CN1807681A - Evaporating device and method utilizing same - Google Patents
Evaporating device and method utilizing same Download PDFInfo
- Publication number
- CN1807681A CN1807681A CNA2006100063966A CN200610006396A CN1807681A CN 1807681 A CN1807681 A CN 1807681A CN A2006100063966 A CNA2006100063966 A CN A2006100063966A CN 200610006396 A CN200610006396 A CN 200610006396A CN 1807681 A CN1807681 A CN 1807681A
- Authority
- CN
- China
- Prior art keywords
- vapor deposition
- gas
- energy
- substrate
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000001704 evaporation Methods 0.000 title claims abstract description 15
- 238000007740 vapor deposition Methods 0.000 claims abstract description 159
- 238000010438 heat treatment Methods 0.000 claims abstract description 62
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 27
- 230000008020 evaporation Effects 0.000 claims abstract description 11
- 239000007789 gas Substances 0.000 claims description 188
- 239000010408 film Substances 0.000 claims description 111
- 239000000758 substrate Substances 0.000 claims description 80
- 238000002347 injection Methods 0.000 claims description 53
- 239000007924 injection Substances 0.000 claims description 53
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 13
- 229910000077 silane Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 210000000746 body region Anatomy 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 150000003377 silicon compounds Chemical class 0.000 claims 1
- 238000005019 vapor deposition process Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 abstract 1
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241001364096 Pachycephalidae Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
- F04D17/168—Pumps specially adapted to produce a vacuum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
Abstract
本发明公开了一种蒸镀装置和利用该蒸镀装置的蒸镀方法。该蒸镀装置中,分解所需要的能量相对较高的气体利用等离子体分解方式和加热体方式进行分解,分解所需要的能量相对较低的气体利用加热体方式进行分解,由此在基板上形成蒸镀物。在利用现有的ICP-CVD装置或PECVD等的等离子体装置形成绝缘膜时,存在源气体难以完全分解而使蒸镀物的特性变差,源气体的使用效率差的缺陷,本发明为了克服该缺陷而涉及等离子体或/及加热体方式的蒸镀装置及利用该蒸镀装置的蒸镀方法。
The invention discloses a vapor deposition device and a vapor deposition method utilizing the vapor deposition device. In this vapor deposition device, the gas that requires relatively high energy for decomposition is decomposed by the plasma decomposition method and the heating body method, and the gas that requires relatively low energy for decomposition is decomposed by the heating body method. Evaporation is formed. When utilizing existing ICP-CVD devices or plasma devices such as PECVD to form an insulating film, there is a source gas that is difficult to completely decompose to make the characteristics of the vapor deposition deteriorate, and the use efficiency of the source gas is poor. The present invention aims to overcome This defect relates to a plasma and/or heater system vapor deposition device and a vapor deposition method using the vapor deposition device.
Description
技术领域technical field
本发明涉及蒸镀方法,更加详细地,涉及使用利用等离子体的方式或/及利用加热体的方式的混合化学气相蒸镀装置,在基板上形成蒸镀物的蒸镀装置以及利用该蒸镀装置的蒸镀方法。The present invention relates to a vapor deposition method, and more specifically, to a vapor deposition device for forming a vapor deposition on a substrate using a hybrid chemical vapor deposition device using a plasma method or/and a heating body method and using the vapor deposition method. Device vapor deposition method.
背景技术Background technique
等离子体环境在化学气相蒸镀及蚀刻、表面处理等与薄膜相关的领域中被多种多样地使用。这是由于具有如下的优点:等离子体状态具有能够在这些工序中提高反应效率,能够在有利的条件下进行工序。Plasma environments are used in various fields related to thin films, such as chemical vapor deposition, etching, and surface treatment. This is because there is an advantage that the plasma state can improve reaction efficiency in these steps, and the steps can be performed under favorable conditions.
根据利用等离子体的目的的不同,等离子的形成方法也多种多样,因此等离子体形成装置也正在多种多样地开发。最近,在半导体制造工序等中,利用使用有能够进一步提高工序效率的高密度等离子体的等离子体处理装置的情况增加。在高密度等离子体处理装置中,存在有利用共振频率的微波的ECR(Electron Cyclotron Resonance:电子回旋共振)等离子体处理装置、利用螺旋(helicon)波或啸声波(whistler wave)的螺旋等离子体处理装置以及利用高温低压的等离子体的诱导耦合型(inductively coupled)等离子体处理装置等。Since plasma formation methods vary depending on the purpose of using plasma, various plasma formation devices are also being developed. Recently, in semiconductor manufacturing processes and the like, plasma processing apparatuses using high-density plasma capable of further improving process efficiency are being used more and more. Among high-density plasma processing devices, there are ECR (Electron Cyclotron Resonance: Electron Cyclotron Resonance) plasma processing devices using microwaves at resonant frequencies, and helical plasma processing devices using helicon waves or whistler waves. device and an inductively coupled plasma processing device utilizing high temperature and low pressure plasma.
化学气相蒸镀(Chemical Vapor Deposition)装置中,适用所述诱导耦合型等离子体处理装置的ICP-CVD(Induced Couple Plasma Chemical VaporDeposition)的剖面图参照图1表示,其由绝缘体构成,具有可维持真空的腔室(Chamber)101、在上述腔室101的上端部规则地排列并产生诱导藕合型等离子体的天线102。此时,在所述天线102上连接有供给电源的第一电源103。In the Chemical Vapor Deposition (Chemical Vapor Deposition) device, the cross-sectional view of the ICP-CVD (Induced Couple Plasma Chemical Vapor Deposition) applicable to the inductively coupled plasma processing device is shown in Fig. 1, which is composed of an insulator and has the ability to maintain a vacuum A chamber (Chamber) 101, and an antenna 102 regularly arranged at the upper end of the chamber 101 to generate induced coupling plasma. At this time, a first power supply 103 for supplying power is connected to the antenna 102 .
在所述天线102的下部设有向腔室101内部注入气体104的气体注入口105。此时,所述气体注入口105通常由喷头形成,这是为能够向由所述天线102形成的等离子体均匀地供给气体104。A gas injection port 105 for injecting gas 104 into the chamber 101 is provided at the lower portion of the antenna 102 . At this time, the gas injection port 105 is usually formed by a showerhead so that the gas 104 can be uniformly supplied to the plasma formed by the antenna 102 .
