[go: up one dir, main page]

CN1664685A - Manufacturing method of array substrate and thin film transistor array panel - Google Patents

Manufacturing method of array substrate and thin film transistor array panel Download PDF

Info

Publication number
CN1664685A
CN1664685A CN 200510066934 CN200510066934A CN1664685A CN 1664685 A CN1664685 A CN 1664685A CN 200510066934 CN200510066934 CN 200510066934 CN 200510066934 A CN200510066934 A CN 200510066934A CN 1664685 A CN1664685 A CN 1664685A
Authority
CN
China
Prior art keywords
layer
manufacturing
substrate
ohmic contact
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510066934
Other languages
Chinese (zh)
Other versions
CN100399134C (en
Inventor
廖达文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CNB2005100669346A priority Critical patent/CN100399134C/en
Publication of CN1664685A publication Critical patent/CN1664685A/en
Application granted granted Critical
Publication of CN100399134C publication Critical patent/CN100399134C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

The invention relates to a manufacturing method of an array substrate, which comprises the following steps: forming a first metal layer on a substrate; performing a first photolithography process to pattern the first metal layer, forming a gate wire, a gate electrode connected to the gate wire, and a pad on the substrate; forming an insulating layer, a semiconductor layer and an ohmic contact layer on the substrate to cover the gate wire, the gate electrode and the pad; and performing a second photolithography process to pattern the ohmic contact layer, the semiconductor layer and a portion of the insulating layer, forming a semiconductor structure on the substrate and forming a via hole in the insulating layer on the pad to expose a portion of the pad, wherein the semiconductor structure comprises the insulating layer substantially covering the gate electrode, the patterned semiconductor layer and the patterned ohmic contact layer.

Description

阵列基板与薄膜晶体管阵列面板的制造方法Manufacturing method of array substrate and thin film transistor array panel

技术领域technical field

本发明涉及显示装置的制造,特别是涉及一种薄膜晶体管阵列基板的制造方法。The invention relates to the manufacture of a display device, in particular to a method for manufacturing a thin film transistor array substrate.

背景技术Background technique

为了实现高速影像处理以及高品质显示影像,近年来如彩色液晶显示装置的平面显示器已广泛地使用。于液晶显示装置中,通常包括两个具有电极的上、下基板,以粘合或是封合材料接合在一起。而液晶材料被填入两个基板之间,为了保持两板之间固定的距离,具有一定粒径的颗粒被散布于上述两板之间。通常下基板表面形成有用来当作开关元件的薄膜晶体管,此薄膜晶体管具有连接于扫描线(scanning line)的栅极电极(gate electrode)、连接于信号线(signal line)的漏极电极(drain electrode)、与连接于像素电极(pixelelectrode)的源极电极(source electrode)。而上基板置于下基板上方,此上基板表面形成有一滤光片与多个遮光材料(如由铬构成)。此两基板的外围具有封合材料粘合固定住,而两基板之间具有液晶材料。下基板亦称之为阵列基板(array substrate),而形成于其上的多个元件则通常通过多道光刻工艺所制作而成。光刻工艺的使用次数与阵列基板的制作成本与产出时间息息相关。In order to realize high-speed image processing and high-quality display images, flat panel displays such as color liquid crystal display devices have been widely used in recent years. In a liquid crystal display device, it usually includes two upper and lower substrates with electrodes, which are bonded together by adhesive or sealing material. The liquid crystal material is filled between the two substrates, and in order to maintain a fixed distance between the two plates, particles with a certain particle size are dispersed between the two plates. Usually, a thin film transistor used as a switching element is formed on the surface of the lower substrate. The thin film transistor has a gate electrode connected to a scanning line and a drain electrode connected to a signal line. electrode), and the source electrode (source electrode) connected to the pixel electrode (pixelelectrode). The upper substrate is placed above the lower substrate, and a light filter and a plurality of light-shielding materials (such as chrome) are formed on the surface of the upper substrate. The peripheries of the two substrates are bonded and fixed by sealing material, and there is a liquid crystal material between the two substrates. The lower substrate is also referred to as an array substrate, and a plurality of elements formed thereon are usually fabricated by multi-pass photolithography processes. The number of times the photolithography process is used is closely related to the manufacturing cost and production time of the array substrate.

图1A~1F为一系列示意图,图标了现有技术中使用六道光刻工艺的阵列基板工艺,以说明于各工艺阶段的剖面情形。于本文中,各道光刻工艺包括了阻剂涂布、使用图案化光掩模、阻剂曝光、阻剂显影、膜层蚀刻、以及去除残留阻剂等为本领域技术人员所熟知的光刻相关步骤,在此仅以”光刻工艺”统称之。FIGS. 1A-1F are a series of schematic diagrams illustrating an array substrate process using six photolithography processes in the prior art to illustrate cross-sectional situations at each process stage. In this paper, each photolithography process includes resist coating, using a patterned photomask, resist exposure, resist development, film layer etching, and removing residual resist, etc., which are well known to those skilled in the art. The related steps of engraving are collectively referred to as "lithography process" here.

请参照图1A,首先应用第一道光刻工艺,以定义形成于基板104上的一金属层,进而形成用于薄膜晶体管元件的图案化的栅极100与导线102。导线102可作为一栅极线(或扫描线)或一数据线(或信号线),其以连续型态形成于基板104之上。Referring to FIG. 1A , firstly, a first photolithography process is applied to define a metal layer formed on a substrate 104 to form a patterned gate 100 and wires 102 for TFT devices. The wire 102 can be used as a gate line (or scan line) or a data line (or signal line), which is formed on the substrate 104 in a continuous manner.

请参照图1B,接着于基板104上坦覆地形成绝缘层106、半导体层108以及欧姆接触层110,并应用第二道光刻工艺以于栅极100上方处的绝缘层106上定义出图案化的半导体层108及欧姆接触层110。Referring to FIG. 1B, an insulating layer 106, a semiconductor layer 108, and an ohmic contact layer 110 are formed on the substrate 104, and a second photolithography process is applied to define a pattern on the insulating layer 106 above the gate 100. Thinned semiconductor layer 108 and ohmic contact layer 110.

请参照图1C,接着利用第三道光刻工艺,选择地于各对应的导线102上形成穿透绝缘层106的介层洞112。Referring to FIG. 1C , a third photolithography process is then used to selectively form a via hole 112 penetrating through the insulating layer 106 on each corresponding wire 102 .

请参照图1D,接着于基板上104坦覆地形成另一金属层并接着利用第四道光刻工艺,以形成位于导线102以及位于邻近栅极100上方的图案化的导电层114。而于第四道光刻工艺中,同时蚀刻穿过邻近栅极100上方的金属层114、欧姆接触层110以及部分半导体层108,进而形成凹口116。如此,便于基板104上完成了薄膜晶体管的制作Referring to FIG. 1D , another metal layer is formed on the substrate 104 and then a fourth photolithography process is used to form a patterned conductive layer 114 located on the wire 102 and adjacent to the gate 100 . In the fourth photolithography process, the metal layer 114 adjacent to the gate 100 , the ohmic contact layer 110 and part of the semiconductor layer 108 are etched simultaneously to form the notch 116 . In this way, it is convenient to complete the fabrication of the thin film transistor on the substrate 104

请参照图1E,接着坦覆性地覆盖一保护层118于图1D内图标结构之上,并接着经由第五道光刻工艺的使用以图案化保护层118而形成介层洞120,以露出位于适当位置的接触区域。Please refer to FIG. 1E, then cover a protective layer 118 on the icon structure in FIG. Contact areas in place.

请参照图1F,接着于保护层118与介层洞120内覆盖一透明导电层122,并通过第六道光刻工艺的使用,而于保护层118上形成图案化的透明导电层122,以作为像素电极之用。如此,阵列基板的制作便告一段落。Referring to FIG. 1F, a transparent conductive layer 122 is then covered in the protective layer 118 and the via hole 120, and a patterned transparent conductive layer 122 is formed on the protective layer 118 through the use of the sixth photolithography process, so as to Used as a pixel electrode. In this way, the fabrication of the array substrate comes to an end.

一般而言,存在于基板104表面的用作扫描线与信号线的导线以连续型态的单一导电层组成。而随着液晶显示装置尺寸增大趋势,以连续型态导电层所组成的扫描线与信号线的长度也随之增长,如此便增加了扫描线与信号线的阻抗(resistance)。如此的阻抗的增加,可能于液晶显示装置操作时造成于此些线路上的信号损失,而不利于大尺寸液晶显示装置的制作。而于如图1A~1F所图标的有源阵列基板工艺中,其于导线102上额外形成一导电层114,藉以结合而成一具有较厚厚度的导线。如此,便可降低导线的整体阻抗,且可改善于导线上的信号损失。然而,上述工艺需要六道光刻工艺,使得阵列基板的制作较为费时。如此,便需要一种工艺较为简洁且适用于大尺寸平面显示装置的阵列基板工艺。Generally speaking, the wires used as the scan lines and the signal lines existing on the surface of the substrate 104 are composed of a continuous single conductive layer. As the size of the liquid crystal display device increases, the lengths of the scan lines and the signal lines formed by the continuous conductive layer also increase accordingly, thus increasing the resistance of the scan lines and the signal lines. Such an increase in impedance may cause signal loss on these lines during the operation of the liquid crystal display device, which is not conducive to the manufacture of large-size liquid crystal display devices. In the active matrix substrate process as shown in FIGS. 1A˜1F , a conductive layer 114 is additionally formed on the wire 102 , so as to form a wire with a thicker thickness. In this way, the overall impedance of the wire can be reduced, and the signal loss on the wire can be improved. However, the above process requires six photolithography processes, which makes the fabrication of the array substrate time-consuming. Thus, there is a need for an array substrate process that is simpler in process and suitable for large-scale flat panel display devices.

发明内容Contents of the invention

本发明的主要目的就是提供使用相对较少光刻工艺步骤的显示装置制造方法,以节省制造时所需制作成本与产出时间。The main purpose of the present invention is to provide a method for manufacturing a display device using relatively few photolithography steps, so as to save manufacturing cost and production time during manufacturing.

