CN1797471A - Method for detecting area of skin color of human body in image compression domain - Google Patents
Method for detecting area of skin color of human body in image compression domain Download PDFInfo
- Publication number
- CN1797471A CN1797471A CN 200410101599 CN200410101599A CN1797471A CN 1797471 A CN1797471 A CN 1797471A CN 200410101599 CN200410101599 CN 200410101599 CN 200410101599 A CN200410101599 A CN 200410101599A CN 1797471 A CN1797471 A CN 1797471A
- Authority
- CN
- China
- Prior art keywords
- skin color
- image block
- image
- color
- human body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000282414 Homo sapiens Species 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000006835 compression Effects 0.000 title claims abstract description 17
- 238000007906 compression Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 36
- 238000013139 quantization Methods 0.000 claims abstract description 3
- 239000011159 matrix material Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 3
- 230000006837 decompression Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Color Television Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明公开了一种JPEG图像压缩域上的人体肤色区域检测方法,该方法包括以下步骤:初始化系统参数;对待检测的JPEG图像进行哈夫曼解码和反量化,得到Y,Cb,Cr颜色分量上各个图像块对应的DCT系数;计算每个图像块的颜色特征和纹理特征;计算每个图像块的肤色概率;根据肤色概率和纹理特征判断每个图像块是否是人体肤色区域。本发明的优点在于:本发明方法不需要把图像完全解压缩,直接在压缩码流上操作,提高了人体肤色区域检测的速度;提高了人体肤色区域检测的精度。
The invention discloses a method for detecting human body skin color area in JPEG image compression domain. The method includes the following steps: initializing system parameters; performing Huffman decoding and inverse quantization on the JPEG image to be detected to obtain Y, Cb, Cr color components DCT coefficients corresponding to each image block; calculate the color feature and texture feature of each image block; calculate the skin color probability of each image block; judge whether each image block is a human skin color area according to the skin color probability and texture feature. The invention has the advantages that: the method of the invention does not need to completely decompress the image, and directly operates on the compressed code stream, thereby improving the detection speed of the human body skin color area and improving the detection accuracy of the human body skin color area.
Description
技术领域technical field
本发明涉及一种图像中人体肤色区域检测的方法,特别涉及一种JPEG图像压缩域上的人体肤色区域检测方法。The invention relates to a method for detecting a human skin color area in an image, in particular to a detection method for a human body skin color area in a JPEG image compression domain.
背景技术Background technique
图像中一类重要的信息是人的信息,人类的皮肤是人类的重要生理特征。快速而准确地检测图像中的人体肤色区域在人脸检测和敏感图像过滤等应用中有重要的理论和实用价值。An important type of information in images is human information, and human skin is an important physiological feature of human beings. Fast and accurate detection of human skin color regions in images has important theoretical and practical value in applications such as face detection and sensitive image filtering.
JPEG(Joint Photographic Experts Group)是国际标准化组织(ISO)下的静态图像压缩标准制定委员会所制定的国际静态图像压缩标准。由于JPEG对图像静态压缩的优良品质,使得它获得了极大的成功。目前网站上百分之八十的图像都是采用JPEG的压缩标准。JPEG (Joint Photographic Experts Group) is an international still image compression standard formulated by the still image compression standard formulation committee under the International Organization for Standardization (ISO). Due to the excellent quality of JPEG for image static compression, it has achieved great success. Eighty percent of the images on the website currently use the JPEG compression standard.
由于JPEG的广泛适用性,在对人体肤色进行检测时,不可避免地要求对采用JPEG标准压缩的图像进行肤色区域检测。在现有的肤色区域检测方法中,对于采用JPEG标准压缩的图像,肤色检测的主要步骤为:Due to the wide applicability of JPEG, when detecting human skin color, it is unavoidable to require skin color area detection on images compressed by JPEG standard. In the existing skin color area detection method, for images compressed by the JPEG standard, the main steps of skin color detection are:
1)对待检测的JPEG图像进行哈夫曼解码,得到每个图像块DCT系数;1) Huffman decoding is performed on the JPEG image to be detected to obtain the DCT coefficient of each image block;
2)对每个图像块再进行反DCT解码,把图像解压到像素域,实现对图像的完全解压缩;2) Perform inverse DCT decoding on each image block, decompress the image into the pixel domain, and realize the complete decompression of the image;
3)对完全解压缩后的图像逐像素地进行肤色检测,判别。3) Perform skin color detection and discrimination pixel by pixel on the fully decompressed image.
