CN1667934A - Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor - Google Patents
Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor Download PDFInfo
- Publication number
- CN1667934A CN1667934A CN 200510063340 CN200510063340A CN1667934A CN 1667934 A CN1667934 A CN 1667934A CN 200510063340 CN200510063340 CN 200510063340 CN 200510063340 A CN200510063340 A CN 200510063340A CN 1667934 A CN1667934 A CN 1667934A
- Authority
- CN
- China
- Prior art keywords
- rotor
- stator
- piezoelectric
- piezoelectric ceramic
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 75
- 239000002131 composite material Substances 0.000 title claims description 35
- 239000000919 ceramic Substances 0.000 claims abstract description 87
- 230000005284 excitation Effects 0.000 claims abstract description 35
- 230000010287 polarization Effects 0.000 claims abstract description 30
- 230000033001 locomotion Effects 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 230000036316 preload Effects 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000002783 friction material Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- 238000005452 bending Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000005684 electric field Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
技术领域technical field
本发明属于超声应用领域,特别涉及一种微型化的超声波电机的结构设计。The invention belongs to the field of ultrasonic application, in particular to a structure design of a miniaturized ultrasonic motor.
背景技术Background technique
压电超声电机是利用压电材料的逆压电效应,采取特定的结构制成的驱动机构,它一般由定子、转子以及预压力机构等功能部件构成。它利用压电陶瓷的逆压电效应,在定子表面产生超声振动,并由定子与转子之间的摩擦力驱动转子运动。超声电机具有以下优于普通电磁电机的特点:The piezoelectric ultrasonic motor is a driving mechanism made of a specific structure using the inverse piezoelectric effect of piezoelectric materials. It is generally composed of functional components such as a stator, a rotor, and a pre-pressure mechanism. It uses the inverse piezoelectric effect of piezoelectric ceramics to generate ultrasonic vibrations on the surface of the stator, and the friction between the stator and the rotor drives the rotor to move. Ultrasonic motors have the following advantages over ordinary electromagnetic motors:
1、低转速、大转矩,不需要减速机构可直接驱动负载;1. Low speed, high torque, can directly drive the load without deceleration mechanism;
2、体积小、结构灵活,功率体积比是电磁电机的3-10倍;2. Small size, flexible structure, power volume ratio is 3-10 times that of electromagnetic motor;
3、起动停止响应快,响应时间小于1毫秒;3. Quick start and stop response, the response time is less than 1 millisecond;
4、不产生电磁干扰,也不受电磁干扰;4. No electromagnetic interference, nor electromagnetic interference;
5、有自保持力矩,无齿轮间隙,可精密定位;5. With self-holding torque, no gear backlash, and precise positioning;
6、运行安静无噪声。6. Quiet and noiseless operation.
弯曲振动模态超声波电机是超声电机的一种,它的结构相对别的超声电机简单,同样主要由激励超声振动的定子,输出力矩的转子(或动子)以及给转子(或动子)加压的预压力机构等组成,所述定子又主要由激励振动的压电陶瓷元件以及匹配块构成。弯曲振动模态超声波电机的传动原理如图1所示,定子处于圆周摇头的振动方式,定子11与环状转子12之间有一很小的间隙,传动时定子边弯曲边摇头运动,因此定、转子之间有切点接触,其接触点在定子的外圆周边上移动,依次,定、转子间的摩擦力使转子沿与接触点移动方向相反的方向转动。Bending vibration mode ultrasonic motor is a kind of ultrasonic motor. Its structure is relatively simple compared with other ultrasonic motors. The stator is mainly composed of a piezoelectric ceramic element that excites vibration and a matching block. The transmission principle of the bending vibration modal ultrasonic motor is shown in Figure 1. The stator is in the vibration mode of circular shaking. There is a small gap between the stator 11 and the annular rotor 12. During transmission, the stator moves while bending and shaking the head. Therefore, the stator, There is tangential contact between the rotors, and the contact point moves on the outer circumference of the stator. In turn, the friction force between the stator and the rotor makes the rotor rotate in the opposite direction to the direction of movement of the contact point.
