[go: up one dir, main page]

CN1751406A - 燃料电池用的电极和使用它的燃料电池 - Google Patents

燃料电池用的电极和使用它的燃料电池 Download PDF

Info

Publication number
CN1751406A
CN1751406A CNA2004800045505A CN200480004550A CN1751406A CN 1751406 A CN1751406 A CN 1751406A CN A2004800045505 A CNA2004800045505 A CN A2004800045505A CN 200480004550 A CN200480004550 A CN 200480004550A CN 1751406 A CN1751406 A CN 1751406A
Authority
CN
China
Prior art keywords
electrode
fuel cell
fuel
catalyst
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800045505A
Other languages
English (en)
Other versions
CN100580982C (zh
Inventor
吉武务
真子隆志
木村英和
弓削亮太
久保佳实
胜矢晃弘
白石透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Clockwork Co ltd
NEC Corp
Original Assignee
Japan Clockwork Co ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Clockwork Co ltd, NEC Corp filed Critical Japan Clockwork Co ltd
Publication of CN1751406A publication Critical patent/CN1751406A/zh
Application granted granted Critical
Publication of CN100580982C publication Critical patent/CN100580982C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

在燃料电池(100)中,金属纤维片用于组成燃料电极(102)和氧化剂电极(108)的基底部件(104)和基底部件(110)。

Description

燃料电池用的电极和使用它的燃料电池
技术领域
本发明涉及一种燃料电池用的电极和使用它的燃料电池。
背景技术
近年来随着信息密集社会的到来,电子设备例如个人计算机等处理的信息量在无限制地增加,因此,电子设备的能耗也在相当地增加。特别地,随着其处理能力的增加,能耗的增加是移动电子设备中的主要问题。目前,一般使用锂离子电池作为这些类型的移动电子设备的能源,锂离子电池的能量密度的增加接近理论极限。因此,为了给移动电子设备提供更长地连续使用时间,要求应该通过降低中央处理单元(CPU)的驱动频率减少能耗。
在这种情况下,期望通过使用更大能量密度的燃料电池代替锂离子电池作为电子设备的能源,相当地改进移动电子设备的连续使用时间。
燃料电池配有燃料电极和氧化剂电极(此后简称为“催化剂电极”)以及它们之间的电解质,燃料供应给燃料电极,氧化剂供应给氧化剂电极,从而经化学反应生产出电能。虽然一般使用氢作为燃料,但是近年来使用便宜、容易处理的甲醇作为源材料,在积极地开发燃料电池例如重整甲醇生产氢的甲醇重整型燃料电池、或直接使用甲醇作燃料的直接型燃料电池。
当使用氢作燃料时,在燃料电极上的反应表示为下列式子(1):
            (1)
当使用甲醇作燃料时,在燃料电极处的反应表示为下列式子(2):
  (2)
并且在每种情况中,和氧化剂电极的反应表示为下列式子(3):
     (3)
特别地,由于可以从直接型燃料电池的甲醇水溶液中得到氢离子,所以不需要重整设备等,因此将其用于移动电子设备可以得到更大的效益。并且,由于液体甲醇水溶液用作燃料,所以它的特征是可以得到更高的能量密度。
为了将直接甲醇型燃料电池用于移动设备例如手机或便携式计算机的能源,降低电池的大小和重量是关键。但是,移动设备的普通燃料电池的能量产生元件即单位电池的基本结构一般包括这样的结构:碳制成的多孔气体扩散层配置在由催化剂电极和固体电解质膜组成的膜电极组件的外边,功率收集电极(power collection electrode)再配置在它的外边。在这种情况中,所述电池至少具有五层的结构,它由功率收集电极/气相扩散层/膜电极组件/气体扩散层/功率收集电极组成,因此涉及一个复杂结构。
并且由于为了在碳形成的气体扩散层和金属功率收集电极之间获得更好的电学接触,金属功率收集电极需要一定的厚度,所以难以生产出一个厚度减少的电池,也难以使其重量减少。
然后,用具有较低电阻率的孔隙更少的金属气体扩散层代替碳形成的气体扩散层,已经开发出了发电效率改善的燃料电池的电池。在这种情况中,提出了两种类型的电池结构。一种结构使用用于气体扩散层的泡沫金属代替多孔碳,并且使用类似普通电池的块金属制成的功率收集电极,如专利文件1中所述。尽管在这种配置中电学接触的问题降低,但是结构复杂性仍然存在。
另一种结构使用多孔金属材料例如泡沫镍作为气体扩散层和功率收集部件,如专利文件2中所述。在这种情况中,通过发挥气体扩散层和功率收集部件的组合功能,得到电池的厚度降低和微型化。但是,在这种情况中,必须在催化剂层和功率收集部件层之间配置碳层作为防腐层。因此,在这种情况中也仍然存在结构复杂性。另外,一部分碳层和多孔金属之间的界面的接触电阻高。
另外,由于上述文件中使用的泡沫金属例如泡沫镍具有和颗粒金属粘合的部件的结构,所以当泡沫金属形成为薄片状产品时,泡沫金属是具有相当高的表面电阻的材料。另外,由于加工过程的因素,表面电阻波动。因此,存在改进功率产生特性的空间。
相反,在专利文件3中描述使用具有多孔结构的薄片的燃料电池。但是,该文献的具体公开局限于使用由含碳纤维的聚丙烯腈(PAN)组成的薄片的燃料电池。碳纤维一般具有相当高的电阻,和上述碳的气体扩散层类似,因此在燃料电池性能上进行改进存在一定的局限。由于也需要使用金属功率收集电极,所以微型化和降低重量也是困难的。
并且,使用金属例如不锈钢(SUS)的纤维的电化学设备在专利文件4中已有描述,作为其具体例子列出了气敏元件、净化器、电解质层和燃料电池。虽然在该专利文件的实施例中公开了示例性的电解生产氢,但是没有描述实际起电池作用的燃料电池的配置。特别是,没有描述将催化剂产生的质子移动到固体电解质膜的措施,没有详细公开实际运行的燃料电池。
专利文件1:日本特开平06-5289;
专利文件2:日本特开平06-223836;
专利文件3:日本特开2000-299113;
专利文件4:日本特开平06-267555。
发明内容
鉴于上述情况提出了本发明,本发明的一个目的是提供一种能生产大小和重量降低的燃料电池的技术。本发明的另一个目的是提供一种能使燃料电池的输出特性改进的技术。本发明的另一个目的是提供一种能提供燃料电池简化生产方法的技术。
根据本发明的一个方面,提供了一种燃料电池的电极,包括金属纤维片和电学地连接到该金属纤维片上的催化剂,其中所述金属纤维片包括一种合金,该合金含有作为组成元素的选自Si和Al、Fe和Cr的至少一种金属,其中在所述合金中Cr的含量不低于5重量%和不大于30重量%,其中在合金中Si和Al的总含量不低于3重量%和不大于10重量%。
燃料电池的电极需要更好的导电性能和更好的忍耐性能,例如耐酸性。由于本发明的电极是由所述的金属纤维片组成,所述的金属纤维片是由具有上述指定组成的合金组成,所以提供了这些性能之间的更好平衡。特别地,由于包含Si或Al作为合金组成,Si和Al的总含量不低于3重量%和不大于10重量%,表现出改进的耐久性,可以稳定地获得更好的导电性以便更长期地使用。
在本发明中,所述金属纤维片是通过成型一个或多个金属纤维形成的薄片状产品。它可以由一种类型的金属纤维构成,或包含两种或两种以上类型的金属纤维。该金属纤维片表现出比通常用作电极材料的碳纸低一个或一个以上数量级的电阻。并且由于它是粘合金属纤维生产的薄片,所以和通常使用的通过连接颗粒形状的金属例如泡沫金属形成的多孔金属材料相比,表面电阻更小,其波动更小。并且本发明的金属纤维片是具有更好的耐酸性和机械强度以及更好的气体和水溶液渗透性能的材料。因此,它优选用作功率收集特性改善的燃料电池的电极,因此燃料电池的输出特性和耐久性得以改进。