依据上述目的,本发明提供了一种阵列基板的制造方法,包括下列步骤:According to the above purpose, the present invention provides a method for manufacturing an array substrate, comprising the following steps:

形成一第一金属层于一基板上;施行一第一光刻工艺以图案化该第一金属层,形成一栅极导线、连结于该栅极导线的一栅电极以及一接垫于该基板上;形成一绝缘层、一半导体层以及一欧姆接触层于该基板上,覆盖于该栅极导线、该栅电极以及该接垫;以及施行一第二光刻工艺以图案化该欧姆接触层、该半导体层以及部分的该绝缘层,于该基板上形成一半导体结构以及于该接垫上的该绝缘层内形成一介层洞,以露出部分的该接垫,其中该半导体结构包括大体覆盖于该栅电极上的该绝缘层、图案化的该半导体层以及图案化的该欧姆接触层。forming a first metal layer on a substrate; performing a first photolithography process to pattern the first metal layer, forming a gate wire, a gate electrode connected to the gate wire, and a pad on the substrate forming an insulating layer, a semiconductor layer and an ohmic contact layer on the substrate, covering the gate wire, the gate electrode and the pad; and performing a second photolithography process to pattern the ohmic contact layer , the semiconductor layer and part of the insulating layer, forming a semiconductor structure on the substrate and forming a via hole in the insulating layer on the pad to expose part of the pad, wherein the semiconductor structure includes a substantially covered The insulating layer on the gate electrode, the patterned semiconductor layer and the patterned ohmic contact layer.

依据上述目的,本发明提供了一种薄膜晶体管阵列面板的制造方法,包括下列步骤:According to the above purpose, the present invention provides a method for manufacturing a thin film transistor array panel, comprising the following steps:

形成一第一金属层于一基板上;施行一第一光刻工艺以图案化该第一金属层,于该基板上形成沿第一方向连续地延伸至少一栅极导线,以及沿一第二方向延伸的多个数据导线片段,其中该第一方向异于该第二方向且该些数据导线片段与该些栅极导线于交汇处为互相分隔;形成一绝缘层、一半导体层以及一欧姆接触层于该基板上;施行一第二光刻工艺以图案化该欧姆接触层、该半导体层以及该绝缘层,形成多个半导体结构以及多个堆栈结构,该些堆栈结构横跨该些数据导线片段与该些栅极导线于交汇处;形成一第二金属层于该基板上;施行一第三光刻工艺以图案化该第二导电金属层,于该些半导体结构上形成多个源极/漏极电极以及形成延伸于该些桥接结构上且电连接该些数据导线片段的多条连续数据导线;形成一保护层于该基板上;施行一第四光刻工艺以图案化该保护层,形成多个介层洞并露出了该些数据导线与该些栅极导线的多个接垫以及该些源极/漏极电极之一;以及形成一透明导电层于该基板上,并填入于该些介层洞;施行一第五光刻工艺以图案化该透明导电层,形成多个像素电极以及储存电容器,其中该些储存电容器部分重叠于该些栅极导线上。forming a first metal layer on a substrate; performing a first photolithography process to pattern the first metal layer, forming on the substrate at least one gate wire extending continuously along a first direction, and extending along a second A plurality of data wire segments extending in a direction, wherein the first direction is different from the second direction and the data wire segments and the gate wires are separated from each other at intersections; forming an insulating layer, a semiconductor layer and an ohmic The contact layer is on the substrate; a second photolithography process is performed to pattern the ohmic contact layer, the semiconductor layer and the insulating layer to form a plurality of semiconductor structures and a plurality of stack structures, and the stack structures span the data wire segments and the gate wires at intersections; forming a second metal layer on the substrate; performing a third photolithography process to pattern the second conductive metal layer to form a plurality of sources on the semiconductor structures electrode/drain electrodes and forming a plurality of continuous data wires extending on the bridging structures and electrically connecting the data wire segments; forming a protection layer on the substrate; performing a fourth photolithography process to pattern the protection layer, forming a plurality of via holes and exposing a plurality of contact pads of the data wires and the gate wires and one of the source/drain electrodes; and forming a transparent conductive layer on the substrate, and filling in the via holes; performing a fifth photolithography process to pattern the transparent conductive layer to form a plurality of pixel electrodes and storage capacitors, wherein the storage capacitors are partially overlapped on the gate wires.

为了让本发明的上述和其它目的、特征、和优点能更明显易懂,以下配合附图以及优选实施例,以更详细地说明本发明。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the present invention will be described in more detail below with reference to the accompanying drawings and preferred embodiments.

附图说明Description of drawings

图1A~1F为一系列示意图,图标了现有技术中使用六道光刻工艺的阵列基板工艺,以说明于各工艺阶段的剖面情形。FIGS. 1A-1F are a series of schematic diagrams illustrating an array substrate process using six photolithography processes in the prior art to illustrate cross-sectional situations at each process stage.

图2A、3A、4A、5A及6A为一系列示意图,绘示了依据本发明一实施例的有源阵列基板的制作流程的上视情形。FIGS. 2A , 3A, 4A, 5A and 6A are a series of schematic diagrams illustrating the top view of the manufacturing process of the active matrix substrate according to an embodiment of the present invention.

图2B、3B、4B、5B及6B绘示本发明一实施例的阵列基板的制作流程的剖面图,分别显示了图2A、3A、4A、5A及6A中2B-2B、3B-3B、4B-4B、5B-5B与6B-6B线段的剖面情形。2B, 3B, 4B, 5B, and 6B are cross-sectional views illustrating the fabrication process of an array substrate according to an embodiment of the present invention, respectively showing 2B-2B, 3B-3B, and 4B in FIGS. 2A, 3A, 4A, 5A, and 6A. - Sections of line segments 4B, 5B-5B and 6B-6B.

图2C、3C、4C、5C及6C绘示本发明一实施例的阵列基板的制作流程的剖面图,分别显示了图2A、3A、4A、5A及6A中2C-2C、3C-3C、4C-4C、5C-5C、6C-6C线段的剖面情形。2C, 3C, 4C, 5C, and 6C are cross-sectional views illustrating the fabrication process of an array substrate according to an embodiment of the present invention, respectively showing 2C-2C, 3C-3C, and 4C in FIGS. 2A, 3A, 4A, 5A, and 6A. Sections of -4C, 5C-5C, 6C-6C line segments.

图3D至图3G绘示本发明一实施例的阵列基板的制作流程的剖面图,分别显示了图3A~3C中所使用的第二道光刻工艺的制作流程。FIGS. 3D to 3G are cross-sectional views of the manufacturing process of the array substrate according to an embodiment of the present invention, respectively showing the manufacturing process of the second photolithography process used in FIGS. 3A to 3C .

图7A和8A为绘示了依据本发明另一实施例的有源阵列基板的制作流程的上视情形。7A and 8A are top views illustrating the manufacturing process of an active matrix substrate according to another embodiment of the present invention.

图7B和8B绘示本发明一实施例的阵列基板的制作流程的剖面图,分别显示了图7A和图8A中7B-7B与8B-8B线段的剖面情形。7B and 8B are cross-sectional views of the fabrication process of the array substrate according to an embodiment of the present invention, respectively showing the cross-sections of the line segments 7B-7B and 8B-8B in FIG. 7A and FIG. 8A .

图7C和8C绘示本发明一实施例的阵列基板的制作流程的剖面图,分别显示了图7A和8A中7C-7C与8C-8C线段的剖面情形。7C and 8C are cross-sectional views of the manufacturing process of the array substrate according to an embodiment of the present invention, respectively showing the cross-sections of the line segments 7C-7C and 8C-8C in FIGS. 7A and 8A .

图7D至图7G绘示本发明另一实施例的阵列基板的制作流程的剖面图,分别显示了图7A~7C中所使用的第二道光刻和蚀刻工艺的制作流程。简单符号说明FIGS. 7D to 7G are cross-sectional views of the manufacturing process of the array substrate according to another embodiment of the present invention, respectively showing the manufacturing process of the second photolithography and etching processes used in FIGS. 7A to 7C . simple notation

100~栅极;                  102~导线;100~grid; 102~wire;

104、204~基板;             106、300~绝缘层;104, 204~substrate; 106, 300~insulation layer;

108、302~半导体层;         110、304~欧姆接触层;108, 302~semiconductor layer; 110, 304~ohmic contact layer;

112、120~介层洞;           114~导电层;112, 120~via hole; 114~conductive layer;

116~凹口;                  118~保护层;116~notch; 118~protective layer;

122~透明导电层;122~transparent conductive layer;

200、700~薄膜晶体管阵列面板;200, 700~thin film transistor array panel;

202~栅极导线;              202a~栅电极;202~gate wire; 202a~gate electrode;

202b、206b~接垫;           206a~数据导线片段;202b, 206b~pad; 206a~data wire segment;

208~第一凹口;              210~第二凹口;208~the first notch; 210~the second notch;

306、308~堆栈结构;         320~光致抗蚀剂层;306, 308~stack structure; 320~photoresist layer;

340、304’~光掩模;         340a~不透光区;340, 304'~photomask; 340a~opaque area;

340b~透光区;               340c~部分透光区;340b~translucent area; 340c~partially transparent area;

350、360、370~蚀刻程序;      H1、H2~光致抗蚀剂层的厚度;350, 360, 370~etching procedure; H1, H2~thickness of photoresist layer;

400、402、404、406、408、410~金属层;400, 402, 404, 406, 408, 410~metal layer;

308、310、312、412~开口;308, 310, 312, 412~opening;

500~保护层;                  502、504、506~介层洞;500~protective layer; 502, 504, 506~interposition hole;

600、602、604~透明导电层。600, 602, 604-transparent conductive layer.