以上只是对现有的肤色区域检测方法做简要的描述,关于肤色区域检测方法的详细信息可参见参考文献1:1999年在Computer Vision and Pattern Recognition会议上,Jones等人的论文“Statistical Color Models with application to skindetection”。The above is just a brief description of the existing skin color area detection method. For more information about the skin color area detection method, please refer to Reference 1: In 1999 at the Computer Vision and Pattern Recognition conference, the paper "Statistical Color Models with application to skin detection".
现有的检测方法需要先把图像完全解压缩到像素域才能进行肤色检测,在完全解压缩的过程中,对每个图像块在进行反DCT解码时运算复杂度高,而且检测过程是逐像素地进行,只考虑了颜色信息,没有考虑纹理信息,这就导致肤色检测需要很大的计算量并且检测精度不高。Existing detection methods need to fully decompress the image into the pixel domain before performing skin color detection. In the process of complete decompression, the computational complexity of inverse DCT decoding for each image block is high, and the detection process is pixel by pixel. However, only the color information is considered, and the texture information is not considered, which leads to a large amount of calculation required for skin color detection and low detection accuracy.
如果对现有的人体区域肤色检测方法的操作步骤加以简化,并充分考虑纹理信息,就能够降低肤色检测的计算量,并提高检测的精度。If the operation steps of the existing human skin color detection method are simplified and texture information is fully considered, the calculation amount of skin color detection can be reduced and the detection accuracy can be improved.
发明内容Contents of the invention
本发明的目的是提供一种JPEG图像压缩域上的人体肤色区域检测方法,克服现有检测方法中操作步骤复杂、计算量大的缺陷,实现对人体肤色区域的快速检测。The purpose of the present invention is to provide a human body skin color area detection method on the JPEG image compression domain, which overcomes the defects of complex operation steps and large calculation amount in the existing detection method, and realizes rapid detection of human body skin color area.
本发明的又一个目的是提供一种JPEG图像压缩域上的人体肤色区域检测方法,克服现有检测方法中肤色区域检测精度不高的缺陷,实现对人体肤色区域的精确检测。Yet another object of the present invention is to provide a method for detecting human skin color areas in the JPEG image compression domain, which overcomes the defect of low detection accuracy of skin color areas in existing detection methods, and realizes accurate detection of human body skin color areas.
为实现上述目的,本发明提供了一种JPEG图像压缩域上的人体肤色区域检测方法,该方法包括以下步骤:In order to achieve the above object, the invention provides a method for detecting human body skin color regions on the JPEG image compression domain, the method may further comprise the steps:
a)初始化系统参数,系统参数包括:纹理特征阈值,肤色概率阈值,图像块大小,人体肤色分布模型;a) Initialize system parameters, system parameters include: texture feature threshold, skin color probability threshold, image block size, human skin color distribution model;
b)对待检测的JPEG图像进行哈夫曼解码和反量化,并将待检测的JPEG图像分解为图像块,得到Y,Cb,Cr颜色分量上各个图像块对应的DCT系数;b) Huffman decoding and inverse quantization are carried out on the JPEG image to be detected, and the JPEG image to be detected is decomposed into image blocks to obtain Y, Cb, DCT coefficients corresponding to each image block on the Cr color component;
c)利用步骤b)得到的DCT系数计算每个图像块的颜色特征和纹理特征;c) using the DCT coefficients obtained in step b) to calculate the color features and texture features of each image block;
d)利用步骤c)得到的颜色特征与步骤a)中设定的人体肤色分布模型,计算每个图像块的肤色概率;d) using the color feature obtained in step c) and the human skin color distribution model set in step a), to calculate the skin color probability of each image block;
e)根据肤色概率和纹理特征判断每个图像块是否是人体肤色区域。e) Judging whether each image block is a human skin color area according to the skin color probability and texture features.