在所述腔室101的下端部设有对由所述ICP-CVD装置处理的被处理物即基板106进行加热、冷却或固定的夹具107,并且连结有向所述夹具107供给电源的第二电源108。此时,所述第二电源108可用作为用于加热所述夹具107的电源或用于赋予所述夹具107以电极功能的电源。The lower end of the chamber 101 is provided with a jig 107 for heating, cooling or fixing the substrate 106 which is the object to be processed by the ICP-CVD apparatus, and a second jig 107 for supplying power to the jig 107 is connected. Power 108. At this time, the second power source 108 can be used as a power source for heating the jig 107 or as a power source for giving the jig 107 an electrode function.
所述腔室101的侧壁附设有用于将所述基板106移动到所述腔室101内部或外部的门109,并且附设含有将所述腔室101的空气或气体排出的真空泵110的排气口111。The side wall of the chamber 101 is provided with a door 109 for moving the substrate 106 to the inside or outside of the chamber 101, and is attached with an exhaust gas pump 110 containing air or gas from the chamber 101. Mouth 111.
但是,所述的化学气相装置由于仅利用等离子体方式蒸镀绝缘膜,故不能完好地进行源气体的分解,不仅源气体的使用效率低,而且在形成的绝缘膜上含有大量的氢,难以得到高品质的绝缘膜。However, the above chemical vapor phase device cannot completely decompose the source gas because it only utilizes the plasma method to vapor-deposit the insulating film. A high-quality insulating film is obtained.
发明内容Contents of the invention
因此,本发明是为了解决上述的现有技术中的诸多缺点和问题点而研发的,其目的在于提供一种蒸镀装置及利用该蒸镀装置的蒸镀方法,该蒸镀装置中,分解所需要的能力相对高的气体利用等离子体分解方式和加热体方式进行分解,分解所需要的能力相对低的气体利用加热体方式进行分解,由此在基板上形成蒸镀物。Therefore, the present invention is developed to solve many shortcomings and problems in the above-mentioned prior art, and its purpose is to provide a vapor deposition device and a vapor deposition method using the vapor deposition device. In the vapor deposition device, decomposition A gas with a relatively high ability to decompose is decomposed by a plasma decomposition method and a heating body method, and a gas having a relatively low ability to decompose is decomposed by a heating body method, thereby forming vapor deposition on the substrate.
本发明的上述目的通过如下的蒸镀装置而实现,即该蒸镀装置包括:进行蒸镀膜的生长的基板;在所述基板的成膜的面的相反面上构成的过滤器;以及,经由所述过滤器向所述蒸镀膜供给能量而构成的能量供给源。The above object of the present invention is achieved by a vapor deposition device comprising: a substrate on which a vapor deposition film is grown; a filter formed on a surface opposite to the film-forming surface of the substrate; The filter is an energy supply source configured to supply energy to the vapor deposition film.
另外,本发明的上述目的也通过如下的结构而实现,即,一种蒸镀装置,包括:腔室;位于所述腔室内部的规定区域的喷头;与所述喷头对应设置,在表面上装有基板的夹具;以及,位于所述喷头与夹具之间的加热体,所述喷头包括:第一气体注入口和第二气体注入口;与所述第一气体注入口连结的所述喷头内部的空洞;与所述空洞连结,位于与所述夹具对应的喷头的表面的多个第一喷嘴;以及,与所述第二气体注入口连结,位于与所述夹具对应的喷头的表面的多个第二喷嘴。In addition, the above object of the present invention is also achieved by the following structure, that is, an evaporation device, including: a chamber; a shower head located in a predetermined area inside the chamber; A fixture with a substrate; and a heating body located between the showerhead and the fixture, the showerhead includes: a first gas injection port and a second gas injection port; the interior of the showerhead connected to the first gas injection port the cavity; connected with the cavity, a plurality of first nozzles located on the surface of the shower head corresponding to the fixture; a second nozzle.
本发明的上述目的通过如下的蒸镀装置而实现,即该蒸镀装置包括:腔室;位于所述腔室内部的规定区域的喷头;与所述喷头对应设置,在表面上装有基板以及位于该基板下部的过滤器,构成向所述基板供给能量的能量供给源的夹具;以及,位于所述喷头与夹具之间的加热体,所述喷头包括:第一气体注入口和第二气体注入口;与所述第一气体注入口连结的所述喷头内部的空洞;与所述空洞连结,位于与所述夹具对应的喷头的表面的多个第一喷嘴;以及,与所述第二气体注入口连结,位于与所述夹具对应的喷头的表面的多个第二喷嘴。The above object of the present invention is achieved by the following vapor deposition device, that is, the vapor deposition device includes: a chamber; a shower head located in a specified area inside the chamber; corresponding to the shower head, a substrate is installed on the surface and a The filter at the lower part of the substrate constitutes a fixture for an energy supply source that supplies energy to the substrate; and a heating body located between the shower head and the fixture, the shower head includes: a first gas injection port and a second gas injection port an inlet; a cavity inside the shower head connected to the first gas injection port; connected to the cavity, a plurality of first nozzles located on the surface of the shower head corresponding to the fixture; and, connected to the second gas The injection port is connected to a plurality of second nozzles located on the surface of the spray head corresponding to the jig.
另外,本发明的上述目的也可以通过如下的蒸镀方法而实现,其在由将腔室内部排气成真空的阶段和在将所述腔室内部排气成真空后对蒸镀膜进行蒸镀的阶段构成的真空蒸镀工序中,具有将针对所述蒸镀膜的选择性波长能量供给所述蒸镀膜的能量供给阶段。In addition, the above object of the present invention can also be achieved by a vapor deposition method in which the vapor deposition film is vapor-deposited at the stage of evacuating the interior of the chamber to vacuum and after evacuating the interior of the chamber to vacuum. In the vacuum vapor deposition step constituted by stages, there is an energy supply stage of supplying energy of a selective wavelength to the vapor deposition film to the vapor deposition film.
