CN1661818A - LED structure - Google Patents
LED structure Download PDFInfo
- Publication number
- CN1661818A CN1661818A CN 200410006387 CN200410006387A CN1661818A CN 1661818 A CN1661818 A CN 1661818A CN 200410006387 CN200410006387 CN 200410006387 CN 200410006387 A CN200410006387 A CN 200410006387A CN 1661818 A CN1661818 A CN 1661818A
- Authority
- CN
- China
- Prior art keywords
- emitting diode
- layer
- light emitting
- type
- contact layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 17
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 20
- 229910002601 GaN Inorganic materials 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000010931 gold Substances 0.000 claims description 9
- 239000010948 rhodium Substances 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 2
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 3
- 239000004411 aluminium Substances 0.000 claims 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 2
- 229910052720 vanadium Inorganic materials 0.000 claims 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 2
- 229910052725 zinc Inorganic materials 0.000 claims 2
- 239000011701 zinc Substances 0.000 claims 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 claims 1
- 229910017083 AlN Inorganic materials 0.000 claims 1
- 229910005540 GaP Inorganic materials 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- ZUSQJEHVTIBRNR-UHFFFAOYSA-N aluminum;lithium;oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[Al+3] ZUSQJEHVTIBRNR-UHFFFAOYSA-N 0.000 claims 1
- 230000003139 buffering effect Effects 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 229910001195 gallium oxide Inorganic materials 0.000 claims 1
- 229910001092 metal group alloy Inorganic materials 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 17
- 239000002019 doping agent Substances 0.000 description 15
- 239000010409 thin film Substances 0.000 description 10
- 238000007405 data analysis Methods 0.000 description 4
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- -1 AlxInyGa1 -xyN Chemical class 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- WWMMWLRYCXLQNM-UHFFFAOYSA-N [O-2].O.[Zn+2].[SeH2] Chemical compound [O-2].O.[Zn+2].[SeH2] WWMMWLRYCXLQNM-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种发光二极管结构,尤其是关于一种由III-V族元素(III-V group element)构成,具有建构式氧化薄膜接触层的发光二极管结构。The present invention relates to a light-emitting diode structure, in particular to a light-emitting diode structure composed of III-V group elements (III-V group element) and having a structural oxide film contact layer.
背景技术Background technique
氮化镓(GaN)基外延技术自1993年为日本专家突破后,在全球掀起了氮化镓基蓝光发光二极管产业化的高潮。Gallium Nitride (GaN)-based epitaxial technology has been a breakthrough by Japanese experts in 1993, which has set off a climax of the industrialization of GaN-based blue light-emitting diodes in the world.
已知的氮化镓系发光二极管结构1(如图1所示)是形成于一基材10上,例如Al2O3的基材,其结构从下至上依序为晶核层(nucleation layer)12、用以使后续长晶更加顺利及容易的N型掺杂氮化镓的N型掺杂导电缓冲层(N-type conductive buffer layer)14、下束缚层(confinement layer)16、供做发光用的主动层(active layer)18、上束缚层20、P型氮化镓的接触层22及供做发光二极管1阳极的透明电极24,其中下束缚层16与上束缚层20的掺杂型是相反的,例如当下束缚层16为N型掺杂的氮化镓时,上束缚层20为P型掺杂的氮化镓。透明电极24的材料通常为N型掺杂,如氧化铟锡(Indium tin oxide)、氧化锡镉(Cadmium tin oxide)或极薄的金属。另外,在缓冲层14上与上、下束缚层20,16及主动层18隔离的区域上形成供做发光二极管1阴极的电极26。The known gallium nitride-based light-emitting diode structure 1 (as shown in FIG. 1 ) is formed on a substrate 10, such as an Al 2 O 3 substrate, and its structure is sequentially composed of nucleation layer (nucleation layer) from bottom to top. ) 12. N-type conductive buffer layer (N-type conductive buffer layer) 14, lower confinement layer (confinement layer) 16 for N-type doped gallium nitride to make subsequent crystal growth smoother and easier The active layer (active layer) 18 for light emission, the
图2为图1中发光二极管1的发光区域范围的示意图。于发光二极管1的透明电极24及电极26上施加顺向偏压后,会使得发光二极管1导通,此时电流会自透明电极24流向主动层18。已知P型氮化镓接触层22的载子(carrier)浓度无法太高,且接触电阻高,以致电流散布(currentspreading)效应不佳。而P型透明电极24仅覆盖部份接触层22,由图2中可以看出电流流过的区域仅为与透明电极24宽度相当的区域,也因此造成发光二极管1的发光区域受到限制,无法发挥主动层18的功效,致使发光二极管1的发光效率大为降低。FIG. 2 is a schematic diagram of the range of the light emitting area of the
综上所述,已知的发光二极管结构受限于接触层的物理特性,而使其无法有效的成长高浓度的P型接触层,这使得发光二极管的制造成本提高,同时产品优良率也降低。再者,已知的发光二极管结构无法提供一个高发光效率的二极管,二极管中大部份的主动层区域没有被好好利用。再者,透明电极与接触层两者的掺杂型(导电型)并不同型,故在透明电极与接触层之间可能会产生接合面(junction),而影响发光二极管的操作。In summary, the known light-emitting diode structure is limited by the physical characteristics of the contact layer, making it impossible to effectively grow a high-concentration P-type contact layer, which increases the manufacturing cost of light-emitting diodes and reduces the yield of products. . Furthermore, the known LED structure cannot provide a diode with high luminous efficiency, and most of the active layer area of the diode is not well utilized. Furthermore, the doping type (conduction type) of the transparent electrode and the contact layer is different, so a junction may be generated between the transparent electrode and the contact layer, which affects the operation of the light emitting diode.