具体实施方式Detailed ways

图2~6为一系列示意图,图标了依据本发明一实施例的阵列基板工艺,以说明于各工艺阶段的制造情形,其中图2A、3A、4A、5A、以及6A分别显示了一上视情形,而图2B~2C、3B~3C、4B~4C、5B~5C以及6B~6C则分别显示了对应上视图内B-B与C-C线段的剖面情形。在此所描述的各道光刻工艺包括阻剂涂布、使用图案化光掩模、阻剂曝光、阻剂显影、膜层蚀刻、以及去除残留阻剂等为本领域技术人员所熟知的光刻相关步骤,各道光刻工艺可通过业界常使用的标准光刻设备所施行,上述工艺步骤于下文中仅以”光刻工艺”统称之。2 to 6 are a series of schematic diagrams illustrating the array substrate process according to an embodiment of the present invention to illustrate the manufacturing situation at each process stage, wherein FIGS. 2A, 3A, 4A, 5A, and 6A show a top view respectively. 2B-2C, 3B-3C, 4B-4C, 5B-5C, and 6B-6C respectively show the cross-sections corresponding to the B-B and C-C lines in the upper view. Each photolithography process described here includes resist coating, using a patterned photomask, resist exposure, resist development, film layer etching, and removal of residual resist, etc., which are well known to those skilled in the art. Each photolithography process can be performed by standard photolithography equipment commonly used in the industry, and the above process steps are collectively referred to as "photolithography process" hereinafter.

请参照图2A,部分显示了一薄膜晶体管阵列面板200的上视情形。薄膜晶体管阵列面板200包括一基板204,其上设置有多条导线,例如栅极导线202。此外,于基板204上亦设置有多个导线片段,例如数据导线片段206a。栅极导线202与数据导线片段206a包括金属或其它导电材料,且于图2A中依照所示的行与列方向所形成的特定图案排列,但其亦可依照其它方式排列而不以图2A内的排列方式限定。在此,其图案经由第一道光刻工艺所形成。Please refer to FIG. 2A , which partially shows a top view of a TFT array panel 200 . The thin film transistor array panel 200 includes a substrate 204 on which a plurality of wires, such as gate wires 202 are disposed. In addition, a plurality of wire segments, such as the data wire segment 206a, are also disposed on the substrate 204 . The gate wire 202 and the data wire segment 206a include metal or other conductive materials, and are arranged in a specific pattern formed in the row and column directions shown in FIG. The arrangement is limited. Here, its pattern is formed through the first photolithography process.

于此第一道光刻工艺中,定义形成并覆盖于基板204上的一金属层而同时形成此些栅极导线202与数据导线片段206a,其大体依照一列方向排列。此外,于此第一光刻工艺中,亦于基板上形成了其它构件,例如连结分别连结于各栅极导线202的多个栅电极202a,其大体依照一行方向排列,作为各薄膜晶体管装置的栅电极之用。此外,亦形成了连结栅极导线202的大面积的接垫202b以及连结于数据导线片段206的大面积的接垫206b等用于电路连结的区域。In the first photolithography process, a metal layer formed and covered on the substrate 204 is defined and the gate wires 202 and the data wire segments 206 a are formed at the same time, which are generally arranged in a column direction. In addition, in this first photolithography process, other components are also formed on the substrate, such as a plurality of gate electrodes 202a connected to each gate wire 202, which are generally arranged in a row, as the structure of each thin film transistor device. For the gate electrode. In addition, a large-area pad 202 b connected to the gate wire 202 and a large-area pad 206 b connected to the data wire segment 206 are also formed for circuit connection.

如图2A所示,于数据导线片段206a与栅极导线202的交汇区域形成有第一凹口208,藉以分隔数据导线片段206a与邻近的栅极导线202。此外,于栅极电极202a与邻近数据导线片段206a之间则通过第二凹口210所分隔。As shown in FIG. 2A , a first notch 208 is formed at the intersection area of the data wire segment 206 a and the gate wire 202 to separate the data wire segment 206 a from the adjacent gate wire 202 . In addition, the gate electrode 202a is separated from the adjacent data wire segment 206a by the second notch 210 .

请参照图2B,显示了图2A内2B-2B线段的剖面情形,其中基板204上形成有一栅极导线202、用于薄膜晶体管装置的一栅电极202a以及位于栅电极202a与邻近数据导线片段(未图标)间的第二凹口210。栅极导线202与栅电极202a的厚度约介于1500~5000埃,其材料例如为铝(Al)、钼(Mo)、铬(Cr)、铝合金(Al alloy)等金属材料,以及例如钼与铝钌(Mo/AlNd或AlNd/Mo)、钼与铝(Mo/Al)、钛与铝钌(Ti/AlNd或AlNd/Ti)、钛与铝(Ti/Al或Ti/Al/Ti)、铬与铝(Cr/Al)、铬与铝钌(Cr/AlNd或AlNd/Cr)所形成的复合金属、或其它金属材料。而图2C则显示了图2A内2C-2C线段的剖面情形,其中基板204上形成有为第一凹口208所分隔的数据导线片段206a与栅极导线202,以及连结于栅极导线202的接垫202b。数据导线片段206a、栅极导线202以及接垫202b的厚度约介于1500~5000埃,其材料例如为铝、钼、铬、铝合金(Al alloy)等金属材料,以及例如钼与铝钌(Mo/AlNd或AlNd/Mo)、钼与铝(Mo/Al)、钛与铝钌(Ti/AlNd或AlNd/Ti)、钛与铝(Ti/Al或Ti/Al/Ti)、铬与铝(Cr/Al)、铬与铝钌(Cr/AlNd或AlNd/Cr)所形成的复合材料或其它金属材料。Please refer to FIG. 2B, which shows the cross-sectional situation of the 2B-2B line segment in FIG. 2A, wherein a gate wire 202, a gate electrode 202a for a thin film transistor device, and a segment between the gate electrode 202a and the adjacent data wire segment ( (not shown) the second notch 210 between. The thickness of the gate wire 202 and the gate electrode 202a is about 1500˜5000 angstroms, and its material is such as aluminum (Al), molybdenum (Mo), chromium (Cr), aluminum alloy (Al alloy) and other metal materials, and such as molybdenum With aluminum ruthenium (Mo/AlNd or AlNd/Mo), molybdenum and aluminum (Mo/Al), titanium and aluminum ruthenium (Ti/AlNd or AlNd/Ti), titanium and aluminum (Ti/Al or Ti/Al/Ti) , a composite metal formed of chromium and aluminum (Cr/Al), chromium and aluminum ruthenium (Cr/AlNd or AlNd/Cr), or other metal materials. 2C shows the cross-section of line segment 2C-2C in FIG. 2A , where the substrate 204 is formed with a data conductor segment 206a and a gate conductor 202 separated by a first notch 208, and a gate conductor 202 connected to the gate conductor 202. pad 202b. The thickness of the data wire segment 206a, the gate wire 202 and the contact pad 202b is about 1500-5000 angstroms, and the materials thereof are such as aluminum, molybdenum, chromium, aluminum alloy and other metal materials, and such as molybdenum and aluminum ruthenium ( Mo/AlNd or AlNd/Mo), molybdenum and aluminum (Mo/Al), titanium and aluminum ruthenium (Ti/AlNd or AlNd/Ti), titanium and aluminum (Ti/Al or Ti/Al/Ti), chromium and aluminum (Cr/Al), chromium and aluminum ruthenium (Cr/AlNd or AlNd/Cr) composite materials or other metal materials.

请参照图3A,部分显示了接着于图2A中的薄膜晶体管阵列面板200上形成具有图案化的绝缘层300、半导体层302以及欧姆接触层304后的上视情形,此些图案化的膜层经由第二道光刻工艺所同时形成。其中,绝缘层300形成于栅电极202a以及邻近于栅电极202a的部分栅极导线202、数据导线206a与基板204上,并填入于此些构件间的第一凹口208(详见图3B)以及第二凹口210(详见图3C)内。在此,欧姆接触层304显示为倒L型的图案且大体覆盖半导体层302,故半导体层302并于未显示于图3A中。Please refer to FIG. 3A, which partially shows the top-view situation after forming a patterned insulating layer 300, a semiconductor layer 302, and an ohmic contact layer 304 on the thin film transistor array panel 200 in FIG. 2A. These patterned film layers Simultaneously formed by the second photolithography process. Wherein, the insulating layer 300 is formed on the gate electrode 202a and a part of the gate wire 202 adjacent to the gate electrode 202a, the data wire 206a and the substrate 204, and fills the first recess 208 between these components (see FIG. 3B for details. ) and the second notch 210 (see FIG. 3C for details). Here, the ohmic contact layer 304 is shown as an inverted L-shaped pattern and substantially covers the semiconductor layer 302, so the semiconductor layer 302 is not shown in FIG. 3A.

请同时参照图3B与图3C,分别显示了图3A内3B-3B与3C-3C线段的剖面情形,其中形成绝缘层300、半导体层302以及欧姆接触层304的材料首先依序且坦覆地形成并堆栈于基板204上,借着第二道光刻工艺的施行,通过搭配设置有不同透光程度的透光区的一光掩模以及单次光刻以于欧姆接触层304上形成具有多种光致抗蚀剂厚度的情形。并通过后续的连续三道蚀刻程序,分别定义出如图3B与图3C所显示的分别堆栈邻近于栅电极202a、第一凹口208与其邻近基板204上的堆栈结构306、308。其中,绝缘层300、半导体层302以及欧姆接触层304的材料分别例如为氮化硅或氮氧化硅(SiOxNy)、α-Si:H材料以及n+α-Si:H材料,而其厚度则分别例如为2000~5000埃、1000~3000埃以及100~1000埃。Please refer to FIG. 3B and FIG. 3C at the same time, which respectively show the cross-sections of the 3B-3B and 3C-3C line segments in FIG. Formed and stacked on the substrate 204, through the implementation of the second photolithography process, a photomask with different light-transmitting regions and a single photolithography are used to form on the ohmic contact layer 304. The case for various photoresist thicknesses. And through subsequent three consecutive etching procedures, the stacked structures 306 and 308 respectively stacked adjacent to the gate electrode 202 a, the first notch 208 and its adjacent substrate 204 as shown in FIG. 3B and FIG. 3C are defined. Wherein, the materials of the insulating layer 300, the semiconductor layer 302 and the ohmic contact layer 304 are, for example, silicon nitride or silicon oxynitride (SiO x N y ), α-Si:H material and n + α-Si:H material, respectively, and The thickness thereof is, for example, 2000˜5000 Å, 1000˜3000 Å, and 100˜1000 Å, respectively.