在本发明的燃料电池的电极中,连接催化剂的方式不特别地限定,只要该催化剂能电学地连接到金属纤维片上就可以。它可以直接负载在金属纤维片的表面上,或经负载材料例如负载催化剂的碳颗粒连接。并且,可以在金属纤维片的表面上形成导电涂层,催化剂经该涂层负载在其上。
另外,由于本发明的燃料电池的电极改进了功率收集特性,所以使用它就不需要在电极外边配备功率收集部件及其连接。因此,得到燃料电池的大小和重量的降低以及厚度的降低。
在本发明的该方面中,可以使用这样的配置,其中金属纤维片的孔隙率例如不小于20%和不大于80%。另外,金属纤维的平均管道尺寸(直径)可以为20~100μm。具有这样的配置,在金属片中形成合适的空穴,从而顺利地进行水的供应和排出。另外,质子导体可以合适地布置在该空穴中呈现出更好的质子传导性。
在本发明的燃料电池的电极中,可以使用这样的配置,其中金属纤维片的一个表面的孔隙率大于另一个表面的孔隙率。具有这样的配置,可以合适地同时保证气体对金属纤维片的渗透性和电子转移能力。因此,给燃料电池供应燃料或氧化剂、排出电化学反应产生的二氧化碳等、或功率收集特性得到改进。
在本发明的燃料电池的电极中,可以使用这样的配置,其中金属纤维片是金属纤维的烧结体。由于通过形成烧结体,金属纤维可以更紧密地连接在一起,接触电阻降低,从而提供改善的电极特性。
在本发明的燃料电池的电极中,可以使用这样的配置,其中催化剂负载在组成金属纤维片的金属纤维表面上。虽然在常规的燃料电池中金属纤维经碳颗粒连接到催化剂上,但是使用本发明的配置避免在碳颗粒和催化剂之间产生接触电阻以及在金属纤维和碳颗粒之间产生接触电阻,从而提供改进的电子转移能力。在本发明中可以在金属纤维片的表面上形成导电涂层,这种情况下,催化剂也经涂层直接负载在金属纤维表面上。并且在金属纤维片表面上形成含有负载催化剂的碳颗粒的催化剂层。
在本发明的方面的燃料电池的电极中,可以使用这样的配置,其中在组成金属纤维片的金属纤维表面上形成催化剂的包覆层。具有这样的配置,需要的催化剂可以简单地有保证地负载在多孔金属片的表面上。
在本发明的方面的燃料电池的电极中,可以使用这样的配置,其中组成金属纤维片的金属纤维具有粗糙的表面。具有这样的配置,金属纤维片的比表面积增加。因此,负载催化剂的量增加,从而改进电极特性。
在本发明中,具有粗糙表面的配置表示其中组成金属纤维片的金属纤维的表面被粗糙化的配置。
在本发明方面的燃料电池的电极中,可以使用这样的配置,其还包括与催化剂接触的质子导体。具有这样的配置,可以有保证地完全地实现电极、燃料和电解质的所谓三相界面的形成。因此,电极特性得到改进。在本发明方面的燃料电池的电极中,可以使用其中质子导体是离子交换树脂的配置。具有这样的配置,可以确保提供充分的质子传导率。
在本发明方面的燃料电池的电极中,可以使用其中至少一部分金属纤维片被疏水性处理过的配置。具有这样的配置,可以在具有亲水性表面的金属纤维片上形成疏水性区域。因此,加速水分从金属纤维片中排出。因此,抑制了溢流,从而提高了燃料电池的输出功率。特别地,在使用它作为氧化剂电极时可以更高效率地排出电化学反应产生的水,从而保证气体的渗透通道。
根据本发明的另一个方面,提供了一种燃料电池,包括燃料电极、氧化剂电极和夹在燃料电极和氧化剂电极之间的固体电解质膜,其中燃料电极或氧化剂电极中的至少一个是根据上述配置中任一个的燃料电池的电极。
本发明的燃料电池包括具有上述配置的燃料电池的电极。因此可以稳定地提供更高的输出功率。另外,由于不需要使用功率收集元件,所以配置和生产过程可以得到简化,可以得到大小和重量的降低以及厚度的降低。
在本发明的燃料电池中,可以使用其中不配置功率收集元件的配置。具有这样的配置,可以得到燃料电池大小、厚度和重量的降低。并且,可以减少组成电极的元件之间的接触电阻。例如,燃料电池的电极可组成燃料电极,燃料可以直接供应在燃料电池的电极表面上。燃料可以直接供应在燃料电池的电极表面上的情况表示不使用功率收集元件例如端板将燃料供应给燃料电极的情况。直接供应燃料的具体配置包括,例如,提供和燃料电极的多孔金属片接触的燃料容器和燃料供应部分的配置。当多孔金属片是板状时,合适地,经过孔,可以在其表面上配置条形引入通道等。具有这样的配置,可以更高效率地从金属纤维片的表面将燃料供应给整个电极。
另外,在本发明的燃料电池中,可以使用这样的配置,其中燃料电池的电极组成氧化剂电极和氧化剂直接供应在燃料电池的电极表面上。直接供应氧化剂的情况表示不使用端板等将氧化剂例如空气、氧气等直接供应在氧化剂电极表面上的情况。
如上述,根据本发明,使用金属纤维片作电极基底部件可以得到燃料电池的大小和重量降低。另外,根据本发明,燃料电池的输出特性得到改善。并且,根据本发明,生产燃料电池的方法得到简化。
附图说明
从结合附图的下述说明中将更加清晰地看到本发明的上述和其它目的、特点和优点。
图1是示意地表示本方案的金属纤维片的结构的图。
图2是表示生产金属纤维的设备的配置的图。
图3是表示沿图2中生产金属纤维的设备中的F3-F3线的横截面图。
图4是示意地表示燃料电极的燃料电极和固体电解质膜的结构的横截面图。
图5是示意地表示本方案的燃料电池的单一电池结构的横截面图。
图6是示意地表示图5的燃料电池的燃料电极和固体电解质膜的配置的横截面图。
图7是示意地表示普通的燃料电池的燃料电极和固体电解质膜的配置的横截面图。
图8是表示本方案的燃料电池的配置的图。
具体实施方式
本发明涉及一种使用金属纤维片的燃料电池。此后,将参照附图描述优选方案。
(金属纤维片及其生产方法)
图1是根据本方案的金属纤维片1的配置图。如图1中所示,压缩地形成金属纤维片1,使金属纤维2相互缠绕,制备出多孔板。虽然长方形金属纤维片1表示在图1中,但是金属纤维片1的几何形状不局限于长方形,可以用后面描述的方法形成需要的几何形状。
组成金属纤维片1的金属纤维2的直径(管道尺寸,line size)可不低于10μm和不大于100μm。使该管道尺寸等于或大于10μm,可以合适地保证金属纤维2的充分强度。并且使该管道尺寸等于或小于100μm,可以合适地保证在将其加工成金属纤维片1时的加工性,并且可以形成具有合适的大空隙的金属纤维片1。优选地,金属纤维2的为不低于30μm和不大于80μm。具有这样的条件,由金属纤维2制成的金属纤维片1可以应用到燃料电池,作为保证电子、燃料和水全部的转移通道的材料。
计算该管道尺寸的方法可包括,例如,计算其部分中10个点的较长管道尺寸(R)的平均值得到平均管道尺寸的方法。
金属纤维片1是将一个或多个金属纤维形成片状产品得到的薄片,它可以是纺织布或非纺织薄片。它可以是由一种类型的金属纤维2构成,或使用两种或两种以上的金属纤维2的混合物。并且可以形成除金属纤维外的材料的混合物。
金属纤维2包括含Fe、Cr、和选自Si和Al中至少一种金属作为组成元素的合金。合金中Cr的含量等于或高于5重量%和等于或低于30重量%,合金中Si和Al的含量之和等于或高于3重量%和等于或低于10重量%。其余的由Fe、各种附加元素和不可避免的杂质组成。具有这样的组成,将其应用到燃料电池可以得到充分的强度、耐酸性和导电率。
如上述,合金中Cr的含量不低于5重量%和不高于30重量%。当Cr的含量低于5重量%时,将其应用到燃料电池不能得到充分的耐酸性。另一方面,当Cr的含量高于30重量%时,纤维变脆,因此将其应用到燃料电池不能得到充分的强度。
另外,合金中Si和Al的含量之和不低于3重量%和不高于10重量%。具有这样的条件,金属纤维片1的强度、耐酸性和耐久性得到相当地改进。
另外,在金属纤维2中可以包含3~30重量%的Ni。具有这样的条件,还可以改进金属纤维片1的强度和耐久性。
由于金属纤维片1具有如上述的强度和耐久性改善的特性,所以不需要在电极和它之间配备单独的碳层。另外,关于电阻,金属纤维片1具有比碳材料高一个或更多数量级的导电率。并且,由于金属纤维片具有大的空隙,所以提供更好的气体例如包括甲醇、空气等的燃料的扩散性能。因此,金属纤维片1可以起气体扩散层和功率收集电极的组合功能。
尽管金属纤维片1的厚度不特别地限定,但是当它用作燃料电池的电极时,它例如等于或小于1mm。等于或小于1mm的厚度能使燃料电池的厚度、大小和重量减少。而且,通过提供等于或小于0.5mm厚度,可以得到大小和重量的进一步减少,因此可以更合适地用于移动设备。例如,厚度等于或小于0.1mm。
另外,金属纤维片1的空隙宽度例如可等于或低于1mm。具有这样的尺寸,当它用作燃料电池的电极时,可以保证燃料液体和燃料气体更好地扩散。
