CN1771651A - bearingless motor - Google Patents
bearingless motor Download PDFInfo
- Publication number
- CN1771651A CN1771651A CNA038264862A CN03826486A CN1771651A CN 1771651 A CN1771651 A CN 1771651A CN A038264862 A CNA038264862 A CN A038264862A CN 03826486 A CN03826486 A CN 03826486A CN 1771651 A CN1771651 A CN 1771651A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- magnetic structure
- motor according
- bearingless motor
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 239000013013 elastic material Substances 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 3
- 239000011359 shock absorbing material Substances 0.000 claims description 3
- 230000005389 magnetism Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- JOHZPMXAZQZXHR-UHFFFAOYSA-N pipemidic acid Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CN=C1N1CCNCC1 JOHZPMXAZQZXHR-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/08—Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/06—Relieving load on bearings using magnetic means
- F16C39/063—Permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/083—Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/22—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Frames (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
无轴承马达 bearingless motor
技术领域 technical field
本发明是关于一种马达,特别是关于一种具有功率高、寿命长及低噪音 的无轴承马达 ( non - bear ing motor )。 The present invention relates to a motor, in particular to a non-bearing motor with high power, long life and low noise.
背景技术 Background technique
在现今的马达中, 为了使其可以顺利运转, 一般是借由轴承包覆转 子的轴心部分, 以使其转子可以靠着轴承的支撑而顺利运转。 习知轴承是为培林轴承、 含油轴承 ( S l eeveBear ing ) 、 动压轴承、 磁浮轴承等, 然而, 前述各轴承皆有各自的优缺点。 培林轴承又称为滚珠轴承(Ba l lBear ing ) , 其是由外环、 内环及多 个金属圓珠所构成, 其中各金属圓珠是位于内环与外环之间。 由于此类 轴承的运作是借由多个金属圓珠的旋转而进行,且各金属圆珠与内环(或 外环)之间的接触是属于点接触, 故做动运转相当容易。 然而, 由于此 类轴承的结构体相当脆弱, 因此其无法承受外力的冲击。 再者, 当使用 此轴承的马达运转时。 由于金属回珠是以滚动的方式运行, 因此在高转 速下会产生较大的噪音。 再者, 由于金属圆珠、 内环、 外环的精密度需 求较高, 故其价格高昂。 In today's motors, in order to make it run smoothly, the shaft center part of the rotor is generally covered by the bearing, so that the rotor can run smoothly with the support of the bearing. Conventional bearings are Palin bearings, Sleeve Bearings, dynamic pressure bearings, magnetic bearings, etc. However, each of the aforementioned bearings has its own advantages and disadvantages. Palin bearing is also called ball bearing (Bal lBearing), which is composed of an outer ring, an inner ring and a plurality of metal balls, wherein each metal ball is located between the inner ring and the outer ring. Since the operation of this type of bearing is carried out by the rotation of multiple metal balls, and the contact between each metal ball and the inner ring (or outer ring) is a point contact, it is quite easy to operate. However, since the structure of this type of bearing is quite fragile, it cannot bear the impact of external force. Furthermore, when the motor using this bearing is running. Because the metal return ball runs in a rolling manner, it will generate a lot of noise at high speed. Furthermore, since the metal balls, the inner ring, and the outer ring require high precision, their prices are high.
含油轴承又称为粉末烧结自润轴承, 其是混合铜粉、 铁粉、 镍粉、 铅粉等金属粉末后烧结出轴承形状,再将润滑油浸入轴承毛孔内而形成。 当马达中使用含油轴承时, 含油轴承是固定于马达定子的中心位置, 再 将转子的轴心置于轴承内,此时轴承与轴心之间需保持一个适当的间隙。 当马达运转时, 润滑油会自轴承渗出, 以使转子在具有润滑的情形下旋 转。 此类轴承的耐冲击力高于滚珠轴承, 且其价格也比较便宜。 然而, 当马达中使用此类轴承时, 长期运转会使轴承内的润滑油蒸发, 而使轴 心与轴承直接摩擦, 甚至在轴承的两端形成妨碍运转的氮化物, 而使其 易毁损并增大其噪音量。 另外, 空气中的灰尘也会因风扇马达的运转而 被吸入马达核心, 其会与储存于轴承周围的润滑油混合成油泥, 进而造 成运转噪音, 甚至卡死不转。 再者, 轴承与轴心的间隙小, 马达的运转 启动效果较差。 Oil-impregnated bearings are also called powder sintered self-lubricating bearings, which are formed by mixing metal powders such as copper powder, iron powder, nickel powder, and lead powder to form a bearing shape, and then immersing lubricating oil into the pores of the bearing. When the oil-impregnated bearing is used in the motor, the oil-impregnated bearing is fixed at the center of the motor stator, and then the shaft center of the rotor is placed in the bearing. At this time, an appropriate gap must be maintained between the bearing and the shaft center. When the motor is running, oil seeps from the bearings to allow the rotor to spin with lubrication. These bearings are more resistant to impact than ball bearings and are also less expensive. However, when this type of bearing is used in a motor, long-term operation will cause the lubricating oil in the bearing to evaporate, causing direct friction between the shaft center and the bearing, and even forming nitrides at both ends of the bearing that hinder the operation, making it easy to be damaged and damaged. Increase its noise volume. In addition, the dust in the air will also be sucked into the core of the motor due to the operation of the fan motor, and it will mix with the lubricating oil stored around the bearing to form sludge, which will cause running noise, or even freeze. Furthermore, the gap between the bearing and the shaft center is small, and the starting effect of the motor is poor.