常见的弯曲振动模态超声波电机定子振动的激励方式有两种,第一种利用压电陶瓷的d33效应,在极化方向施加电场,使压电陶瓷产生沿极化方向的形变;第二种利用压电陶瓷的d31效应,在极化方向施加电场,使压电陶瓷产生沿与极化方向的垂直的形变。图2是采用压电陶瓷的d33压电效应的弯曲摇头超声电机的激励方式和结构示意图,该种电机已经比较成熟,它利用压电陶瓷的d33效应进行定子的弯曲振动激励,从而激发出定子的摇头振动。该电机的压电陶瓷的极化和激励如图2(a)所示,该定子所用的压电陶瓷元件为4片压电片,在同一压电片上以直径对称分两半反相极化,通A相电流的两片压电片211和通B相电流的两片压电片212空间垂直排列,采用朗之万夹心结构组成定子,同时A相输入Sinωt信号,B相输入Cosωt信号,这样采用时间和空间各90度相位差来激励弯曲振动;这种压电片激励的弯曲振动模态超声波电机结构如图2(b)所示,上下匹配块226、228夹紧4片压电陶瓷片227后共同构成电机的定子,置于定子上的225为转子,其中空部位有施加预压力的弹簧224,力矩通过齿轮223输出,222为聚四氟乙烯套,起轴承的作用,221为垫圈,229为主轴。There are two excitation methods for the stator vibration of the common flexural vibration mode ultrasonic motor. The first one uses the d 33 effect of piezoelectric ceramics to apply an electric field in the polarization direction to cause piezoelectric ceramics to deform along the polarization direction; the second One uses the d 31 effect of piezoelectric ceramics to apply an electric field in the polarization direction to cause piezoelectric ceramics to deform vertically to the polarization direction. Figure 2 is a schematic diagram of the excitation mode and structure of the bending head ultrasonic motor using the d 33 piezoelectric effect of piezoelectric ceramics. This kind of motor is relatively mature. It uses the d 33 effect of piezoelectric ceramics to excite the bending vibration of the stator, thereby exciting The shaking head vibration of the stator. The polarization and excitation of the piezoelectric ceramics of the motor are shown in Figure 2(a). The piezoelectric ceramic elements used in the stator are 4 piezoelectric sheets, and the same piezoelectric sheet is divided into two halves with anti-phase polarization symmetrically in diameter. , the two
弯曲振动模态超声波电机的主要优势就是易于实现微型化和产业化。棒状摇头型超声电机已经产业化,但电机的直径一般都比较大;在手机,医疗及航天等领域的应用还受到限制。The main advantage of the bending vibration mode ultrasonic motor is that it is easy to realize miniaturization and industrialization. Rod-shaped oscillating head ultrasonic motors have been industrialized, but the diameters of the motors are generally relatively large; their applications in mobile phones, medical and aerospace fields are still limited.
图3为Kenji Uchino等人发明的定子为半圆半方结构的摇头型超声电机,其直径仅为1.6mm。在金属筒31的两个垂直侧面上分别粘贴沿厚度方向极化的压电陶瓷片32、33,构成定子,如图3(a)所示。压电陶瓷激励出定子的摇头运动,驱动转子34带动输出轴35转动。33为预压力调节弹簧,如图3(b)所示,依次在电极31、32上通入sinωt,cosωt信号激励。利用了压电陶瓷的d31压电效应在定子上激励出弯曲振动。Figure 3 shows the oscillating head type ultrasonic motor with a half-circle and half-square stator invented by Kenji Uchino et al. The diameter is only 1.6 mm. Piezoelectric
以图3结构为基础,当金属体45的另外两面,即四面均贴压电陶瓷片41、42、43、44时,构成一个致动器,如图4所示。添加转子系统,可以构成摇头型超声电机,可得到比图3结构的摇头型超声电机更大的输出扭矩/力。Based on the structure in FIG. 3 , when the other two sides of the
虽然压电陶瓷管和金属复合管柱方案有利于超声电机结构的微型化。但在致动器或电机结构尺寸较小时,振子的弯振幅也较小,不能有效驱动。为了增大弯振幅,必须减小金属体的直径,也因此减小了贴片陶瓷的尺寸,降低输出扭矩/力。Although the piezoelectric ceramic tube and metal composite tube string scheme is conducive to the miniaturization of the structure of the ultrasonic motor. However, when the structural size of the actuator or the motor is small, the bending amplitude of the vibrator is also small, which cannot be effectively driven. In order to increase the bending amplitude, the diameter of the metal body must be reduced, which also reduces the size of the chip ceramics and reduces the output torque/force.
发明内容Contents of the invention
本实用新型为了克服已有技术存在的上述问题,提出一种开槽金属方柱压电片复合超声微电机,利用压电陶瓷的d31效应激励定子的弯曲振动模态。具有在不减小贴片陶瓷尺寸的前提下降低定子的刚度,增大弯振幅的优点。In order to overcome the above-mentioned problems in the prior art, the utility model proposes a slotted metal square column piezoelectric plate composite ultrasonic micromotor, which utilizes the d 31 effect of piezoelectric ceramics to excite the bending vibration mode of the stator. It has the advantages of reducing the stiffness of the stator and increasing the bending amplitude without reducing the size of the patch ceramics.