另外,本发明的上述目的也可以通过如下的蒸镀方法而实现,其包括:在具有等离子体发生区域及加热体的腔室内部载置基板的阶段;向所述腔室供给第一气体及第二气体的阶段;所述第一气体通过所述等离子体发生区域及加热体而形成第一基团,所述第二气体通过所述加热体而形成第二基团的阶段;所述第一基团和第二基团反应而在所述基板上形成蒸镀膜的阶段。In addition, the above object of the present invention can also be achieved by a vapor deposition method including: a stage of placing a substrate in a chamber having a plasma generating region and a heating body; supplying a first gas and The stage of the second gas; the first gas passes through the plasma generation region and the heating body to form a first group, and the second gas passes through the heating body to form a second group; the second gas passes through the heating body to form a second group; A stage in which a group reacts with a second group to form an evaporated film on the substrate.
另外,本发明的上述目的也可以通过如下的蒸镀方法而实现,其包括:在具有等离子体发生区域及加热体的腔室内部载置基板的阶段;向所述腔室供给第一气体及第二气体的阶段;所述第一气体通过所述等离子体发生区域及加热体而形成第一基团,所述第二气体通过所述加热体而形成第二基团的阶段;所述第一基团和第二基团反应而在所述基板上形成蒸镀膜,并向所述蒸镀膜供给针对所述蒸镀膜的选择性波长能量的阶段。In addition, the above object of the present invention can also be achieved by a vapor deposition method including: a stage of placing a substrate in a chamber having a plasma generating region and a heating body; supplying a first gas and The stage of the second gas; the first gas passes through the plasma generation region and the heating body to form a first group, and the second gas passes through the heating body to form a second group; the second gas passes through the heating body to form a second group; A stage in which a first group reacts with a second group to form a vapor deposition film on the substrate, and supplies wavelength-selective energy to the vapor deposition film to the vapor deposition film.
发明效果Invention effect
因此,本发明的蒸镀装置及利用该蒸镀装置的蒸镀方法具有如下效果:通过几乎完美地进行源气体的分解,不仅蒸镀物的特性优良而且也能够将源气体的使用效率极大化,通过仅利用等离子体方式或加热体方式而能够得到高品质的蒸镀膜。Therefore, the vapor deposition device and the vapor deposition method using the vapor deposition device of the present invention have the following effects: by performing almost perfect decomposition of the source gas, not only the characteristics of the vapor deposition are excellent, but also the use efficiency of the source gas can be greatly improved. Therefore, a high-quality vapor-deposited film can be obtained by using only the plasma method or the heating body method.
另外,通过在夹具上设置能量供给源,还具有能够向基板上形成的蒸镀膜供给能量,使得结晶化或退火工序变得轻松的效果。In addition, by providing the energy supply source on the jig, energy can be supplied to the deposited film formed on the substrate, thereby facilitating the crystallization and annealing steps.
附图说明Description of drawings
图1是现有技术的化学气相蒸镀装置的剖面图;Fig. 1 is the sectional view of the chemical vapor deposition device of prior art;
图2是本发明一实施方式的蒸镀装置的剖面图;2 is a cross-sectional view of an evaporation device according to an embodiment of the present invention;
图3A、图3B是本发明一实施方式的蒸镀装置的夹具的放大剖面图;3A and 3B are enlarged cross-sectional views of a fixture of an evaporation device according to an embodiment of the present invention;
图4A、图4B是利用本发明实施方式的蒸镀装置形成蒸镀膜的实施方式的剖面图。4A and 4B are cross-sectional views of an embodiment in which a vapor deposition film is formed using the vapor deposition apparatus according to the embodiment of the present invention.
符号说明Symbol Description
211:喷头211: Nozzle
212:空洞212: Hollow
213:第一气体注入口213: First gas injection port
214:第二气体注入口214: Second gas injection port
215:第一喷嘴215: First Nozzle
216:第二喷嘴216: Second nozzle
218:阴极218: Cathode
231:夹具231: Fixture
232:基板232: Substrate
301:第一绝缘膜301: first insulating film
302:第二绝缘膜302: second insulating film
具体实施方式Detailed ways
关于本发明的上述目的和技术结构以及基于其作用效果的详细事项,通过参照了对本发明理想的实施方式进行图示的附图的以下详细的说明而能够明确地理解。另外,在附图中,为了便于说明而将层及区域的长度、厚度等夸大地表现。在整个说明书中,相同的符号表示相同的结构要素。The above-mentioned purpose and technical structure of the present invention, and details based on the effects thereof can be clearly understood from the following detailed description referring to the accompanying drawings illustrating preferred embodiments of the present invention. In addition, in the drawings, the lengths, thicknesses, and the like of layers and regions are exaggerated for convenience of description. Throughout the specification, the same symbols denote the same structural elements.
图2是本发明一实施方式的蒸镀装置的剖面图。Fig. 2 is a cross-sectional view of a vapor deposition device according to an embodiment of the present invention.
此时,所述蒸镀装置是能够同时进行等离子体方式和加热体方式的装置。In this case, the vapor deposition apparatus is an apparatus capable of simultaneously performing a plasma method and a heating body method.
参照图2,本发明的蒸镀装置设有腔室201、位于该腔室201内部的规定区域的喷头211、加热体221以及夹具231。此时,所述腔室201将内部空间相对外部环境密封。含有维持所述腔室201内部的真空度的真空泵202的排气口203与所述腔室201连结设置。Referring to FIG. 2 , the vapor deposition device of the present invention includes a chamber 201 , a shower head 211 located in a predetermined area inside the chamber 201 , a heating body 221 and a
另外,所述喷头211具有作为等离子体发生区域的空洞212、第一气体注入口213以及第二气体注入口214。在所述喷头211的一侧表面设有所述第一气体注入口213,在另一侧表面设有与所述空洞212连结的第一喷嘴215和与所述第二气体注入口214连结的第二喷嘴216。此时,在所述空洞212的一侧表面设有与外部的第一电源217连结的电极218。另外,所述空洞212形成在所述喷头211内部,在所述空洞212内部产生的等离子体被所述喷头211隔离,因此所述等离子体不会对其他区域造成影响。In addition, the shower head 211 has a cavity 212 serving as a plasma generation region, a first gas injection port 213 , and a second gas injection port 214 . The first gas injection port 213 is provided on one side surface of the shower head 211, and the first nozzle 215 connected to the cavity 212 and the second gas injection port 214 are provided on the other side surface. The second nozzle 216 . At this time, an electrode 218 connected to an external first power source 217 is provided on one side surface of the cavity 212 . In addition, the cavity 212 is formed inside the shower head 211 , and the plasma generated inside the cavity 212 is isolated by the shower head 211 , so the plasma will not affect other regions.
