CN1716758A - Control device and module of permanent magnet synchronous motor - Google Patents
Control device and module of permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN1716758A CN1716758A CNA2005100822384A CN200510082238A CN1716758A CN 1716758 A CN1716758 A CN 1716758A CN A2005100822384 A CNA2005100822384 A CN A2005100822384A CN 200510082238 A CN200510082238 A CN 200510082238A CN 1716758 A CN1716758 A CN 1716758A
- Authority
- CN
- China
- Prior art keywords
- value
- command value
- output voltage
- axis
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 87
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 230000003313 weakening effect Effects 0.000 claims description 49
- 238000000034 method Methods 0.000 abstract description 20
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0085—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
- H02P21/0089—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明提供一种永磁同步电动机的弱磁场矢量控制装置,即使在弱磁场区中,也能实现高精度、高响应的马达转矩;此外,在进行廉价的电流检测的系统、和省略了磁极位置检测器的系统中通用。其实现的方法是,用电动机的频率指令值,自动修正生成d轴电流指令的运算部的控制增益。再有,通过预先进行计算,求出在无负荷时产生的d轴电流指令,并与生成d轴电流指令值的运算部的输出相加。
The present invention provides a field-weakening vector control device of a permanent magnet synchronous motor, which can realize high-precision and high-response motor torque even in a field-weakening region; in addition, in a system for low-cost current detection, and omits Commonly used in magnetic pole position detector systems. The method for realizing this is to automatically correct the control gain of the calculation unit that generates the d-axis current command by using the frequency command value of the motor. In addition, the d-axis current command generated at no load is obtained by calculation in advance, and is added to the output of the calculation unit that generates the d-axis current command value.
Description
技术领域technical field
本发明,涉及永磁同步电动机的弱磁场区的矢量控制方式。The invention relates to a vector control method in a weak magnetic field area of a permanent magnet synchronous motor.
背景技术Background technique
作为弱磁场区的矢量控制方式的现有技术,公知有以下两种方法,即,特开平8-182398号公报所述的,将d轴电流指令值列表(table),来令d轴和q轴的电流控制为比例运算方式的方法;和,如特开2002-95300号公报所述的那样,由d轴和q轴的电流控制部求出电动机的端子电压,通过将端子电压的指令值和上述端子电压的偏差用比例·积分运算,来计算上述d轴电流指令值的方法。As the prior art of the vector control method in the weak magnetic field area, the following two methods are known, that is, as described in Japanese Patent Laid-Open No. 8-182398, the d-axis current command value is listed (table), and the d-axis and q A method in which the current control of the axis is a proportional calculation method; and, as described in JP-A-2002-95300, the terminal voltage of the motor is obtained by the current control section of the d-axis and the q-axis, and the command value of the terminal voltage is obtained by A method of calculating the above-mentioned d-axis current command value by using a proportional-integral operation from the deviation from the above-mentioned terminal voltage.
[专利文献1]特开平8-182398号公报[Patent Document 1] JP-A-8-182398
[专利文献2]特开2002-95300号公报[Patent Document 2] JP-A-2002-95300
然而,由于在特开平8-182398号公报所述方法中,电流控制为比例运算方式,所以有着不产生遵照电流指令值的电流,转矩精度劣化的倾向;而特开2002-95300号公报所述方法中,由于d轴电流指令的产生缓慢,所以转矩响应有劣化的倾向。However, in the method described in Japanese Patent Laid-Open No. 8-182398, the current control is a proportional operation method, so there is no current that complies with the current command value, and the torque accuracy tends to deteriorate; In the above method, since the generation of the d-axis current command is slow, the torque response tends to deteriorate.
本发明的目的在于提供一种“永磁同步电动机的弱磁场控制装置”,即使在弱磁控制区域中,也能实现“高精度·高响应转矩控制”。An object of the present invention is to provide a "field weakening control device for a permanent magnet synchronous motor" capable of realizing "high precision and high response torque control" even in a field weakening control region.
发明内容Contents of the invention
本发明,通过用电动机的频率指令值,对生成d轴电流指令值的弱磁场指令运算部的积分控制增益进行自动修正,能够高响应地产生d轴电流指令值。In the present invention, the d-axis current command value can be generated with high response by automatically correcting the integral control gain of the field weakening command calculation unit that generates the d-axis current command value using the frequency command value of the motor.
再有,其特征在于,通过预先进行计算,求出在无负荷时产生的d轴电流指令,并加给生成d轴电流指令值的运算部的输出中。Furthermore, it is characterized in that a d-axis current command generated at no load is obtained by calculation in advance, and is added to an output of a calculation unit that generates a d-axis current command value.
通过本发明,即使在弱磁场区中,也能实现高精度、高响应的马达转矩。With the present invention, even in a weak magnetic field region, high-precision, high-response motor torque can be realized.
附图说明Description of drawings
图1是表示本发明一个实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。FIG. 1 is a block diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to an embodiment of the present invention.
图2是图1的控制装置中的弱磁场指令运算部8的说明图。FIG. 2 is an explanatory diagram of a field weakening
图3是没有弱磁场指令运算部8的情况下的电压饱和特性图的一例。FIG. 3 is an example of a voltage saturation characteristic diagram in the case where there is no field weakening
图4是加入弱磁场指令运算部8的情况下的电压饱和特性图的一例。FIG. 4 is an example of a voltage saturation characteristic diagram when the field weakening
图5是表示本发明的另一实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。5 is a configuration diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to another embodiment of the present invention.
图6是图5的控制装置中的弱磁场指令运算部8a的说明图。FIG. 6 is an explanatory diagram of a field weakening
图7是表示本发明的另一实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。7 is a configuration diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to another embodiment of the present invention.