于此第二光刻工艺中,同时于对应于各第一凹口208以及各第二凹口210的基板204处附近所形成的堆栈结构306与308内的绝缘层300与半导体层302则形成了一介电阻障,以避免邻近的栅极导线202与数据导线片段206a以及/或邻近的数据导线片段206a与栅极导线202间发生电连接与短路的不良情形。图3B显示了由填入第二凹口210内的由经图案化的绝缘层300、半导体层302以及欧姆接触层304所组成的堆栈结构306,而图3C则显示了由填入第一凹口208内的经图案化的绝缘层300、半导体层302以及欧姆接触层304所组成的堆栈结构308。In this second photolithography process, the insulating layer 300 and the semiconductor layer 302 in the stacked structures 306 and 308 formed near the substrate 204 corresponding to the first notches 208 and the second notches 210 are formed simultaneously. A dielectric barrier is used to avoid electrical connection and short circuit between the adjacent gate wire 202 and the data wire segment 206 a and/or the adjacent data wire segment 206 a and the gate wire 202 . FIG. 3B shows a stack structure 306 composed of a patterned insulating layer 300, a semiconductor layer 302, and an ohmic contact layer 304 filled in the second cavity 210, while FIG. The stack structure 308 formed by the patterned insulating layer 300 , the semiconductor layer 302 and the ohmic contact layer 304 in the opening 208 .

在此,第二道光刻工艺所使用的光掩模以及后续蚀刻程序将通过图3D~3G于下文中详细说明。请参照图3D,在此仅图示了于第二道光刻工艺中,于邻近于栅电极202a与于接垫202b区域的制造情形,本领域技术人员当能理解本发明,并可依据实际设计而应用于其它区域内的制造。首先提供了基板204,其上形成有栅电极202a与接垫202b。栅电极202a以及接垫202b接着为依序形成于基板204上的栅绝缘层300、半导体层302、以及欧姆接触层304所覆盖。然后,于基板304上涂布光致抗蚀剂层320,并通过业界常使用的标准光刻设备而施行第二道光刻工艺,采用了如图3D所示的光掩模340。在此,光掩模340包括一不透光区340a、一透光区340b以及部分透光区340c等具有不同透光率的区域。其中不透光区340a的透光率为0%,其大体对准于栅电极202a的上方,而透光区340的透光率为100%,其大体对准于接垫202b上方,而部分透光区340c的透光率约介于20~80%,其大体对准于其它特定区域。于施行第二道光刻工艺后,通过单一次曝光程序,并于光致抗蚀剂显影后,则形成如图3D所示的情形。经图案化的光致抗蚀剂层320仅残留于栅电极202a及其邻近欧姆接触层204上。由于不同区域的透光度不同的因素,位于透光区340b下方的光致抗蚀剂层320将因曝光完全而经显影去除,而位于不透光区340a以及部分透光区304c下方的光致抗蚀剂层320将因未接受曝光或仅接受部分程度上的曝光而于显影后留下了具有不同厚度的光致抗蚀剂层320,其中位于不透光区340a下方的光致抗蚀剂层320具有约为15000~30000埃的厚度H1,而位于部分透光区304c下方的光致抗蚀剂层320则具有约为3000~20000埃的厚度H2。Here, the photomask used in the second photolithography process and the subsequent etching process will be described in detail below with reference to FIGS. 3D-3G . Please refer to FIG. 3D, which only illustrates the manufacturing situation in the region adjacent to the gate electrode 202a and the contact pad 202b in the second photolithography process. Those skilled in the art should be able to understand the present invention, and can according to the actual Designed for use in manufacturing in other areas. First, a substrate 204 is provided, on which gate electrodes 202a and pads 202b are formed. The gate electrode 202 a and the pad 202 b are then covered by the gate insulating layer 300 , the semiconductor layer 302 , and the ohmic contact layer 304 sequentially formed on the substrate 204 . Then, a photoresist layer 320 is coated on the substrate 304, and a second photolithography process is performed by standard photolithography equipment commonly used in the industry, using a photomask 340 as shown in FIG. 3D. Here, the photomask 340 includes regions with different light transmittances, such as an opaque region 340a, a transparent region 340b, and a partially transparent region 340c. Wherein, the light transmittance of the opaque region 340a is 0%, and it is generally aligned above the gate electrode 202a, while the light transmittance of the light-transmitting region 340 is 100%, and it is generally aligned above the pad 202b. The light transmittance of the transparent area 340c is about 20-80%, and it is generally aligned with other specific areas. After performing the second photolithography process, through a single exposure process, and after developing the photoresist, the situation as shown in FIG. 3D is formed. The patterned photoresist layer 320 remains only on the gate electrode 202 a and its adjacent ohmic contact layer 204 . Due to the different factors of light transmittance in different regions, the photoresist layer 320 located under the transparent region 340b will be removed by development due to complete exposure, while the photoresist layer 320 located under the opaque region 340a and the partially transparent region 304c will The photoresist layer 320 will leave a photoresist layer 320 with different thicknesses after development due to no exposure or only partial exposure, wherein the photoresist layer under the opaque region 340a The resist layer 320 has a thickness H1 of about 15000˜30000 Å, and the photoresist layer 320 under the partially transparent region 304 c has a thickness H2 of about 3000˜20000 Å.

请参照图3E,接着施行一蚀刻程序350,例如使用包括六氟化硫(SF6)、四氟化碳(CF4)、或其它适当反应气体的干蚀刻程序(请补充),通过光致抗蚀剂层320作为蚀刻保护层,蚀刻去除未被光致抗蚀剂层保护的欧姆接触层304、半导体层302以及绝缘层300,并蚀刻停止于基板204以及接垫202b。Please refer to FIG. 3E, and then perform an etching process 350, for example, use a dry etching process (please supplement) including sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), or other suitable reactive gases, by photoinduced The resist layer 320 is used as an etching protection layer to etch away the ohmic contact layer 304 , the semiconductor layer 302 and the insulating layer 300 not protected by the photoresist layer, and the etching stops at the substrate 204 and the pad 202 b.

请参照图3F,接着施行另一蚀刻程序360,例如使用包括氧气(O2)、六氟化硫与氧气(SF6/O2)、或其它适当反应气体的干蚀刻程序(请补充),蚀刻光致抗蚀剂层320,露出部分邻近于栅电极202a的欧姆接触层304。此时,光致抗蚀剂层320仍残留于栅电极202a上方的区域内。Referring to FIG. 3F, another etching process 360 is then performed, for example, a dry etching process (please supplement) using oxygen (O 2 ), sulfur hexafluoride and oxygen (SF 6 /O 2 ), or other appropriate reactive gases, The photoresist layer 320 is etched to expose a portion of the ohmic contact layer 304 adjacent to the gate electrode 202a. At this time, the photoresist layer 320 still remains in the area above the gate electrode 202a.

请参照图3G,接着施行另一蚀刻程序370,例如使用包括氯气(Cl2)、六氟化硫与氯气(SF6/Cl2)、氯气与三氯化硼(Cl2/BCl3)、四氟化碳(CF4)或其它反应气体的干蚀刻程序(请补充),以蚀刻未为光致抗蚀剂层320所覆盖的欧姆接触层304与其下的半导体层302,并停止于绝缘层300上。进而形成了如图3B所示的堆栈结构360以及接垫202b。Referring to FIG. 3G, another etching process 370 is then performed, for example, using chlorine gas (Cl 2 ), sulfur hexafluoride and chlorine gas (SF 6 /Cl 2 ), chlorine gas and boron trichloride (Cl 2 /BCl 3 ), The dry etching procedure of carbon tetrafluoride (CF 4 ) or other reactive gases (please supplement) to etch the ohmic contact layer 304 and the semiconductor layer 302 below it that is not covered by the photoresist layer 320, and stop at the insulating layer on layer 300. Furthermore, a stack structure 360 and pads 202b as shown in FIG. 3B are formed.

请参照图4A,部分显示了接着于图3A中的薄膜晶体管阵列面板200上形成图案化的金属层400、402、404、406、408、410以及开口412后的上视情形,此些图案化的金属层经由第三道光刻工艺所同时形成。其中金属层400与402沿行方向分别大体覆盖于数据导线片段206a(未图标)、形成于数据导线片段206a间的欧姆接触层304以及接垫206b(未图示)上,并连结其下方的数据导线片段206a而形成数据导线。如此结构的数据导线可具有较传统连续型态形成的数据导线为低电阻值(resistance),较适合用于大尺寸的显示装置,以降低于此线路上的信号损失。金属层404与406则沿列方向分别大体覆盖于部分的栅极导线202a(未图标)及其邻近的绝缘层300以及接垫202b上。金属层408则覆盖于部分的基板204、绝缘层300以及欧姆接触层304上,而金属层410则覆盖于欧姆接触层304上且连结于金属层400。于第三道光刻工艺中,亦蚀刻穿过位于栅电极202a中间部上方的欧姆接触层304、以及部分半导体层302而形成了露出半导体层302的一开口412。Please refer to FIG. 4A, which partially shows the top-view situation after forming patterned metal layers 400, 402, 404, 406, 408, 410 and openings 412 on the thin film transistor array panel 200 in FIG. 3A. The metal layer is simultaneously formed through the third photolithography process. The metal layers 400 and 402 generally cover the data wire segments 206a (not shown), the ohmic contact layer 304 formed between the data wire segments 206a and the pads 206b (not shown) along the row direction, and connect the underlying The data wire segment 206a forms a data wire. The data wires with such a structure can have lower resistance than the traditional continuous data wires, and are more suitable for large-sized display devices, so as to reduce the signal loss on the wires. The metal layers 404 and 406 substantially cover part of the gate wire 202a (not shown) and the adjacent insulating layer 300 and the pad 202b along the column direction respectively. The metal layer 408 covers part of the substrate 204 , the insulating layer 300 and the ohmic contact layer 304 , and the metal layer 410 covers the ohmic contact layer 304 and is connected to the metal layer 400 . In the third photolithography process, an opening 412 exposing the semiconductor layer 302 is formed by etching through the ohmic contact layer 304 above the middle portion of the gate electrode 202 a and part of the semiconductor layer 302 .

在此,金属层400、402、404、406部分重叠并直接连结于先前形成的栅极导线202、数据导线片段206a、以及接垫202a与202b,因而增加了部分数据导线202与数据导线片段206a的厚度。此些金属层的厚度约介于2000~4000埃,其材料例如为铝(Al)、钼(Mo)、铬(Cr)或其它金属材料。Here, the metal layers 400, 402, 404, 406 are partially overlapped and directly connected to the previously formed gate wire 202, the data wire segment 206a, and the pads 202a and 202b, thus increasing part of the data wire 202 and the data wire segment 206a. thickness of. The thickness of these metal layers is about 2000˜4000 angstroms, and the material thereof is aluminum (Al), molybdenum (Mo), chromium (Cr) or other metal materials.