并且,金属纤维片1的孔隙率可例如在20%~80%的范围内。具有等于或高于20%的孔隙率,可以维持燃料液体和燃料气体更好地扩散。另外,具有等于或低于80%的孔隙率值,可以维持更好的功率收集效果。而且,金属纤维片1的孔隙率可例如在30%~60%的范围内。具有这样的条件,可进一步维持燃料液体和燃料气体更好地扩散,可维持更好的功率收集效果。在这里,例如可从金属纤维片1的重量和体积以及纤维的比重计算孔隙率。
下面详细地描述生产金属纤维2的方法和使用它的金属纤维片1。
尽管不特别地限定生产金属纤维2的方法,但是,例如,它们可以使用高效地生产金属纤维的具有图2所示的配置的设备10生产。生产金属纤维的设备10的配置包括具有能密封的膛腔11的设备主体12、附到设备主体12上的原料供应机构13和纤维回收部分14等。
圆柱形支架21、高频感应线圈22、冷却器(图中未表示出)和圆盘24等配置在组成设备主体12的机架的膛腔11的内部。支架21起支撑基本上垂直地支撑棒形金属源材料20的材料的措施的作用。高频感应线圈22充当通过熔融金属源材料20的上端部分形成熔融金属20a的加热措施。例如水冷却夹套等用于冷却器(图中未表示出)。另外,配置圆盘24,驱动它围绕水平方向向外延伸的轴23沿一定的方向(图2中箭头R表示的方向)旋转。
圆盘24由热传导率高的金属例如铜或铜合金、或难熔材料例如钼、钨等组成,具有从上方和熔融金属20a接触的轮缘25。圆盘24的直径可例如为20cm。如图2所示,在前面的方向看圆盘24时,轮缘25形成完美的圆圈。
图3是表示沿图2中生产金属纤维的设备中的F3-F3线方向的横截面图。如图3所示,从侧面方向看圆盘24时,圆盘24的轮缘25在圆盘24的所有卷边上形成V形尖峰边缘。
另外,包括开关阀30和真空泵等的排气装置或非氧化气氛发生器31例如惰性气体供应装置连接到膛腔11上。这些可以维持膛腔11内部的真空气氛(精密减压气氛)或非氧化气氛例如惰性气体。
高频感应线圈22配置在围绕支架21所支撑的金属源材料20的上端部分的位置。高频感应线圈22通过图3中所示的电流控制单元35连接到高频发生器36上。另外,配置了用非接触方法检测熔融金属20a的温度的辐射温度计37。辐射温度计37经电流控制单元35电学地连接到高频率发生器36上。在这里,优选高频感应线圈22的上端和圆盘24间隔等于或宽于10mm的距离。具有这样的配置,可以防止高频加热对圆盘24的影响。
支架21的材料可以是耐热材料,例如陶瓷。支架21起移动停止器的作用,使得具有直棒形和圆截面的金属源材料20不能移向横向方向(半径方向)。支架21的内径可等于或小于10mm,因此可以防止金属源材料20的暴露部分的振动,支架21的上端和圆盘24之间的距离可优选等于或小于5mm。在支架21下面配置棒形推起部件38。另外,为了紧密地密封推起部件38经膛腔11的底壁11a的穿透部分,配置密封部分39。
配置原料供应装置13使得用致动器40例如圆柱形装置将金属源材料20以需要的速度往上推向圆盘24的轮缘25。另外,致动器40可以使用包括电机、滚珠螺杆、线性移动导向部件等的组合的线性移动装置,代替使用流体压力的圆柱形装置。圆柱形装置的精度例如可等于或高于1/6mms-1
另外,如图3所示,在膛腔11内配置旋转驱动装置50,以较高的速度旋转圆盘24。旋转驱动装置50包括,例如配置在膛腔11外的电机51、电机51驱动的旋转轴52和紧密地密封旋转轴52经膛腔11的侧壁11b的穿透部分的密封部分53。密封部分53例如可为使用磁流体的磁流体密封。
电机51例如以约每分钟几千转的速度旋转圆盘24以使圆盘24的轮缘25与熔融金属20a接触,使得熔融金属20a部分流向圆盘24的切线方向,然后快速冷却形成金属纤维2。
在生产具有上述配置的金属纤维的设备10中,至少支架21、高频感应线圈22和圆盘24嵌入在膛腔11内。在惰性气体气氛内生产金属纤维2,当形成熔融金属源材料20提供纤维时,高效地冷却金属纤维2。在这种情况中,膛腔11的内部抽真空(例如10-3~10-4托)以防止金属源材料20和金属纤维2氧化,此后将惰性气体例如氩气引入到膛腔11。
下面描述上述生产金属纤维的设备10的效果。用旋转驱动装置50以预定的圆周速度,例如20m/s的圆周速度旋转圆盘24。用原料供应装置13以例如约0.5mm/s的速度逐渐地朝向圆盘24推起具有例如6mm外径并由支架21支撑的直棒形金属源材料20,最后,金属源材料20的上端部分移动到高频感应线圈22的位置。用高频感应线圈22加热金属源材料20的上端部分以在金属源材料20的上端形成熔融的金属20a。然后使用原料供应装置13将金属源材料20以预定速度,例如0.5mm/s的数量级,移动到圆盘24的轮缘25。根据圆盘24的旋转圆周速度等确定这时的原料供应速度,使得生产的金属纤维2具有理想的管道尺寸。
用辐射温度计37在稳定的基础上检测熔融金属20a的温度,熔融金属20a的温度检测信号反馈到高频发生器36控制高频发生器36的输出功率,从而熔融金属20a的温度维持在恒定的水平。
和具有尖边的圆盘24的轮缘25接触的熔融金属20a以例如20~100μm管道尺寸的金属纤维2的形式连续地流向圆盘24的切向方向,同时经圆盘24的旋转快速冷却固化,然后引入到纤维回收部分14。然后根据熔融金属20a的减少量,原料供应装置13逐渐地推起金属源材料20,控制致动器40,因此在任何时间圆盘24的轮缘25和熔融金属20a的接触条件都是恒定的。
推起金属源材料20的速度依赖于和圆盘24的旋转速度的关系,当圆盘24的旋转圆周速度例如约为20m/s,需要提供等于或低于1mm/s的推起速度。具有这样的条件,当熔融金属20a接触圆盘24时,可以避免散射,因此可以有保证地形成纤维。
如上述得到金属纤维2。得到的金属纤维2的横截面接近圆形,根据圆盘24和熔融金属20a的条件改变一定的程度。同样地,可以使用生产金属纤维的设备10以更好的效率生产具有需要管道尺寸(例如等于或低于100μm)的金属纤维2。由于在使用生产金属纤维的设备10的方法中,不进行拉伸处理,因此可以不受材料的展延性或韧性或加工性影响得到的金属纤维2。
在这里,金属纤维2的生产方法不局限于上述生产方法,例如也可以使用熔融纺丝方法如熔融挤压方法、边旋转边液体纺丝方法(in-rotating-liquid-spinning method)、喷射淬火方法、泰勒方法等;切割方法如旋转方法、线刮方法(wire saving method)、颤动切割方法等;晶须或涂布方法生产金属纤维2。也可以使用拉伸方法例如单线拉伸方法、梱拉伸方法等,但是处理步骤数和加热处理数增加。
下面描述使用得到的金属纤维2生产金属纤维片1的方法。累积切割成预定长度形成絮状物的金属纤维2,然后根据需要压缩形成絮状物,可得到金属纤维片1。就这样的方法而言,可以使用,例如用金属纤维2形成絮状网,换句话说非纺织织物样的金属纤维块,然后折叠数十个这样的块并将其压缩烧结的方法,和使用针压实絮状网的针刺处理的方法。
(第一个方案)
本方案涉及一种使用由上述方法得到的金属纤维片1的燃料电池。
图5是示意地表示本方案的燃料电池的单电池结构的横截面图。尽管具有单一的单电池结构101的燃料电池100的配置表示在图5中,但是也可以配置多个单电池结构101。每个单电池结构101由燃料电极102、氧化剂电极108和固体电解质膜114组成。单电池结构101经电极侧隔板120和氧化剂电极侧隔板122电学地连接,形成燃料电池100。
分别在基底元件104和基底元件110上配置催化剂层106和催化剂层112,形成燃料电极102和氧化剂电极108。催化剂层106和催化剂层112可以包括,例如碳颗粒负载催化剂和固体聚合物电解质的细颗粒。
将前述金属纤维片1用于基底元件104和基底元件110。在这种情况中,优选使用由管道尺寸等于或小于80μm的金属纤维2组成的金属纤维片1。金属纤维片1具有比碳材料例如通常使用的碳纸低一个数量级的电阻率,和具有更好的导电性。在这里,基底元件104和基底元件110可以由组成相同或不同的金属纤维片1制成。
燃料电极102的示例性催化剂包括铂、铑、钯、铱、锇、钌、铼、金、银、镍、钴、锂、镧、锶、钇等,可以单独地使用这些中的一个,或也可以使用这些中的两个或两个以上的组合。另一方面,也可以将和用于燃料电极102的催化剂相同的催化剂用于氧化剂电极108的催化剂,可以使用上述示例性材料。在这里,可以将相同的催化剂或不同的催化剂用于燃料电极102和氧化剂电极108的催化剂。
负载催化剂的示例性碳颗粒可包括乙炔黑(注册商标“DENKABLACK”,从日本东京的DENKI KAGAKU KOGYO KABUSHIKIKAISHA购买;从美国亚拉巴马州伯明翰市Vulcan Materials公司购买等)、Ketjenblack、无定形碳、碳纳米管、碳纳米角(carbon nanohorn)等。碳颗粒的粒径可以例如在0.01~0.1μm的范围内,优选在0.02~0.06μm的范围内。