动压轴承是为前述含油轴承的变形, 其是于内侧壁面上形成二圈箭 头型凹槽, 以在马达运转之际, 使轴承内的润滑油与空气自箭头两侧朝 凹槽尖端部挤压, 而形成二油气环以支撑轴心。 当马达使用此类轴承时, 由于其油气是汇聚于凹槽尖端部, 因此其油气较不易散失而使其使用寿 命比含油轴承长。 然而, 位于动压轴承内侧的凹槽, 需经由极精密的加 工制程才可形成, 而且需要精准地掌握轴心与轴承间的间隙, 因此动压 轴承的生产成本远高于前述各轴承。 再者, 当马达转速低时, 由于油气 无法形成油气环, 因而在低转这时无法产生动压效果, 而使其效果与含 油轴承相同。 The dynamic pressure bearing is a deformation of the aforementioned oil-impregnated bearing. It forms two rings of arrow-shaped grooves on the inner wall surface, so that when the motor is running, the lubricating oil and air in the bearing are squeezed from both sides of the arrow toward the tip of the groove. Press to form two oil and gas rings to support the shaft. When the motor uses this type of bearing, because the oil and gas are collected at the tip of the groove, the oil and gas are less likely to be lost and the service life is longer than that of the oil-impregnated bearing. However, the groove on the inner side of the dynamic pressure bearing needs to be formed through an extremely precise machining process, and the gap between the shaft center and the bearing needs to be accurately controlled, so the production cost of the dynamic pressure bearing is much higher than the above-mentioned bearings. Furthermore, when the motor rotates at a low speed, since the oil and gas cannot form an oil and gas ring, the dynamic pressure effect cannot be generated at low speed, making the effect the same as that of an oil-impregnated bearing.
磁浮轴承, 是在轴心上形成多个 N - S磁极, 且在轴承的相对位置上 形成与轴心相同的 N - S磁极, 以在马达运转之际, 借由磁斥力而使轴心 悬浮于轴承上。 由于此时轴心与轴承之间并未相互接触, 因此其运转时 较无摩擦噪音的问题。 然而, 由于目前的磁浮轴承的设计是于静止下使 轴心与轴承的间距维持于 0. 2mm以下,因而轴心周围的轴承各部分向圓心 所产生的推力相等且相互抵销, 此时当轴心因外力或其运转的驱动力而 产生偏移时, 则会破坏其平衡, 而使其运转时轴心易与轴承相互碰撞, 进而使其噪音增加、 寿命缩短、 甚至无法平顺的运转。 Magnetic bearings form a plurality of N-S magnetic poles on the shaft, and form the same N-S magnetic poles as the shaft at the relative position of the bearing, so that when the motor is running, the shaft is suspended by magnetic repulsion on the bearing. Since the shaft and the bearing are not in contact with each other at this time, there is less problem of friction noise during operation. However, since the current design of the magnetic bearing is to keep the distance between the shaft center and the bearing below 0.2mm at rest, the parts of the bearing around the shaft center move towards the center of the circle. The thrusts generated are equal and offset each other. At this time, when the shaft center is shifted due to external force or the driving force of its operation, its balance will be destroyed, and the shaft center will easily collide with the bearing during operation, thereby causing Its noise increases, its life is shortened, and it may not even run smoothly.
再者, 前述磁浮轴承也因其磁性平衡的缘故, 而发生无法顺利启动 等的问题。 因此,磁浮轴承目前仍在实验阶段而无法顺利进入量产阶段。 发明内容 因此, 为解决上述问题, 本发明是提出一种无轴承马达, 以大幅降 低马达运转噪音量。 再者, 本发明另提出一种无轴承马达, 以大幅提高马达运转寿命。 再者, 本发明另提出一种无轴承马达, 以大幅降低生产成本。 为此, 本发明是提供一种无轴承马达, 是由定于结构、 转子结构、 上、 下磁性结构所组成。 定子结构是位于壳体内, 转子结构亦位于壳体 内且与定子结构对应配置, 转子结构具有轴心, 轴心是轴向延伸突出转 子结构, 且轴心不与定子结构或壳体接触。 下磁性结构是位于壳体底部, 上磁性结构是位于壳体顶部, 且上磁性结构与下磁性结构是分别位于轴 向的相对位置上。 其中上磁性结构与下磁性结构是相互吸引, 且借由磁 吸力将轴心固定于上、 下磁性结构之间。 上述本发明的无轴承马达,其轴心是与上磁性结构吸引(或点接触)、 与下磁性结构吸引 (或点接触) 、 或同时与上、 下磁性结构吸引 (或点 接触) 。 再者, 本发明的无轴承马达, 也可以具有至少一耐磨结构, 是 位于轴心与下磁性结构之间、 轴心与上磁性结构之间、 或轴心与上、 下 磁性结构之间。 轴心与耐磨结构相接触时, 其接触方式是为点接触。 上述本发明的无轴承马达。 更包括有环设于转子结构上的磁性结构 及环设于该定于结构上的定子导磁结构, 且定子导磁结构的位置是与转 子结构上的磁性结构相对应。 转子结构的磁性结构的磁力中心平面可以 在轴向上略高于、 略低于或平行于定子导磁结构的磁力中心平面。 Furthermore, the aforementioned magnetic bearing also suffers from problems such as inability to start smoothly due to its magnetic balance. Therefore, the magnetic bearing is still in the experimental stage and cannot enter the mass production stage smoothly. SUMMARY OF THE INVENTION Therefore, in order to solve the above problems, the present invention proposes a bearingless motor to greatly reduce the amount of motor running noise. Furthermore, the present invention further proposes a bearingless motor to greatly increase the operating life of the motor. Furthermore, the present invention further proposes a bearingless motor to greatly reduce the production cost. Therefore, the present invention provides a bearingless motor, which is composed of a fixed structure, a rotor structure, and an upper and lower magnetic structure. The stator structure is located in the housing, and the rotor structure is also located in the housing and configured correspondingly to the stator structure. The rotor structure has an axis, which extends axially and protrudes from the rotor structure, and the axis does not contact the stator structure or the housing. The lower magnetic structure is located at the bottom of the housing, the upper magnetic structure is located at the top of the housing, and the upper magnetic structure and the lower magnetic structure are respectively located at opposite positions in the axial direction. The upper magnetic structure and the lower magnetic structure attract each other, and the axis is fixed between the upper and lower magnetic structures by means of magnetic attraction. In the above-mentioned bearingless motor of the present invention, its axis is attracted (or point-contacted) with the upper magnetic structure, attracted (or point-contacted) with the lower magnetic structure, or attracted (or point-contacted) with the upper and lower magnetic structures simultaneously. Furthermore, the bearingless motor of the present invention may also have at least one wear-resistant structure located between the shaft center and the lower magnetic structure, between the shaft center and the upper magnetic structure, or between the shaft center and the upper and lower magnetic structures . When the shaft center is in contact with the wear-resistant structure, the contact mode is point contact. The above-mentioned bearingless motor of the present invention. It further includes a magnetic structure surrounding the rotor structure and a stator magnetic conducting structure surrounding the fixed structure, and the position of the stator magnetic conducting structure corresponds to the magnetic structure on the rotor structure. The magnetic force central plane of the magnetic structure of the rotor structure may be slightly higher, slightly lower or parallel to the magnetic force central plane of the stator magnetic permeable structure in the axial direction.