上述技术方案中,在步骤a)中,所述的图像块大小的取值为下列三者之一:8×8,4×4,2×2。In the above technical solution, in step a), the size of the image block is one of the following three: 8×8, 4×4, 2×2.
上述技术方案中,在步骤c)中,所述的图像块的颜色特征在Y,Cb,Cr三个颜色分量上的值分别是该图像块在对应的颜色分量上的DCT系数中的DC系数除以图像块的像素块中的像素个数的平方根。In the above technical solution, in step c), the values of the color features of the image block on the Y, Cb, and Cr three color components are respectively the DC coefficients of the DCT coefficients of the image block on the corresponding color components Divide by the square root of the number of pixels in the pixel block of the image block.
上述技术方案中,在步骤c)中,所述的图像块的纹理特征的值是该像素块Y颜色分量上DCT系数中非零AC系数的平方和除以像素块中的像素个数。In the above technical solution, in step c), the value of the texture feature of the image block is the sum of the squares of the non-zero AC coefficients in the DCT coefficients on the Y color component of the pixel block divided by the number of pixels in the pixel block.
上述技术方案中,在步骤e)中,判断图像块为人体肤色区域的标准是:该图像块的肤色概率在设定的肤色概率阈值的范围之内并且纹理特征在设定的纹理特征阈值的范围之内。In the above technical solution, in step e), the criterion for judging that the image block is a human skin color area is: the skin color probability of the image block is within the range of the set skin color probability threshold and the texture feature is within the set texture feature threshold. within range.
本发明方法的优点在于:The advantage of the inventive method is:
1、本发明方法不需要把图像完全解压缩,直接在压缩码流上操作,简化了操作步骤,提高了人体肤色区域检测的速度。1. The method of the present invention does not need to fully decompress the image, and directly operates on the compressed code stream, which simplifies the operation steps and improves the detection speed of the human body skin color area.
2、在检测过程中充分考虑了检测图像的纹理信息,提高了人体肤色区域检测的精度。2. In the detection process, the texture information of the detection image is fully considered, which improves the detection accuracy of the human skin color area.
附图说明Description of drawings
图1为本发明方法的流程图Fig. 1 is the flowchart of the inventive method
图2为一个4×4大小的图像块的DCT系数示意图Figure 2 is a schematic diagram of the DCT coefficients of a 4×4 image block
具体实施方式Detailed ways
下面参照附图和具体实施方式对本发明所述方法进行详细描述。The method of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明的JPEG图像压缩域上的人体肤色区域检测方法主要包括以下步骤:As shown in Figure 1, the human skin color area detection method on the JPEG image compression domain of the present invention mainly comprises the following steps:
在步骤100中,初始化系统参数。这些参数包括:纹理特征阈值,肤色概率阀值,图像块大小,人体肤色分布模型。纹理特征阈值和颜色特征阈值是由实验得到的固定值。所述的图像块大小是指在做人体肤色区域检测时的图像基本块的大小,图像块大小应该为2的整次幂,且必须是下列三者之一:8×8,4×4,2×2;人体肤色分布模型刻画了各种颜色属于人体肤色的可能性。各种已有的或将来出现的人体肤色分布模型均适用于本发明方法,如统计肤色模型,单高斯模型。In step 100, system parameters are initialized. These parameters include: texture feature threshold, skin color probability threshold, image block size, human skin color distribution model. The texture feature threshold and color feature threshold are fixed values obtained by experiments. The image block size refers to the size of the basic image block when detecting the human skin color area, the image block size should be an integral power of 2, and must be one of the following three: 8×8, 4×4, 2×2; Human skin color distribution model depicts the possibility of various colors belonging to human skin color. Various existing or future human skin color distribution models are applicable to the method of the present invention, such as statistical skin color model and single Gaussian model.
在步骤200中,对待检测的JPEG图像进行哈夫曼解码和反量化,并将待检测的JPEG图像分解为图像块,得到Y,Cb,Cr颜色分量上各个图像块对应的DCT系数。In step 200, the JPEG image to be detected is subjected to Huffman decoding and dequantization, and the JPEG image to be detected is decomposed into image blocks to obtain DCT coefficients corresponding to each image block on Y, Cb, and Cr color components.