请同时参照图4B与图4C,分别显示了图4A内4B-4B与4C-4C线段的剖面情形。其中,图4B显示了为于第三道光刻工艺中经由形成于堆栈结构306处的开口412以及为开口412所分隔的图案化金属层408与410。开口412露出了其内的半导体层302,并因而定义出了薄膜晶体管的源极/漏极区。至此,堆栈结构306便可应用为薄膜晶体管之用,而直接形成于其欧姆接触层302上的金属层408以及410则可作为源极/漏极电极之用,其中金属层408可更延伸至部分的基板204上,而金属层410则延伸于第二凹口210处并进而连结于其邻近的金属层400(未图示)。Please refer to FIG. 4B and FIG. 4C at the same time, respectively showing the cross-sections of the line segments 4B-4B and 4C-4C in FIG. 4A . 4B shows the patterned metal layers 408 and 410 separated by the opening 412 formed at the stack structure 306 in the third photolithography process. The opening 412 exposes the semiconductor layer 302 therein, and thus defines the source/drain regions of the TFT. So far, the stack structure 306 can be used as a thin film transistor, and the metal layers 408 and 410 formed directly on the ohmic contact layer 302 can be used as source/drain electrodes, wherein the metal layer 408 can be further extended to part of the substrate 204, and the metal layer 410 extends at the second notch 210 and is further connected to its adjacent metal layer 400 (not shown).

请参照图4B与图4C,金属层400、404与406增加了数据导线片段206a、栅极导线200及接垫202b的厚度,其于交错区域处为非连续的形成,且彼此间相互分隔以防止短路情形发生。4B and FIG. 4C, the metal layers 400, 404 and 406 increase the thickness of the data wire segment 206a, the gate wire 200 and the pad 202b, which are discontinuously formed at the intersecting region and separated from each other to prevent short circuit conditions from occurring.

请参照图5A,部分显示了接着于图4A中的薄膜晶体管阵列面板200上形成一图案化的保护层500后的上视情形,其经由第四道光刻工艺所形成,并于保护层500内形成介层洞502、504与506以分别露出了部分的金属层402、406以及408。保护层500的材料的厚度约介于1000~50000埃,其材料例如为氮化硅(SiNX)、氧化硅(SiOX)、氮氧化硅(SiOXNy)、有机材料或其它材料。Please refer to FIG. 5A, which partially shows the top view after forming a patterned protective layer 500 on the thin film transistor array panel 200 in FIG. Vias 502, 504, and 506 are formed to expose portions of metal layers 402, 406, and 408, respectively. The thickness of the protection layer 500 is about 1000˜50000 angstroms, such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), organic materials or other materials.

请同时参照图5B与图5C,分别显示了图5A内5B-5B与5C-5C线段的剖面情形。其中,保护层500坦覆地形成于基板204上并覆盖于先前形成的结构中,并经由第四道光刻蚀刻定义出介层洞502与504。开口502与504分别露出部分的金属层408以及406。Please refer to FIG. 5B and FIG. 5C at the same time, respectively showing the cross-sections of the line segments 5B-5B and 5C-5C in FIG. 5A . Wherein, the protective layer 500 is formed on the substrate 204 and covers the previously formed structure, and the via holes 502 and 504 are defined by the fourth photolithographic etching. The openings 502 and 504 respectively expose portions of the metal layers 408 and 406 .

请参照图6A,部分显示了接着于图5A中的薄膜晶体管阵列面板200上形成一图案化的透明导电层600、602以及604后的上视情形,其经由第五道光刻工艺所形成,其中透明导电层600形成于由数据导线与栅极导线定义出的显示区中,并透过开口506而连结于其下方的金属层408,以传递来自金属层408的电流至其内。透明导电层602与604则分别透过开口502与504而电连接于其下方的金属层402与406。透明导电层600、602与604其材料例如为铟锡氧化物(indium tin oxide,ITO)或铟锌氧化物(indium zincoxide,IZO),其厚度约为400~2000埃。在此,覆盖于保护层500上的透明导电层600部分可作为像素电极之用,而覆盖于栅极导线204上的透明导电层600部分则可作为储存电容器构件之用。图6B与图6C则分别显示了图6A内6B-6B与6C-6C线段的剖面情形,透明导电层600、604分别透过开口502、504与其下方的金属层408以及406形成电连接。Please refer to FIG. 6A, which partially shows the top view after forming a patterned transparent conductive layer 600, 602, and 604 on the thin film transistor array panel 200 in FIG. 5A, which is formed by the fifth photolithography process. The transparent conductive layer 600 is formed in the display area defined by the data wires and the gate wires, and is connected to the underlying metal layer 408 through the opening 506 to transfer current from the metal layer 408 therein. The transparent conductive layers 602 and 604 are electrically connected to the underlying metal layers 402 and 406 through the openings 502 and 504 respectively. The material of the transparent conductive layers 600, 602 and 604 is, for example, indium tin oxide (ITO) or indium zinc oxide (IZO), and the thickness thereof is about 400˜2000 angstroms. Here, the part of the transparent conductive layer 600 covering the passivation layer 500 can be used as a pixel electrode, and the part of the transparent conductive layer 600 covering the gate wire 204 can be used as a storage capacitor component. 6B and 6C respectively show the cross-sections of the line segments 6B-6B and 6C-6C in FIG. 6A . The transparent conductive layers 600 and 604 form electrical connections with the underlying metal layers 408 and 406 through the openings 502 and 504 respectively.

图7~8为一系列示意图,图标了依据本发明另一实施例的阵列基板工艺,其工艺阶段中的制造情形的工艺步骤大体相似于前一实施例,在此仅显示其两实施例的差异处,其中图7A以及8A分别显示了一上视情形,而图7B~7C以及8B~8C则分别显示了对应上视图内B-B与C-C线段的剖面情形。7 to 8 are a series of schematic diagrams illustrating the array substrate process according to another embodiment of the present invention. The process steps of the manufacturing situation in the process stage are generally similar to the previous embodiment, and only the two embodiments are shown here. For the difference, Fig. 7A and Fig. 8A respectively show a top-view situation, while Fig. 7B-7C and 8B-8C respectively show the cross-sectional situation corresponding to the B-B and C-C line segments in the top view.

请参照图7A,部分显示了于一薄膜晶体管阵列面板700上形成具有图案化的栅绝缘层300、半导体层302以及欧姆接触层304后的上视情形。于此些膜层形成前,此薄膜晶体管阵列面板700上形成有相同于图2A的电薄膜晶体阵列面板200结构,而此些图案化的膜层经由一第二道光刻工艺所同时形成。其中,相较于图3A,栅绝缘层300坦覆地覆盖于整个基板204(未图示)之上,并填入于此些构件间的第一凹口208(详见图7B)以及第二凹口210(详见图7C)内。而具有倒L型的欧姆接触层304则形成于栅绝缘层300上,并大体覆盖于栅电极202a及其邻近的数据导线片段206a之上。于栅绝缘层300内则形成有开口308、310与312以分别露出部分的栅极导线202以及接垫202b与206b。图7B与图7C,则分别显示了图7A内7B-7B与7C-7C线段的剖面情形,其中形成栅绝缘层300、半导体层302以及欧姆接触层304的材料首先依序且坦覆地形成并堆栈于基板204上,借着第二道光刻工艺的施行,通过搭配设置有不同透光区的单一光掩模以及单次光刻以于欧姆接触层304上形成具有多种光致抗蚀剂厚度的情形。并通过后续的连续三道蚀刻程序,分别定义出如图7B与图7C所显示的分别堆栈邻近于栅电极202a、第一凹口208与其邻近栅绝缘层204上的堆栈结构306、308。其中,栅绝缘层300、半导体层302以及欧姆接触层304的材料分别例如为氮化硅、α-Si:H材料以及n+α-Si:H材料,而其厚度则分别例如为2000~5000埃、1000~3000埃以及100~1000埃。Please refer to FIG. 7A , which partially shows a top view after forming a patterned gate insulating layer 300 , semiconductor layer 302 and ohmic contact layer 304 on a TFT array panel 700 . Before these film layers are formed, the thin film transistor array panel 700 is formed with the same structure as the thin film crystal array panel 200 in FIG. 2A , and these patterned film layers are formed simultaneously through a second photolithography process. Wherein, compared with FIG. 3A , the gate insulating layer 300 covers the entire substrate 204 (not shown), and fills the first notch 208 (see FIG. 7B ) and the first notch between these components. Two notches 210 (see FIG. 7C for details). The inverted L-shaped ohmic contact layer 304 is formed on the gate insulating layer 300 and generally covers the gate electrode 202a and the adjacent data wire segment 206a. Openings 308 , 310 and 312 are formed in the gate insulating layer 300 to expose part of the gate wire 202 and the pads 202 b and 206 b respectively. 7B and 7C respectively show the cross-sections of the line segments 7B-7B and 7C-7C in FIG. 7A, wherein the materials for forming the gate insulating layer 300, the semiconductor layer 302 and the ohmic contact layer 304 are first formed sequentially and covertly. And stacked on the substrate 204, through the implementation of the second photolithography process, a single photomask with different light-transmitting regions and a single photolithography are used to form a variety of photoresist on the ohmic contact layer 304. The thickness of the etchant. And through subsequent three consecutive etching procedures, the stacked structures 306 and 308 respectively stacked adjacent to the gate electrode 202a, the first notch 208 and adjacent to the gate insulating layer 204 as shown in FIG. 7B and FIG. 7C are defined. Wherein, the materials of the gate insulating layer 300, the semiconductor layer 302 and the ohmic contact layer 304 are, for example, silicon nitride, α-Si:H material, and n + α-Si:H material, respectively, and their thicknesses are, for example, 2000˜5000 A respectively. Angstroms, 1000-3000 Angstroms, and 100-1000 Angstroms.