另外,所述加热体221与外部的电源222连结。In addition, the heating body 221 is connected to an external power source 222 .
所述夹具231可在表面安装基板232。The
此时,所述喷头211具备用于从外部注入气体的第一气体注入口213和第二气体注入口214,所述第一气体注入口213用于注入分解所需的能量相对较高的第一气体,所述气体注入口214用于注入分解所需的能量相对较低的第二气体。At this time, the shower head 211 has a first gas injection port 213 and a second gas injection port 214 for injecting gas from the outside. A gas, the gas injection port 214 is used to inject a second gas with relatively low energy required for decomposition.
所述“分解所需的能量”是指注入到蒸镀装置中的气体以大量原子结合的分子状态进行供给,这样的分子状态的气体以原子状态分解或离子化时所需的能量。例如,硅烷(SiH4)气体的情况、一个硅原子与四个氢原子结合的形态,将从所述硅烷气体分解氢的能量可称为“分解所需的能量”。The "energy required for decomposition" refers to the energy required when the gas injected into the vapor deposition device is supplied in a molecular state in which a large number of atoms are bonded, and the gas in such a molecular state is decomposed or ionized in an atomic state. For example, in the case of silane (SiH 4 ) gas, one silicon atom is bonded to four hydrogen atoms, and the energy for decomposing hydrogen from the silane gas can be called "energy required for decomposition".
此时,在所述注入的气体氨气(NH3)及硅烷气体的情况下,所述第一气体由于与所述第二气体相比是分解所需的能量相对较高的气体,故采用氨气,由于所述第二气体与所述第一气体相比是分解所需的能量相对较低的气体,故采用硅烷气体。即,所述第一气体及第二气体的种类根据所述第一气体和第二气体是何种气体而决定,但将所述第一气体与第二气体相比分解所需的能量相对较高的气体为第一气体,分解所需的能量相对较低的气体是第二气体。At this time, in the case of the injected gas ammonia (NH 3 ) and silane gas, since the first gas requires relatively higher energy for decomposition than the second gas, the As the ammonia gas, silane gas is used because the second gas requires relatively lower energy for decomposition than the first gas. That is, the types of the first gas and the second gas are determined according to what kind of gas the first gas and the second gas are, but the energy required to decompose the first gas and the second gas is relatively small. The high gas is the first gas, and the gas with relatively low energy required for decomposition is the second gas.
此时,注入到所述第一气体注入口213的第一气体被注入到等离子体发生区域即所述空洞212,由于所述空洞212是安装于空洞内部的表面上的电极218利用从外部的第一电源217供给受到的电源而产生的等离子体区域,故所述注入的第一气体通过所述等离子体而部分被分解。At this time, the first gas injected into the first gas injection port 213 is injected into the plasma generation region, that is, the cavity 212. Since the cavity 212 is installed on the surface of the cavity, the electrode 218 utilizes The first power supply 217 supplies the plasma region generated by the received power, so the injected first gas is partially decomposed by the plasma.
所述第一气体通过与所述夹具231对应的喷头211的表面所具备的多个第一喷嘴215而向腔室201内部喷射。The first gas is injected into the chamber 201 through the plurality of first nozzles 215 provided on the surface of the shower head 211 corresponding to the
由所述第一喷嘴215喷射的第一气体经过位于所述喷头211和夹具231之间的加热体221,并且,不被所述等离子体分解的第一气体几乎被所述加热体221完全分解,形成第一基团。此时,所述加热体221是由钨构成的灯丝,利用从外部的第二电源222施加的电源而产生大于或等于1000℃气体(最好为1500℃)的热量,通过该热量而使所述第一气体分解。The first gas injected by the first nozzle 215 passes through the heating body 221 located between the shower head 211 and the
另外,注入到所述第二注入口的第二气体不注入到所述空洞212,而是从与所述夹具231对应的喷头211表面所具备的第二喷嘴216向夹具201内直接喷射,所述被喷射的第二气体经过所述加热体221,并且被分解而成为第二基团。In addition, the second gas injected into the second injection port is not injected into the cavity 212, but is directly sprayed into the jig 201 from the second nozzle 216 provided on the surface of the shower head 211 corresponding to the
因此,注入所述第一气体注入口213的第一气体经过等离子体发生区域即空洞212并且分解规定量,由第一喷嘴喷射而向夹具201内喷射,然后,经过加热体221并再一次分解,形成第一基团,注入所述第二气体注入口214的第二气体经由第二喷嘴216而直接向腔室210内喷射,被喷射的第二气体利用所述加热体221而分解,形成第二基团,所述第一基团与第二基团反应,在所述基板232之上形成规定的薄膜。(此时,所述薄膜可采用大量物质,但适当选择所述第一气体和第二气体,不仅能够形成绝缘膜还能够形成传导膜)。此时,在所述第一气体和第二气体分别为氨气和硅烷气体的情况下,可在所述基板232上蒸镀氮化硅膜。此时,所述第一气体和第二气体分别为氨气和硅烷气体的情况下,所述氨气和硅烷含有氢,由一般的蒸镀装置难以完全分解(特别是分解所需的能量高的氨气),在所形成的氮化硅膜内部含有氢。所述含有氢的氮化硅膜由于所述氢与氧结合而生成水,对欲由所述氮化硅膜保护的其他元件造成不良影响,故作氮化硅膜内氢的含有量必须最小化。此时,在本发明中,通过将分解所需的能量高的氨气进行两次分解,能够使氮与氢几乎完全分解,具有使氮化硅膜内的氢含有量最小化的优点。Therefore, the first gas injected into the first gas injection port 213 passes through the cavity 212, which is a plasma generation region, and decomposes a predetermined amount, is sprayed from the first nozzle and injected into the jig 201, and then passes through the heating body 221 and decomposes again. , forming a first group, the second gas injected into the second gas injection port 214 is directly injected into the chamber 210 through the second nozzle 216, and the injected second gas is decomposed by the heating body 221 to form The second group, the first group reacts with the second group to form a predetermined thin film on the
此时,所述第一喷嘴215可在所述喷头211的表面等间隔配置,需要时,则为了所述基板232上形成的绝缘膜的均匀度,可调节所述第一喷嘴215的间隔。所述第二喷嘴216也与所述第一喷嘴215同样地均匀配置,可根据需要而不均匀地形成。所述第一喷嘴215和第二喷嘴216最好互相均匀地配置,将第一喷嘴与第二喷嘴均匀地混合。At this time, the first nozzles 215 can be arranged at equal intervals on the surface of the shower head 211 , and if necessary, the intervals of the first nozzles 215 can be adjusted for the uniformity of the insulating film formed on the
以下是本申请发明的利用同时具备等离子体方式和加热体方式的蒸镀装置在基板上形成蒸镀物的蒸镀方法的实施方式。The following is an embodiment of a vapor deposition method for forming a vapor deposition on a substrate using a vapor deposition apparatus having both a plasma method and a heating body method according to the invention of the present application.