本发明提出的开槽金属方柱压电片复合超声微电机,由激励超声振动的定子,输出力矩的转子或动子以及给转子或动子加压的预压力机构组成,其特征在于,所述定子主要由激励振动的金属方柱和压电陶瓷片组成的金属压电陶瓷复合方柱与匹配块构成,在所述金属方柱的4个棱角位置沿轴向开有四个槽,所述压电陶瓷片粘结在金属方柱的两个或四个侧面上,沿着厚度方向极化,该压电陶瓷片接激励电极的表面涂有供极化和激励用的外电极。The slotted metal square column piezoelectric plate composite ultrasonic micro-motor proposed by the present invention is composed of a stator that excites ultrasonic vibration, a rotor or mover that outputs torque, and a pre-pressure mechanism that pressurizes the rotor or mover. It is characterized in that the The stator is mainly composed of a metal piezoelectric ceramic composite square column and a matching block composed of a metal square column that excites vibration and a piezoelectric ceramic sheet. There are four slots along the axial direction at the four corners of the metal square column. The piezoelectric ceramic sheet is bonded on two or four sides of the metal square column and polarized along the thickness direction. The surface of the piezoelectric ceramic sheet connected to the excitation electrode is coated with an external electrode for polarization and excitation.
所述金属方柱可为空心方柱或实心方柱。The metal square pillar can be a hollow square pillar or a solid square pillar.
所述的金属方柱所开的槽,可为圆形槽、矩形槽、异型槽或直角槽等任何一种形状。The grooves of the metal square pillars can be in any shape such as circular grooves, rectangular grooves, special-shaped grooves or right-angled grooves.
所述金属压电陶瓷复合方柱采用2片压电陶瓷片时,2片压电陶瓷片分别粘结到金属方柱相邻的两个侧面,分别加sinωt和cosωt激励电信号(可在定子上激励出相互垂直的两个弯曲振动模态,定子的端部和中部均产生椭圆振动)。When the metal piezoelectric ceramic composite square column adopts 2 piezoelectric ceramic sheets, the 2 piezoelectric ceramic sheets are respectively bonded to the two adjacent sides of the metal square column, and the sinωt and cosωt excitation electrical signals are respectively added (can be used in the stator Two bending vibration modes perpendicular to each other are excited on the top, and the end and middle of the stator produce elliptical vibration).
所述金属压电陶瓷复合方柱采用4片压电陶瓷片时,4片压电陶瓷片分别粘结到金属方柱的四个侧面,可使相对的压电陶瓷片极化方向相反(相对于金属柱粘贴表面的法方向),四个相邻侧面依序加sinωt,cosωt,sinωt,cosωt激励电信号(可在定子上激励出相互垂直的两个弯曲振动模态,定子的端部和中部均产生椭圆振动)。When the metal piezoelectric ceramic composite square column adopts 4 piezoelectric ceramic sheets, the 4 piezoelectric ceramic sheets are respectively bonded to the four sides of the metal square column, so that the polarization directions of the relative piezoelectric ceramic sheets are opposite (relatively In the normal direction of the metal post paste surface), the four adjacent sides are sequentially applied with sinωt, cosωt, sinωt, cosωt excitation electrical signals (two mutually perpendicular bending vibration modes can be excited on the stator, and the ends of the stator and Elliptical vibrations are generated in the middle).
所述金属压电陶瓷复合方柱采用4片压电陶瓷片时,4片压电陶瓷片分别粘结到金属方柱的四个侧面,还可使相对的压电陶瓷片极化方向相同(相对于金属柱粘贴表面的法方向),四个相邻侧面依序加sinωt,cosωt,-sinωt,-cosωt激励电信号(可在定子上激励出相互垂直的两个弯曲振动模态,定子的端部和中部均产生椭圆振动)。When the metal piezoelectric ceramic composite square column adopts 4 piezoelectric ceramic sheets, the 4 piezoelectric ceramic sheets are bonded to the four sides of the metal square column respectively, and the polarization directions of the relative piezoelectric ceramic sheets can also be made to be the same ( Relative to the normal direction of the paste surface of the metal column), add sinωt, cosωt, -sinωt, -cosωt excitation electrical signals to the four adjacent sides in sequence (two mutually perpendicular bending vibration modes can be excited on the stator, and the stator’s Elliptical vibrations are generated at both the end and the middle).
所述压电陶瓷片可采用4片,粘结到金属方柱的四个侧面,一组相对的压电陶瓷片极化方向相同(相对于金属柱粘贴表面的法方向),另一组相对的压电陶瓷片极化方向相反,若四个相邻侧面依序加sinωt,cosωt,-sinωt,cosωt激励电信号,则两个cosωt信号加在极化方向相反的两片陶瓷上,若依序施加sinωt,cosωt,sinωt,-cosωt激励电信号,则两个sinωt信号加在极化方向相反的两片陶瓷上(在定子上激励出相互垂直的两个弯曲振动模态,定子的端部和中部均产生椭圆振动)。The piezoelectric ceramic sheets can be 4 pieces, which are bonded to the four sides of the metal square column. The polarization direction of a group of relative piezoelectric ceramic sheets is the same (relative to the normal direction of the surface of the metal column pasted), and the other group is relatively opposite. The polarization direction of the piezoelectric ceramic sheet is opposite. If the four adjacent sides are sequentially applied with sinωt, cosωt, -sinωt, and cosωt excitation electrical signals, the two cosωt signals are applied to the two ceramics with opposite polarization directions. Sequentially apply sinωt, cosωt, sinωt, -cosωt excitation electrical signals, then the two sinωt signals are added to the two pieces of ceramics with opposite polarization directions (two mutually perpendicular bending vibration modes are excited on the stator, and the ends of the stator and the middle part produce elliptical vibration).