因此,改善接触层的物理特性应可使发光二极管的发光效率获得有效的改善。台湾发明专利第156268号中揭示了一种掺杂的超晶格应变层(strained layer superlattices,SLS)结构作为发光二极管的接触层以提升已知发光二极管的发光效率。台湾发明专利公告第546859号中亦揭示了一种具有数字穿透层的氮化镓系发光二极管,以使氧化铟锡层与P型氮化镓系接触层成为欧姆接触的状态,以降低二者间的电阻。虽然,这些改良或多或少对于发光效率的提升皆有助益,但仍未达到令人满意的结果。Therefore, improving the physical properties of the contact layer should effectively improve the luminous efficiency of the LED. Taiwan Patent No. 156268 discloses a doped superlattice strained layer (strained layer superlattices, SLS) structure as a contact layer of a light-emitting diode to improve the luminous efficiency of known light-emitting diodes. Taiwan Invention Patent Announcement No. 546859 also discloses a gallium nitride-based light-emitting diode with a digital penetration layer, so that the indium tin oxide layer and the p-type gallium nitride-based contact layer are in an ohmic contact state to reduce the two resistance between them. Although these improvements are more or less beneficial to the improvement of luminous efficiency, satisfactory results have not yet been achieved.
因此,本发明即致力于克服上述的缺点,以有效改善发光二极管的发光效率。Therefore, the present invention aims at overcoming the above-mentioned disadvantages so as to effectively improve the luminous efficiency of the light-emitting diodes.
发明内容Contents of the invention
本发明的目的,是提供一种具有建构式氧化薄膜接触层(ConstructiveOxide Contact Structure,COCS)的发光二极管结构。The object of the present invention is to provide a light emitting diode structure with a Constructive Oxide Contact Structure (COCS).
本发明的另一目的,是提供一种能有效降低接触层电阻的发光二极管结构,以有效改善其发光效率。Another object of the present invention is to provide a light-emitting diode structure that can effectively reduce the resistance of the contact layer, so as to effectively improve its luminous efficiency.
根据本发明所指出的一种发光二极管结构,是以建构式氧化薄膜接触层结构来作为发光二极管的接触层,使其较易形成高浓度(高导电率)的接触层。当此接触层辅以适当的透明电极,可用以有效的增加发光效率及降低操作电压。According to the light emitting diode structure pointed out in the present invention, the contact layer of the light emitting diode is used as the contact layer of the structural oxide thin film, which makes it easier to form a high concentration (high conductivity) contact layer. When the contact layer is supplemented with an appropriate transparent electrode, it can be used to effectively increase the luminous efficiency and reduce the operating voltage.
以根据本发明所指出的建构式氧化薄膜接触层结构做为发光二极管的接触层,可不需限制接触层掺杂物的类型,而透明电极更可以与接触层具同一导电型的材料,以消除透明电极与接触层的间所产生的接合面。Using the structure-type oxide film contact layer structure pointed out in the present invention as the contact layer of the light-emitting diode does not need to limit the type of dopant in the contact layer, and the transparent electrode can be made of the same conductivity type material as the contact layer to eliminate The interface between the transparent electrode and the contact layer.