本方案的催化剂电极的组分固体聚合物电解质起在催化剂电极表面上的负载催化剂的碳颗粒和固体电解质膜114之间提供电学连接作用,和起将有机液体燃料转移到催化剂表面上的作用,需要质子传导性,并且要求燃料电极102具有对有机液体燃料例如甲醇的渗透性,要求氧化剂电极108具有对氧气的渗透性。为了满足对固体聚合物电解质的这样的要求,优选使用具有更好的质子传导性和对有机液体燃料如甲醇更好的渗透性的材料。更具体地,可优选使用含有极性基团的有机聚合物,所述极性基团包括强酸基团,例如磺酸基团、磷酸基团等,和弱酸基团,例如羧酸基团等。就这样的有机聚合物的例子而言,更具体地,可以使用具有氟树脂骨架和质子酸基团的含氟聚合物。另外,可以使用聚醚酮、聚醚醚酮、聚醚砜、聚醚醚砜、聚砜、聚硫化物、聚苯撑、聚苯醚、聚苯乙烯、聚酰亚胺、聚苯并咪唑、聚酰胺等。另外,鉴于降低液体燃料例如甲醇的交叉,可以使用不含氟的烃原料作为该聚合物。并且,也可以使用含有芳香化合物的聚合物作为基底元件的聚合物。
另外,就用于和质子酸基团结合的目标基底元件的聚合物而言,也可以使用含氮或羟基基团的树脂,包括聚苯并咪唑衍生物、聚苯并噁唑衍生物、聚乙烯亚胺交联聚合物、聚硅胺(polysilamine)衍生物、胺取代的聚苯乙烯例如聚二乙基氨基乙基苯乙烯等、氮取代的聚丙烯酸酯例如聚二乙基氨基乙基甲基丙烯酸酯等;以含硅烷醇的聚硅氧烷和聚甲基丙烯酸羟乙酯为代表的含羟基基团的聚丙烯酸树脂;聚对羟基苯乙烯为代表的含羟基基团的聚苯乙烯树脂。
另外,可以将含有具有交联性质的取代基团的化合物用于上面举例的聚合物,所述具有交联性质的取代基团例如乙烯基基团、环氧基基团、丙烯酸基团、甲基丙烯酸基团、肉桂酰基团、羟甲基基团、叠氮基基团和萘醌叠氮基基团。另外,也可以使用其上交联有这些基团的化合物。
更具体地,就第一种固体聚合物电解质150或第二种固体聚合物电解质151而言,可以使用这样的聚合物,例如包括磺化的聚醚酮;磺化的聚醚醚酮;磺化的聚醚砜;磺化的聚醚醚砜;磺化的聚砜;磺化的聚硫化物;磺化的聚苯撑;含芳香化合物的聚合物,例如磺化的聚(4-苯氧基苯甲酰基-1,4-苯撑)、烷基磺化的聚苯并咪唑等;硫代烷基化的聚醚醚酮;硫代烷基化的聚醚砜;硫代烷基化的聚醚醚砜;硫代烷基化的聚砜;硫代烷基化的聚硫化物;硫代烷基化的聚苯撑;含磺酸盐(酯)基团的全氟化碳(Nafion(注册商标,从美国特拉华威尔明顿的E.I.du Pont de Nemours &Company Inc.购买)、Aciplex(从日本大阪的Asahi Kasei公司购买)等);含羧基基团的全氟化碳(Flemion S-membrane(注册商标,从日本东京的Asahi Glass有限公司购买));共聚物例如聚苯乙烯磺酸盐共聚物、聚乙烯基磺酸共聚物、含有交联烷基磺酸衍生物的含氟聚合物、氟树脂骨架和磺酸;共聚丙烯酰胺例如丙烯酰胺-2-甲基丙磺酸和丙烯酸酯例如甲基丙烯酸正丁酯得到的共聚物。另外,也可以使用芳香聚醚醚酮或芳香聚醚酮。
在这些中,鉴于离子导电性,可优选使用含磺酸盐基团的全氟化碳(Nafion(注册商标,从美国特拉华威尔明顿的E.I.du Pont de Nemours &Company Inc.购买)、Aciplex(从日本大阪的Asahi Kasei公司购买)等)、含羧基基团的全氟化碳(Flemion S-membrane(注册商标,从日本东京的Asahi Glass有限公司购买))等。
用于燃料电极102和氧化剂电极108的上述固体聚合物电解质可以是相同的或不同的。
固体电解质膜114起将燃料电极102从氧化剂电极108分离开和在它们之间转移氢离子的作用。因此,固体电解质膜114优选使用具有更高的质子传导性的膜。也优选是化学稳定和具有更高的机械强度。
就组成固体电解质膜114的材料而言,可以使用含有质子酸基团例如磺酸基团、硫代烷基基团、磷酸盐(酯)基团、膦酸盐(酯)基团、磷化氢基团、羧基基团、砜酰亚胺基团等的化合物。就用于粘合质子酸基团的目的基底部件的聚合物而言,可以使用聚醚酮、聚醚醚酮、聚醚砜、聚醚醚砜、聚砜、聚硫化物、聚苯撑、聚苯氧、聚苯乙烯、聚酰亚胺、聚苯并咪唑、聚酰胺等的膜。另外,鉴于降低液体燃料例如甲醇的交叉,可以使用不含氟的烃原料作为这样的聚合物。并且,也可以使用含芳香化合物的聚合物作为用于所述基底部件的聚合物。
另外,就用于粘合质子酸基团的目的基底部件的聚合物而言,也可以使用含氮或羟基基团的树脂,包括聚苯并咪唑衍生物、聚苯并噁唑衍生物、聚乙烯亚胺交联聚合物、聚硅胺(polysilamine)衍生物、胺取代的聚苯乙烯例如聚二乙基氨基乙基苯乙烯等、氮取代的聚丙烯酸酯例如聚甲基丙烯酸二乙基氨基乙酯等;含硅烷醇的聚硅氧烷和聚甲基丙烯酸羟基乙酯代表的含羟基的聚丙烯酸树脂;聚对羟基苯乙烯代表的含羟基基团的聚苯乙烯树脂。
另外,含有具有交联性质的取代基团的化合物可以恰当地用于上述聚合物,所述具有交联性质的取代基团例如为乙烯基基团、环氧基基团、丙烯酸基团、甲基丙烯酸基团、肉桂酰基基团、羟甲基基团、叠氮基基团和萘醌二叠氮基基团。另外,也可以使用含有和其交联的这些基团的化合物。
更具体地,就固体电解质膜114而言,也可以使用这样的聚合物,例如包括磺化的聚醚醚酮;磺化的聚醚砜;磺化的聚醚醚砜;磺化的聚砜;磺化的聚硫化物;磺化的聚苯撑;含芳香化合物的聚合物,例如磺化的聚(4-苯氧基苯甲酰基-1,4-苯撑)、烷基磺化的聚苯并咪唑等;硫代烷基化的聚醚醚酮;硫代烷基化的聚醚砜;硫代烷基化的聚醚醚砜;硫代烷基化的聚砜;硫代烷基化的聚硫化物;硫代烷基化的聚苯撑;含磺酸盐(酯)基团的全氟化碳(Nafion(注册商标,从美国特拉华威尔明顿的E.I.du Pontde Nemours & Company Inc.购买)、Aciplex(从日本大阪的Asahi Kasei公司购买)等);含羧基基团的全氟化碳(Flemion S-membrane(注册商标,从日本东京的Asahi Glass有限公司购买));共聚物例如聚苯乙烯磺酸盐共聚物、聚乙烯基磺酸共聚物、含有交联烷基磺酸衍生物的含氟聚合物、氟树脂骨架和磺酸;通过共聚丙烯酰胺例如丙烯酰胺-2-甲基丙磺酸和丙烯酸酯例如甲基丙烯酸正丁酯得到的共聚物。另外,也可以使用芳香聚醚醚酮或芳香聚醚酮。
在本方案中,鉴于抑制交叉,优选将对有机液体燃料具有更低的渗透性的原料同时用于固体电解质膜114和第一种固体聚合物电解质150或用于第二种固体聚合物电解质151。例如,优选它由缩合型含芳香化合物的聚合物例如磺酸化的聚(4-苯氧基苯甲酰基-1,4-苯撑)、烷基磺酸化的聚苯并咪唑等组成。另外,优选固体电解质膜114和第二种固体聚合物电解质151具有例如等于或低于50%的甲醇膨胀度,优选等于或低于20%(70体积%的甲醇水溶液的膨胀度)。具有这样的配置,得到特别改善的界面粘着性和质子传导性。
另外,用于燃料电池100的燃料124可包括液体燃料,例如甲醇等,这可以直接供应。也可以使用例如氢。另外,通过使用天然气、石脑油等作为燃料也可使用重整的氢。另外,就氧化剂126而言,例如可以使用氧气、空气等。
生产本方案的燃料电池的电极和燃料电池100的方法不特别地限定,例如可如下生产。
使用前述方法生产金属纤维片1,将该片切割成预定大小得到基底部件104和基底部件110。使用通常使用的浸渍方法将催化剂负载到燃料电极102和氧化剂电极108中的碳颗粒上。负载催化剂和固体聚合物电解质的碳颗粒分散在溶剂中形成浆状产品,然后将得到的产品应用到基底部件上,干燥得到燃料电极102和氧化剂电极108。在这里,碳颗粒的粒径例如可在0.01~0.1μm的范围内。催化剂颗粒的粒径例如可在1~10nm的范围内。另外,固体聚合物电解质颗粒的粒径例如可在0.05~1μm的范围内。以例如2∶1~40∶1范围内的重量比使用碳颗粒和固体聚合物电解质颗粒。另外,在所述浆体中水和溶质的重量比例如可为约1∶2~10∶1。
尽管将该浆体应用到基底部件104和基底部件110上的可利用方法不特别地限定,但是可以使用例如刷涂、喷涂、丝网印刷等的方法。可应用该浆体到例如约1μm~2mm的厚度。应用该浆体后,它们在生产燃料电极102或氧化剂电极108使用的氟树脂类型所限定的加热温度和加热时间下加热。根据使用的原料合适地选择加热温度和加热时间,加热温度在100℃~250℃的范围内,加热时间在30秒~30分钟的范围内。
可用疏水性处理方法处理基底部件104或基底部件110的表面。特别地,关于氧化剂电极108,优选使用在组成基底部件110的金属纤维2中的空隙内粘附防水材料的方法形成疏水性区域。由于金属纤维2的表面是亲水性的,所以在其部分内通过制备该疏水性区域可以合适地保证气体和水的转移通道。因此,在氧化剂电极108上的电极反应产生的水可以以更高的效率排出,以更高的效率进行氧化剂126的供应。