再者, 上述本发明的无轴承马达中, 当其定子结构被包覆于转子结 构内时, 其轴心可延伸入定子结构中央的开口内, 且可于开口侧壁形成 保护结构, 此保护结构不与该轴心接触。 Furthermore, in the above-mentioned bearingless motor of the present invention, when the stator structure is covered in the rotor structure, its axis can extend into the opening in the center of the stator structure, and a protective structure can be formed on the side wall of the opening. The structure is not in contact with this axis.
上述本发明的无轴承马达中, 其轴心端部表面形状可以为平面状、 圆弧状、 尖锥状、 内凹曲面或外凸曲面, 且上磁性结构或下磁性结构的 朝向轴心的端部表面形状是为平面状、 圆弧状、 尖锥状、 内凹曲面或外 凸曲面。 其中当轴心与上磁性结构或下磁性结构相互点接触时, 轴心端 面形状与上磁性结构端面形状或下磁性结构端面形状是相互对应。再者, 其耐磨结构的朝向轴心的端部表面形状也可以为平面状、 圆弧状、 尖锥 状、 内凹曲面或外凸曲面, 其中当轴心与耐磨结构相互点接触时, 轴心 端面形状与耐磨结构端面形状是相互对应。 In the above-mentioned bearingless motor of the present invention, the surface shape of the end of the shaft center can be flat, arc-shaped, tapered, concave curved surface or convex curved surface, and the upper magnetic structure or the lower magnetic structure faces the shaft center The shape of the end surface is planar, arc-shaped, tapered, concave curved surface or convex curved surface. Wherein when the shaft center and the upper magnetic structure or the lower magnetic structure are in point contact with each other, the shape of the end face of the shaft center and the shape of the end face of the upper magnetic structure or the end face of the lower magnetic structure correspond to each other. Furthermore, the surface shape of the end of the wear-resistant structure facing the axis can also be flat, arc-shaped, pointed, concave or convex, wherein when the axis and the wear-resistant structure are in point contact with each other , the shape of the end surface of the shaft center and the shape of the end surface of the wear-resistant structure correspond to each other.
上述本发明的无轴承马达中, 也可以具有围绕于转子结构周缘多个 扇叶。 此等扇叶可以为离心式扇叶、 平板式扇叶或轴流式扇策。 壳体也 可以由上壳体与下壳体所构成。上壳体与下壳体的接合方法可以为嵌合、 卡固、 黏合、 锁合或经由一緩冲结构分别固接。 上壳体与下壳体具体而 言例如是相互对应的扣勾组合。 In the above-mentioned bearingless motor of the present invention, there may also be a plurality of fan blades surrounding the periphery of the rotor structure. These fan blades can be centrifugal fan blades, flat fan blades or axial flow fans. The housing can also be composed of an upper housing and a lower housing. The joining method of the upper case and the lower case may be fitted, clamped, bonded, locked or respectively fixed via a buffer structure. Specifically, the upper case and the lower case are, for example, a combination of buckles corresponding to each other.
上述本发明的无轴承马达中, 上、 下磁性结构及轴心是共用同一轴 线。 再者, 本发明另提供一种无轴承马达, 是适用于风扇马达, 其是由 定子结构、 转子结构、 多个扇叶及支撑磁性结构所组成。 定子结构是住 于底座上, 定子结构具有至少一定子导磁结构, 定子导磁结构是环设于 定于结构上。 转子结构是位于底座上, 转子结构具有轴心及至少一磁性 结构, 轴心是轴向延伸突出转子结构。 磁性结构是环设于转子结构上且 磁性结构的位置是与定于导磁结构相对应。 扇叶是围绕于转子结构周缘, 且支撑磁性结构是固定于底座上, 支 撑磁性结构是借由磁吸力固定轴心, 且支撑磁性结构以点接触的方式与 轴心接触。 其中, 转子结构上的磁力中心平面在轴向上略高于定于结构 上的磁力中心平面。 在上述本发明的无轴承马达中, 其转子轴心仅有一点与定子结构相 接触, 甚至因运转时的气体浮力而完全不接触, 因此可以大幅降低马达 噪音量、 提高马达运转寿命。 In the above-mentioned bearingless motor of the present invention, the upper and lower magnetic structures and the shaft centers share the same axis. Furthermore, the present invention further provides a bearingless motor, which is suitable for a fan motor, which is composed of a stator structure, a rotor structure, a plurality of fan blades and a supporting magnetic structure. The stator structure lives on the base, and the stator structure has at least one stator magnetic conduction structure, and the stator magnetic conduction structure is arranged around the fixed structure. The rotor structure is located on the base. The rotor structure has an axis and at least one magnetic structure. The axis extends axially and protrudes from the rotor structure. The magnetic structure is arranged around the rotor structure and the position of the magnetic structure is corresponding to the fixed magnetic structure. The fan blade is around the periphery of the rotor structure, and the supporting magnetic structure is fixed on the base. The supporting magnetic structure fixes the shaft by means of magnetic attraction, and the supporting magnetic structure is in point contact with the shaft. Among them, the magnetic center plane on the rotor structure is slightly higher than the magnetic center plane fixed on the structure in the axial direction. In the above-mentioned bearingless motor of the present invention, only one point of the axis of the rotor is in contact with the stator structure, and even there is no contact at all due to the gas buoyancy during operation, so the noise of the motor can be greatly reduced and the operating life of the motor can be improved.