此外,以根据本发明所指出的建构式氧化薄膜接触层结构作为发光二极管的接触层,具有与透明电极有较佳的接触特性,透明电极的尺寸可以大致与主动层一致,用以提高电流通过主动层的区域,以提高主动层可发光区域,而使发光效率提高。In addition, using the structure-type oxide film contact layer structure pointed out in the present invention as the contact layer of the light-emitting diode has better contact characteristics with the transparent electrode, and the size of the transparent electrode can be roughly consistent with the active layer to improve the flow of current. The area of the active layer is used to increase the luminous area of the active layer and improve the luminous efficiency.
根据本发明所指出的发光二极管结构,其构造简述如下:According to the LED structure pointed out by the present invention, its structure is briefly described as follows:
根据本发明所指出的发光二极管结构是架构于一基板上,包含一缓冲层、一下束缚层、一发光层、一上束缚层、一接触层,及第一电极与第二电极(透明电极)。其中,第一导电型的缓冲层是形成于此基板上,第一导电型的下束缚层则形成于此第一导电型的缓冲层上,其中下束缚层的掺杂物与导电缓冲层的掺杂物为同型,例如同为P型或N型掺杂物。发光层是形成于下束缚层上,而第二导电型的上束缚层则形成于发光层上,其中上束缚层的掺杂物与下束缚层的掺杂物为不同型,例如其一为P型掺杂物,另一则为N型掺杂物。第二导电型半导体化合物材料,形成于上束缚层上供做接触层。此接触层为建构式氧化薄膜接触层,其导电性可为P型、N型或I型。至于透明电极则形成于接触层上,作为发光二极管的阳极。第一电极则形成于下束缚层上,并与发光层、上束缚层、接触层及透明电极隔离,作为发光二极管的阴极。According to the light-emitting diode structure pointed out in the present invention, it is framed on a substrate, including a buffer layer, a lower binding layer, a light-emitting layer, an upper binding layer, a contact layer, and a first electrode and a second electrode (transparent electrode) . Wherein, the buffer layer of the first conductivity type is formed on the substrate, and the lower binding layer of the first conductivity type is formed on the buffer layer of the first conductivity type, wherein the dopant of the lower binding layer and the conductive buffer layer The dopants are of the same type, for example, both are P-type or N-type dopants. The light-emitting layer is formed on the lower confinement layer, and the upper confinement layer of the second conductivity type is formed on the emissive layer, wherein the dopant of the upper confinement layer and the dopant of the lower confinement layer are different types, for example, one of them is One is a P-type dopant and the other is an N-type dopant. The second conductive type semiconductor compound material is formed on the upper bound layer and used as a contact layer. The contact layer is a structural oxide film contact layer, and its conductivity can be P-type, N-type or I-type. As for the transparent electrode, it is formed on the contact layer and serves as the anode of the LED. The first electrode is formed on the lower binding layer and is isolated from the light-emitting layer, the upper binding layer, the contact layer and the transparent electrode, and serves as the cathode of the light-emitting diode.
前述的透明电极与建构式氧化薄膜接触层两者的导电型可以同型或不同型,例如两者同为P型或N型,或其一为P型,另一则为N型。The conductive types of the above-mentioned transparent electrode and the contact layer of the structured oxide film can be the same or different, for example, both are P-type or N-type, or one is P-type and the other is N-type.
本发明在此另提出一种具有建构式氧化薄膜接触层,架构于一基板上的发光二极管结构。其是由一形成于此基板上的导电缓冲层,一架构于缓冲层上且夹于上、下束缚层中的发光层,一形成于上束缚层上的建构式氧化薄膜接触层,其导电性可为P型、N型或I型,一形成于建构式氧化薄膜接触层上的导电型薄膜,形成于下束缚层上,并与发光层、上束缚层、接触层及透明电极隔离的第一电极,及形成于导电型薄膜上的第二电极(透明电极)。其中,导电型薄膜系作为电流分散及透光层。上束缚层的掺杂物与下束缚层的掺杂物为不同型,例如其一为P型掺杂物,另一则为N型掺杂物。The present invention further proposes a light emitting diode structure with a structured oxide thin film contact layer and built on a substrate. It consists of a conductive buffer layer formed on the substrate, a light-emitting layer framed on the buffer layer and sandwiched between the upper and lower binding layers, and a structural oxide film contact layer formed on the upper binding layer. It can be P-type, N-type or I-type, a conductive thin film formed on the contact layer of the structural oxide film, formed on the lower bound layer, and isolated from the light emitting layer, the upper bound layer, the contact layer and the transparent electrode The first electrode, and the second electrode (transparent electrode) formed on the conductive film. Among them, the conductive thin film is used as the current dispersion and light transmission layer. The dopant of the upper confinement layer and the dopant of the lower confinement layer are of different types, for example, one is a P-type dopant, and the other is an N-type dopant.