图8是图7的控制装置中的弱磁场指令运算部8b的说明图。FIG. 8 is an explanatory diagram of a field weakening
图9是表示本发明的另一实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。9 is a configuration diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to another embodiment of the present invention.
图10是图9的控制装置中的弱磁场指令运算部8c的说明图。FIG. 10 is an explanatory diagram of a field weakening
图11是表示本发明的另一实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。Fig. 11 is a configuration diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to another embodiment of the present invention.
图12是表示本发明的另一实施例的永磁同步电动机的弱磁场矢量控制装置的结构图。Fig. 12 is a configuration diagram showing a field weakening vector control device for a permanent magnet synchronous motor according to another embodiment of the present invention.
图13是将本发明的实施例应用于模块的情况下的结构图。Fig. 13 is a configuration diagram in the case of applying an embodiment of the present invention to a module.
图中:In the picture:
1-永磁同步电动机,2-电源转换器,3-电流检测器,4-磁极位置检测器,5-频率运算部,6-相位运算部,7、13-坐标变换部,8、8a、8b、8c-弱磁场指令运算部,9-d轴电流指令运算部,10-q轴电流指令运算部,11-电压矢量运算部,12-输出电压运算部,14-电流推定部,15-相位误差运算部,21-直流电源、IDC-输入直流母线电流检测值、Id*-第一d轴电流指令值、Id**-第二d轴电流指令值、Iq*-第一q轴电流指令值、Iq**-第二q轴电流指令值、V1 * ref-弱磁场区中的输出电压指令值、V1 *-输出电压值、θc*-旋转相位指令、ω1 *-频率指令。1-Permanent magnet synchronous motor, 2-Power converter, 3-Current detector, 4-Magnetic pole position detector, 5-Frequency calculation unit, 6-Phase calculation unit, 7, 13-Coordinate transformation unit, 8, 8a, 8b, 8c-weakening magnetic field command calculation unit, 9-d-axis current command calculation unit, 10-q-axis current command calculation unit, 11-voltage vector calculation unit, 12-output voltage calculation unit, 14-current estimation unit, 15- Phase error calculation unit, 21-DC power supply, IDC-input DC bus current detection value, Id * -first d-axis current command value, Id ** -second d-axis current command value, Iq * -first q-axis current command value, Iq ** - second q-axis current command value, V 1 * ref - output voltage command value in the field weakening region, V 1 * - output voltage value, θc * - rotation phase command, ω 1 * - frequency instruction.
具体实施方式Detailed ways
下面,利用附图,对本发明的实施例进行详细说明。Hereinafter, embodiments of the present invention will be described in detail using the drawings.
图1表示作为本发明的一个实施例的永磁同步电动机的弱磁场矢量控制装置的结构例。1为永磁同步电动机;2为输出与三相交流的电压指令值Vu*、Vv*、Vw*成比例的电压的电源转换器;21为直流电源;3为可检测出三相交流电流Iu、Iv、Iw的电流检测器;4为能够检测出电动机每60°电角的位置检测值θi的磁极位置检测器;5为根据位置检测值θi,计算频率指令值ω1 *的频率运算部;6为根据位置检测值θi和频率指令值ω1 *,计算电动机的旋转相位指令θc*的相位运算部;7是根据上述三相交流电流Iu、Iv、Iw的检测值Iuc、Ivc、Iwc,和旋转相位指令θc*,输出d轴和q轴的电流检测值Idc、Iqc的坐标变换部;8是根据弱磁场区中的输出电压指令值V1 * ref和输出电压值V1 *的偏差,计算第一d轴电流指令值Id*的弱磁场指令运算部;9是根据作为弱磁场指令运算部的输出的第一d轴电流指令值Id*、和d轴电流检测值Idc的偏差,输出第二d轴电流指令值Id**的d轴电流指令运算部;10是根据第一q轴电流指令值Iq*、和q轴电流检测值Iqc的偏差,输出第二q轴电流指令值Iq**的q轴电流指令运算部;11是根据电动机1的电常数、第2电流指令值Id**、Iq**和频率指令值ω1 *,计算电压指令值Vd*、Vq*的电压矢量运算部;12是根据电压指令值Vd*、Vq*,计算电源转换器的输出电压值V1 *的输出电压运算部;13是根据电压指令值Vd*、Vq*和旋转相位指令θc*,输出三相交流的电压指令值Vu*、Vv*、Vw*的坐标变换部。FIG. 1 shows a configuration example of a field weakening vector control device for a permanent magnet synchronous motor as an embodiment of the present invention. 1 is a permanent magnet synchronous motor; 2 is a power converter that outputs a voltage proportional to the three-phase AC voltage command value Vu * , Vv * , Vw * ; 21 is a DC power supply; 3 is a three-phase AC current Iu that can be detected , Iv, and Iw current detectors; 4 is a magnetic pole position detector capable of detecting the position detection value θi of every 60° electric angle of the motor; 5 is a frequency calculation unit that calculates the frequency command value ω 1 * according to the position detection value θi ; 6 is a phase calculation unit for calculating the rotation phase command θc * of the motor based on the position detection value θi and the frequency command value ω 1 * ; 7 is the detection value Iuc, Ivc, Iwc based on the above-mentioned three-phase alternating current Iu, Iv, Iw , and the rotation phase command θc * , the coordinate conversion unit that outputs the current detection values Idc and Iqc of the d-axis and q-axis; 8 is based on the output voltage command value V 1 * ref and the output voltage value V 1 * in the weak magnetic field Deviation, calculating the first d-axis current command value Id * of the field weakening command calculation unit; 9 is based on the first d-axis current command value Id * as the output of the weakening field command calculation unit, and the deviation of the d-axis current detection value Idc , the d-axis current command calculation unit that outputs the second d-axis current command value Id ** ; 10 is to output the second q-axis current command according to the deviation between the first q-axis current command value Iq * and the q-axis current detection value Iqc The q- axis current command computing unit with the value Iq ** ; 11 is to calculate the voltage command values Vd* and Vq * based on the electrical constant of the
首先,对使用作为本发明特征的弱磁场指令运算的情况下的矢量控制方式的电压控制和相位控制的基本动作进行说明。First, the basic operation of voltage control and phase control in the vector control system when using the field weakening command calculation which is the characteristic of the present invention will be described.