上述sinωt(或-sinωt)激励信号和cosωt(或-cosωt)激励信号交换,则弯曲摇头振动反向,电机运动反向。When the above-mentioned sinωt (or -sinωt) excitation signal and cosωt (or -cosωt) excitation signal are exchanged, the vibration of the bending head is reversed, and the movement of the motor is reversed.
本发明施加电场的目的是在定子上激励出两个空间相位差为90度的弯曲振动,定子的两个弯曲振动合成为定子的摇头运动。此时定子上用于驱动转子的表面上的点的运动轨迹为一个椭圆,从而可以驱动转子/动子运动。The purpose of applying the electric field in the present invention is to excite two bending vibrations with a spatial phase difference of 90 degrees on the stator, and the two bending vibrations of the stator are synthesized into the shaking head motion of the stator. At this time, the movement locus of the points on the surface of the stator used to drive the rotor is an ellipse, so that the rotor/mover can be driven to move.
本发明的特点及效果:Features and effects of the present invention:
本发明设计的超声电机由于在金属方柱的棱角处沿轴线开有四个槽,可在不减小贴片陶瓷尺寸的前提下降低定子的刚度,增大弯振幅。The ultrasonic motor designed in the present invention has four grooves along the axis at the edges and corners of the metal square column, which can reduce the stiffness of the stator and increase the bending amplitude without reducing the size of the patch ceramics.
本发明具有压电陶瓷易于极化,极化工艺简单且能够保证激励电场垂直于极化方向,效率较高的优点。The invention has the advantages that piezoelectric ceramics are easy to polarize, the polarization process is simple, the excitation electric field can be guaranteed to be perpendicular to the polarization direction, and the efficiency is high.
本发明可使电机尺寸加工的很小,促进超声电机的微型化;将在生物、医疗、微机械、国防科技等方面有着广阔的应用前景。The invention can make the size of the motor very small, and promote the miniaturization of the ultrasonic motor; it will have broad application prospects in the fields of biology, medical treatment, micro-machinery, national defense technology and the like.
附图说明Description of drawings
图1为一般采用弯曲振动模态超声波电机的传动原理示意图。Figure 1 is a schematic diagram of the transmission principle of an ultrasonic motor generally using a bending vibration mode.
图2为已有的采用压电陶瓷的d33压电效应的弯曲摇头超声电机示意图;Fig. 2 is the schematic diagram of the existing bending head ultrasonic motor adopting the d 33 piezoelectric effect of piezoelectric ceramics;
其中:图2(a)为压电陶瓷的极化和激励,图2(b)为电机的结构示意图。Among them: Figure 2(a) is the polarization and excitation of piezoelectric ceramics, and Figure 2(b) is a schematic diagram of the structure of the motor.
图3为已有的采用压电陶瓷的d31压电效应的弯曲摇头超声电机的结构示意图;Fig. 3 is the structural schematic diagram of the existing d 31 piezoelectric effect bending head ultrasonic motor using piezoelectric ceramics;
其中:图3(a)为压电陶瓷的极化和分区,图3(b)为电机结构;Among them: Figure 3(a) shows the polarization and partition of piezoelectric ceramics, and Figure 3(b) shows the structure of the motor;
图4为从图3结构演变出的四面贴压电陶瓷片的微电机的定子的结构和激励形式示意图。FIG. 4 is a schematic diagram of the structure and excitation form of the stator of the micro-motor with four-sided piezoelectric ceramic sheets evolved from the structure in FIG. 3 .
图5为本发明微电机的定子的结构和激励形式示意图。Fig. 5 is a schematic diagram of the structure and excitation form of the stator of the micro-motor of the present invention.
其中:图5(a)为四侧面均贴压电陶瓷片的金属方柱及其极化和激励方式,Among them: Figure 5(a) is a metal square column with piezoelectric ceramic sheets on all four sides and its polarization and excitation methods,
图5(b)为开槽的金属方柱的开槽方式。Figure 5(b) shows the slotting method of the slotted metal square column.
图6为本发明的实施例一——双端轴输出电机结构示意图。Fig. 6 is a schematic diagram of a structure of a double-ended shaft output motor according to Embodiment 1 of the present invention.
图7为本发明的实施例二——单端轴输出电机结构示意图。Fig. 7 is a schematic structural diagram of a second embodiment of the present invention - a single-ended shaft output motor.