在此,上述第二道光刻工艺所使用的光掩模以及后续蚀刻程序将通过图7D~7G于下文中详细说明。请参照图7D,在此仅图示了于第二道光刻工艺中,于邻近于栅电极202a与于接垫202b区域的制造情形,本领域技术人员当能理解本发明,并可依据实际设计而应用于其它区域内的制造。首先提供了基板204,其上形成有栅电极202a与接垫202b。栅电极202a以及接垫202b接着为依序形成于基板204上的栅绝缘层300、半导体层304、以及欧姆接触层306所覆盖。然后,于基板304上涂布光致抗蚀剂层320,并通过业界常使用的标准光刻设备而施行第二道光刻工艺,采用了如图7D所示的光掩模340’。在此,光掩模340’包括一不透光区340a、一透光区340b以及部分透光区340c等具有不同透光率的区域。其中不透光区340a的透光率为0%,其大体对准于栅电极202a的上方,而透光区340的透光率为100%,其大体对准于一部分的接垫202b上方,而部分透光区340c的透光率约介于20~80%,其大体对准于其它特定区域。于施行第二道光刻工艺后,通过单一次曝光程序,并于光致抗蚀剂显影后,则形成如图7D所示的情形。于形成于接垫202b上方的光致抗蚀剂层320内形成有一开口310,露出了其内的欧姆接触层304。由于不同区域的透光度不同的因素,位于透光区340b下方的光致抗蚀剂层320将因曝光完全而经显影去除,而位于不透光区340a以及部分透光区304c下方的光致抗蚀剂层320将因未接受曝光或仅接受部分程度上的曝光而于显影后留下了具有不同厚度的光致抗蚀剂层320,其中位于不透光区340a下方的光致抗蚀剂层320具有约为15000~30000埃的厚度H1,而位于半透光区304c下方的光致抗蚀剂层320则具有约为3000~15000埃的厚度H2。Here, the photomask used in the second photolithography process and the subsequent etching process will be described in detail below with reference to FIGS. 7D-7G . Please refer to FIG. 7D, which only illustrates the manufacturing situation in the region adjacent to the gate electrode 202a and the pad 202b in the second photolithography process. Those skilled in the art should be able to understand the present invention, and can according to the actual Designed for use in manufacturing in other areas. First, a substrate 204 is provided, on which gate electrodes 202a and pads 202b are formed. The gate electrode 202 a and the pad 202 b are then covered by the gate insulating layer 300 , the semiconductor layer 304 , and the ohmic contact layer 306 sequentially formed on the substrate 204 . Then, a photoresist layer 320 is coated on the substrate 304, and a second photolithography process is performed by standard photolithography equipment commonly used in the industry, using a photomask 340' as shown in FIG. 7D. Here, the photomask 340' includes regions with different light transmittances such as an opaque region 340a, a transparent region 340b, and a partially transparent region 340c. The light transmittance of the opaque region 340a is 0%, and it is generally aligned above the gate electrode 202a, while the light transmittance of the light transmissive region 340 is 100%, and it is generally aligned above a part of the pad 202b. The light transmittance of the partially transparent area 340c is about 20-80%, which is generally aligned with other specific areas. After the second photolithography process is performed, a single exposure procedure is performed, and after the photoresist is developed, a situation as shown in FIG. 7D is formed. An opening 310 is formed in the photoresist layer 320 formed above the pad 202b, exposing the ohmic contact layer 304 therein. Due to the different factors of light transmittance in different regions, the photoresist layer 320 located under the transparent region 340b will be removed by development due to complete exposure, while the photoresist layer 320 located under the opaque region 340a and the partially transparent region 304c will The photoresist layer 320 will leave a photoresist layer 320 with different thicknesses after development due to no exposure or only partial exposure, wherein the photoresist layer under the opaque region 340a The resist layer 320 has a thickness H1 of about 15000-30000 angstroms, and the photoresist layer 320 under the semi-transparent region 304c has a thickness H2 of about 3000-15000 angstroms.

请参照图7E,接着施行一蚀刻程序350,例如使用包括六氟化硫(SF6)、四氟化碳(CF4)、或其它适当反应气体的干蚀刻程序(请补充),通过光致抗蚀剂层320作为蚀刻保护层,蚀刻去除开口310内露出的欧姆接触层304、半导体层302以与栅绝缘层300,并停止于接垫202b上。Please refer to FIG. 7E, and then perform an etching process 350, for example, use a dry etching process (please supplement) including sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), or other suitable reactive gases, through photoinduced The resist layer 320 is used as an etching protection layer to etch away the ohmic contact layer 304 , the semiconductor layer 302 and the gate insulating layer 300 exposed in the opening 310 , and stop on the pad 202 b.

请参照图7F,接着施行另一蚀刻程序360,例如使用包括氧气(O2)、六氟化硫与氧气(SF6/O2)、或其它适当反应气体的干蚀刻程序(请补充),回蚀刻光致抗蚀剂层320,露出欧姆接触层304。此时,光致抗蚀剂层320仅残留于栅电极202a上方的区域内,并覆盖了一部分的邻近欧姆接触层304。Referring to FIG. 7F, another etching process 360 is then performed, for example, a dry etching process (please supplement) using oxygen (O 2 ), sulfur hexafluoride and oxygen (SF 6 /O 2 ), or other appropriate reactive gases, The photoresist layer 320 is etched back to expose the ohmic contact layer 304 . At this time, the photoresist layer 320 remains only in the area above the gate electrode 202 a and covers a part of the adjacent ohmic contact layer 304 .

请参照图7G,接着施行另一蚀刻程序370,例如使用包括氯气(Cl2)、六氟化硫与氯气(SF6/Cl2)、三氯化硼与氯气(BCl3/Cl2)、四氟化碳(CF4)或其它反应气体的干蚀刻程序(请补充),以蚀刻未为光致抗蚀剂层320所覆盖的欧姆接触层304与其下的半导体层302,并停止于栅绝缘层300上。进而形成了如图7B所示的堆栈结构360以及接垫202b。相较于前述图1A~1F的现有技术中所需两道光刻工艺方可制作造如图7G所示的接垫202b与堆栈结构306等结构,本发明所使用的第二道光刻工艺,其节省了一道光掩模的使用,具有节省制作成本以及光刻工艺的功效。Referring to FIG. 7G, another etching process 370 is then performed, for example, using chlorine gas (Cl 2 ), sulfur hexafluoride and chlorine gas (SF 6 /Cl 2 ), boron trichloride and chlorine gas (BCl 3 /Cl 2 ), Carbon tetrafluoride (CF 4 ) or other reactive gas dry etching process (please supplement), to etch the ohmic contact layer 304 and the semiconductor layer 302 below it not covered by the photoresist layer 320, and stop at the gate on the insulating layer 300. Further, a stack structure 360 and pads 202b as shown in FIG. 7B are formed. Compared with the aforementioned prior art in FIGS. 1A-1F , two photolithography processes are required to fabricate structures such as pads 202b and stacked structures 306 as shown in FIG. 7G . The second photolithography process used in the present invention process, which saves the use of a photomask, and has the effect of saving manufacturing cost and photolithography process.

接着进行后续工艺,例如图4~6所图示的工艺,最后形成如图8所示的于基板上形成有一图案化的透明导电层600、602以及604的薄膜晶体管阵列面板700。图8B与图8C,则分别显示了图8A内8B-8B与8C-8C线段的剖面情形,其剖面结构大体与相同于图6B与图6C。Subsequent processes are then carried out, such as the processes shown in FIGS. 4-6 , and finally a TFT array panel 700 with patterned transparent conductive layers 600 , 602 and 604 formed on the substrate as shown in FIG. 8 is formed. FIG. 8B and FIG. 8C respectively show the cross-sections of the line segments 8B-8B and 8C-8C in FIG. 8A , and the cross-sectional structures are generally the same as those in FIG. 6B and FIG. 6C .

虽然本发明以优选实施例揭露如上,然而其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围应当以后附的权利要求所界定者为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention It shall prevail as defined in the appended claims.

Claims (23)