对于电压控制,图1中的输出电压运算部12如数1所示的那样,使用d轴和q轴的电压指令值Vd*、Vq*,来计算输出电压值V1 *。For the voltage control, the output
[数1][number 1]
弱磁场指令运算部8,计算第一d轴电流指令值Id*,使上述的输出电压值V1 *与弱磁场区中的输出电压指令值V1 * ref一致。The field weakening
此外,电压矢量运算部11,预先使用数2所示的第二d轴和q轴的电流指令值和马达常数,计算d轴和q轴的电压指令值Vd*、Vq*,并控制转换器输出电压。In addition, the voltage
[数2][number 2]
Vd*=R1 *Id**-ω1 *·Lq*·Iq** Vd * = R1 * Id ** - ω1 * ·Lq * ·Iq **
Vq*=R1 *·Iq**+ω1 *·Ld*·Id**+ω1 *·Ke* …(2)Vq * =R 1 * ·Iq ** +ω 1 * ·Ld * ·Id ** +ω 1 * ·Ke * ...(2)
这里,R1*是电阻的设定值,Ld*是d轴电感的设定值,Lq*是q轴电感的设定值,Ke*是感应电压常数的设定值。Here, R1 * is the setting value of the resistance, Ld * is the setting value of the d-axis inductance, Lq * is the setting value of the q-axis inductance, and Ke * is the setting value of the induced voltage constant.
另一方面,对于相位控制,磁极位置检测器4中,可以掌握每60度电角的磁极位置。在本实施例当中,此时的位置检测值θi为On the other hand, for the phase control, the magnetic
[数3][number 3]
θi=60i+30 …(3)θi=60i+30...(3)
其中,i=0、1、2、3、4、5。在频率运算部5中,根据此位置检测值θi,算出在最短60度区间内的平均旋转频率ω1 *(以下称为频率指令值)。Wherein, i=0, 1, 2, 3, 4, 5. In the
[数4][number 4]
ω1 *=Δθ/Δt …(4)ω 1 * =Δθ/Δt …(4)
这里,Δθ=θi-θ(i-1),Δt为直到检测出60度区间的位置检测信号为止的时间。Here, Δθ=θi-θ(i-1), and Δt is the time until the position detection signal in the 60-degree section is detected.
此外,相位运算部6利用位置检测值θi和频率指令ω1 *,如数5那样计算旋转相位指令θc*,来控制电动机1的基准相位。In addition, the phase calculation unit 6 calculates the rotational phase command θc * as shown in
[数5][number 5]
θ*=θi+ω1 *·Δt …(5)θ * =θi+ω 1 * Δt …(5)
以上,是电压控制和相位控制的基本动作。The above is the basic operation of voltage control and phase control.
下面,使用图2,对作为本发明特征的反馈控制方式下的弱磁场指令运算部8进行说明。Next, the field weakening
在弱磁场指令运算部8中,弱磁场区中的输出电压指令值V1 * ref和输出电压值V1 *的偏差,被输入给积分增益为常数K的积分运算部81,进行积分运算。该运算值,被输入给正侧被限制为“零”的限制器运算部82,其输出值为第一d轴电流指令Id*。In the field weakening
下面,通过本实施例,就本发明带来的作用效果进行说明。Next, through this embodiment, the effect brought by the present invention will be described.
图1的控制装置,考虑了将第一d轴电流指令值Id*控制为“零”的情况(不进行弱磁场指令运算的情况)。The control device of FIG. 1 considers the case where the first d-axis current command value Id * is controlled to be "zero" (the case where the field weakening command calculation is not performed).
由电压矢量运算部11输出的V1 *,将数2代入数1得到:Substituting the
[数6][number 6]
另外,若设V1 *的饱和值为V1 * max,电压饱和区形成数7的关系。In addition, if the saturation value of V 1 * is assumed to be V 1 * max , the voltage saturation region forms a relationship of
[数7][number 7]
V1 * max 2=(R1*Id**-ω1 *·Lq*·Iq**)2+(R1*·Iq**+ω1 *·Ld*·Id**+ω1 *·Ke*)2 …(7)V 1 * max 2 =(R1 * Id ** -ω 1 * Lq * Iq ** ) 2 +(R1 * Iq ** +ω 1 * Ld * Id ** +ω 1 * Ke * ) 2 …(7)
这里,将数7整理,可以得到关于频率指令ω1 *的二次方程式,Here, by rearranging the
[数8][number 8]
其中,in,
A=(Ld*·Id**)2+(Lq*·Iq**)2+(Ke*+2·Ld*·Id**)A=(Ld * Id ** ) 2 +(Lq * Iq ** ) 2 +(Ke * +2 Ld * Id ** )
B=2·R1*·Iq**·(Ke*+(Ld*-Iq**)·Id**)B=2·R1 * ·Iq ** ·(Ke * +(Ld * -Iq ** )·Id ** )
根据数8,就能求得V1 *饱和时的ω1 *。According to
[数9][Number 9]
这里,当设Id**=Id*=0、Iq**=τ/KT时,马达转矩τ与频率指令ω1 *的关系如图3所示。Here, when Id ** =Id * =0 and Iq ** =τ/KT, the relationship between the motor torque τ and the frequency command ω 1 * is shown in FIG. 3 .