〔实施例1〕[Example 1]
参照图2进行说明,在具备喷头和加热体的本申请发明的蒸镀装置的夹具上载置基板232。Referring to FIG. 2 , a
接着,利用所述真空泵202将所述腔室201内部的气体排出,使真空度小于或等于5×10-6torr。所述腔室壁的温度最好维持在大于或等于120℃的温度,这是因为在所述腔室的温度低的情况下具有蒸镀物不是蒸镀于基板上而是蒸镀在腔室壁上等的问题点。Next, the gas inside the chamber 201 is exhausted by using the vacuum pump 202 to make the vacuum degree less than or equal to 5×10 −6 torr. The temperature of the wall of the chamber is preferably maintained at a temperature greater than or equal to 120° C., because when the temperature of the chamber is low, the evaporated material is not deposited on the substrate but deposited in the chamber. Problem spot on the wall etc.
然后,在向所述第一气体注入口213注入不活泼气体之后,向所述电极218施加电力而在所述空洞212内部产生等离子体。此时,由于所述不活泼气体是用于产生等离子体的气体,故可利用氦(He)、氖(Ne)或氩(Ar)等。此时,所述不活泼气体的流量是1~1000sccm。另外,利用从所述第一电源211供给接受到的100~3000W的RF功率而产生所述等离子体。Then, after an inert gas is injected into the first gas injection port 213 , electric power is applied to the electrode 218 to generate plasma inside the cavity 212 . At this time, since the inert gas is a gas for generating plasma, helium (He), neon (Ne), argon (Ar), or the like can be used. At this time, the flow rate of the inert gas is 1-1000 sccm. In addition, the plasma is generated by supplying and receiving RF power of 100˜3000 W from the first power source 211 .
之后,向所述加热体221施加电力而所述加热体221达到大于或等于1500℃的温度。After that, power is applied to the heating body 221 and the heating body 221 reaches a temperature greater than or equal to 1500°C.
通过所述第一气体注入口213注入分解所需的能量相对较高的第一气体即氨气或/及氮气(N2)。此时,所述氨气的流量最好为1~500sccm,氮气的流量最好为1~1000sccm。此时,注入所述第一气体注入口213的第一气体被注入到形成有等离子体的所述喷头211的空洞212而进行一次分解。利用所述等离子体进行一次分解的第一气体通过所述第一喷嘴215向腔室201内部喷射并经过所述加热体221,通过加热到大于或等于1500℃的加热体221进行二次分解而形成第一基团。A first gas with relatively high energy required for decomposition, ie ammonia or/and nitrogen (N 2 ), is injected through the first gas injection port 213 . At this time, the flow rate of the ammonia gas is preferably 1-500 sccm, and the flow rate of the nitrogen gas is preferably 1-1000 sccm. At this time, the first gas injected into the first gas injection port 213 is injected into the cavity 212 of the shower head 211 where the plasma is formed for primary decomposition. The first gas decomposed by the plasma is injected into the chamber 201 through the first nozzle 215 and passed through the heating body 221, and is decomposed twice by the heating body 221 heated to a temperature greater than or equal to 1500°C. Form the first group.
然后,通过所述第二气体注入口214注入分解所需的能量相对较低的第二气体即硅烷气体。此时,所述硅烷气的流量最好为1~100sccm。注入所述第二气体注入口214的第一气体不通过所述空洞而直接向所述加热体221喷射,通过加热的加热体221而被完全分解,形成第二基团。Then, a second gas with relatively low energy required for decomposition, ie, silane gas, is injected through the second gas injection port 214 . At this time, the flow rate of the silane gas is preferably 1-100 sccm. The first gas injected into the second gas injection port 214 is directly sprayed toward the heating body 221 without passing through the cavity, and is completely decomposed by the heated heating body 221 to form a second group.
之后,所述第一基团及第二基团反应,形成蒸镀膜,并蒸镀于所述基板上。Afterwards, the first group and the second group react to form an evaporated film, which is evaporated on the substrate.
利用所述〔实施例1〕中说明的方法在基板上形成蒸镀膜的情况下,如图4A所示,能够在基板232上形成第一绝缘膜401。When forming a deposited film on a substrate by the method described in [Example 1], as shown in FIG. 4A , a first
此时,向所述第一气体注入口213注入硅烷气,不向第二气体注入口214注入气体或也向第二气体注入口214注入硅烷气的情况下,在所述基板232上也能够形成硅膜,代替图4A所示的第一绝缘膜401。At this time, when the silane gas is injected into the first gas injection port 213 and the gas is not injected into the second gas injection port 214 or the silane gas is also injected into the second gas injection port 214, the
〔实施例2〕[Example 2]
参照图2进行说明,在具备喷头和加热体的本申请发明的蒸镀装置的夹具上载置基板232。Referring to FIG. 2 , a
接着,利用所述真空泵202将所述腔室201内部的气体排出,使真空度小于或等于5×10-6torr。所述腔室壁的温度最好维持在大于或等于120℃的温度,这是因为在所述腔室的温度低的情况下存在蒸镀物不是蒸镀于基板上而是蒸镀在腔室壁上等的问题点。Next, the gas inside the chamber 201 is exhausted by using the vacuum pump 202 to make the vacuum degree less than or equal to 5×10 −6 torr. The temperature of the chamber wall is preferably maintained at a temperature greater than or equal to 120° C., because when the temperature of the chamber is low, there are evaporators that are not deposited on the substrate but deposited in the chamber. Problem spot on the wall etc.