再者, 本发明的无轴承风扇马达可借由轴心磁吸力及风扇运转时的 气流浮力, 而使转子轴心在不接触的情形下运转, 进而可以大幅降低马 达噪音量、 提高马达运转寿命。 Furthermore, the bearingless fan motor of the present invention can use the magnetic attraction force of the shaft center and the buoyancy force of the airflow when the fan is running, so that the rotor shaft can run without contact, which can greatly reduce the noise of the motor and improve the operating life of the motor. .
再者, 由于本发明的无轴承马达不需使用一般习用的轴承, 因此可 避免此构件的制造、 组装成本, 进而大幅降低生产成本。 Furthermore, since the bearingless motor of the present invention does not need to use commonly used bearings, the manufacturing and assembly costs of this component can be avoided, thereby greatly reducing the production cost.
附图说明 图 1是绘示本发明第一较佳实施例的无轴承马达的结构示意图; 图 2是绘示本发明第二轶佳实施例的无轴承马达的结构示意图; 图 3 A至图 3D是绘示本发明的无轴承马达的轴心与磁性结构的局部示 意图; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating the structure of a bearingless motor according to the first preferred embodiment of the present invention; FIG. 2 is a schematic diagram illustrating the structure of a bearingless motor according to a second preferred embodiment of the present invention; FIG. 3 A to FIG. 3D is a partial illustration showing the axis and magnetic structure of the bearingless motor of the present invention intent;
图 4是绘示本发明第三较佳实施例的无轴承马达的结构示意图; 图 5是绘示本发明第四较佳实施例的无轴承马达的结构示意图。 符号说明: 4 is a schematic structural view of a bearingless motor according to a third preferred embodiment of the present invention; FIG. 5 is a schematic structural view of a bearingless motor according to a fourth preferred embodiment of the present invention. Symbol Description:
100、 200、 300、 400: 无轴承马达 100, 200, 300, 400: Bearingless motor
102、 208: 壳体 102, 208: housing
102a: 上壳体 102a: Upper housing
102b: 下壳体 102b: lower housing
104: 定子结构 104: Stator structure
106: 转子结构 106: Rotor structure
108、 110、 118、 202、 202a, 202b, 202c, 202d、 302、 304、 402: 磁性结构 108, 110, 118, 202, 202a, 202b, 202c, 202d, 302, 304, 402: Magnetic structures
112: 定子固定座 112: Stator fixing seat
114: 定子导磁结构 114: Stator magnetic structure
116、 116a, 116b, 116c, 116d: 轴心 116, 116a, 116b, 116c, 116d: axis
120: 导磁铁壳 120: Magnetic shell
122: 扇叶 122: fan blade
124、 126、 206、 406、 408: 耐磨结构 128: 保护结构 130: 开口 124, 126, 206, 406, 408: Wear-resistant structure 128: Protective structure 130: Opening
132: 转子壳体 132: rotor housing
204、 404: 磁性主体 204, 404: Magnetic body
Pl、 P2: 磁力中心平面 具体实施方式 Pl, P2: magnetic center plane Detailed ways
为让本发明的上述和其它目的、 特征、 和优点能更明显易懂, 下文 特举一较佳实施例, 并配合附图, 作详细说明如下: In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment will be specifically cited below, together with the accompanying drawings, and described in detail as follows:
图 1是绘示本发明第一较佳实施例的无轴承马达的结构示意图。请参 照图 1, 本发明的无轴承马达 100是由壳体 102、 定子结构 104、 转子结构 106及磁性结构 108所组成,其中磁性结构 108与磁性结构 110是相互吸引, 且磁性结构 108、 110及延伸突出转子结构 106的轴心 116是共用一轴线。 在本发明的无轴承马达 100中, 转子结构 106仅借由磁性结构 108、 110对 其轴心 116的磁吸力而固定于磁性结构 108、 110之间。 FIG. 1 is a schematic structural view of a bearingless motor according to a first preferred embodiment of the present invention. Referring to FIG. 1, the bearingless motor 100 of the present invention is composed of a housing 102, a stator structure 104, a rotor structure 106 and a magnetic structure 108, wherein the magnetic structure 108 and the magnetic structure 110 attract each other, and the magnetic structures 108, 110 The shaft center 116 of the extending and protruding rotor structure 106 share a common axis. In the bearingless motor 100 of the present invention, the rotor structure 106 is fixed between the magnetic structures 108, 110 only by the magnetic attraction force of the magnetic structures 108, 110 to its shaft center 116.
壳体 102是作为无轴承马达 100的保护外壳,用以防止无轴承马达 100 内部各构件受到外力毁损。壳体 102可以一体成型,也可以由上壳体 102a、 下殁体 102b组合而成。 也可以分割成多个部分再组合而成。 上壳体 102a 与下壳体 102b的结合方法例如是嵌合、 卡固、 黏合、 锁合、 经由一緩冲 结构分别固接。 再者, 上壳体 102a与下壳体 102b例如是相互对应的扣勾 组合 (如图 1所示) 。 The casing 102 is used as a protective shell of the bearingless motor 100 to prevent the internal components of the bearingless motor 100 from being damaged by external force. The casing 102 can be integrally formed, or can be composed of an upper casing 102a and a lower body 102b. It can also be divided into multiple parts and combined. The combination method of the upper case 102a and the lower case 102b is, for example, fitting, clamping, bonding, locking, and fixing respectively via a buffer structure. Furthermore, the upper case 102a and the lower case 102b are, for example, a combination of buckles corresponding to each other (as shown in FIG. 1 ).
定子结构 104是位于壳体 102内, 用以产生感应电流或提供后述转子 结构 106驱动力。 定子结构 104是由电路板 (未绘示) 、 定于固定座 112 及至少一定子导磁结构 114所组成,其中定子结构 104与后述轴心 116互不 接触。 定子导磁结构 114是环设于定子结构 104上, 且具有磁力中心平面 Pl。 定子导磁结构 114例如是硅钢片、 电磁铁。 The stator structure 104 is located in the housing 102 and is used to generate induced current or provide driving force for the rotor structure 106 described later. The stator structure 104 is composed of a circuit board (not shown), a fixed seat 112 and at least one stator magnetically permeable structure 114, wherein the stator structure 104 is not in contact with the shaft center 116 described later. The stator magnetically permeable structure 114 is arranged around the stator structure 104, and has a magnetic center plane P1. The stator magnetically permeable structure 114 is, for example, a silicon steel sheet or an electromagnet.