这里,τ为马达转矩,KT为转矩系数。Here, τ is the motor torque, and KT is the torque coefficient.
图3所示的实线是V1 *饱和的分界线,分界线上侧为饱和区,下侧为非饱和区,为可实际运转的范围。The solid line shown in FIG. 3 is the boundary line of V 1 * saturation, the upper side of the boundary line is the saturated area, and the lower side is the unsaturated area, which is the practically operable range.
因此,将d轴电流指令值Id*设定成“零”的矢量控制中存在的问题是,高速区中的运转范围被限制得较低。Therefore, there is a problem in the vector control in which the d-axis current command value Id * is set to "zero" that the operating range in the high-speed region is limited to be low.
因此,在本实施例中,是以输出电压值V1 *与弱磁场区中的输出电压指令值V1 * ref一致的方式,计算第一d轴电流指令值Id*,并利用该Id*生成第二d轴电流指令值Id**,进行电压矢量的运算。Therefore, in this embodiment, the first d-axis current command value Id* is calculated in such a manner that the output voltage value V 1 * coincides with the output voltage command value V 1 * ref in the field weakening region, and the Id * A second d-axis current command value Id ** is generated, and a voltage vector calculation is performed.
在此,弱磁场区的输出电压指令值V1 * ref,如数10那样设定。Here, the output voltage command value V 1 * ref in the field-weakening region is set as the
[数10][number 10]
V1 * ref<V1 * max …(10)V 1 * ref < V 1 * max ...(10)
其结果,由于用电压矢量运算部11,以输出电压值V1 *不饱和(为小于V1 * max的值)的方式,计算电压指令值Vd*、Vq*,因此能够扩大高速区中的运转范围。As a result, since the voltage command values Vd * and Vq* are calculated in such a manner that the output voltage value V1 * does not saturate (be a value smaller than V1 * max ) by the voltage
由于利用本发明,可以按照电流指令值产生电流,因而能够实现高精度的转矩控制,此外,如图4所示还能够扩大运转范围。Since the present invention can generate current according to the current command value, high-precision torque control can be realized, and in addition, the operating range can be expanded as shown in FIG. 4 .
另外,若在转矩控制运转时要求高转矩,就需要流有对应转矩的大电流。如果在连续的时间内要求高转矩,会因电动机电流而发热,使电动机内部的绕组阻值R随时间增加。这样,由于电压矢量运算部算出的电阻设定值不与实际电阻值一致,从而无法给电动机提供必要的电压,其结果,就没有产生转矩所需的电流,可能造成转矩不足。In addition, if high torque is required during torque control operation, it is necessary to flow a large current corresponding to the torque. If high torque is required for a continuous time, it will generate heat due to the motor current, and the winding resistance R inside the motor will increase with time. In this way, since the resistance set value calculated by the voltage vector calculation unit does not match the actual resistance value, the necessary voltage cannot be supplied to the motor.
因此,通过像本实施例的图1那样,在矢量运算部的上流部中具有电流指令运算部,以使电动机电流与电流指令值一致的方式来控制输出电压,则能不受电动机常数的变化、霍尔元件等的安装误差的影响,提供从低速度区起就不会出现转矩不足的交流电动机的控制装置。Therefore, by providing a current command calculation unit upstream of the vector calculation unit as shown in FIG. 1 of this embodiment, and controlling the output voltage so that the motor current coincides with the current command value, it is possible to avoid changes in the motor constant. , Hall elements, etc., to provide a control device for an AC motor that does not suffer from insufficient torque from a low speed range.
[实施例2][Example 2]
图5表示本发明的另一实施例。Fig. 5 shows another embodiment of the present invention.
本实施例,是利用频率指令ω1 *改变反馈控制方式下的弱磁场指令运算部的积分增益的方式的、永磁同步电动机的控制装置。This embodiment is a control device for a permanent magnet synchronous motor in which the integral gain of the field weakening command calculation unit in the feedback control mode is changed by using the frequency command ω 1 * .
图5中,1~7,9~13,21,与图1相同。8a是弱磁场指令运算部,根据频率指令ω1 *,自动修正对V1 * ref和V1 *的偏差进行积分运算时的积分增益。In Fig. 5, 1-7, 9-13, 21 are the same as those in Fig. 1 . 8a is a field weakening command calculation unit, which automatically corrects the integral gain when integrating the deviation between V 1 * ref and V 1 * according to the frequency command ω 1 * .
下面,使用图6,对作为本发明特征的弱磁场指令运算部8a进行说明。Next, using FIG. 6 , the field weakening
在弱磁场指令运算部8a中,弱磁场区中的输出电压指令值V1 * ref和输出电压值V1 *的偏差,被输入到积分增益为常数K的积分运算部8a1,进行积分运算。这时,积分增益K被由频率ω1被自动修正。积分运算部8a1的输出值,被输入给将正侧限制为“零”的限制器运算部82a,其输出值为第一d轴电流指令Id*。In the field weakening
利用该电流指令值Id*,生成第二电流指令值Id**,计算电压指令值Vd*、Vq*,控制转换器输出电压。Using this current command value Id * , a second current command value Id ** is generated, voltage command values Vd * , Vq * are calculated, and the converter output voltage is controlled.
这里,通过本实施例,就本发明带来的作用效果进行说明。Here, the effects brought about by the present invention will be described through this embodiment.