然后,在向所述第一气体注入口213注入不活泼气体之后,向所述电极218施加电力而在所述空洞212内部产生等离子体。此时,由于所述不活泼气体是用于产生等离子体的气体,故可利用氦(He)、氖(Ne)或氩(Ar)等。此时,所述不活泼气体的流量是1~1000sccm。Then, after an inert gas is injected into the first gas injection port 213 , electric power is applied to the electrode 218 to generate plasma inside the cavity 212 . At this time, since the inert gas is a gas for generating plasma, helium (He), neon (Ne), argon (Ar), or the like can be used. At this time, the flow rate of the inert gas is 1-1000 sccm.
向所述第一气体注入口213同时注入第一气体和第二气体,利用在所述空洞产生的等离子体而将所述第一气体和第二气体分解之后,使其通过所述第一喷嘴向腔室201内喷射而使蒸镀膜蒸镀在所述基板上。如前所述,利用等离子体将第一气体和第二气体分解后,在基板232上形成蒸镀膜的情况下,如图4B所示,能够形成第二绝缘膜402a。The first gas and the second gas are simultaneously injected into the first gas injection port 213, and the first gas and the second gas are decomposed by the plasma generated in the cavity, and then passed through the first nozzle. The vapor deposition film is vapor-deposited on the substrate by spraying into the chamber 201 . As described above, when the deposited film is formed on the
此时,能够形成所述第二绝缘膜402a的其他方法是,向所述加热体213施加电力而使所述加热体213达到大于或等于1500℃的温度。然后,向所述第二气体注入口206同时注入第一气体和第二气体,通过所述第二喷嘴向腔室201内喷射,通过所述加热体213使所述第一气体及第二气体分解并反应,将蒸镀膜蒸镀于所述基板232上,形成第二绝缘膜402a。At this time, another method for forming the second insulating film 402a is to apply electric power to the heating body 213 to make the heating body 213 reach a temperature greater than or equal to 1500°C. Then, inject the first gas and the second gas into the second gas injection port 206 at the same time, spray into the chamber 201 through the second nozzle, and make the first gas and the second gas decomposes and reacts, and vapor-deposits the vapor-deposited film on the
之后,利用所述〔实施例1〕中详细叙述的方法形成第一绝缘膜401。Thereafter, the first insulating
然后,利用所述形成第二绝缘膜402a的方法中的任一方法在所述第一绝缘膜401上形成第二绝缘膜402a。此时,所述第一绝缘膜401和第二绝缘膜402a及402b能够根据需要而以多种层积顺序进行蒸镀。即,本发明中,以第二绝缘膜/第一绝缘膜/第二绝缘膜进行层积,但可以以将第一绝缘膜及第二绝缘膜组合的全部方式进行层积。Then, a second insulating film 402a is formed on the first insulating
此时,所述〔实施例1〕和〔实施例2〕的不同点为,〔实施例1〕的情况下,分解所需的能量相对高的第一气体的分解由等离子体分解方式和热分解方式两种方式完全分解,分解所需的能量相对低的第二气体的分解仅由热分解方式仅分解形成几乎不含氢的第一绝缘膜401,与其相比,〔实施例2〕的情况下,在由所述〔实施例1〕形成的第一绝缘膜401上,将所述第一气体及第二气体全部同时注入第一气体注入口或第二气体注入口,然后,利用等离子体方式或加热体方式进行分解,进而蒸镀在第二绝缘膜402a、402b上。At this time, the difference between [Example 1] and [Example 2] is that in the case of [Example 1], the decomposition of the first gas, which requires relatively high energy for decomposition, is determined by the plasma decomposition method and thermal energy. The decomposition method is completely decomposed in two ways, and the decomposition of the second gas, which requires relatively low energy for decomposition, is only decomposed by the thermal decomposition method to form the first insulating
图3A及图3B是本发明一实施方式的蒸镀装置的夹具的放大剖面图。3A and 3B are enlarged cross-sectional views of a jig of a vapor deposition device according to an embodiment of the present invention.
参照图3A进行说明,图3A是将所述图2的夹具231放大的剖面图,可以看到如下结构,即,具有进行蒸镀膜生长的基板234的所述进行蒸镀膜生长的面的相反面上构成的过滤器234及经由该过滤器234向所述蒸镀膜供给能量而构成的能量供给源233。Referring to FIG. 3A for description, FIG. 3A is an enlarged cross-sectional view of the
所述基板232的任一面与第一喷嘴部215及第二喷嘴部216等气体供给装置相对配置,在所述气体供给装置和基板232之间构成钨丝这样的加热体221。Either surface of the
在夹具231上构成能量供给源233,该能量供给源233内设于所述夹具231中,或与夹具231成一体型或者为夹具231自身。An
在基板232的蒸镀所述薄膜的面的相反面上构成由过滤器234。该过滤器234是选择性波长透射过滤器,此时的波长为光波长。A
另外,本实施方式中的透射的选择性光波长是红外线及/或近红外线区域的光波长,该透射的选择性光波长根据蒸镀的所述蒸镀膜的材料及目的而选择其他的区域带的波长,这是相当于通常由已公知的E=hυ的关系式求出的必要能量的波长。另外,此时,最好使用附合各自目的的选择性波长透射过滤器。In addition, the transmitted selective light wavelength in this embodiment is the light wavelength in the infrared and/or near-infrared region, and the transmitted selective light wavelength can be selected from other regions according to the material and purpose of the vapor-deposited film. This is the wavelength corresponding to the necessary energy generally obtained from the well-known relational expression E=hυ. In addition, at this time, it is preferable to use a selective wavelength transmission filter suitable for each purpose.