转子结构 106是位于壳体 102内且与定子结构对应配置, 此转子结构 106是可于壳体 102上转动。 转子结构 106是由轴心 116、 转子壳体 132、 至 少一磁性结构 118、导磁铁壳 120所构成。 轴心 116是轴向延伸突出转子结 构 106, 用以作为转子结构 106转动时的旋转轴。 轴心 116端部表面形状例 如是平面状、 圆弧状、 尖雄状、 内凹曲面、 外凸曲面。 The rotor structure 106 is located in the casing 102 and is configured correspondingly to the stator structure. The rotor structure 106 is rotatable on housing 102. The rotor structure 106 is composed of a shaft center 116, a rotor housing 132, at least one magnetic structure 118, and a magnet housing 120. The axis 116 protrudes axially from the rotor structure 106 and is used as a rotation axis when the rotor structure 106 rotates. The surface shape of the end of the axis 116 is, for example, flat, arc-shaped, pointed, concave curved surface, or convex curved surface.
磁性结构 118是环设于转子结构 106上, 且具有磁力中心平面 P2。 磁 性结构 118的位置是与定子导磁结构 114相互对应, 且其磁力中心平面 P2 与磁力中心平面 P1的位置是为轴向上略高、 轴向上平行或轴向上略低。 磁性结构 118例如是永久磁铁、 塑胶磁铁。 The magnetic structure 118 is arranged around the rotor structure 106 and has a magnetic center plane P2. The position of the magnetic structure 118 corresponds to the stator magnetic permeable structure 114, and the positions of the magnetic center plane P2 and the magnetic center plane P1 are slightly higher in the axial direction, parallel in the axial direction or slightly lower in the axial direction. The magnetic structure 118 is, for example, a permanent magnet or a plastic magnet.
另外, 在转子结构 106周缘也可以围绕有多个扇叶, 用以在转子结构 106转动之际, 于无轴承马达 100附近产生气场的流动。扇叶 122例如是离 心式扇叶、 平板式扇叶、 轴流式扇叶。 In addition, a plurality of fan blades may also surround the periphery of the rotor structure 106, so as to generate an air flow near the bearingless motor 100 when the rotor structure 106 rotates. The fan blade 122 is, for example, a centrifugal fan blade, a flat fan blade, or an axial flow fan blade.
磁性结构 108、 110是分别位于壳体 102的底部及顶部, 且磁性结构 108、 110的分布位置是分别位于轴向相对位置上。其中磁性结构 108、 110 例如是永久磁铁、 塑胶磁铁、 电磁铁。 磁性结构 108、 110可利用例如是 黏合、 嵌合、 卡固、 接合等方式固定于壳体 102上。 磁性结构 108的面向 磁性结构 110的部位所具有的磁性是与磁性结构 110的面向磁性结构 108 的部位所具有的磁性相反。磁性结构 108、 110的朝向轴心 116的表面形状 与轴心 116端部表面形状是为相互点接触的曲面, 磁性结构 116表面形状 例如是平面状、 圆弧状、 尖锥状、 内凹曲面、 外凸曲面。 The magnetic structures 108, 110 are respectively located at the bottom and the top of the housing 102, and the distribution positions of the magnetic structures 108, 110 are respectively located at opposite positions in the axial direction. The magnetic structures 108 and 110 are, for example, permanent magnets, plastic magnets, and electromagnets. The magnetic structures 108, 110 can be fixed on the housing 102 by, for example, bonding, fitting, clamping, jointing and the like. The magnetism of the portion of the magnetic structure 108 facing the magnetic structure 110 is opposite to that of the portion of the magnetic structure 110 facing the magnetic structure 108. The surface shape of the magnetic structures 108 and 110 toward the axis 116 and the surface shape of the end of the axis 116 are curved surfaces in point contact with each other. The surface shape of the magnetic structure 116 is, for example, flat, arc-shaped, tapered, or concave curved surface , Convex surface.
磁性结构 108、 110及轴心 116是位于同一轴线上。 借由磁性结构 108、 110及轴心 116之间是借由磁吸力而一同维持于同一轴线上,并将轴心 116 固定于磁性结构 108、 110之间。 当无轴承马达 100末启动时, 轴心 116仅 以点接触的方式与磁性结构 108相接触, 而未与转子结构 106外的其它构 件相接触。 The magnetic structures 108, 110 and the axis 116 are located on the same axis. The magnetic structures 108, 110 and the axis 116 are maintained on the same axis by magnetic force, and the axis 116 is fixed between the magnetic structures 108, 110. When the bearingless motor 100 starts, the shaft center 116 only It is in contact with the magnetic structure 108 in a point contact manner, but not in contact with other components outside the rotor structure 106.
另外, 轴心 116也可以变更为仅以点接触的方式与磁性结构 110相接 触, 而使转子结构 106悬吊于壳体 102内。 再者, 轴心 116也可以变更为仅 以点接触的方式同时与磁性结构 108、 110相接触, 而使转子结构 106被磁 性结构 108、 110夹持于壳体 100内。 In addition, the shaft center 116 can also be changed to only contact the magnetic structure 110 in a point contact manner, so that the rotor structure 106 is suspended in the casing 102. Furthermore, the shaft center 116 can also be changed to be in contact with the magnetic structures 108, 110 at the same time only in a point contact manner, so that the rotor structure 106 is clamped in the housing 100 by the magnetic structures 108, 110.