当弱磁场指令运算使用的积分增益K为一定时,从无负荷时(Iq*=0)的V1 * ref、到Id*为止的闭环传递函数GФ(s)为When the integral gain K used in the operation of the field weakening command is constant, the closed-loop transfer function G Ф (s) from V 1 * ref at no load (Iq * = 0) to Id * is
[数11][number 11]
这里,s是拉普拉斯运算符。根据数11,Id*由一次延迟产生,其响应时间常数TФ,为数12,可知TФ根据频率指令ω1 *变化的。Here, s is the Laplacian operator. According to
[数12][number 12]
因此,如数13所示来计算8a1的积分增益K。Therefore, the integral gain K of 8a1 is calculated as shown in
[数13][number 13]
K=1/ω1 *·ωc/Ld* …(13)K=1/ω 1 * ω c /Ld * ... (13)
其中,ωc是弱磁场指令运算的控制响应角频率(rad/s)。于是,新的传递函数GФ′(s)就变为Among them, ωc is the control response angular frequency (rad/s) of the weak field command operation. Then, the new transfer function G Ф ′(s) becomes
[数14][number 14]
其中,新的响应时间常数TФ′为where the new response time constant T Ф ′ is
[数15][number 15]
TФ′=1/ωc …(15)T Ф ′=1/ω c …(15)
这样,TФ′就能与频率指令ω1 *无关地设定,能够获得更高响应的效果。In this way, T Ф ′ can be set independently of the frequency command ω 1 * , and an effect of higher response can be obtained.
另外,利用频率指令ω1 *改变本实施例的反馈控制方式下的弱磁场指令运算部的积分增益的方式的永磁同步电动机的控制装置,也能应用于图5所示的、在电压矢量运算部的上流部里具有电流指令运算部的控制系统以外的控制系统中。In addition, the permanent magnet synchronous motor control device of the mode of changing the integral gain of the field weakening command calculation part under the feedback control mode of this embodiment by using the frequency command ω 1 * can also be applied to the voltage vector shown in FIG. In a control system other than a control system with a current command calculation unit in the upstream of the calculation unit.
[实施例3][Example 3]
图7表示本发明的另一实施例。本实施例,是在弱磁场指令运算部中使用前馈方式的情况下的、永磁同步电动机的弱磁场矢量控制装置。Fig. 7 shows another embodiment of the present invention. The present embodiment is a field weakening vector control device for a permanent magnet synchronous motor when a feedforward method is used in the field weakening command calculation unit.
图7中,构成要素的1~7,9~13,21与图1相同。In FIG. 7 , 1 to 7, 9 to 13, and 21 of the constituent elements are the same as those in FIG. 1 .
使用图8,对作为本发明的特征的前馈控制方式下的弱磁场指令运算部8b进行说明。Using FIG. 8 , the field weakening
本实施例以外,通过预先进行运算,求得无负荷时产生的d轴电流指令。In addition to the present embodiment, the d-axis current command generated at no load is obtained by performing calculations in advance.
对于弱磁场指令运算部8b,在运算部8b1中,从弱磁场区中的输出电压指令值V1 * ref中减去感应电压指令值(=ω1 *Ke*),并将此相减得到的值除以ω1 *和Ld*的乘积。运算部8b1的输出值,被输入给一次延迟滤波器8b2。并且,8b2的输出值,被输入给将正侧限制为“零”的限制器运算部8b3中,其输出值为第一d轴电流指令Id*。With respect to the field weakening
使用该电流指令值Id*,生成第二电流指令值Id**,并计算电压指令值Vd*、Vq*,来对转换器输出电压进行控制。Using this current command value Id * , a second current command value Id ** is generated, and voltage command values Vd * , Vq * are calculated to control the converter output voltage.
在高速区中,即使转矩为“零”,仅由Vq*的感应电压指令值(=ω1 *Ke*),V1 *也会饱和。In the high- speed region, even if the torque is "zero", V 1 * is saturated only by the induced voltage command value of Vq * (=ω 1 * Ke * ).
若将脱离电压饱和区所必要的d轴电流指令值设为Id* ff0,则If the d-axis current command value necessary to leave the voltage saturation region is set as Id * ff0 , then
[数16][number 16]
Id* ff0=(V1 *max-ω1 *·Ke*)/(ω1 *·Ld*) …(16)Id * ff0 = (V 1 * max - ω 1 * Ke * )/(ω 1 * Ld * ) ... (16)
这样,通过将8b2的一次延迟滤波器时间常数T,如数(17)这样进行设定,则即使在前馈控制方式下,也能够获得与实施例2相同的效果。In this way, by setting the first-order delay filter time constant T of 8b2 as in (17), even in the feedforward control mode, the same effect as that of the second embodiment can be obtained.
[数17][number 17]
T=1/ωc …(17)T=1/ω c ... (17)
另外,在本实施例的弱磁场指令运算部上使用前馈方式的情况下的、永磁同步电动机的弱磁场转矩控制装置,也能够应用于图7所示的、在电压矢量运算部的上流部里具有电流指令运算部的控制系统以外的控制系统中。In addition, the field-weakening torque control device for a permanent magnet synchronous motor in the case where the feedforward method is used in the field-weakening command computing part of this embodiment can also be applied to the voltage vector computing part shown in FIG. In a control system other than a control system with a current command calculation unit in the upstream part.
[实施例4][Example 4]
图9表示本发明的另一实施例。本实施例,是在弱磁场指令运算部上使用前馈控制方式和反馈控制方式的情况下的、永磁同步电动机的控制装置。Fig. 9 shows another embodiment of the present invention. This embodiment is a control device for a permanent magnet synchronous motor when a feedforward control method and a feedback control method are used in the field weakening command calculation unit.