由于彩色JPEG图像中,每个颜色一般用三个颜色分量来表示,即:Y,Cb,Cr.因此每个N×N大小的图像块分别对应三个颜色分量上的图像块。每个N×N大小图像块每个颜色分量上的数值经过离散余弦变换(DCT)后得到对应的离散余弦变换(DCT)系数,该系数是一个N×N大小的矩阵。该矩阵的第一个系数是直流(DC)系数,其他系数称为交流(AC)系数。如图2所示,该图是一个4×4大小的DCT系数,其中矩阵中的第一个系数(0,0)为直流(DC)系数,该矩阵中的其他系数为交流(AC)系数。In a color JPEG image, each color is generally represented by three color components, namely: Y, Cb, Cr. Therefore, each N×N image block corresponds to an image block on the three color components. The value of each color component of each N×N size image block undergoes a discrete cosine transform (DCT) to obtain a corresponding discrete cosine transform (DCT) coefficient, and the coefficient is a matrix of N×N size. The first coefficient of this matrix is the direct current (DC) coefficient, and the other coefficients are called alternating current (AC) coefficients. As shown in Figure 2, the figure is a 4×4 DCT coefficient, where the first coefficient (0, 0) in the matrix is a direct current (DC) coefficient, and the other coefficients in the matrix are alternating current (AC) coefficients .
参照JPEG图像压缩标准,通过哈夫曼解码可以得到每个8×8图像块对应的DCT系数;在步骤100中可知,图像块的大小有三种可能,若步骤100中设定的图像块大小是4×4,需要把每个8×8图像块分解为4个4×4;若步骤100中设定的图像块大小是2×2,需要把每个8×8图像块分解为16个2×2图像块。将8×8图像块分解的过程是在DCT上操作实现的,也就是要根据原来8×8图像块的DCT系数,运算得到每个4×4或2×2的图像子块的DCT系数。With reference to the JPEG image compression standard, the DCT coefficients corresponding to each 8×8 image block can be obtained by Huffman decoding; in step 100, there are three possibilities for the size of the image block, if the image block size set in step 100 is 4×4, each 8×8 image block needs to be decomposed into four 4×4; if the image block size set in step 100 is 2×2, each 8×8 image block needs to be decomposed into 16 2 ×2 image blocks. The process of decomposing the 8×8 image block is realized by operating on DCT, that is, according to the DCT coefficient of the original 8×8 image block, the DCT coefficient of each 4×4 or 2×2 image sub-block is calculated.
以一个8×8图像块为例,对该图像块的分解进行说明。Taking an 8×8 image block as an example, the decomposition of the image block will be described.
记8×8块块对应的DCT系数为D88;对应的四个4×4块的DCT系数为D441,D442,D443,D444;对应的16个2×2块的DCT系数为D221,D222,D223,D224,D225,D226,D227,D228,D229,D2210,D2211,D2212,D2213,D2214,D2215,D2216。D88是8×8的矩阵,D441~D444都是4×4的矩阵,D221~D2216都是2×2矩阵。Note that the DCT coefficients corresponding to 8×8 blocks are D88; the corresponding DCT coefficients of four 4×4 blocks are D44 1 , D44 2 , D44 3 , D44 4 ; the corresponding DCT coefficients of 16 2×2 blocks are D22 1 , D22 2 , D22 3 , D22 4 , D22 5, D22 6 , D22 7 , D22 8 , D22 9 , D22 10 , D22 11 , D22 12 , D22 13 , D22 14 , D22 15 , D22 16 . D88 is an 8×8 matrix, D44 1 to D44 4 are all 4×4 matrices, and D22 1 to D22 16 are all 2×2 matrices.
8×8块分解为4个4×4块的方法如下:The method of decomposing an 8×8 block into four 4×4 blocks is as follows:
其中D84是转换矩阵,D84T是其转置矩阵。D84是一个固定值,它的值为:where D84 is the transformation matrix and D84 T is its transpose matrix. D84 is a fixed value, its value is:
4×4块分解为2×2块的方法如下:The method of decomposing 4×4 blocks into 2×2 blocks is as follows:
其中D42是转换矩阵,D42T是其转置矩阵。where D42 is the transformation matrix and D42 T is its transpose matrix.