图8为本发明的实施例三——磁力定位电机结构示意图。Fig. 8 is a schematic diagram of a structure of a magnetic positioning motor according to Embodiment 3 of the present invention.
图9为本发明的实施例四——腰腹驱动电机结构示意图;其中,Fig. 9 is Embodiment 4 of the present invention - a structural schematic diagram of the waist and abdomen drive motor; wherein,
图9(a)为转子与定子垂直,定子驱动转子做旋转运动;Figure 9(a) shows that the rotor is perpendicular to the stator, and the stator drives the rotor to rotate;
图9(b)为转子与定子平行,定子驱动转子做旋转运动。Figure 9(b) shows that the rotor is parallel to the stator, and the stator drives the rotor to rotate.
图10为本发明的实施例五——端部驱动电机结构示意图。Fig. 10 is a schematic diagram of the fifth embodiment of the present invention - the structure of the end drive motor.
具体实施方式Detailed ways
本发明的金属方柱压电片复合超声微电机结合附图及五种电机结构的实施例分别说明如下:The metal square column piezoelectric sheet composite ultrasonic micromotor of the present invention is described as follows in conjunction with the accompanying drawings and the embodiments of five kinds of motor structures respectively:
本发明提出的金属方柱压电片复合超声微电机,由激励超声振动的定子,输出力矩的转子(或动子)以及给转子(或动子)加压的预压力机构组成,所述定子主要由激励振动的压电陶瓷组件以及匹配块构成;该压电陶瓷组件为由侧面贴压电陶瓷元件的金属方柱构成金属压电陶瓷片复合方柱。金属压电陶瓷片复合方柱的结构形式如图5所示。在金属方柱515的4个棱角位置沿轴向开有四个槽52,压电陶瓷片511、512、513、514粘结在金属方柱的两个或四个侧面上(如图5(a)所示),沿着厚度方向极化,该压电陶瓷片接激励电极的表面涂有供极化和激励用的外电极。金属压电陶瓷片复合方柱可以是空心方柱,也可以是实心方柱。The metal square-column piezoelectric plate composite ultrasonic micro-motor proposed by the present invention consists of a stator that excites ultrasonic vibrations, a rotor (or mover) that outputs torque, and a pre-pressure mechanism that pressurizes the rotor (or mover). It is mainly composed of a piezoelectric ceramic component that excites vibration and a matching block; the piezoelectric ceramic component is a metal piezoelectric ceramic sheet composite square column composed of a metal square column with a piezoelectric ceramic element attached to the side. The structural form of the metal piezoelectric ceramic sheet composite square column is shown in Figure 5. Have four slots 52 along the axial direction at the 4 angular positions of the metal
上述的金属方柱所开的槽,可为圆形槽521、矩形槽522、异型槽523和直角槽524等,如图5(b)所示。在保证定子的强度的前提下,槽的尺寸越大,定子的柔度越大,弯曲振幅也越大。The grooves formed by the above-mentioned metal square pillars can be
上述金属压电陶瓷片复合方柱加上匹配块构成定子。The metal piezoelectric ceramic sheet composite square column plus a matching block constitutes the stator.
压电陶瓷均沿着厚度方向极化。图5(a)所示的结构中,一般情况下,安装时相对的陶瓷片(陶瓷片511和513相对,陶瓷片512和514相对)的极化方向应相反,以降低驱动电源的设计难度,当然也可以是任意的;Piezoelectric ceramics are polarized along the thickness direction. In the structure shown in Figure 5(a), under normal circumstances, the polarization directions of the opposite ceramic sheets (
对于图5(a)所示的定子结构,电场的施加方式为:在陶瓷片511极面上加+sinωt激励信号,在陶瓷片512极面上加cosωt激励信号,若513和511在安装时极化方向相同(相对于金属柱粘贴表面的法方向),则在513极面上加-sinωt激励信号,若陶瓷片513和陶瓷片511在安装时极化方向相反,则在陶瓷片513极面上加sinωt激励信号。若陶瓷片514和陶瓷片512在安装时极化方向相同,则在陶瓷片514极面上加-cosωt激励信号,若陶瓷片514和陶瓷片512在安装时极化方向相反,则在陶瓷片514极面上加cosωt激励信号,将金属柱515接地;For the stator structure shown in Figure 5(a), the way to apply the electric field is: add +sinωt excitation signal on the pole surface of
sinωt(或-sinωt)激励信号和cosωt(或-cosωt)激励信号交换,则弯曲摇头振动反向,电机运动反向。The sinωt (or -sinωt) excitation signal is exchanged with the cosωt (or -cosωt) excitation signal, then the vibration of the bending head is reversed, and the movement of the motor is reversed.