图9中,构成要素的1~7,9~13,21与图1相同。使用图10,对作为本发明特征的前馈控制方式和反馈控制方式下的弱磁场指令运算部8c进行说明。In FIG. 9 , 1 to 7, 9 to 13, and 21 of the constituent elements are the same as those in FIG. 1 . Using FIG. 10 , the field weakening
对于弱磁场指令运算部8c,运算部8c1中,从弱磁场区中的输出电压指令值V1 * ref中减去感应电压指令值(=ω1 *Ke*),并将此相减得到的值除以ω1 *和Ld*的乘积。In the field weakening
运算部8c1的输出值,被输入给一次延迟滤波器8c2。8c2的输出值再被输入给将正侧限制为“零”的限制器运算部8c3,其输出值为Id* ff。The output value of the calculation part 8c1 is input to the primary delay filter 8c2. The output value of 8c2 is input to the limiter calculation part 8c3 which restricts the positive side to "zero", and the output value is Id * ff .
此外,输出电压指令值V1 * ref和输出电压值V1,被同时输入给积分增益为常数K的积分运算部8c4,进行积分运算。这时,积分增益K被频率ω1自动修正。In addition, the output voltage command value V 1 * ref and the output voltage value V 1 are simultaneously input to the integral calculation unit 8c4 whose integral gain is constant K, and integral calculation is performed. At this time, the integral gain K is automatically corrected by the frequency ω1 .
积分运算部8c4的输出值,被输入给将正侧限制为“零”的限制器运算部8c5,其输出值为Id* fb。The output value of the integral operation part 8c4 is input to the limiter operation part 8c5 which limits the positive side to "zero", and the output value is Id * fb .
因此,通过如数(18)所示,将前馈控制的输出值Id* ff和反馈控制的输出值Id* fb相加,计算出第一d轴电流指令Id*。Therefore, the first d-axis current command Id * is calculated by adding the output value Id * ff of the feedforward control and the output value Id * fb of the feedback control as shown in (18).
[数18][number 18]
Id*=Id* ff+Id* fb …(18)Id * = Id * ff + Id * fb ... (18)
这个方式下,也与上述实施例同样动作,能够获得更高响应的效果。In this way, the same operation as the above-mentioned embodiment can be obtained, and the effect of higher response can be obtained.
另外同样,在本实施例的弱磁场指令运算部上使用前馈控制方式和反馈控制方式的情况下的、永磁同步电动机的控制装置,也能够应用于如图9所示的、在电压矢量运算部的上流部里具有电流指令运算部的控制系统以外的控制系统中。In addition, the control device of the permanent magnet synchronous motor in the case of using the feedforward control method and the feedback control method on the field weakening command calculation part of the present embodiment can also be applied to the voltage vector as shown in FIG. In a control system other than a control system with a current command calculation unit in the upstream of the calculation unit.
[实施例5][Example 5]
虽然实施例1~实施例4中,是利用高价电流检测器3对检测到的3相交流电流Iu~Iw进行检测的方式,但也可应用于进行廉价电流检测的控制装置中。In
图11表示此实施例。图11中,构成要素的1,2,4~7,8a,9~13,21,与图5所示的相同。Figure 11 shows this embodiment. In FIG. 11, 1, 2, 4 to 7, 8a, 9 to 13, and 21 of the constituent elements are the same as those shown in FIG. 5 .
14为电流推定部,根据电源转换器输入母线上的直流电流IDC,来推定电动机1中的三相交流电流Iu、Iv、Iw。14 is a current estimating unit, which estimates the three-phase AC currents Iu, Iv, and Iw in the
使用此推定电流值Iu^、Iv^、Iw^,在坐标变换部7中,计算d轴和q轴的电流检测值Idc、Iqc。Using these estimated current values Iu^, Iv^, Iw^, in the coordinate
由于这种无电流传感器控制方式中,也分别令Id*与Idc、Iq*与Iqc一致,因此可知与上述实施例同样动作,获得同样的效果。Since Id * and Idc, and Iq * and Iqc are also made to coincide with each other in this current sensorless control method, it can be seen that the operation is the same as that of the above-mentioned embodiment, and the same effect is obtained.
此外,虽然在本实施例中,是在弱磁场指令运算部中使用图6的方式,但是使用图2、图8、图10的方式也可以得到同样的效果。In addition, although in the present embodiment, the form shown in FIG. 6 is used in the field weakening command calculation unit, the same effects can be obtained by using the forms shown in FIGS. 2 , 8 , and 10 .
[实施例6][Example 6]
图12,表示本发明的另一实施例。Fig. 12 shows another embodiment of the present invention.
本实施例,适用于进行廉价的电流检测、且省略了磁极位置检测器的控制装置中。This embodiment is suitable for a control device that performs low-cost current detection and omits a magnetic pole position detector.
图12中,构成要素的1,2,7,8a,9~13,21,与图5所示的相同。In FIG. 12, 1, 2, 7, 8a, 9 to 13, and 21 of the constituent elements are the same as those shown in FIG.
6′为相位运算部,将频率指令ω1 *积分来计算旋转相位指令θc*。6' is a phase calculation unit which integrates the frequency command ω 1 * to calculate the rotation phase command θc * .
14为电流推定部,根据电源转换器的输入母线上的直流电流IDC,来推定同步电动机中的三相交流电流Iu、Iv、Iw。14 is a current estimating unit, which estimates the three-phase AC currents Iu, Iv, and Iw in the synchronous motor based on the DC current IDC on the input bus of the power converter.
使用此推定电流值Iu^、Iv^、Iw^,在坐标变换部7中计算d轴和q轴的电流检测值Idc、Iqc。Using the estimated current values Iu^, Iv^, Iw^, the coordinate
此外,15是相位误差运算部,根据电压指令值Vd*、Vq*和电流检测值Idc、Iqc,来推定作为旋转相位指令θc*和电动机1的旋转相位θ的偏差的、相位误差Δθc(=θc*-θ)。In addition, 15 is a phase error computing unit , which estimates a phase error Δθc (= θc * -θ).