D42是一个固定值,它的值为:D42 is a fixed value, its value is:
从8×8块分解为16个2×2块,可以先把8×8块分解为4个4×4块,再把每个4×4块分解为4个2×2块。From 8×8 blocks to 16 2×2 blocks, you can first decompose 8×8 blocks into 4 4×4 blocks, and then decompose each 4×4 block into 4 2×2 blocks.
在步骤300中,计算每个图像块的颜色特征和纹理特征。In step 300, the color features and texture features of each image block are calculated.
图像块的颜色特征用YCbCr颜色空间表示,其在Y,Cb,Cr三个颜色分量上的值分别是该图像块在对应的颜色分量上的DCT系数中DC系数除以图像块的像素块中的像素个数的平方根,用公式表示为:
该图像块的纹理特征是该像素块Y颜色分量上DCT系数中非零AC系数的平方和除以像素块中的像素个数,即
在步骤400中,计算每个图像块的肤色可能性。由步骤300得到图像块的颜色特征的值,由步骤100中的肤色分布模型可知各颜色值的肤色概率,将图像块的颜色特征的值与肤色分布模型中各颜色值做对比,得到该图像块的肤色概率。In step 400, the likelihood of skin color is calculated for each image patch. The value of the color feature of the image block is obtained in step 300, the skin color probability of each color value can be known from the skin color distribution model in step 100, the value of the color feature of the image block is compared with each color value in the skin color distribution model, and the image is obtained The skin color probability of the block.
在步骤500中,根据肤色概率和纹理特征对每个图像块进行判断,判断其是否是人体肤色区域。判断图像块为人体肤色图像块的标准是:该图像块的肤色概率在设定的肤色概率阈值的范围之内并且纹理特征在设定的纹理特征阈值的范围之内。In step 500, each image block is judged according to the skin color probability and texture features, and whether it is a human skin color area is judged. The criterion for judging that the image block is a human skin color image block is that the skin color probability of the image block is within the range of the set skin color probability threshold and the texture feature is within the set texture feature threshold range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004101015994A CN100377177C (en) | 2004-12-24 | 2004-12-24 | Human skin color region detection method in image compression domain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004101015994A CN100377177C (en) | 2004-12-24 | 2004-12-24 | Human skin color region detection method in image compression domain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1797471A true CN1797471A (en) | 2006-07-05 |
CN100377177C CN100377177C (en) | 2008-03-26 |
Family
ID=36818480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004101015994A Expired - Fee Related CN100377177C (en) | 2004-12-24 | 2004-12-24 | Human skin color region detection method in image compression domain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100377177C (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299242B (en) * | 2008-06-13 | 2010-08-25 | 腾讯科技(深圳)有限公司 | Method and device for determining threshold value in human body skin tone detection |
CN101360174B (en) * | 2007-08-03 | 2011-05-25 | 广达电脑股份有限公司 | Digital image classification method and classification device |
CN101556600B (en) * | 2009-05-18 | 2011-08-24 | 中山大学 | An Image Retrieval Method in DCT Domain |
CN102236793A (en) * | 2010-04-29 | 2011-11-09 | 比亚迪股份有限公司 | Method for rapidly detecting skin color |
US8064707B2 (en) | 2007-07-06 | 2011-11-22 | Quanta Computer, Inc. | Image recognition method and image recognition apparatus |
US8126263B2 (en) | 2007-07-06 | 2012-02-28 | Quanta Computer Inc. | Classifying method and classifying apparatus for digital image |
CN101742291B (en) * | 2008-11-14 | 2012-11-07 | 北大方正集团有限公司 | Method and device for positioning and identifying compressed image object |
CN103020633A (en) * | 2011-09-23 | 2013-04-03 | 无锡中星微电子有限公司 | Skin color detection method in image compressed domain |
CN111815653A (en) * | 2020-07-08 | 2020-10-23 | 深圳市梦网视讯有限公司 | Method, system and equipment for segmenting face and body skin color area |
-
2004
- 2004-12-24 CN CNB2004101015994A patent/CN100377177C/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8064707B2 (en) | 2007-07-06 | 2011-11-22 | Quanta Computer, Inc. | Image recognition method and image recognition apparatus |
US8126263B2 (en) | 2007-07-06 | 2012-02-28 | Quanta Computer Inc. | Classifying method and classifying apparatus for digital image |