施加电场的目的是在定子上激励出两个空间相位差为90度的弯曲振动,定子的两个弯曲振动合成为定子的摇头运动。此时定子上用于驱动转子的表面上的点的运动轨迹为一个椭圆,从而可以驱动转子运动。The purpose of applying an electric field is to excite two bending vibrations with a space phase difference of 90 degrees on the stator, and the two bending vibrations of the stator are synthesized into the shaking head motion of the stator. At this time, the trajectory of the points on the surface of the stator used to drive the rotor is an ellipse, so that the rotor can be driven to move.
以上述金属压电陶瓷片复合方柱结构组成的超声微电机的各种实施例分别说明如下:Various embodiments of the ultrasonic micromotor composed of the above metal piezoelectric ceramic sheet composite square column structure are described as follows:
实施例一:为双端轴输出结构的微电机Embodiment 1: A micro-motor with a double-ended shaft output structure
本实施例结构如图6所示,其主要特点是双端驱动、轴输出,即在金属压电陶瓷复合方柱64的两端粘贴匹配块63构成定子,66为用于粘贴定子64和匹配块63的一层薄胶。两端的转子62通过从中空定子穿过的轴68、套于轴68上的弹簧61和紧固螺母67连在一起。弹簧用于提供定、转子间的预压力。定子通过摩擦层65驱动转子62旋转。力矩由转子直接输出,实际使用时可将转子62外边缘加工成齿轮,通过齿轮传动输出力矩。The structure of this embodiment is shown in Figure 6. Its main features are double-ended drive and shaft output, that is, the matching blocks 63 are pasted on both ends of the metal piezoelectric ceramic composite
实施例二为单端轴输出结构的微电机Embodiment 2 is a micro-motor with a single-ended shaft output structure
该结构如图7所示,其主要特点在于定子匹配块73的中间一体加工出(或固定)一个细棒作为电机的固定轴77。该轴与定子匹配块可以是同一金属件。金属压电陶瓷片复合方柱74与匹配块73在76处胶粘接,共同作为电机的定子。转子72套在定子匹配块73的固定轴77上并由套在固定轴77上的小弹簧71提供定、转子间的预压力。该电机中,轴77起的主要作用是给转子72和压力小弹簧71定位。78为滑动或滚动轴承。力矩由转子直接输出,实际使用时可将转子外边缘加工成齿轮,通过齿轮传动输出力矩。75处为定子与转子之间的摩擦界面。This structure is shown in Figure 7, and its main feature is that a thin rod is integrally processed (or fixed) in the middle of the
实施例三为磁力定位结构的微电机Embodiment three is the micromotor of magnetic force positioning structure
该结构如图8所示,其主要特点在于用磁性钢球81做转子,金属压电陶瓷片复合方柱83和凹形磁性金属匹配块82用强力胶粘结形成一体,共同构成电机的定子。磁性钢球转子放置在金属匹配块82的凹面中。这样靠转子和金属匹配块82之间的磁力作为固定转子和产生摩擦力所需的预压力,力矩由转子直接输出。This structure is shown in Figure 8, and its main feature is that the rotor is made of magnetic steel balls 81, the metal piezoelectric ceramic sheet composite square column 83 and the concave magnetic metal matching block 82 are bonded together with superglue to form a motor stator together. . The magnetic steel ball rotor is placed in the concave surface of the metal matching block 82 . In this way, the magnetic force between the rotor and the metal matching block 82 is used as the required preload for fixing the rotor and generating friction, and the torque is directly output by the rotor.
实施例四为腰腹驱动结构的微电机Embodiment four is the micro-motor of waist and abdomen driving structure
该结构如图9所示,图9(a)其主要特点是,定子可以驱动轴线与定子的轴线垂直的转子做旋转运动。粘贴在金属压电陶瓷复合方柱912中部的电机匹配块913,匹配块913通过摩擦材料914与转子915相连,复合方柱912在其弯振的节点处用固定机构911固定。利用定子中部(腰腹)的运动由匹配块913驱动转子915运动,可构成直线电机,也可继续将运动转化为转子轴916的旋转运动。也可构成图9(b)中所示的转子轴925的旋转运动,即定子可以驱动轴线与定子的轴线平行的转子做旋转运动。The structure is shown in Figure 9, and the main feature of Figure 9(a) is that the stator can drive the rotor whose axis is perpendicular to the axis of the stator to rotate. The motor matching block 913 pasted in the middle of the metal piezoceramic composite square column 912 is connected with the rotor 915 through a friction material 914, and the composite square column 912 is fixed by a fixing mechanism 911 at its flexural node. The rotor 915 is driven by the matching block 913 to move by using the motion of the middle part of the stator (waist and abdomen), which can constitute a linear motor, and can also continue to convert the motion into the rotary motion of the rotor shaft 916. The rotary motion of the
实施例五为端部驱动结构的微电机Embodiment 5 is a micromotor with an end drive structure
该结构如图10所示,其主要特点是:金属压电陶瓷片复合方柱102直接利用端部的匹配块103驱动运动部件104的运动,可构成直线电机;也可继续将运动转化为转子轴105的旋转运动。金属压电陶瓷片复合方柱102在另一端部固定在底座101上。The structure is shown in Figure 10, and its main features are: the metal piezoelectric ceramic sheet composite
