cell |
CN104181105A (en) * | 2013-05-23 | 2014-12-03 | 中国科学院大连化学物理研究所 | Sample tank used for observation of liquid oxygen fluorescence spectrum |
CN104181105B (en) * | 2013-05-23 | 2016-12-28 | 中国科学院大连化学物理研究所 | A kind of sample cell for observing liquid oxygen fluorescence spectrum |
CN103389269A (en) * | 2013-07-25 | 2013-11-13 | 浙江清华长三角研究院 | Multifunctional optical detection flow cell device |
CN103698276B (en) * | 2013-12-18 | 2016-01-20 | 中国科学院过程工程研究所 | A kind of fluorescence and ultraviolet-ray visible absorbing integration flow cell |
CN103698276A (en) * | 2013-12-18 | 2014-04-02 | 中国科学院过程工程研究所 | Fluorescence and ultraviolet-visible absorption integrated flow cell |
CN103969187A (en) * | 2014-05-07 | 2014-08-06 | 大连理工大学 | Fluorescence spectrophotometer flow cell assembly for fluorescent online quantitative detection |
CN105510228A (en) * | 2014-10-10 | 2016-04-20 | 中国科学院大连化学物理研究所 | Sample cell with purifying function for observing fluorescence spectrum of liquid oxygen |
CN104596935A (en) * | 2015-01-26 | 2015-05-06 | 力合科技(湖南)股份有限公司 | Adjustable type detection light path device |
CN104792700A (en) * | 2015-05-07 | 2015-07-22 | 云南师范大学 | Novel online high-precision polarimetric detection pool |
CN104792700B (en) * | 2015-05-07 | 2017-10-24 | 云南师范大学 | A kind of new online high-precision optically-active detection cell |
CN105424603A (en) * | 2015-12-14 | 2016-03-23 | 重庆川仪分析仪器有限公司 | Detection cell assembly based on spectrophotometry |
CN105424603B (en) * | 2015-12-14 | 2019-05-21 | 重庆川仪分析仪器有限公司 | Detection cell assembly based on spectrophotometry |
CN109073535A (en) * | 2016-04-21 | 2018-12-21 | 株式会社堀场先进技术 | Measure pool structure and optical assay device |
CN110346461A (en) * | 2018-04-03 | 2019-10-18 | 中国科学院大连化学物理研究所 | A kind of light detection flow cell |
CN110346461B (en) * | 2018-04-03 | 2022-01-11 | 中国科学院大连化学物理研究所 | Light detection flow cell |
CN110006859A (en) * | 2019-03-05 | 2019-07-12 | 北京雪迪龙科技股份有限公司 | A kind of fluorescent material detection device and the method for detecting fluorescent material |
CN109870523A (en) * | 2019-04-08 | 2019-06-11 | 山东悟空仪器有限公司 | Light source assembly, fluorescence detector, and liquid chromatography system |
CN111289660A (en) * | 2019-11-28 | 2020-06-16 | 北京东西分析仪器有限公司 | Liquid chromatogram optical path detection pool |
CN116087105A (en) * | 2022-12-26 | 2023-05-09 | 上海富科思分析仪器有限公司 | Variable optical path flow cell in ultraviolet-visible spectral range and control method thereof |
CN116087105B (en) * | 2022-12-26 | 2023-10-24 | 上海富科思分析仪器有限公司 | Variable optical pathlength flow cell in UV-visible spectral range and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100359318C (en) | 2008-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1815218A (en) | Ultraviolet-ray visible absorbing/fluorescent dual-purpose flow cell | |
CN100504350C (en) | A detection cell with a sandwich liquid core waveguide structure | |
CN100371710C (en) | Portable Liquid Chromatograph | |
US6188813B1 (en) | Flow cell, analyte measurement apparatus and methods related thereto | |
US7808619B2 (en) | System for assembling a fluid analysis apparatus | |
US8086083B2 (en) | Light guiding fluid conduit having a liquid-filled interspace between inner and outer conduits | |
US6734961B2 (en) | Flow cells utilizing photometric techniques | |
US9025142B1 (en) | Flow cell assembly for liquid sample analyzer | |
CN101776574A (en) | Flow cell device suitable for synchronous on-line detection of absorption spectrum and fluorescence spectrum | |
CN107532992A (en) | Optical detecting device | |
CN102680093B (en) | Multipurpose spectrophotometer | |
WO2012055432A1 (en) | Waveguide cell with enhanced numerical aperture | |
US20110044587A1 (en) | Methods Of making And Using And Apparatus And Devices For Placing Light And Sample In Photo-Emitting Or Absorbing DeviceM | |
CN202648796U (en) | Multipurpose spectrophotometer | |
US7259840B1 (en) | Fluid analysis apparatus | |
CN102338787A (en) | UV-visible detector flow-through cell | |
CN102680401B (en) | Cuvette device | |
CN202649096U (en) | Cuvette device | |
CN211014006U (en) | Liquid detection device | |
CN201993354U (en) | Ultraviolet chromatograph detector of glycolated haemoglobin analyzer | |
CN205844292U (en) | A kind of chromatographic detector with cone light-guiding pillar | |
CN2811989Y (en) | Fluorescent detection pool for micro-liquid phase flow analysis system | |
CN1896723A (en) | Array light-emitting diode induced fluorescent tester | |
US20090000405A1 (en) | Fluid analysis apparatus | |
CN2874495Y (en) | Optic fiber module for portable liquid phase chromatographic instrument detecting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080102 Termination date: 20110215 |