16是频率推定部,以令相位误差Δθc为“零”的方式计算ω1 **。这种无位置、电流传感器控制方式中,也与上述实施例同样动作,可知能获得同样的效果。16 is a frequency estimation part which calculates ω1 ** so that a phase error Δθc may become "zero". Also in this position and current sensorless control method, it operates in the same manner as the above-mentioned embodiment, and it can be seen that the same effect can be obtained.
此外,在本实施例中,虽然是在弱磁场指令运算部中使用图6的方式,但是使用图2、图8、图10的方式也可以得到同样的效果。In addition, in this embodiment, although the form of FIG. 6 is used in the field weakening command calculation part, the same effect can be obtained also using the form of FIG. 2, FIG. 8, and FIG. 10.
[实施例7][Example 7]
用图13,对将本发明应用于模块的例子进行说明。本实施例表示的是实施例1的实施方式。这里,频率运算部5、相位运算部6、坐标变换部7、弱磁场指令运算部8、d轴电流指令运算部9、q轴电流指令运算部10、电压矢量运算部11、输出电压运算部12、坐标变换部13,用单片机来构成。此外,上述单片机和电源转换器,形成为收纳于同一基板上构成的一个模块内的形态。这里所谓的模块,意思是“被规格化的构成单位”,由可分离的硬件/软件的部件构成。另外,虽然在制造上优选构成于同一基板上,但并不限于同一基板。从而,也可以构成在内置于同一机箱内的多个电路基板上。在其他的实施例中,也可以采取相同的形态构成。An example in which the present invention is applied to a module will be described using FIG. 13 . This example shows the implementation of Example 1. Here, the
如上,通过本发明,能够提供一种永磁同步电动机的弱磁场矢量控制装置,即使在弱磁场区中,也能够实现高精度、高响应的马达转矩;此外,还可在进行廉价的电流检测的系统、和省略了磁极位置检测器的系统中通用。As above, through the present invention, it is possible to provide a field-weakening vector control device for a permanent magnet synchronous motor, which can realize high-precision, high-response motor torque even in a field-weakening region; Commonly used in a system that detects a magnetic pole position detector and a system that omits a magnetic pole position detector.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004195111 | 2004-07-01 | ||
JP2004195111A JP4380437B2 (en) | 2004-07-01 | 2004-07-01 | Control device and module for permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1716758A true CN1716758A (en) | 2006-01-04 |
CN100365927C CN100365927C (en) | 2008-01-30 |
Family
ID=35794139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100822384A Expired - Fee Related CN100365927C (en) | 2004-07-01 | 2005-07-01 | Control device and module of permanent magnet synchronous motor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4380437B2 (en) |
KR (1) | KR100659250B1 (en) |
CN (1) | CN100365927C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100413207C (en) * | 2006-11-17 | 2008-08-20 | 清华大学 | A vector control system for permanent magnet synchronous motor with different frequency power supply |
CN101295953B (en) * | 2007-04-25 | 2012-03-28 | 株式会社日立制作所 | Field Weakening Control Device of Permanent Magnet Motor and Electric Power Steering Gear Using It |
CN101507101B (en) * | 2006-09-26 | 2012-06-27 | 三菱电机株式会社 | Permanent magnet synchronization motor vector control device |
CN103378774A (en) * | 2012-04-23 | 2013-10-30 | 三菱电机株式会社 | Control apparatus of rotating electrical machine |
CN101946136B (en) * | 2008-03-28 | 2014-03-19 | 日立空调·家用电器株式会社 | Refrigeration equipment |
CN103718451A (en) * | 2011-08-10 | 2014-04-09 | 松下电器产业株式会社 | Motor control device |
CN103812410A (en) * | 2012-11-05 | 2014-05-21 | 株式会社安川电机 | Controller of AC motor |
CN105024604A (en) * | 2014-04-28 | 2015-11-04 | 青岛海信日立空调系统有限公司 | Field weakening control method and device of permanent magnet synchronous motor |
CN109804550A (en) * | 2016-10-25 | 2019-05-24 | 密克罗奇普技术公司 | Closed loop magnetic flux for permanent magnet synchronous motor weakens |
CN111404437A (en) * | 2020-03-17 | 2020-07-10 | 美的集团股份有限公司 | Boost-buck driving method and device, air conditioner and computer readable storage medium |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4634321B2 (en) * | 2006-02-28 | 2011-02-16 | 日立オートモティブシステムズ株式会社 | Control device for electric four-wheel drive vehicle |
JP5576039B2 (en) * | 2008-12-17 | 2014-08-20 | 株式会社日立産機システム | Synchronous motor controller |
KR101522285B1 (en) * | 2009-01-16 | 2015-05-21 | 삼성테크윈 주식회사 | Apparatus for controlling motor |
JP5509167B2 (en) | 2011-09-08 | 2014-06-04 | 株式会社日立産機システム | Synchronous motor control system |
CN105337548A (en) * | 2015-11-23 | 2016-02-17 | 南京金龙新能源汽车研究院有限公司 | Permanent magnet synchronous motor controller based on vector control and control method |
CN107086544B (en) * | 2017-05-10 | 2019-03-08 | 广东美的暖通设备有限公司 | Overvoltage crowbar, three-phase drive motor and air conditioner |
WO2021234934A1 (en) | 2020-05-22 | 2021-11-25 | 三菱電機株式会社 | Control device for permanent magnet synchronous motor, and electric power steering device equipped with said control device |
CN116547903A (en) * | 2020-12-17 | 2023-08-04 | 三菱电机株式会社 | Motor driving device, refrigeration cycle device, and air conditioner |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05284771A (en) * | 1992-03-31 | 1993-10-29 | Meidensha Corp | Automatic tuning method for pi controller |
JPH08182398A (en) * | 1994-12-27 | 1996-07-12 | Fuji Electric Co Ltd | Permanent magnet type synchronous motor drive device |
JP3366854B2 (en) | 1997-03-27 | 2003-01-14 | 松下電器産業株式会社 | Motor control device |
JP2000245199A (en) | 1999-02-24 | 2000-09-08 | Matsushita Electric Ind Co Ltd | Motor controller |