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200510063340XA CN100428618C (en) | 2005-04-08 | 2005-04-08 | Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200510063340XA CN100428618C (en) | 2005-04-08 | 2005-04-08 | Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1667934A true CN1667934A (en) | 2005-09-14 |
CN100428618C CN100428618C (en) | 2008-10-22 |
Family
ID=35038862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200510063340XA Expired - Fee Related CN100428618C (en) | 2005-04-08 | 2005-04-08 | Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100428618C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969935A (en) * | 2012-11-27 | 2013-03-13 | 南京航空航天大学 | Three-freedom-degree revolving table |
CN102983778A (en) * | 2012-11-07 | 2013-03-20 | 上海交通大学 | Electric rotating machine based on super magnetostriction material |
CN103023372A (en) * | 2012-11-23 | 2013-04-03 | 上海交通大学 | Single-phase-driven SMD (Surface-Mounted Device) longitudinal-torsional ultrasonic micromotor |
CN103036472A (en) * | 2012-11-28 | 2013-04-10 | 上海交通大学 | Threaded linear ultrasonic motor |
CN103174702A (en) * | 2013-04-17 | 2013-06-26 | 哈尔滨工业大学 | Cylinder with low friction characteristic by piezoelectricity induced piston vibration |
CN106936333A (en) * | 2016-12-31 | 2017-07-07 | 南京航空航天大学 | A kind of rod-type paster longitudinal-torsional compound ultrasonic motor |
CN107306097A (en) * | 2016-04-22 | 2017-10-31 | 北京派和智能装备技术有限公司 | Using the micro machine of multi-layer annular piezoelectric ceramics |
CN108282106A (en) * | 2018-02-05 | 2018-07-13 | 中国科学院苏州生物医学工程技术研究所 | The piezoelectric ceramic motor being eccentrically rotated |
CN109861583A (en) * | 2019-04-15 | 2019-06-07 | 太原科技大学 | A Superimposed Longitudinal Vibration Mode Rotary Piezoelectric Motor |
CN110293633A (en) * | 2018-03-22 | 2019-10-01 | 深圳市特力威科技有限公司 | Supersonic machining apparatus and its vibration unit |
CN112217417A (en) * | 2019-07-09 | 2021-01-12 | 重庆邮电大学 | Three-foot planar three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof |
CN112953298A (en) * | 2021-03-26 | 2021-06-11 | 重庆第二师范学院 | Flat ultrasonic motor |
CN116690627A (en) * | 2023-07-31 | 2023-09-05 | 季华实验室 | A mechanical gripper and its excitation method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11289780A (en) * | 1998-03-31 | 1999-10-19 | Minolta Co Ltd | Driver using electromechanical converting element |
CN1156068C (en) * | 2001-02-28 | 2004-06-30 | 清华大学 | Bending Vibration Ultrasonic Micromotor Based on Piezoelectric Columns |
CN1258864C (en) * | 2002-02-22 | 2006-06-07 | 清华大学 | Ultrasonic Micromotors with Piezoelectric Columns with Conductive Shafts |
CN2847685Y (en) * | 2005-04-08 | 2006-12-13 | 清华大学 | Grooved metal square colume piezoelectric sheet composite supersonic micro motor |
-
2005
- 2005-04-08 CN CNB200510063340XA patent/CN100428618C/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102983778A (en) * | 2012-11-07 | 2013-03-20 | 上海交通大学 | Electric rotating machine based on super magnetostriction material |
CN102983778B (en) * | 2012-11-07 | 2015-08-26 | 上海交通大学 | Based on the electric rotating machine of giant magnetostrictive material |
CN103023372A (en) * | 2012-11-23 | 2013-04-03 | 上海交通大学 | Single-phase-driven SMD (Surface-Mounted Device) longitudinal-torsional ultrasonic micromotor |
CN103023372B (en) * | 2012-11-23 | 2015-09-09 | 上海交通大学 | The chip longitudinal-torsional ultrasound micro-motor of singlephase drive |
CN102969935B (en) * | 2012-11-27 | 2015-03-11 | 南京航空航天大学 | Three-freedom-degree revolving table |
CN102969935A (en) * | 2012-11-27 | 2013-03-13 | 南京航空航天大学 | Three-freedom-degree revolving table |
CN103036472A (en) * | 2012-11-28 | 2013-04-10 | 上海交通大学 | Threaded linear ultrasonic motor |
CN103036472B (en) * | 2012-11-28 | 2016-06-01 | 上海交通大学 | Screw-type linear ultrasonic motor |
CN103174702A (en) * | 2013-04-17 | 2013-06-26 | 哈尔滨工业大学 | Cylinder with low friction characteristic by piezoelectricity induced piston vibration |
CN103174702B (en) * | 2013-04-17 | 2015-05-06 | 哈尔滨工业大学 | Cylinder with low friction characteristic by piezoelectricity induced piston vibration |