CN101360174B (en) * | 2007-08-03 | 2011-05-25 | 广达电脑股份有限公司 | Digital image classification method and classification device |
CN101299242B (en) * | 2008-06-13 | 2010-08-25 | 腾讯科技(深圳)有限公司 | Method and device for determining threshold value in human body skin tone detection |
CN101742291B (en) * | 2008-11-14 | 2012-11-07 | 北大方正集团有限公司 | Method and device for positioning and identifying compressed image object |
CN101556600B (en) * | 2009-05-18 | 2011-08-24 | 中山大学 | An Image Retrieval Method in DCT Domain |
CN102236793A (en) * | 2010-04-29 | 2011-11-09 | 比亚迪股份有限公司 | Method for rapidly detecting skin color |
CN103020633A (en) * | 2011-09-23 | 2013-04-03 | 无锡中星微电子有限公司 | Skin color detection method in image compressed domain |
CN111815653A (en) * | 2020-07-08 | 2020-10-23 | 深圳市梦网视讯有限公司 | Method, system and equipment for segmenting face and body skin color area |
CN111815653B (en) * | 2020-07-08 | 2024-01-30 | 深圳市梦网视讯有限公司 | Method, system and equipment for segmenting human face and body skin color region |
Also Published As
Publication number | Publication date |
---|---|
CN100377177C (en) | 2008-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1781041B1 (en) | JPEG detectors and JPEG image history estimators | |
CN108012157A (en) | Construction method for the convolutional neural networks of Video coding fractional pixel interpolation | |
US20070195106A1 (en) | Detecting Doctored JPEG Images | |
CN1127562A (en) | Method and device for encoding image signal and image signal decoding device | |
CN1545064A (en) | Infrared and visible light image fusion method | |
CN1797471A (en) | Method for detecting area of skin color of human body in image compression domain | |
CN1751522A (en) | Video Coding with Skip Motion Estimation for Selected Macroblocks | |
CN1251145C (en) | Pyramid image merging method being integrated with edge and texture information | |
CN1662066A (en) | A method for selecting an intra-frame prediction mode | |
CN106658004A (en) | Compression method and device based on characteristics of flat region of image | |
Shaik et al. | Variable block size hybrid fractal technique for image compression | |
CN1251673A (en) | Method and device for coding and decoding digitized image | |
WO2024164694A9 (en) | Image compression method and apparatus, electronic device, computer program product, and storage medium | |
CN112153388A (en) | Image compression method, device and related equipment | |
CN1193618C (en) | Pre-processing method for motion estimation | |
CN1790374A (en) | Face recognition method based on template matching | |
CN112509107B (en) | Point cloud attribute re-coloring method, device and encoder | |
JP4831547B2 (en) | Method for image compression and decompression acceleration | |
CN1687969A (en) | File image compressing method based on file image content analyzing and characteristic extracting | |
CN103313053A (en) | Visual object-oriented shape coding method | |
CN103024246B (en) | Documentary archive image compressing method | |
CN103796017A (en) | Image discriminating device and method | |
CN108764277A (en) | A kind of non-reference picture Fuzzy Quality evaluation algorithms | |
CN103841420B (en) | A kind of method for compressing high spectrum image based on interested pixel protection | |
CN1313977C (en) | Compression and decompression for certificate photo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200423 Address after: Room 1101, no.49-1, Huaxia Road, Tianhe District, Guangzhou City, Guangdong Province Patentee after: Guangzhou Chuangyi Information Technology Co., Ltd Address before: 100080 Haidian District, Zhongguancun Academy of Sciences, South Road, No. 6, No. Patentee before: Institute of Computing Technology, Chinese Academy of Sciences |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080326 Termination date: 20201224 |
|
CF01 | Termination of patent right due to non-payment of annual fee |