在所述过滤器234的其他方向,即,基板232所处方向的其他方向上构成能量供给源233,其经由该过滤器234向所述蒸镀膜供给能量。此时的能量供给源是波长能量供给源。An
与上述的过滤器234相符合的内容是指:所述波长是光波长,特别是含有红外线及/或近红外线区域的波长的光波长。The content corresponding to the above-mentioned
另外,蒸镀有所述蒸镀膜的基板232最好是玻璃系列及透明高分子材料这样的透明基板,但根据必要或必然,也可以是上述的该目的的波长区域带不能透射的不透明基板。In addition, the
参照图3B进行说明,夹具231包括:在进行蒸镀膜生长的基板232;在所述基板232的进行蒸镀膜生长的面的相反面形成并且由开放图案235a和封闭图案235b构成的掩模235;配置于所述掩模235的下部的过滤器234;经由所述过滤器234向所述蒸镀膜供给能量而构成的能量供给源233。Referring to FIG. 3B for illustration, the
所述夹具231形成能量供给源233,所述能量供给源233内设于所述夹具231中,或与夹具231成一体型或者为夹具231自身。The
所述掩模235形成在通过开放图案235a及封闭图案235b选择蒸镀膜的区域上,进而准确形成在横侧(lateral)方向的被选择的区域上,仅向所述蒸镀膜的该区域供给能量。The
另外,所述掩模235由开放图案235a及封闭图案235b构成,其分别是遮光图案和透光图案。In addition, the
上述的与过滤器234相符合的内容是指:所述波长是光波长,特别是含有红外线及/或近红外线区域的波长。The above-mentioned content consistent with the
此时,图3B表示掩模235紧密贴合于基板232上的结构,但也可以在过滤器234与能量供给源233之间构成掩模235。In this case, FIG. 3B shows a structure in which the
另外,过滤器含有掩模235而构成,但以可以将掩模235和过滤器234一体构成。换言之,可以在所述过滤器234上形成具有与所述掩模235的开放图案235a及封闭图案235b的功能等同的功能的图案,此时的图案是透光图案。In addition, although the filter is comprised including the
对在将图3A和图3B所示的夹具231导入到图2的蒸镀装置之后蒸镀硅层的方法进行说明。A method of vapor-depositing a silicon layer after introducing the
利用夹具231的能量供给源233的蒸镀方法是:在由将腔室内部排气成真空的阶段和在将腔室内部排气成真空之后对蒸镀膜进行蒸镀的阶段构成的真空蒸镀工序中,包括向所述蒸镀膜供给针对所述蒸镀膜的选择性波长能量的能量供给阶段。The vapor deposition method using the
通过真空泵202将腔室内部排气成真空之后,进行蒸镀膜蒸镀工序。After the inside of the chamber is evacuated to a vacuum by the vacuum pump 202, a vapor-deposited film vapor-deposition step is performed.
此时,能量供给源233在进行蒸镀膜蒸镀工序期间向所述蒸镀膜供给能量。在这样的情况下,向蒸镀有所述蒸镀膜的每一层(layer)上供给所述蒸镀膜从非晶质向结晶化发生相位转变所需的热函,能够在结晶化度提高的状态下进行蒸镀。此时,供给的能量的强度被所述薄膜的蒸镀速度和所述蒸镀膜材料的物理性质所左右。At this time, the
能量供给源233可在蒸镀膜蒸镀工序结束后向所述薄膜供给能量。此时,向完成了蒸镀的所述蒸镀膜赋予加温退火(thermal annealing)效果。The
另外,能量供给源233在蒸镀所述蒸镀膜之前设置,可向所述基板表面上赋予预热的效果。In addition, the
通过能量供给源233进行的能量供给阶段包括:从能量供给源233放出波长能量的阶段;将所述放出的波长能量经由选择性波长透射过滤器即过滤器234而被选择的波长能量过滤的阶段;所述被选择的波长能量透射基板232的阶段;向蒸镀膜供给透射基板232的被选择的波长能量的阶段。The energy supply stage performed by the
将透射基板232的被选择的波长能量向所述蒸镀膜供给的阶段根据所述被选择的波长能量的强度而可以一直进行到所述蒸镀膜的生长点、中间点或所述蒸镀膜上部中的任一部分。The stage of supplying the selected wavelength energy of the
本发明例举上述最佳实施方式图示说明,但并不限定于所述实施方式,在不脱离本发明的精神的范围内,本发明所属技术领域中具有公知常识的技术人员能够进行各种变更和修改。The present invention exemplifies the above-mentioned preferred embodiments for illustration, but is not limited to the embodiments. Within the scope of not departing from the spirit of the present invention, those skilled in the art to which the present invention belongs can carry out various Changes and Modifications.
Claims (69)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050005489A KR100685809B1 (en) | 2005-01-20 | 2005-01-20 | Chemical vapor deposition apparatus |
KR5489/05 | 2005-01-20 | ||
KR1020050008796A KR100685823B1 (en) | 2005-01-31 | 2005-01-31 | Deposition method |
KR8796/05 | 2005-01-31 | ||
KR14801/05 | 2005-02-23 | ||
KR1020050014801A KR100622241B1 (en) | 2005-02-23 | 2005-02-23 | Vacuum deposition system equipped with a wavelength energy supply device and thin film crystallization promotion method using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100020409A Division CN101476116B (en) | 2005-01-20 | 2006-01-20 | Evaporation device and evaporation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1807681A true CN1807681A (en) | 2006-07-26 |
CN1807681B CN1807681B (en) | 2010-05-26 |
Family
ID=36839771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100063966A Active CN1807681B (en) | 2005-01-20 | 2006-01-20 | Evaporation device and vapor deposition method using the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100685809B1 (en) |
CN (1) | CN1807681B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665918B (en) * | 2008-09-05 | 2011-08-17 | 东京毅力科创株式会社 | Film forming method and film forming apparatus |
CN102224275A (en) * | 2009-04-03 | 2011-10-19 | 东京毅力科创株式会社 | Deposition head and film forming apparatus |
CN102260861A (en) * | 2010-05-26 | 2011-11-30 | 塔工程有限公司 | Chemical vapor deposition device and method thereof |
CN103320852A (en) * | 2013-06-14 | 2013-09-25 | 光垒光电科技(上海)有限公司 | Reaction cavity used for epitaxial deposition |
CN103938272A (en) * | 2014-04-03 | 2014-07-23 | 清华大学 | Plasma assisted epitaxial growth device and method |
CN104342632B (en) * | 2013-08-07 | 2017-06-06 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Pre-cleaning cavity and plasma processing device |
CN107043910A (en) * | 2015-11-19 | 2017-08-15 | 株式会社达文希斯 | Utilize the evaporation coating device and deposition system of sensing heating |
CN109804110A (en) * | 2016-10-04 | 2019-05-24 | 碳能力有限责任公司 | For laying the device and method of carbon-coating |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721576B1 (en) * | 2005-04-06 | 2007-05-23 | 삼성에스디아이 주식회사 | Organic electroluminescent device manufacturing method |
KR100716263B1 (en) * | 2006-05-19 | 2007-05-08 | 주식회사 아토 | Dry etching equipment |
KR100974566B1 (en) | 2008-08-08 | 2010-08-06 | 한국생산기술연구원 | Atmospheric pressure plasma device |
KR101111755B1 (en) * | 2009-11-26 | 2012-03-13 | 주식회사 케이씨텍 | Gas distribution unit and apparatus for metal organic cvd having the gas distribution unit |
KR101199221B1 (en) * | 2010-09-14 | 2012-11-07 | 한국에너지기술연구원 | method for depositing silicon-series nanoparticle thin film, silicon-series nanoparticle thin film, and apparatus for depositing silicon-series nanoparticle thin film |