1、一种阵列基板的制造方法,包括下列步骤:1. A method for manufacturing an array substrate, comprising the following steps: 形成一第一金属层于一基板上;forming a first metal layer on a substrate; 施行一第一光刻工艺以图案化该第一金属层,形成一栅极导线、连结于该栅极导线的一栅电极以及一接垫于该基板上;performing a first photolithography process to pattern the first metal layer, forming a gate wire, a gate electrode connected to the gate wire, and a pad on the substrate; 形成一绝缘层、一半导体层以及一欧姆接触层于该基板上,覆盖于该栅极导线、该栅电极以及该接垫;以及forming an insulating layer, a semiconductor layer and an ohmic contact layer on the substrate, covering the gate wire, the gate electrode and the pad; and 施行一第二光刻工艺以图案化该欧姆接触层、该半导体层以及部分的该绝缘层,于该基板上形成一半导体结构以及于该接垫上的该绝缘层内形成一介层洞,以露出部分的该接垫,其中该半导体结构包括大体覆盖于该栅电极上的该绝缘层、图案化的该半导体层以及图案化的该欧姆接触层。performing a second photolithography process to pattern the ohmic contact layer, the semiconductor layer and part of the insulating layer, forming a semiconductor structure on the substrate and forming a via hole in the insulating layer on the pad to expose A part of the contact pad, wherein the semiconductor structure includes the insulating layer substantially covering the gate electrode, the patterned semiconductor layer and the patterned ohmic contact layer. 2、如权利要求1所述的阵列基板的制造方法,还包括下列步骤:2. The method for manufacturing an array substrate according to claim 1, further comprising the following steps: 形成一第二金属层于该基板上,覆盖该半导体结构并填入该介层洞以电连接于该接垫;以及forming a second metal layer on the substrate, covering the semiconductor structure and filling the via hole to electrically connect to the pad; and 施行一第三光刻工艺以图案化该第二金属层并图案化位于该半导体结构的一中间部分的该欧姆接触层以及半导体层,以定义出两源极/漏极区以及一第二金属层于该些源极/漏极区以及该接垫上。performing a third photolithography process to pattern the second metal layer and pattern the ohmic contact layer and semiconductor layer located in a middle portion of the semiconductor structure to define two source/drain regions and a second metal layer on the source/drain regions and the pad. 3、如权利要求1所述的阵列基板的制造方法,其中该第二光刻工艺包括下列步骤:3. The method for manufacturing an array substrate as claimed in claim 1, wherein the second photolithography process comprises the following steps: 形成一光致抗蚀剂层于该欧姆接触层上;forming a photoresist layer on the ohmic contact layer; 施行一光刻程序,使用具有一不透光区、一透光区以及一部分透光区的一光掩模以图案化该光致抗蚀剂层,于大体对应该透光区的光致抗蚀剂层内形成一开口并露出一部分的该欧姆接触层,于大体对准该不透光区的该光致抗蚀剂层内形成一第一厚度的第一光致抗蚀剂层,于大体对准该半透光的该光致抗蚀剂层内形成一第二厚度的第二光致抗蚀剂层,其中该第一厚度大于该第二厚度,该透光区大体对准该接垫,该不透光区大体对准该栅电极,而该部分透光区大体对准该接垫与该栅电极外的其它区域;performing a photolithography process to pattern the photoresist layer using a photomask having an opaque region, a transmissive region and a portion of the transmissive region, the photoresist layer substantially corresponding to the transmissive region forming an opening in the resist layer and exposing a part of the ohmic contact layer; forming a first photoresist layer with a first thickness in the photoresist layer substantially aligned with the opaque region; A second photoresist layer of a second thickness is formed in the photoresist layer substantially aligned with the semi-transparent layer, wherein the first thickness is greater than the second thickness, and the light-transmitting region is substantially aligned with the a pad, the opaque area is generally aligned with the grid electrode, and the part of the light-transmitting area is generally aligned with the pad and other areas outside the grid electrode; 施行第一次蚀刻程序,采用该第一光致抗蚀剂层与该第二光致抗蚀剂层为蚀刻掩模,蚀刻去除为该开口露出的该欧姆接触层、以及其下的该半导体层与该绝缘层,并停止于该接垫;performing a first etching process, using the first photoresist layer and the second photoresist layer as etching masks, etching and removing the ohmic contact layer exposed by the opening and the semiconductor thereunder layer and the insulating layer, and stop at the pad; 施行第二次蚀刻程序,蚀刻该第一光致抗蚀剂层与该第二光致抗蚀剂层,仅留下大体覆盖于该栅电极上方的该第一光致抗蚀剂层并薄化之,露出未为该第一光致抗蚀剂层所覆盖的该欧姆接触层;performing a second etching process to etch the first photoresist layer and the second photoresist layer, leaving only the first photoresist layer substantially covering the gate electrode and thin In other words, the ohmic contact layer not covered by the first photoresist layer is exposed; 施行第三次蚀刻程序,蚀刻未为该第一光致抗蚀剂层所覆盖的该欧姆接触层及其下方的半导体层;以及performing a third etching process to etch the ohmic contact layer and the underlying semiconductor layer not covered by the first photoresist layer; and 去除该第一光致抗蚀剂层,以于该基板形成一半导体结构以及为该开口露出的该接垫,其中该半导体结构包括大体覆盖于该栅电极上的该绝缘层、图案化的一半导体层以及图案化的一欧姆接触层。removing the first photoresist layer to form a semiconductor structure on the substrate and the contact pad exposed by the opening, wherein the semiconductor structure includes the insulating layer substantially covering the gate electrode, a patterned A semiconductor layer and a patterned ohmic contact layer. 4、如权利要求3所述的薄阵列基板的制造方法,其中该第一厚度介于15000~30000埃,而该第二厚度介于3000-20000埃。4. The method for manufacturing a thin array substrate as claimed in claim 3, wherein the first thickness is between 15000-30000 angstroms, and the second thickness is between 3000-20000 angstroms. 5、如权利要求1所述的阵列基板的制造方法,其中该绝缘层包括氮化硅或氮氧化硅(SiOXNY)。5. The method of manufacturing the array substrate as claimed in claim 1, wherein the insulating layer comprises silicon nitride or silicon oxynitride (SiO X NY ). 6、如权利要求1所述的阵列基板的制造方法,其中该半导体层包括α-Si:H材料。6. The method of manufacturing the array substrate as claimed in claim 1, wherein the semiconductor layer comprises α-Si:H material. 7、如权利要求1所述的阵列基板的制造方法,其中该欧姆接触层包括n+α-Si:H材料。7. The method of manufacturing an array substrate as claimed in claim 1, wherein the ohmic contact layer comprises n + α-Si:H material. 8、如权利要求3所述的阵列基板的制造方法,其中该第一蚀刻程序为干蚀刻,使用包括六氟化硫(SF6)或四氟化碳(CF4)的反应气体。8. The method for manufacturing an array substrate as claimed in claim 3, wherein the first etching process is dry etching using a reactive gas including sulfur hexafluoride (SF 6 ) or carbon tetrafluoride (CF 4 ). 9、如权利要求3所述的阵列基板的制造方法,其中该第二蚀刻程序为干蚀刻,所使用的反应气体包括六氟化硫与氧气(SF6/O2)或氧气(O2)。9. The method for manufacturing an array substrate as claimed in claim 3, wherein the second etching process is dry etching, and the reaction gas used includes sulfur hexafluoride and oxygen (SF 6 /O 2 ) or oxygen (O 2 ) . 10、如权利要求3所述的阵列基板的制造方法,其中该第三蚀刻程序为干蚀刻,所使用的反应气体包括氯气(Cl2)、六氟化硫与氯气(SF6/Cl2)、三氯化硼与氯气(BCl3/Cl2)或四氟化碳(CF4)。10. The method for manufacturing an array substrate as claimed in claim 3, wherein the third etching procedure is dry etching, and the reaction gases used include chlorine gas (Cl 2 ), sulfur hexafluoride and chlorine gas (SF 6 /Cl 2 ) , boron trichloride and chlorine (BCl 3 /Cl 2 ) or carbon tetrafluoride (CF 4 ). 11、如权利要求3所述的阵列基板的制造方法,其中该部分透光区具有介于20~80%的透光率。11. The method for manufacturing an array substrate as claimed in claim 3, wherein the partially light-transmitting region has a light transmittance between 20% and 80%. 12、如权利要求3所述的阵列基板的制造方法,其中不透光区具有大体为0%的透光率而该透光区具有大体为100%的透光率。12. The manufacturing method of the array substrate as claimed in claim 3, wherein the opaque area has a light transmittance of approximately 0% and the light transmittance area has a light transmittance of approximately 100%. 13、一种薄膜晶体管阵列面板的制造方法,包括下列步骤:13. A method for manufacturing a thin film transistor array panel, comprising the following steps: 形成一第一金属层于一基板上;forming a first metal layer on a substrate; 施行一第一光刻工艺以图案化该第一金属层,于该基板上形成沿第一方向连续地延伸至少一栅极导线,以及沿一第二方向延伸的多个数据导线片段,其中该第一方向异于该第二方向且该些数据导线片段与该些栅极导线于交汇处为互相分隔;performing a first photolithography process to pattern the first metal layer, forming at least one gate wire extending continuously along a first direction and a plurality of data wire segments extending along a second direction on the substrate, wherein the The first direction is different from the second direction and the data wire segments and the gate wires are separated from each other at intersections; 形成一绝缘层、一半导体层以及一欧姆接触层于该基板上;forming an insulating layer, a semiconductor layer and an ohmic contact layer on the substrate; 施行一第二光刻工艺以图案化该欧姆接触层、该半导体层以及该绝缘层,形成多个半导体结构以及多个堆栈结构,该些堆栈结构横跨该些数据导线片段与该些栅极导线于交汇处;performing a second photolithography process to pattern the ohmic contact layer, the semiconductor layer and the insulating layer to form a plurality of semiconductor structures and a plurality of stacked structures, and the stacked structures straddle the data wire segments and the gates conductors at junctions; 形成一第二金属层于该基板上;forming a second metal layer on the substrate; 施行一第三光刻工艺以图案化该第二导电金属层,于该些半导体结构上形成多个源极/漏极电极以及形成延伸于该些桥接结构上且电连接该些数据导线片段的多条连续数据导线;performing a third photolithography process to pattern the second conductive metal layer, forming a plurality of source/drain electrodes on the semiconductor structures and forming the bridge structures extending on the bridge structures and electrically connecting the data wire segments a plurality of continuous data conductors; 形成一保护层于该基板上;forming a protection layer on the substrate; 施行一第四光刻工艺以图案化该保护层,形成多个介层洞并露出了该些数据导线与该些栅极导线的多个接垫以及该些源极/漏极电极之一;以及performing a fourth photolithography process to pattern the protection layer, forming a plurality of via holes and exposing a plurality of contact pads of the data wires and the gate wires and one of the source/drain electrodes; as well as 形成一透明导电层于该基板上,并填入于该些介层洞;forming a transparent conductive layer on the substrate, and filling the via holes; 施行一第五光刻工艺以图案化该透明导电层,形成多个像素电极以及储存电容器,其中该些储存电容器部分重叠于该些栅极导线上。A fifth photolithography process is performed to pattern the transparent conductive layer to form a plurality of pixel electrodes and storage capacitors, wherein the storage capacitors are partially overlapped on the gate wires. 14、如权利要求13所述的薄膜晶体管阵列面板的制造方法,其中该第二光刻工艺包括下列步骤:14. The method for manufacturing a thin film transistor array panel as claimed in claim 13, wherein the second photolithography process comprises the following steps: 形成一光致抗蚀剂材料于该欧姆接触层上;forming a photoresist material on the ohmic contact layer; 施行一光刻程序,使用具有一不透光区、一透光区以及一部分透光区的一光掩模以图案化该光致抗蚀剂材料,于大体对应该透光区的光致抗蚀剂层内形成一开口并露出一部分的该欧姆接触层,于大体对准该不透光区的该光致抗蚀剂层内形成一第一厚度的第一光致抗蚀剂层,于大体对准该半透光的该光致抗蚀剂层内形成一第二厚度的第二光致抗蚀剂层,其中该第一厚度大于该第二厚度,该透光区大体对准该些栅极导线以及数据导线的一接垫,该不透光区大体对准该栅电极,而该部分透光区大体对准该接垫与该栅电极外的其它区域;performing a photolithography process to pattern the photoresist material using a photomask having an opaque region, a transmissive region and a portion of the transmissive region, in the photoresist substantially corresponding to the transmissive region forming an opening in the resist layer and exposing a part of the ohmic contact layer; forming a first photoresist layer with a first thickness in the photoresist layer substantially aligned with the opaque region; A second photoresist layer of a second thickness is formed in the photoresist layer substantially aligned with the semi-transparent layer, wherein the first thickness is greater than the second thickness, and the light-transmitting region is substantially aligned with the A contact pad of some gate wires and data wires, the opaque area is generally aligned with the gate electrode, and the part of the light-transmissive area is generally aligned with the pad and other areas outside the gate electrode; 施行第一次蚀刻程序,采用该第一光致抗蚀剂层与该第二光致抗蚀剂层为蚀刻掩模,蚀刻去除为该开口露出的该欧姆接触层、以及其下的该半导体层与该绝缘层,并停止于该接垫;performing a first etching process, using the first photoresist layer and the second photoresist layer as etching masks, etching and removing the ohmic contact layer exposed by the opening and the semiconductor thereunder layer and the insulating layer, and stop at the pad; 施行第二次蚀刻程序,蚀刻该第一光致抗蚀剂层与该第二光致抗蚀剂层,仅留下大体覆盖于该栅电极上方的该第一光致抗蚀剂层并薄化之,露出未为该第一光致抗蚀剂层所覆盖的该欧姆接触层;performing a second etching process to etch the first photoresist layer and the second photoresist layer, leaving only the first photoresist layer substantially covering the gate electrode and thin In other words, the ohmic contact layer not covered by the first photoresist layer is exposed; 施行第三次蚀刻程序,蚀刻未为该第一光致抗蚀剂层所覆盖的该欧姆接触层及其下方的半导体层;以及performing a third etching process to etch the ohmic contact layer and the underlying semiconductor layer not covered by the first photoresist layer; and 去除该第一光致抗蚀剂层,以于该基板形成一半导体结构以及为该开口露出的该接垫,其中该半导体结构包括大体覆盖于该栅电极上的该绝缘层、图案化的一半导体层以及图案化的一欧姆接触层。removing the first photoresist layer to form a semiconductor structure on the substrate and the contact pad exposed by the opening, wherein the semiconductor structure includes the insulating layer substantially covering the gate electrode, a patterned A semiconductor layer and a patterned ohmic contact layer. 15、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中该第一厚度介于15000~30000埃,而该第二厚度介于3000~20000埃。15. The method for manufacturing a thin film transistor array panel as claimed in claim 14, wherein the first thickness is between 15000-30000 angstroms, and the second thickness is between 3000-20000 angstroms. 16、如权利要求13所述的薄膜晶体管阵列面板的制造方法,其中该绝缘层包括氮化硅或氮氧化硅(SiOXNY)。16. The method of manufacturing a thin film transistor array panel as claimed in claim 13, wherein the insulating layer comprises silicon nitride or silicon oxynitride ( SiOxNY ) . 17、如权利要求13所述的薄膜晶体管阵列面板的制造方法,其中该半导体层包括α-Si:H材料。17. The method of manufacturing a thin film transistor array panel as claimed in claim 13, wherein the semiconductor layer comprises α-Si:H material. 18、如权利要求13所述的薄膜晶体管阵列面板的制造方法,其中该欧姆接触层包括n+α-Si:H材料。18. The method of manufacturing a thin film transistor array panel as claimed in claim 13, wherein the ohmic contact layer comprises n + α-Si:H material. 19、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中该第一蚀刻程序为干蚀刻,所使用的反应气体包括六氟化硫(SF6)或四氟化碳(CF4)。19. The method for manufacturing a thin film transistor array panel as claimed in claim 14, wherein the first etching process is dry etching, and the reactive gas used includes sulfur hexafluoride (SF 6 ) or carbon tetrafluoride (CF 4 ) . 20、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中该第二蚀刻程序为干蚀刻,所使用的反应气体包括氧气(O2)或六氟化硫与氧气(SF6/O2)。20. The method for manufacturing a thin film transistor array panel as claimed in claim 14, wherein the second etching procedure is dry etching, and the reactive gas used includes oxygen (O 2 ) or sulfur hexafluoride and oxygen (SF 6 /O 2 ). 21、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中该第三蚀刻程序为干蚀刻,所使用的反应气体包括氯气(Cl2)、六氟化硫与氯气(SF6/Cl2)或三氯化硼与氯气(BCl3/Cl2)。21. The method for manufacturing a thin film transistor array panel as claimed in claim 14, wherein the third etching process is dry etching, and the reaction gases used include chlorine (Cl 2 ), sulfur hexafluoride and chlorine (SF 6 /Cl 2 ) or boron trichloride and chlorine (BCl 3 /Cl 2 ). 22、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中该部分透光区具有介于20~80%的透光率。22. The method for manufacturing a thin film transistor array panel as claimed in claim 14, wherein the partially light-transmitting region has a light transmittance between 20% and 80%. 23、如权利要求14所述的薄膜晶体管阵列面板的制造方法,其中不透光区具有大体为0%的透光率而该透光区具有大体为100%的透光率。23. The method of manufacturing a TFT array panel as claimed in claim 14, wherein the opaque area has a light transmittance of approximately 0% and the light transmittance area has a light transmittance of approximately 100%.
CNB2005100669346A 2005-04-22 2005-04-22 Manufacturing method of array substrate and thin film transistor array panel Expired - Fee Related CN100399134C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100669346A CN100399134C (en) 2005-04-22 2005-04-22 Manufacturing method of array substrate and thin film transistor array panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100669346A CN100399134C (en) 2005-04-22 2005-04-22 Manufacturing method of array substrate and thin film transistor array panel