用疏水性处理方法处理基底部件104或基底部件110的表面的可利用方法可包括,其中基底部件104或基底部件110浸在疏水性物质的溶液或悬浮液中或和该液体接触的方法,所述疏水性物质例如为聚乙烯、石蜡、聚二甲基硅氧烷、聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA)、氟乙烯丙烯(FEP)、聚全氟辛基乙基丙烯酸酯(FMA)、聚膦腈等,然后将防水树脂粘附在空隙内。特别地,使用具有更高防水性能的材料合适地形成疏水性区域,例如聚四氟乙烯(PTFE)、四氟乙烯一全氟烷基乙烯基醚共聚物(PFA)、氟乙烯丙烯(FEP)、聚全氟辛基乙基丙烯酸酯(FMA)、聚膦腈等。
另外,可粉碎疏水性材料例如PTFE、PFA、FEP、氟化的沥青、聚膦腈等,用溶剂制备粉碎产品的悬浮液,然后向其应用该悬浮液。使用的溶液可以是疏水性材料和导电材料例如金属、碳等的混合悬浮液。另外,也可以通过粉碎具有防水性能的导电纤维例如“Dreamalon”(注册商标,从日本大阪的Nissen有限公司购买)等并制备该粉碎产品在溶剂中的悬浮液,从而制备所述使用的溶液。因此,通过使用具有导电性和防水性能的材料可以进一步增加电池的输出功率。
另外,可粉碎导电材料例如金属或碳,然后用上述疏水性材料包覆粉碎的产品,然后可制备包覆产品的悬浮液,最后可涂布该悬浮液。尽管不特别地限定应用方法,但是可以使用例如刷涂、喷涂和丝网印刷的方法。通过调节应用量,可在基底部件104或基底部件110的一部分上形成疏水性区域。另外,如果仅在基底部件104或基底部件110的一个表面上进行涂布,则可以得到具有亲水性表面和疏水性表面的基底部件104或基底部件110。
另外,可以用等离子体技术在基底部件104或基底部件110的表面引入疏水性基团。通过这样的操作,可调节疏水性部分的厚度得到需要的厚度。例如,在基底部件104或基底部件110的表面上可进行CF4等离子体处理。
根据使用的原料使用合适的方法生产固体电解质膜114。例如,当固体电解质膜114由有机聚合物材料组成时,它可以在剥离片例如聚四氟乙烯等上浇铸含有溶解或分散在溶剂内的有机聚合物材料的液体,然后干燥该浇铸产品得到。
得到的固体电解质膜夹在燃料电极102和氧化剂电极108之间,然后热压得到膜电极组件。在这种情况中,制备它,使得配备两个电极的催化剂的表面和固体电解质膜接触。尽管可根据材料选择热压条件,但是当电极表面的固体电解质膜和/或固体聚合物电解质由具有软化点和玻璃化温度的有机聚合物组成时,可以选择热压温度比这些聚合物的软化温度或玻璃化温度高。更具体地,该条件可例如为在100~250℃范围内的温度下和在1~100kg/cm2范围内的压力下,以及10~300秒范围内的时间。得到的膜电极组件将形成图5所示的单电池结构101。
由于本方案的燃料电池100重量轻、小、能提供更高的输出,所以它可以合适地用作移动设备例如移动电话的燃料电池。
(第二个方案)
本方案涉及一种具有使用第一个方案中所述的单电池结构101的配置的燃料电池,其没有端板。图8是表示本方案的燃料电池结构的图。
在图8的燃料电池中,不使用燃料电极侧隔板120或氧化剂电极侧隔板122,基底部件104和基底部件110充当气体扩散层和功率收集电极的组合功能。分别给基底部件104和基底部件110配置燃料电极侧端子447和氧化剂电极侧端子449。由于金属纤维片1具有比用于基底部件104和基底部件110的碳材料低1个或1个以上数量级的导电率,所以不用配置块金属功率收集部件就可以更高效率地进行功率收集。
通过具有这样的配置,得到燃料电池100的大小和重量的降低以及厚度的降低,其生产过程简化。并且,由于在基底部件104和燃料电极侧隔板120之间或在基底部件110和氧化剂电极侧隔板122之间不产生接触电阻,所以输出特性也得到改进。在这种情况中,组成金属纤维片1的金属纤维2可以是无定形的。作为这样的无定形材料,可以举例出由快速固化方法制备的含有铁族元素例如Fe和Co的、还以15~30重量%含有半金属元素例如B、C、P、Si等的合金组合物,或由溅射技术制备的仅含有金属元素的组合物。由快速固化方法制备的合金的例子可以包括含Co-Nb-Ta-Zr的合金、含Co-Ta-Zr的合金等。通过具有这样的配置,可以进一步提高金属纤维2的强度和耐酸性,防止材料产生裂纹,因此改进了金属纤维片1的机械特性和耐久性。
另外,由于在图8的燃料电池中,基底部件104粘合到燃料容器425上,所以燃料124从燃料容器425配备的开口以更高的效率供应给基底部件104。基底部件104和燃料容器425可以用耐燃料124的粘合剂粘合,或使用螺栓和螺母固定。
在图8的燃料电池中,基底部件104的侧面周围用密封材料429包覆,从而抑制燃料124泄漏。将金属纤维片1用于基底部件104的材料不需要配备功率收集电极,使用通过使燃料容器425直接接触基底部件104供应燃料142的配置得到更薄更小更轻的燃料电池。
另外,氧化剂电极可直接和氧化剂126例如空气和氧气接触,不使用端板获得其供应。当使用不妨害微型化的部件例如包装部件用于氧化剂电极108的基底部件110时,可以经这样的部件恰当地供应氧化剂126。
(第三个方案)
本方案涉及一种具有类似第一个方案中所述燃料电池100的配置的燃料电池,不同的是组成基底部件104和基底部件110的金属纤维2的表面被粗糙化,催化剂直接负载在基底部件104和基底部件110的表面上,不需要插入碳颗粒。
图6是示意地表示组成图5的燃料电池的单电池结构101的燃料电极102和固体电解质膜114的横截面图。如图所示,燃料电极102具有这样的结构,其中组成基底部件104的金属纤维片1的金属纤维2的表面具有凹凸结构,催化剂491包覆在其表面。
另一方面,图7是示意地表示普通燃料电池的燃料电极的结构横截面图。在图7中,碳材料用作基底104,在其表面形成包括固体聚合物电解质颗粒150和负载催化剂的碳颗粒140的催化剂层。
通过解释燃料电极102和比较图6和图7,本方案的燃料电池的特点描述如下。
首先,金属纤维片1用于图6中的燃料电极102的基底部件。由于金属纤维片1具有更好的导电性,所以在燃料电池100中,不需要在电极的外边配备块状金属等的功率收集电极,如第一个方案所述。另一方面,由于碳材料用于图7中的基底部件104,所以需要功率收集电极。
另外,在图6中,组成基底部件104的金属纤维2的表面被粗糙化。因此基底部件104的表面积增加,从而增加能负载在其上的催化剂的量。
因此保证了负载充分量的催化剂491的充分量的表面积,因此可以以图7中使用负载催化剂的碳颗粒140的类似水平负载一定量的催化剂491。基底部件104的表面可以做防水处理。
另外,由于在所谓的三相界面即和催化剂491、固体聚合物电解质颗粒150和基底部件104的界面上产生燃料电极102中的电化学反应,所以保证三相界面是关键。由于在图6中基底部件104直接和催化剂491接触,所以催化剂491和固体聚合物电解质颗粒150的接触部分必须是三相界面,因此在基底部件104和催化剂491之间保证了电子的转移通道。
另一方面,在图7的负载催化剂的碳颗粒之间能有效地利用和固体聚合物电解质颗粒150和基底部件104都接触的颗粒。因此,由负载催化剂的碳颗粒A负载的催化剂的表面上产生的电子从负载催化剂的碳颗粒A经过基底部件104转移,最后取出到电池的外边,例如在使用不和基底部件104接触的颗粒,象负载催化剂的碳颗粒B,的情况中,即使在负载在碳颗粒表面上的催化剂(图中未示出)的表面上产生电子,也不能取出到电池的外边。另外,关于负载催化剂的碳颗粒A,负载催化剂的碳颗粒140和基底部件104之间的接触电阻比催化剂491和金属纤维片1之间的接触电阻大,因此可以看到图6所示的配置能提供更合适的电子转移通道保证。
因此,通过比较图6和图7,发现使用图6的配置能改进催化剂491的利用效率和功率收集效率。所以单电池结构的输出特性改善,反过来,燃料电池的电池特性又得到改善。另外,由于使催化剂负载在碳上的步骤可以省略,所以电池配置及其生产得到进一步简化。
催化剂491负载在基底部件104的表面上是合适的。可以涂布基底部件104的整体或一部分。优选涂布基底部件104的整个表面,如图6所示,这是因为这样可以抑制基底部件104的腐蚀。当催化剂491涂布基底部件104的表面时,催化剂491的厚度不特别地限定,例如可在1~500nm的范围内。
由于类似第一个方案地基本上得到本方案的燃料电池主体,所以仅从它们的不同地方描述其生产过程如下。
在本方案的燃料电池主体中,组成基底部件104和基底部件110的金属纤维片1的表面被粗糙化,在表面上形成凹凸结构。在金属纤维片1的表面上形成细凹凸结构的方法例如使用蚀刻方法,如电化学蚀刻、化学蚀刻等。