再者, 为了进一步提高无轴承马达 100的寿命, 也可以于轴心 116与 磁性结构 108、 110之间形成一耐磨结构 124、 126, 其中轴心 116仅与耐磨 结构 124、 126点接触并借由磁性结构 108、 110的磁吸力而固定于磁性结 构 108、 110之间。 耐磨结构 124、 126可同时形成于磁性结构 108、 110上, 也可以仅形成于轴心 116与磁性结构相接触的部位(亦即,仅于磁性结构 108上形成耐磨结构 124或仅于磁性结构 110上形成耐磨结构 126) 。 耐磨 结构 124、 126的形成方式例如是黏合、 卡固、 嵌合、 接合。 再者, 耐磨 结构 124、 126可以与磁性结构 108、 110相接触,也可以不与磁性结构 108、 110接触, 仅需位于轴心 116与磁性结构 108、 110所组成的轴线上即可。 Furthermore, in order to further increase the life of the bearingless motor 100, a wear-resistant structure 124, 126 may also be formed between the shaft center 116 and the magnetic structures 108, 110, wherein the shaft center 116 is only in point contact with the wear-resistant structure 124, 126 And it is fixed between the magnetic structures 108, 110 by the magnetic attraction force of the magnetic structures 108, 110. The wear-resistant structures 124, 126 can be formed on the magnetic structures 108, 110 at the same time, and can also be formed only on the part where the axis 116 contacts the magnetic structure (that is, the wear-resistant structure 124 is only formed on the magnetic structure 108 or only on the A wear-resistant structure 126) is formed on the magnetic structure 110. The formation methods of the wear-resistant structures 124, 126 are, for example, bonding, clamping, fitting, and jointing. Furthermore, the wear-resistant structures 124, 126 may or may not be in contact with the magnetic structures 108, 110, and only need to be located on the axis formed by the axis 116 and the magnetic structures 108, 110.
再者,如果为了防止无轴承马达 100在运送的过程中因极大外力而使 轴心 116与定于固定座 112相碰撞, 也可以在定子固定座 112内侧开口 130 上形成一保护结构 128, 其中保护结构 128与轴心 116互不接触。此保护结 构 128的材质例如是塑胶、 弹性物质、 吸震物质。 Furthermore, in order to prevent the shaft center 116 from colliding with the fixed seat 112 due to a large external force during the transportation of the bearingless motor 100, a protective structure 128 can also be formed on the inner opening 130 of the stator fixed seat 112, Wherein the protection structure 128 and the axis 116 are not in contact with each other. The material of the protective structure 128 is, for example, plastic, elastic material, shock-absorbing material.
图 2是绘示本发明第二较佳实施例的无轴承马达 200的结构示意图。 在此较佳实施例中, 与前述实施例相同的构件是使用相同的标号。 本较 佳实施例与第一较佳实施例的差异在于本较佳实施例仅使用单一磁性结 构 202吸附转子结构 106的轴心 116 , 且磁性结构 118的磁力中心平面 P2是 高于定子导磁结构 114的磁力中心平面 Pl。 另外, 轴心 116与磁性结构 202 点接触的位置可以略高于、 平行于、 略低于磁力中心平面 P2。 FIG. 2 is a schematic structural diagram of a bearingless motor 200 according to a second preferred embodiment of the present invention. In this preferred embodiment, the same reference numerals are used for the same components as in the previous embodiment. The difference between this preferred embodiment and the first preferred embodiment is that this preferred embodiment only uses a single magnetic junction The structure 202 adsorbs the axis 116 of the rotor structure 106, and the magnetic center plane P2 of the magnetic structure 118 is higher than the magnetic center plane P1 of the stator magnetically permeable structure 114. In addition, the point contact position between the axis 116 and the magnetic structure 202 may be slightly higher than, parallel to, or slightly lower than the magnetic center plane P2.
在此较佳实施例中,磁性结构 202可以直接由磁性物质一体成型, 也 可以由耐磨结构 206及磁性主体 204所组成。再者,磁性结构 202与轴心 116 相互接触的表面或是耐磨结构 206与轴心 116相互接触的表面是为相互点 接触的曲面。 耐磨结构 206或磁性结构 202的表面例如是圆弧状、 尖锥状、 内凹曲面、 外凸曲面。 接着, 以实例进一步说明轴心 116与磁性结构 202 之间的关系。 当轴心 116a的端部为外凸的尖锥状或弧状曲面时, 磁性结 构的表面可为如图 3A所示的内凹曲面或是如图 3B所示的内凹锥面。 当磁 性结构 202的表面为外凸的尖锥状或弧状曲面时,轴心 116a的端部表面可 为如图 3C所示的内凹曲面或是如图 3D所示的内凹锥面。 In this preferred embodiment, the magnetic structure 202 can be integrally molded directly from a magnetic material, or can be composed of a wear-resistant structure 206 and a magnetic body 204. Furthermore, the contact surface of the magnetic structure 202 and the shaft 116 or the contact surface of the wear-resistant structure 206 and the shaft 116 are curved surfaces in point contact with each other. The surface of the wear-resistant structure 206 or the magnetic structure 202 is, for example, arc-shaped, tapered, concave curved surface, or convex curved surface. Next, an example is used to further illustrate the relationship between the axis 116 and the magnetic structure 202. When the end of the axis 116a is a convex tapered or arc-shaped curved surface, the surface of the magnetic structure can be a concave curved surface as shown in FIG. 3A or a concave tapered surface as shown in FIG. 3B. When the surface of the magnetic structure 202 is a convex tapered or arc-shaped surface, the end surface of the axis 116a can be a concave curved surface as shown in FIG. 3C or a concave tapered surface as shown in FIG. 3D.
图 4是绘示本发明第三较佳实施例的无轴承马达 30ο的结构示意图。 在此较佳实施例中, 与前述实施例相同的构件是使用相同的标号。 本较 佳实施例与第二较佳实施例的差异在于本较佳实施例是于定子周定座 112顶部形成磁性结构 304, 并于转子壳体 132上形成磁性结构 302, 其中 磁性结构 302、 304是相互磁吸引且互不接触。磁性结构 304不与定子导磁 结构 114相接触, 且磁性结构 304较佳是于轴向上高于定子导磁结构 114。 磁性结构 304的形状例如是圓环状、 扇状、 块状、 条状, 且磁性结构 302 的形状与位置是与磁性结构 302相互对应。 FIG. 4 is a schematic structural diagram illustrating a bearingless motor 30o according to a third preferred embodiment of the present invention. In this preferred embodiment, the same reference numerals are used for the same components as in the previous embodiment. The difference between this preferred embodiment and the second preferred embodiment is that in this preferred embodiment, a magnetic structure 304 is formed on the top of the stator peripheral seat 112, and a magnetic structure 302 is formed on the rotor housing 132, wherein the magnetic structure 302, 304 are magnetically attracted to each other and do not touch each other. The magnetic structure 304 is not in contact with the stator magnetic structure 114, and the magnetic structure 304 is preferably higher than the stator magnetic structure 114 in the axial direction. The shape of the magnetic structure 304 is, for example, circular, fan-shaped, block-shaped, or strip-shaped, and the shape and position of the magnetic structure 302 correspond to the magnetic structure 302.