JP2002095300A (en) | 2000-09-19 | 2002-03-29 | Meidensha Corp | Method of controlling permanent magnet synchronous motor |
-
2004
- 2004-07-01 JP JP2004195111A patent/JP4380437B2/en not_active Expired - Lifetime
-
2005
- 2005-06-30 KR KR1020050057564A patent/KR100659250B1/en active IP Right Grant
- 2005-07-01 CN CNB2005100822384A patent/CN100365927C/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101507101B (en) * | 2006-09-26 | 2012-06-27 | 三菱电机株式会社 | Permanent magnet synchronization motor vector control device |
CN100413207C (en) * | 2006-11-17 | 2008-08-20 | 清华大学 | A vector control system for permanent magnet synchronous motor with different frequency power supply |
CN101295953B (en) * | 2007-04-25 | 2012-03-28 | 株式会社日立制作所 | Field Weakening Control Device of Permanent Magnet Motor and Electric Power Steering Gear Using It |
CN101946136B (en) * | 2008-03-28 | 2014-03-19 | 日立空调·家用电器株式会社 | Refrigeration equipment |
CN103718451A (en) * | 2011-08-10 | 2014-04-09 | 松下电器产业株式会社 | Motor control device |
CN103378774B (en) * | 2012-04-23 | 2016-01-27 | 三菱电机株式会社 | The control device of electric rotating machine |
CN103378774A (en) * | 2012-04-23 | 2013-10-30 | 三菱电机株式会社 | Control apparatus of rotating electrical machine |
CN103812410A (en) * | 2012-11-05 | 2014-05-21 | 株式会社安川电机 | Controller of AC motor |
CN105024604A (en) * | 2014-04-28 | 2015-11-04 | 青岛海信日立空调系统有限公司 | Field weakening control method and device of permanent magnet synchronous motor |
CN105024604B (en) * | 2014-04-28 | 2017-09-29 | 青岛海信日立空调系统有限公司 | A kind of method and a device for controlling weak magnetism of permagnetic synchronous motor |
CN109804550A (en) * | 2016-10-25 | 2019-05-24 | 密克罗奇普技术公司 | Closed loop magnetic flux for permanent magnet synchronous motor weakens |
CN109804550B (en) * | 2016-10-25 | 2022-10-11 | 密克罗奇普技术公司 | Apparatus and method for generating d-axis reference current for controlling motor |
CN111404437A (en) * | 2020-03-17 | 2020-07-10 | 美的集团股份有限公司 | Boost-buck driving method and device, air conditioner and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN100365927C (en) | 2008-01-30 |
JP2006020411A (en) | 2006-01-19 |
KR100659250B1 (en) | 2006-12-19 |
JP4380437B2 (en) | 2009-12-09 |
KR20060048738A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1956317A (en) | Field Weakening Vector Control Device and Module for Permanent Magnet Synchronous Motor | |
CN1716758A (en) | Control device and module of permanent magnet synchronous motor | |
CN1175556C (en) | Vector Control Device of Induction Motor | |
CN1783692A (en) | Speed controller of synchronous motor | |
CN1212701C (en) | AC motor speed control device | |
CN1976212A (en) | Vector controller for a permanent magnet synchronous motor, inverter module, and permanent magnet synchronous motor constant display system | |
CN1190004C (en) | Synchronous motor control device and method | |
CN100345370C (en) | Methods related to sensorless induction motors | |
CN1052834C (en) | Controlling system for permanent-magnet synchronous electric motor | |
CN1913340A (en) | Vector controller for permanent magnet synchronous motor | |
CN1251394C (en) | Motor control method and its apparatus | |
CN1783694A (en) | Synchronous motor driving apparatus | |
CN1905351A (en) | Motor controller, washing machine, air conditioner and electric oil pump | |
CN1667942A (en) | Rotor position estimation method and device, motor control method, compressor and program | |
CN1830133A (en) | Voltage conversion device and computer-readable recording medium having recorded thereon a program for computer-controlled voltage conversion | |
CN1905355A (en) | Power generation apparatus using AC energization synchronous generator and method of controlling the same | |
CN1835383A (en) | Controlling device and its regulating method of synchronous motor | |
CN1825750A (en) | motor drive | |
TW200300305A (en) | Current ripple reduction by harmonic current regulation | |
CN1715095A (en) | Electrically operated drive controller, electrically operated drive control method and its program | |
CN1041073C (en) | Electric Vehicle Control System | |
CN1517683A (en) | Motor control device and motor control method | |
CN1715094A (en) | Electrically operated drive controller, electrically operated drive control method and its program | |
CN1732617A (en) | Power generation system and its control method | |
CN1759529A (en) | Method and device for sensorless vector control for AC motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HITACHI POWER SEMICONDUCTOR DEVICE, LTD. Free format text: FORMER OWNER: HITACHI,LTD. Effective date: 20140716 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20140716 Address after: Japan in Ibaraki County Patentee after: HITACHI POWER SEMICONDUCTOR DEVICE, LTD. Address before: Tokyo, Japan, Japan Patentee before: Hitachi Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080130 Termination date: 20170701 |
|
CF01 | Termination of patent right due to non-payment of annual fee |