就电化学蚀刻而言,使用阳极极化进行电解蚀刻。将基底部件104和基底部件110浸渍在电解质中,施加例如约1~10V的直流电压。酸溶液例如盐酸、硫酸、过饱和草酸、磷酸-铬酸混合物等可以用作电解质。
另一方面,当进行化学蚀刻时,将基底部件104和基底部件110浸渍在含氧化剂的腐蚀溶液中。关于蚀刻溶液,例如可以使用硝酸、硝酸乙醇溶液(硝酸乙醇腐蚀液)、苦味酸乙醇溶液、氯化铁溶液等。
并且在本方案中,起催化剂491作用的金属负载在基底部件104和基底部件110的表面上。关于使催化剂491负载其上的方法,例如可以使用镀敷技术如电镀、非电解的镀敷等,气相沉积如真空沉积、化学气相沉积(CVD)等。
当使用电镀时,基底部件104和基底部件110浸渍在含有目的催化剂金属离子的水溶液中,施加例如约1~10V的直流电压。例如,当用Pt进行镀敷时,可以将Pt(NH3)2(NO3)2、(NH4)2PtCl6等加到含有硫酸、氨基磺酸和磷酸铵的酸溶液中,在0.5~2A/dm2的电流密度下进行镀敷。并且当使用多种金属进行镀敷时,在使金属为扩散控制时的浓度范围内,通过合适地控制电压,进行镀敷提供需要的厚度和数量。
并且当进行非电解镀敷时,向含有例如Ni、Co、Cu离子的目的催化剂金属离子的水溶液中加入还原剂,例如次磷酸钠、硼氢化钠等作为还原剂,基底部件104和基底部件110浸渍其中,然后加热到约90~100℃的温度。
用将得到的基底部件104和基底部件110浸渍在固体聚合物电解质中的方法,将固体聚合物电解质粘附到催化剂491的表面上,然后将得到的产品夹在燃料电极102和氧化剂电极108中间,然后热压得到膜电极组件。
此处,由于基底部件104和基底部件110具有更好的耐腐蚀性,所以不需要为在基底部件104或基底部件110的表面上的涂层提供以催化剂491。例如,也可以使用颗粒形催化剂491可粘附在基底部件104或基底部件110的表面上的配置。例如类似第一个方案地,制备催化剂491和固体聚合物电解质的悬浮液,将其应用在基底部件104或基底部件110的表面上,得到这样的催化剂电极。
并且为了保证两个电极和固体电解质膜114之间的粘附性和保证氢离子在催化剂电极中的转移通道,优选在燃料电极102和氧化剂电极108的表面上配置质子传导层,使表面平整。图4是示意地表示燃料电极102和固体电解质膜114的另一种配置的横截面图。图4的配置除了图6的配置外,还包括基底部件104表面上的平面化层493。提供平面化层493改进了固体电解质膜114和基底部件104的粘附。
当在基底部件104和基底部件110的表面上形成平面化层493时,平面化层493可以是离子交换树脂等的质子传导体。通过具有这样的配置,在固体电解质膜114和催化剂电极之间合适地形成氢离子的转移通道。平面化层493的材料可选自例如可用于固体电解质或固体电解质膜114的材料。
(第四种方案)
本方案涉及一种使用其中一个表面的孔隙率大于另一个表面的孔隙率的金属纤维片1的燃料电池。就这样的金属纤维片1而言,例如可以使用在厚度方向上具有密度梯度的金属纤维片1。并且也可以使用由多个孔隙率不同的金属纤维片1组成的多层部件。在第一个方案所述的燃料电池100中,描述了使用两片密度不同的金属纤维片1堆积在基底部件104和基底部件110上的配置。
尽管在燃料电池100中,基底部件104和基底部件110的密度越高提供电子的转移效率越大,但是燃料124、氧化剂126和电化学反应产生的二氧化碳的渗透性降低。另一方面,尽管基底部件104和基底部件110的密度越低,提供这些气体的渗透性越好,但是在生产催化剂层106的催化剂层112时,催化剂浆体从基底部件104或基底部件110的空洞中漏出,或涂布材料的量可降低。并且电子转移性能也降低。
因此,在本方案中,使用两层金属纤维片1组成的多层部件作为基底部件104和基底部件110。然后,具有更高密度的金属纤维片1用于接触固体电解质膜的那侧,换句话说,具有催化剂层106或催化剂层112的那侧的金属纤维片1,位于燃料电池100外边的另一金属纤维片1具有较低密度。
具有将多层部件用于基底部件104和基底部件110的配置,以更好的效率将燃料124和氧化剂126引入到催化剂电极,产生的二氧化碳的排出可加快。并且,由于催化剂层106和催化剂层112中含有的负载催化剂的碳颗粒和金属纤维片1粘结所需要的部分可以充分地得到保证,所以可以更高效率地将催化剂电极产生的电子取出到燃料电池100的外面。另外,将催化剂层106和催化剂层112形成到基底部件104和催化剂层106表面上的可操作性可得到改进,因此可以将充分量的催化剂配置在基底部件104和基底部件110的表面上。
上面通过解释方案描述了本发明。本领域的普通技术人员应该理解,公开这些优选方案仅仅是为了解释的目的,可以改性这些目的物质和/或处理步骤的组合,改性的组合也在本发明的范围内。
例如,电极末端连接部分可配置在本方案的燃料电池上,经这些部分可连接多个燃料电池提供一个装配电池。可以采用合适配置的平行连接、串联连接及其组合,得到提供具有所需电压和容量的装配电池。另外,两维地布置多个燃料电池,相互连接,提供一个装配电池,或经隔板堆叠单电池结构101形成叠层。甚至在使用该叠层的情况中,可稳定地表现出改进的输出特性。
另外,由于本方案的燃料电池使用具有改进的导电性的多孔金属片,所以即使使用圆柱形配置等,也可以更高效率地取出催化反应产生的电子到电池的外边,不局限于平板结构。
(实施例和对比例)
虽然下面以解释关于燃料电池的电极和燃料电池本身的各种实施例的方式,具体地详细地说明本发明,但是不是用来限定本发明的范围。
(实施例)
生产含有铁、铬和硅作组成元素的金属纤维组成的金属纤维片。构成所得金属纤维片的主要成分是:Fe 75重量%、Cr 20重量%、Si 5重量%,厚度是0.2mm,孔隙率在40%~60%的范围内。另外,组成金属纤维片的金属纤维的直径(管道尺寸)约为30μm。使用这个薄片生产和评价燃料电池。
在金属纤维片的表面上如下形成催化剂层。首先,选择Aldrich化学公司购买的5重量%的nafion乙醇溶液用作固体聚合物电解质,将它混合到乙酸正丁酯,搅拌,以使固体聚合物电解质的量为0.1~0.4mg/cm2,制备出固体聚合物电解质的胶体状悬浮液。
以50%的重量比将具有3~5nm粒径的铂一钌合金催化剂粘合到碳细颗粒(“DENKA BLACK”,从DENKI KAGAKU KOGYO KABUSHIKIKAISHA购买)上制备负载催化剂的碳细颗粒,将它用于燃料电极的催化剂,以50%的重量比将3~5nm粒径的铂催化剂粘合到碳细颗粒(“DENKABLACK”,从DENKI KAGAKU KOGYO KABUSHIKI KAISHA购买)上制备负载催化剂的碳细颗粒,将它用于氧化剂电极的催化剂。使用超声波分散设备,将负载催化剂的碳细颗粒加到固体聚合物电解质的胶体状分散溶液中制备浆状产品。在这种情况中,进行混合,使固体聚合物电解质和催化剂的重量比为1∶1。用丝网印刷方法浆该浆体以2mg/cm2应用到金属纤维片上,然后加热干燥该产品制备燃料电池的电极。在130℃的温度和10kg/cm2的压力下将这些电极热压到固体电解质膜“nafion”112(从E.I.du Pont de Nemours & Company Inc.购买)的两侧,制备膜电极组件。在这种情况中,金属纤维片的端部从固体电解质膜的端部突出形成末端。
得到的膜电极组件安装在具有图8所示配置的用于评价的预装件上,进行燃料电池的输出测定。用密封剂密封燃料容器侧处的端部,然后将10%v/v的甲醇水溶液引入到燃料容器中。在燃料电极侧,通过金属纤维片供应燃料,从氧化剂电极侧自然地吸收空气。在1atom和25℃的室温下测定燃料电池的输出,结果是得到100mA/cm2的电流和0.4V的输出。连续1000小时后,没有测定到输出电压降低。
(对比例)
使用碳纸代替实施例的燃料电池的金属纤维片,生产具有端板配置的燃料电池。使用厚度0.19mm的碳纸(Toray有限公司购买)作为用于催化剂电极的碳材料,或换句话说,用于燃料电极和氧化剂电极(气体扩散电极),类似第一个实施例地生产膜电极组件。然后,将端板配备到催化剂电极的外边,燃料电极侧和氧化剂电极侧的端板用螺钉和螺母连接,因此紧密地将催化剂电极-固体电解质膜复合体和端板粘合。具有1mm厚度的SUS 316用作端板。
将10%v/v的甲醇水溶液引入到得到的燃料电池的燃料电极上,给氧化剂电极供应空气。在1大气压和25℃的室温下测定燃料电池的输出,结果是100mA/cm2的电流和0.37V的输出。另外,连续1000小时后其输出是0.35V。
上述实施例和对比例表明,使用本方案的金属纤维片可以得到燃料电池的大小和重量降低以及厚度降低。另外也发现,可以得到输出特性更好的燃料电池。并且也发现,该金属纤维片具有改进的耐腐蚀性,长期使用不发生燃料电池输出的降低,从而改进了耐久性。