KR102083448B1 (en) * | 2012-12-20 | 2020-03-03 | 삼성디스플레이 주식회사 | Vapor deposition apparatus and method for manufacturing organic light emitting display apparatus |
CN103745902A (en) * | 2013-12-16 | 2014-04-23 | 深圳市华星光电技术有限公司 | PECVD processing device and method for carrying out PECVD processing on substrate |
KR102328916B1 (en) * | 2014-08-18 | 2021-11-18 | 엘지디스플레이 주식회사 | Apparatus for processing substrate |
KR102390560B1 (en) * | 2018-11-30 | 2022-04-26 | 메이덴샤 코포레이션 | Oxide film forming device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3872363B2 (en) | 2002-03-12 | 2007-01-24 | 京セラ株式会社 | Cat-PECVD method |
-
2005
- 2005-01-20 KR KR1020050005489A patent/KR100685809B1/en not_active Expired - Lifetime
-
2006
- 2006-01-20 CN CN2006100063966A patent/CN1807681B/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665918B (en) * | 2008-09-05 | 2011-08-17 | 东京毅力科创株式会社 | Film forming method and film forming apparatus |
CN102224275A (en) * | 2009-04-03 | 2011-10-19 | 东京毅力科创株式会社 | Deposition head and film forming apparatus |
CN102224275B (en) * | 2009-04-03 | 2013-09-11 | 东京毅力科创株式会社 | Deposition head and film forming apparatus |
CN102260861A (en) * | 2010-05-26 | 2011-11-30 | 塔工程有限公司 | Chemical vapor deposition device and method thereof |
CN103320852A (en) * | 2013-06-14 | 2013-09-25 | 光垒光电科技(上海)有限公司 | Reaction cavity used for epitaxial deposition |
CN104342632B (en) * | 2013-08-07 | 2017-06-06 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Pre-cleaning cavity and plasma processing device |
CN103938272A (en) * | 2014-04-03 | 2014-07-23 | 清华大学 | Plasma assisted epitaxial growth device and method |
CN107043910A (en) * | 2015-11-19 | 2017-08-15 | 株式会社达文希斯 | Utilize the evaporation coating device and deposition system of sensing heating |
CN109804110A (en) * | 2016-10-04 | 2019-05-24 | 碳能力有限责任公司 | For laying the device and method of carbon-coating |
CN109804110B (en) * | 2016-10-04 | 2021-03-30 | 碳能力有限责任公司 | Apparatus and method for applying a carbon layer |
US11746415B2 (en) | 2016-10-04 | 2023-09-05 | Carboncompetence Gmbh | Method for applying a carbon layer to a substrate comprising introducing a process gas into a deposition chamber via a gas inlet and gas activation element |
Also Published As
Publication number | Publication date |
---|---|
CN1807681B (en) | 2010-05-26 |
KR100685809B1 (en) | 2007-02-22 |
KR20060084701A (en) | 2006-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1807681A (en) | Evaporating device and method utilizing same | |
CN1082569C (en) | Microwave plasma processing apparatus and method therefor | |
CN1576392A (en) | Surface wave plasma treatment apparatus using multi-slot antenna | |
JP5848862B2 (en) | Improving the water shielding performance of the encapsulated membrane | |
JP6290544B2 (en) | Method for depositing silicon dioxide film | |
JP2012149278A (en) | Method for producing silicon-containing film | |
CN1906325A (en) | Method and apparatus for forming a metal layer | |
CN101476116B (en) | Evaporation device and evaporation method | |
US11038145B2 (en) | Laminated film and process for manufacturing the same, as well as method for analyzing laminated film | |
CN1912179A (en) | Apparatus and method for forming a film, patterning method and method for manufacturing an optical device | |
JP4955293B2 (en) | Method for manufacturing organic electroluminescent device | |
JP2004095953A (en) | Method of forming deposited silicon nitride film | |
KR20130095119A (en) | Atomospheric pressure plasma generating apparatus | |
CN1943021A (en) | Substrate for electronic device and method for processing same | |
CN1614739A (en) | Processing apparatus and method | |
CN1053230C (en) | Microwave enhanced cvd system under magnetic field | |
JP5069598B2 (en) | Method for producing gas barrier film | |
KR20060087920A (en) | Deposition method | |
JP6110106B2 (en) | Thin film forming equipment | |
KR100773123B1 (en) | Method of forming polycrystalline silicon thin film by two-step deposition | |
CN1716538A (en) | Film-forming method and film-forming apparatus | |
KR100685826B1 (en) | Deposition apparatus and deposition method using the same | |
US20230049118A1 (en) | Substrate processing device and substrate processing method | |
KR20020054907A (en) | Plasma deposition apparatus and method for forming deposition layer using it | |
CN110192290A (en) | Film for preventing water vapor permeation and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20090109 Address after: Gyeonggi Do, South Korea Applicant after: Samsung Mobile Display Co., Ltd. Address before: Gyeonggi Do, South Korea Applicant before: Samsung SDI Co., Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: SAMSUNG MOBILE DISPLAY CO., LTD. Free format text: FORMER OWNER: SAMSUNG SDI CO., LTD. Effective date: 20090109 |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SAMSUNG DISPLAY CO., LTD. Free format text: FORMER OWNER: SAMSUNG MOBILE DISPLAY CO., LTD. Effective date: 20121018 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20121018 Address after: Gyeonggi Do, South Korea Patentee after: Samsung Display Co., Ltd. Address before: Gyeonggi Do, South Korea Patentee before: Samsung Mobile Display Co., Ltd. |