再者, 磁性结构 304与定子固定座 112结合的方式例如动合、 嵌合、 卡固、 接合。 磁性结构 302与转子壳体 132结合的方式例如黏合、 嵌合、 卡固、 接合。 Furthermore, the manner in which the magnetic structure 304 is combined with the stator fixing seat 112 is, for example, moving, fitting, clamping, and engaging. The way in which the magnetic structure 302 is combined with the rotor housing 132 is, for example, bonding, fitting, Fastened, joined.
图 5是绘示本发明第四较佳实施例的无轴承马达 400的结构示意图。 在此较佳实施例中, 与前述实施例相同的构件是使用相同的标号。 本较 佳实施例与第三较佳实施例的差异在于本较佳实施例仅于壳体 102的顶 部 (亦即上壳体 102a ) 上形成磁性结构 402, 且磁性结构 118的磁力中心 平面 P2是低于定子导磁结构 114的磁力中心平面 Pl。再者, 也可以于下壳 体 102b上形成耐磨结构 408,其中轴心 116与此耐磨结构 408点接触的位置 可以略高于、' 平行于、 略低于磁力中心平面 Pl。 FIG. 5 is a schematic structural diagram of a bearingless motor 400 according to a fourth preferred embodiment of the present invention. In this preferred embodiment, the same reference numerals are used for the same components as in the previous embodiment. The difference between this preferred embodiment and the third preferred embodiment is that this preferred embodiment only forms the magnetic structure 402 on the top of the housing 102 (that is, the upper housing 102a), and the magnetic center plane P2 of the magnetic structure 118 It is lower than the magnetic center plane P1 of the stator magnetic permeable structure 114. Furthermore, a wear-resistant structure 408 may also be formed on the lower housing 102b, wherein the position where the axis 116 is in point contact with the wear-resistant structure 408 may be slightly higher than, 'parallel to, or slightly lower than the magnetic center plane P1.
在此较佳实施例中, 磁性结构 402可以直接由磁性物质一体成型, 也 可以由耐磨结构 406及磁性主体 404所组成。再者,磁性结构 402与轴心 116 相互接触的表面、耐磨结构 406与轴心、或耐磨结构 408与轴心 116相互接 触的表面是为相互点接触的曲面。耐磨结构 406、 408或磁性结构 402的表 面是为与轴心 116相互对应的凸面或凹面形状, 例如是圆弧状、 尖锥状、 内凹曲面、 外凸曲面。 In this preferred embodiment, the magnetic structure 402 can be integrally molded directly from a magnetic substance, or can be composed of a wear-resistant structure 406 and a magnetic body 404. Furthermore, the contact surface of the magnetic structure 402 and the shaft center 116, the contact surface of the wear-resistant structure 406 and the shaft center, or the contact surface of the wear-resistant structure 408 and the shaft center 116 are curved surfaces in point contact with each other. The surface of the wear-resistant structure 406, 408 or the magnetic structure 402 is a convex or concave shape corresponding to the axis 116, such as an arc shape, a pointed cone shape, an inner concave surface, and an outer convex surface.
另外, 本发明的无轴承马达虽以适用于轴流式风扇马达为例进行说 明, 然并不以此为限, 也可以适用于无框风扇马达、 离心式风扇马达、 外转子马达、 内转子马达等各种类型的马达。 In addition, although the bearingless motor of the present invention is described as being applicable to an axial flow fan motor, it is not limited thereto, and can also be applied to a frameless fan motor, a centrifugal fan motor, an outer rotor motor, and an inner rotor Motors and other types of motors.
在上述本发明的无轴承马达中, 其转子轴心仅有一点与定于结构相 接触, 甚至因运转时的气体浮力而完全不接触, 因此可以大幅降低马达 噪音量、 提高马达运转寿命。 In the above-mentioned bearingless motor of the present invention, only one point of the rotor axis is in contact with the fixed structure, and even no contact at all due to the gas buoyancy during operation, so the noise of the motor can be greatly reduced and the operating life of the motor can be improved.
再者, 本发明的无轴承风扇马达可借由轴心磁吸力在风扇运转时的 气流浮力, 而使转子轴心在不接触的情形下运转, 进而可以大幅降低马 达噪音量、 提高马达运转寿命。 Furthermore, the bearingless fan motor of the present invention can utilize the airflow buoyancy force of the magnetic attraction force of the shaft center when the fan is running, so that the rotor shaft center can run without contact, which can greatly reduce the motor speed. Reduce the amount of noise and increase the life of the motor.
再者, 由于本发明的无轴承马达不需使用一般习用的轴承, 因此可 避免此构件的制造、 组装成本, 进而大幅降低生产成本。 Furthermore, since the bearingless motor of the present invention does not need to use commonly used bearings, the manufacturing and assembly costs of this component can be avoided, thereby greatly reducing the production cost.