CN107306097B (en) * | 2016-04-22 | 2019-09-13 | 北京派和智能装备技术有限公司 | Using the micro machine of multi-layer annular piezoelectric ceramics |
CN107306097A (en) * | 2016-04-22 | 2017-10-31 | 北京派和智能装备技术有限公司 | Using the micro machine of multi-layer annular piezoelectric ceramics |
CN106936333A (en) * | 2016-12-31 | 2017-07-07 | 南京航空航天大学 | A kind of rod-type paster longitudinal-torsional compound ultrasonic motor |
CN108282106A (en) * | 2018-02-05 | 2018-07-13 | 中国科学院苏州生物医学工程技术研究所 | The piezoelectric ceramic motor being eccentrically rotated |
CN108282106B (en) * | 2018-02-05 | 2024-01-23 | 中国科学院苏州生物医学工程技术研究所 | Eccentric rotary piezoelectric ceramic motor |
CN110293633A (en) * | 2018-03-22 | 2019-10-01 | 深圳市特力威科技有限公司 | Supersonic machining apparatus and its vibration unit |
CN110293633B (en) * | 2018-03-22 | 2022-10-18 | 深圳市特力威科技有限公司 | Ultrasonic machining apparatus and vibration unit thereof |
CN109861583A (en) * | 2019-04-15 | 2019-06-07 | 太原科技大学 | A Superimposed Longitudinal Vibration Mode Rotary Piezoelectric Motor |
CN112217417A (en) * | 2019-07-09 | 2021-01-12 | 重庆邮电大学 | Three-foot planar three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof |
CN112953298A (en) * | 2021-03-26 | 2021-06-11 | 重庆第二师范学院 | Flat ultrasonic motor |
CN116690627A (en) * | 2023-07-31 | 2023-09-05 | 季华实验室 | A mechanical gripper and its excitation method |
CN116690627B (en) * | 2023-07-31 | 2023-11-07 | 季华实验室 | Mechanical gripper and excitation method |
Also Published As
Publication number | Publication date |
---|---|
CN100428618C (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101777853B (en) | d31-effect based unidirectional chip longitudinal-torsional compound ultrasonic motor | |
CN103001532B (en) | Chip longitudinal-torsional mode compound ultrasonic motor | |
CN103023372B (en) | The chip longitudinal-torsional ultrasound micro-motor of singlephase drive | |
CN100428618C (en) | Slotted Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor | |
CN102931873B (en) | A kind of small all-in-one parallel rotation ultrasonic motor | |
CN103427705B (en) | Bimodal and antifriction drive platy piezoelectric motor with single drive foot and operating mode of motor | |
CN1156068C (en) | Bending Vibration Ultrasonic Micromotor Based on Piezoelectric Columns | |
CN101710802B (en) | Small Cylindrical Traveling Wave Ultrasonic Motor | |
CN1633022A (en) | In-plane Vibration Linear Ultrasonic Motor of Piezoelectric Ceramic Metal Composite Plate | |
CN101364775B (en) | Flat dual-stator thread driving ultrasonic minimized motor having thread pair pretensioning | |
CN101227157A (en) | Piezoelectric screw driver using Langevin vibrator structure | |
CN101072001B (en) | Toothless Traveling Wave Rotary Ultrasonic Motor and Its Working Mode and Electric Excitation Method | |
CN108429486A (en) | Combined planar three-degree-of-freedom ultrasonic motor vibrator and its driving method | |
CN1258864C (en) | Ultrasonic Micromotors with Piezoelectric Columns with Conductive Shafts | |
CN103036472B (en) | Screw-type linear ultrasonic motor | |
CN103516253A (en) | Piezoelectric cantilever type ultrasonic motor | |
CN102055373B (en) | Multi-rotor cylindrical high-torque ultrasonic motor | |
CN2847685Y (en) | Grooved metal square colume piezoelectric sheet composite supersonic micro motor | |
CN205986672U (en) | Utilize single mode driven rectangle block straight line supersound motor | |
CN100461609C (en) | Hollow Metal Square Pillar Piezoelectric Composite Ultrasonic Micromotor | |
CN203596764U (en) | Piezoelectric cantilever beam-type supersonic wave motor | |
CN102904480A (en) | Sandwich type square frame type ultrasonic motor vibrator | |
CN102931871B (en) | A kind of paraboloid shape linear ultrasonic motor | |
CN110299867A (en) | A kind of four-footed driving rotary ultrasonic wave motor | |
CN100384078C (en) | A Rotary Cylindrical Ultrasonic Micromotor in Bending Vibration Mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081022 Termination date: 20110408 |