Claims (16)

1.一种用于燃料电池的电极,包括金属纤维片和电学地连接到该金属纤维片上的催化剂,其中所述金属纤维片包含合金,所述合金含有选自Si和Al、Fe和Cr的至少一种金属作组成元素,其中在所述合金中Cr的含量不低于5重量%和不大于30重量%,且其中在所述合金中Si和Al的含量之和不低于3重量%和不大于10重量%。
2.根据权利要求1所述的燃料电池的电极,其中,所述金属纤维片的孔隙率不低于20%和不大于80%。
3.根据权利要求1或2所述的燃料电池的电极,其中,所述金属纤维的平均管道尺寸为10~100μm。
4.根据权利要求1~3中任一个所述的燃料电池的电极,其中,所述金属纤维片的一个表面的孔隙率大于其另一个表面的孔隙率。
5.根据权利要求1~4中任一个所述的燃料电池的电极,其中,所述的金属纤维片是金属纤维的烧结体。
6.根据权利要求1~5中任一个所述的燃料电池的电极,其中,所述催化剂负载在组成所述金属纤维片的金属纤维的表面上。
7.根据权利要求1~6中任一个所述的燃料电池的电极,其中,一层所述催化剂形成在组成所述金属纤维片的金属纤维的表面上。
8.根据权利要求1~7中任一个所述的燃料电池的电极,其中,含有负载所述催化剂的碳颗粒的催化剂层形成在所述金属纤维片的表面上。
9.根据权利要求1~8中任一个所述的燃料电池的电极,其中,组成所述金属纤维片的金属纤维具有粗糙化的表面。
10.根据权利要求1~9中任一个所述的燃料电池的电极,其中,还包括和所述催化剂接触的质子导体。
11.根据权利要求10所述的燃料电池的电极,其中,所述质子导体是离子交换树脂。
12.根据权利要求1~11中任一个所述的燃料电池的电极,其中,所述金属纤维片的至少一部分被疏水性处理。
13.一种燃料电池,包括燃料电极、氧化剂电极和夹在所述燃料电极和所述氧化剂电极之间的固体电解质膜,其中所述燃料电极或所述氧化剂电极中的至少一个是用于权利要求1~12中任一个所述的的燃料电池的电极。
14.根据权利要求13所述的燃料电池,其中,所述用于燃料电池的电极组成所述燃料电极,燃料直接供应在所述用于燃料电池的电极的表面上。
15.根据权利要求13或14所述的燃料电池,其中,所述用于燃料电池的电极组成所述氧化剂电极,氧化剂直接供应在用于所述燃料电池的所述电极的表面上。
16.根据权利要求13~15中任一个所述的燃料电池,其中不配备功率收集部件。
CN200480004550A 2003-02-18 2004-02-17 燃料电池用的电极和使用它的燃料电池 Expired - Fee Related CN100580982C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003040065 2003-02-18
JP040065/2003 2003-02-18