Claims (33)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2003/000804 WO2005029684A1 (en) | 2003-09-22 | 2003-09-22 | A motor without bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1771651A true CN1771651A (en) | 2006-05-10 |
CN100472916C CN100472916C (en) | 2009-03-25 |
Family
ID=34318857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038264862A Expired - Lifetime CN100472916C (en) | 2003-09-22 | 2003-09-22 | bearingless motor |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP2007507193A (en) |
CN (1) | CN100472916C (en) |
AU (1) | AU2003272842A1 (en) |
DE (1) | DE10394240B4 (en) |
GB (1) | GB2417616B (en) |
WO (1) | WO2005029684A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135138A (en) * | 2010-01-22 | 2011-07-27 | 米克罗内尔有限公司 | Device with a stator and a rotor laid within the stator |
CN110552915A (en) * | 2018-06-01 | 2019-12-10 | 宏碁股份有限公司 | Fan and balance ring for fan |
US11187248B2 (en) | 2018-04-26 | 2021-11-30 | Acer Incorporated | Fan and balance ring for fan |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7478574B2 (en) * | 2005-04-26 | 2009-01-20 | Igarashi Electric Works, Ltd. | Electric actuator |
DE102010051262A1 (en) * | 2010-11-12 | 2012-05-31 | Secop Gmbh | Refrigeration compressor i.e. hermetically-sealed refrigeration compressor, for use in e.g. freezer, has stator provided with bundle of laminations, where axial center of bundle of laminations is located higher than axial center of magnets |
CN103618422B (en) * | 2013-12-23 | 2016-08-17 | 中国航天空气动力技术研究院 | Electromagnetic drive fan device |
CN108204873B (en) * | 2016-12-20 | 2020-05-22 | 陈恰 | Magnetic capture non-inductive torque sensor |
TWI761937B (en) | 2020-09-02 | 2022-04-21 | 利愛電氣股份有限公司 | Generator having outer-rotor structure |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT182443B (en) * | 1953-04-22 | 1955-06-25 | Roulements A Billes Miniatures | Magnetic bearing for a rotating part of a measuring instrument, in particular an electricity meter |
DE2457783C2 (en) * | 1974-12-06 | 1986-10-09 | Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar | Magnetic storage |
DE3300889A1 (en) * | 1983-01-13 | 1984-07-19 | Bosch Gmbh Robert | CIRCUIT PUMP WITH MAGNETICALLY BEARED ROTOR |
NL8502058A (en) * | 1985-07-17 | 1987-02-16 | Philips Nv | ELECTRICAL MACHINE WITH MAGNETIC BEARING FEATURES. |
US5528096A (en) * | 1992-10-29 | 1996-06-18 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Small brush-use DC motor |
CN2324693Y (en) * | 1998-01-21 | 1999-06-16 | 王文阁 | Magnetic suspension type bearing electric motor |
JP2000046043A (en) * | 1998-07-28 | 2000-02-15 | Tokyo Parts Ind Co Ltd | Bearing structure for small-size motor |
DE29820982U1 (en) * | 1998-11-24 | 1999-09-30 | Jagmann, Vladimir, 12057 Berlin | Mechanical arrangement |
CN1185777C (en) * | 1999-08-11 | 2005-01-19 | 台达电子工业股份有限公司 | Magnetic Bearing Motor |
KR100330707B1 (en) * | 2000-03-29 | 2002-04-03 | 이형도 | Non-contact driving motor |
JP2003092852A (en) * | 2001-09-18 | 2003-03-28 | Nippon Keiki Works Ltd | Thrust bearing structure of motor |
US6700241B1 (en) * | 2002-11-27 | 2004-03-02 | Sunonwealth Electric Machine Industry Co., Ltd. | Positioning device for prestressing magnet of spindle motor |
-
2003
- 2003-09-22 AU AU2003272842A patent/AU2003272842A1/en not_active Abandoned
- 2003-09-22 JP JP2005508967A patent/JP2007507193A/en active Pending
- 2003-09-22 WO PCT/CN2003/000804 patent/WO2005029684A1/en active Application Filing
- 2003-09-22 CN CNB038264862A patent/CN100472916C/en not_active Expired - Lifetime
- 2003-09-22 DE DE10394240.8T patent/DE10394240B4/en not_active Expired - Fee Related
- 2003-09-22 GB GB0523430A patent/GB2417616B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135138A (en) * | 2010-01-22 | 2011-07-27 | 米克罗内尔有限公司 | Device with a stator and a rotor laid within the stator |
US11187248B2 (en) | 2018-04-26 | 2021-11-30 | Acer Incorporated | Fan and balance ring for fan |
CN110552915A (en) * | 2018-06-01 | 2019-12-10 | 宏碁股份有限公司 | Fan and balance ring for fan |
Also Published As
Publication number | Publication date |
---|---|
JP2007507193A (en) | 2007-03-22 |
GB2417616B (en) | 2008-01-02 |
WO2005029684A1 (en) | 2005-03-31 |
CN100472916C (en) | 2009-03-25 |
AU2003272842A1 (en) | 2005-04-11 |
DE10394240T5 (en) | 2010-04-29 |
GB2417616A (en) | 2006-03-01 |
GB0523430D0 (en) | 2005-12-28 |
DE10394240B4 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7417345B2 (en) | Fan assembly with magnetic thrust bearings | |
JP2005237192A (en) | Magnetic bearing motor and its bearing structure | |
JP6512792B2 (en) | Maglev pump | |
US6617732B1 (en) | Magnetic bearing structure | |
US20080100155A1 (en) | Spindle motor having radial and axial bearing systems | |
US7023119B2 (en) | Device comprising a plain bearing | |
GB2335242A (en) | Rotor support with one or two pairs of permanent magnetic bearings and a pivot | |
JPH10238535A (en) | Spindle motor for disc | |
CN1771651A (en) | bearingless motor | |
CN110332235B (en) | A passive permanent magnetic repulsion magnetic bearing structure | |
EP1578005A2 (en) | Motor and magnetic bearingassembly thereof | |
JPS59138797A (en) | Circulating pump with magnetically supported rotor | |
US20040227421A1 (en) | Magnetic suspension bearing | |
EP3355443A1 (en) | Outer rotor type motor | |
JP3013264B2 (en) | Magnetic levitation actuator | |
JPH1137155A (en) | Magnetic bearing and its control system | |
JP3186600U (en) | Magnetic levitation fan | |
JPH04219494A (en) | Structure of magnetic bearing for high speed rotary vacuum pump | |
CN114517808A (en) | Radial-axial integrated magnetic bearing for energy storage device and energy storage device | |
JPH10299772A (en) | Bearing device | |
KR100401096B1 (en) | Thrust magnetic bearing motor | |
CN1185777C (en) | Magnetic Bearing Motor | |
JPH0626517A (en) | Bearing device | |
JP2000354350A (en) | Fan motor | |
US20040000824A1 (en) | Electrical motor with spherically supported rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20090325 |
|
CX01 | Expiry of patent term |