Publications (2)

Publication Number Publication Date
CN1664685A true CN1664685A (en) 2005-09-07
CN100399134C CN100399134C (en) 2008-07-02

Family

ID=35035837

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100669346A Expired - Fee Related CN100399134C (en) 2005-04-22 2005-04-22 Manufacturing method of array substrate and thin film transistor array panel

Country Status (1)

Country Link
CN (1) CN100399134C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446222C (en) * 2007-03-28 2008-12-24 友达光电股份有限公司 Manufacturing method of thin film transistor substrate
CN1988077B (en) * 2005-12-25 2011-08-03 群康科技(深圳)有限公司 Method for producing capacitor
WO2016008182A1 (en) * 2014-07-18 2016-01-21 深圳市华星光电技术有限公司 Mask, array substrate manufacturing method, and array substrate
CN106252357A (en) * 2016-08-24 2016-12-21 武汉华星光电技术有限公司 Low-temperature polysilicon film transistor array base palte and preparation method thereof, liquid crystal panel
CN107643657A (en) * 2017-10-31 2018-01-30 武汉华星光电技术有限公司 A kind of method and light shield for improving panel periphery TITO residuals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255130B1 (en) * 1998-11-19 2001-07-03 Samsung Electronics Co., Ltd. Thin film transistor array panel and a method for manufacturing the same
TW413949B (en) * 1998-12-12 2000-12-01 Samsung Electronics Co Ltd Thin film transistor array panels for liquid crystal displays and methods of manufacturing the same
JP2002141512A (en) * 2000-11-06 2002-05-17 Advanced Display Inc Thin film patterning method, TFT array substrate using the same, and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988077B (en) * 2005-12-25 2011-08-03 群康科技(深圳)有限公司 Method for producing capacitor
CN100446222C (en) * 2007-03-28 2008-12-24 友达光电股份有限公司 Manufacturing method of thin film transistor substrate
WO2016008182A1 (en) * 2014-07-18 2016-01-21 深圳市华星光电技术有限公司 Mask, array substrate manufacturing method, and array substrate
US9842865B2 (en) 2014-07-18 2017-12-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mask plate, method of manufacturing array substrate, and array substrate
CN106252357A (en) * 2016-08-24 2016-12-21 武汉华星光电技术有限公司 Low-temperature polysilicon film transistor array base palte and preparation method thereof, liquid crystal panel
CN106252357B (en) * 2016-08-24 2019-05-21 武汉华星光电技术有限公司 Low-temperature polysilicon film transistor array substrate and preparation method thereof, liquid crystal display panel
CN107643657A (en) * 2017-10-31 2018-01-30 武汉华星光电技术有限公司 A kind of method and light shield for improving panel periphery TITO residuals

Also Published As

Publication number Publication date
CN100399134C (en) 2008-07-02

Similar Documents

Publication Publication Date Title
CN1275075C (en) Thin film transistor array substrate, mfg. method thereof and mask therefor
CN1267780C (en) Array substrate for LCD device and its mfg. method
CN100529931C (en) Method of fabricating liquid crystal display device
CN1551367A (en) Thin film transistor array substrate and manufacturing method thereof
CN1885511A (en) Thin film transistor substrate and method of manufacturing the same
CN101059631A (en) Array substrate for liquid crystal display device using organic semiconductor material and method of fabricating the same
CN1170196C (en) Method for manufacturing thin film transistor liquid crystal display
CN1794078A (en) Liquid crystal display device and fabricating method thereof
CN1585088A (en) Manufacturing method of thin film transistor array substrate
CN1967360A (en) Liquid crystal display device and method for fabricating the same
CN1632675A (en) Manufacturing method of pixel structure of thin film transistor liquid crystal display
CN1154174C (en) Method for manufacturing flat panel display
CN1270388C (en) Thin film transistor array panel and method for fabricating the same
CN100342279C (en) Substrate for a liquid crystal display device and fabricating method thereof
CN1815321A (en) Method for manufacturing lower substrate for liquid crystal display device
CN1606162A (en) Thin film transistor array substrate and method of manufacturing the same
CN1185534C (en) Active matrix substrate of liquid crystal display device and manufacturing method thereof
CN1783458A (en) Method for manufacturing a display device and method for forming a pattern
CN100452363C (en) Manufacturing method of thin film transistor array substrate
CN100399134C (en) Manufacturing method of array substrate and thin film transistor array panel
CN1845310A (en) Manufacturing method of pixel array substrate
KR101294689B1 (en) Method of Fabricating Fringe Field Switching Mode Liquid Crystal Display Device
CN1892373A (en) Thin film transistor substrate and fabricating method thereof
CN100343749C (en) Array substrate of thin film transistor liquid crystal display and manufacturing method thereof
CN1652296A (en) A pixel structure, thin film transistor and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080702