Publications (2)

Publication Number Publication Date
CN1751406A true CN1751406A (zh) 2006-03-22
CN100580982C CN100580982C (zh) 2010-01-13

Family

ID=32905195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480004550A Expired - Fee Related CN100580982C (zh) 2003-02-18 2004-02-17 燃料电池用的电极和使用它的燃料电池

Country Status (5)

Country Link
US (1) US20060159982A1 (zh)
JP (1) JP4642656B2 (zh)
CN (1) CN100580982C (zh)
TW (1) TWI254477B (zh)
WO (1) WO2004075321A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942104A (zh) * 2009-07-03 2011-01-12 日立化成工业株式会社 离子聚合物装置及其制备方法
CN101421868B (zh) * 2006-04-11 2012-10-03 日本发条株式会社 电极、燃料电池用电极、燃料电池及电极的制造方法
CN102947991A (zh) * 2010-04-20 2013-02-27 法国原子能与替代能委员会 用于电化学装置的扩散层以及制造此扩散层的方法
CN104204302A (zh) * 2012-03-28 2014-12-10 贝卡尔特公司 多孔金属性扩散基材和聚合物分隔膜的组件
CN105378991A (zh) * 2013-07-05 2016-03-02 日产自动车株式会社 燃料电池用金属制气体扩散层及其制造方法
WO2020191999A1 (zh) * 2019-03-22 2020-10-01 清华大学 一种氢燃料电池电堆磁流体密封装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093440B2 (ja) * 2006-06-09 2012-12-12 信越化学工業株式会社 ダイレクトメタノール型燃料電池用電解質膜・電極接合体
JP2008243403A (ja) * 2007-03-26 2008-10-09 Equos Research Co Ltd 燃料電池セル及び燃料電池スタック
KR20090125256A (ko) * 2007-03-26 2009-12-04 사임베트 코퍼레이션 리튬 막박 전지용 기재
US11028443B2 (en) 2015-08-31 2021-06-08 Showa Denko Materials Co., Ltd. Molecular methods for assessing urothelial disease
JP2018090899A (ja) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ
WO2018224448A1 (en) 2017-06-07 2018-12-13 Nv Bekaert Sa Gas diffusion layer
CN109037699B (zh) * 2017-06-09 2021-10-12 清华大学 燃料电池电极及燃料电池
CN111370739B (zh) * 2020-03-02 2020-11-10 成都新柯力化工科技有限公司 一种转印聚合制备燃料电池膜电极的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211772A (ja) * 1984-04-04 1985-10-24 Hitachi Ltd 液体燃料電池
DE3672975D1 (de) * 1985-12-09 1990-08-30 Dow Chemical Co Festkoerperpolymerelektrolyt-elektrode.
JP3100754B2 (ja) * 1992-05-20 2000-10-23 三菱電機株式会社 固体高分子電解質膜を用いた電気化学デバイスの製造方法
JP3242736B2 (ja) * 1993-03-10 2001-12-25 三菱電機株式会社 電気化学デバイス
JPH0757742A (ja) * 1993-08-12 1995-03-03 Tanaka Kikinzoku Kogyo Kk ガス拡散電極
JP3265737B2 (ja) * 1993-08-20 2002-03-18 住友電気工業株式会社 高耐食性金属フィルタ
JPH07112135A (ja) * 1993-08-23 1995-05-02 Sumitomo Electric Ind Ltd 排気ガス浄化フィルタ材及びその製造方法
JP3113499B2 (ja) * 1994-05-31 2000-11-27 三洋電機株式会社 イオン導電性付与電極並びにそのような電極を用いた電極・電解質接合体及びセル
JP3687215B2 (ja) * 1995-09-25 2005-08-24 新東工業株式会社 耐熱金属繊維焼結体の製造方法
JP2000299113A (ja) * 1999-02-10 2000-10-24 Toray Ind Inc 導電シートおよびそれを用いた燃料電池用電極基材
JP3645118B2 (ja) * 1999-03-25 2005-05-11 日新製鋼株式会社 低温型燃料電池用セパレータ
CA2290302A1 (en) * 1999-11-23 2001-05-23 Karl Kordesch Direct methanol fuel cell with circulating electrolyte
JP3365385B2 (ja) * 2000-01-31 2003-01-08 住友金属工業株式会社 固体高分子型燃料電池のセパレータ用ステンレス鋼材の製造方法
JP2002164067A (ja) * 2000-11-27 2002-06-07 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP3841149B2 (ja) * 2001-05-01 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用単セル

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421868B (zh) * 2006-04-11 2012-10-03 日本发条株式会社 电极、燃料电池用电极、燃料电池及电极的制造方法
CN101942104A (zh) * 2009-07-03 2011-01-12 日立化成工业株式会社 离子聚合物装置及其制备方法
CN102947991A (zh) * 2010-04-20 2013-02-27 法国原子能与替代能委员会 用于电化学装置的扩散层以及制造此扩散层的方法
CN102947991B (zh) * 2010-04-20 2015-11-25 法国原子能与替代能委员会 用于电化学装置的扩散层以及制造此扩散层的方法
CN104204302A (zh) * 2012-03-28 2014-12-10 贝卡尔特公司 多孔金属性扩散基材和聚合物分隔膜的组件
CN105378991A (zh) * 2013-07-05 2016-03-02 日产自动车株式会社 燃料电池用金属制气体扩散层及其制造方法
WO2020191999A1 (zh) * 2019-03-22 2020-10-01 清华大学 一种氢燃料电池电堆磁流体密封装置

Also Published As

Publication number Publication date
CN100580982C (zh) 2010-01-13
TW200423460A (en) 2004-11-01
JPWO2004075321A1 (ja) 2006-06-01
TWI254477B (en) 2006-05-01
US20060159982A1 (en) 2006-07-20
JP4642656B2 (ja) 2011-03-02
WO2004075321A1 (ja) 2004-09-02

Similar Documents

Publication Publication Date Title
CN1288779C (zh) 高分子电解质型燃料电池
CN1781203A (zh) 燃料电池用电极,燃料电池及其制造方法
CN1679188A (zh) 液体燃料供给类型燃料电池、燃料电池电极以及它们的生产方法
JP4901313B2 (ja) 膜電極接合体、膜電極接合体の製造方法、および燃料電池
CN1790783A (zh) 燃料电池的电极以及包括它的燃料电池及其制备方法
CN1471186A (zh) 燃料电池用电解质膜电极接合体、使用它的燃料电池及其制造方法
CN1554130A (zh) 用于燃料电池的电极催化剂层
CN1751406A (zh) 燃料电池用的电极和使用它的燃料电池
CN1848498A (zh) 燃料电池
CN1674327A (zh) 燃料电池和膜电极接合体
CN1610155A (zh) 用于燃料电池的扩散电极
JP4337406B2 (ja) 固体高分子型燃料電池用電極およびこれを用いた固体高分子型燃料電池
CN1731617A (zh) 燃料电池用催化剂、采用该催化剂的膜电极接合体、其制造方法及燃料电池
WO2003077336A1 (fr) Procede de fabrication de pile a combustible du type a electrolyte polymere
CN1860630A (zh) 膜催化剂层复合体、膜电极复合体以及高分子电解质型燃料电池
CN1519970A (zh) 复合电解质膜和含该膜的燃烧电池
CN1459133A (zh) 高分子电解质型燃料电池
CN1418385A (zh) 燃料电池
CN1783556A (zh) 燃料电池电极和膜电极组件以及燃料电池系统
CN1614804A (zh) 具有堆叠结构的燃料电池
CN1741309A (zh) 燃料电池的电极和包括它的燃料电池
US20090035640A1 (en) Catalyst-loaded support used for forming electrode for fuel cell, and method of producing the same
US8808942B2 (en) Adhesive for fuel cell and membrane-electrode assembly produced using the same
JP5292751B2 (ja) 燃料電池用セパレータ、その製造方法およびそれを備えた燃料電池
CN1925198A (zh) 用于燃料电池阴极的催化剂及用于燃料电池的膜电极组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100113

Termination date: 20140217