前述的透明电极与建构式氧化薄膜接触层两者的导电型可以同型或不同型,例如两者同为P型或N型,或其一为P型,另一则为N型。The conductive types of the above-mentioned transparent electrode and the contact layer of the structured oxide film can be the same or different, for example, both are P-type or N-type, or one is P-type and the other is N-type.
本发明将通过参考下列的实施例做进一步的说明,这些实施例并不限制本发明前面所揭示的内容。熟习本发明的技艺者,可做些许的改良与修饰,但仍不脱离本发明的范畴。The present invention will be further illustrated by reference to the following examples, which do not limit the foregoing disclosure of the invention. Those skilled in the art of the present invention can make some improvements and modifications, but still do not depart from the scope of the present invention.
附图说明Description of drawings
图1为显示已知含III-V族元素的发光二极管的剖面示意图;FIG. 1 is a schematic cross-sectional view showing a known light-emitting diode containing III-V group elements;
图2为显示图1中发光二极管的发光区域范围的示意图;FIG. 2 is a schematic diagram showing the scope of the light-emitting area of the light-emitting diode in FIG. 1;
图3为根据本发明所指出的发光二极管结构较佳实施例的剖面示意图;3 is a schematic cross-sectional view of a preferred embodiment of a light emitting diode structure pointed out according to the present invention;
图4为根据本发明所指出的发光二极管结构另一实施例的剖面示意图;4 is a schematic cross-sectional view of another embodiment of the light emitting diode structure pointed out according to the present invention;
图5为根据本发明所指出的发光二极管电流-电压特性测试的数据分析图。Fig. 5 is a data analysis chart of the current-voltage characteristic test of the light-emitting diode pointed out according to the present invention.
◆:习知的发光二极管结构;◆: Known light-emitting diode structure;
■:本发明的发光二极管结构。■: Light emitting diode structure of the present invention.
图6为根据本发明所指出的发光二极管的电流-亮度测试的数据分析图。Fig. 6 is a data analysis chart of the current-brightness test of the light-emitting diode pointed out according to the present invention.
◆:习知的发光二极管结构;◆: Known LED structure;
■:本发明的发光二极管结构。■: Light emitting diode structure of the present invention.
图中in the picture
1发光二极管 10基材1 LED 10 Substrate
12晶核层 14缓冲层12
16下束缚层 18主动层16 lower
20上束缚层 22接触层20 upper binding
24透明电极 26电极24
100发光二极管结构 120基板100 light emitting
122缓冲层 124下束缚层122
126发光层 128上束缚层126
130接触层 132第一电极130
134第二电极 136导电型薄膜134
具体实施方式Detailed ways
为使本发明的目的、特征及优点能更轻易地为熟习本发明技艺者了解,现配合附图做进一步详细说明如下:In order to make the purpose, features and advantages of the present invention more easily understood by those skilled in the art of the present invention, now in conjunction with the accompanying drawings, further detailed description is as follows:
根据本发明所指出的发光二极管结构,是利用建构式氧化薄膜接触层(Constructive Oxide Contact Structure,COCS)以形成高浓度(高导电率)的接触层,来降低接触层电阻。当此接触层辅以适当的透明电极,可用以有效的增加发光效率及降低操作电压。According to the light-emitting diode structure pointed out in the present invention, the Constructive Oxide Contact Structure (COCS) is used to form a high-concentration (high-conductivity) contact layer to reduce the contact layer resistance. When the contact layer is supplemented with an appropriate transparent electrode, it can be used to effectively increase the luminous efficiency and reduce the operating voltage.
此外,由于建构式氧化薄膜接触层具有较本体层(bulk layer)有更高的载子浓度,使得架构于其上的透明电极可以轻易的与之形成欧姆接触(Ohmic contact),不致因载子浓度不够高而形成萧基接触(Schottkycontact),而使得组件的操作电压增加。另外,透明电极可使用与建构式氧化薄膜接触层相同导电型的材料,使得透明电极与接触层之间不易产生接合面(junction),且透明电极与接触层的尺寸较易做成一致。In addition, since the contact layer of the structured oxide film has a higher carrier concentration than the bulk layer, the transparent electrode built on it can easily form an Ohmic contact with it, without causing carrier The concentration is not high enough to form a Schottky contact, which increases the operating voltage of the component. In addition, the transparent electrode can use the same conductivity type material as the contact layer of the structural oxide film, so that a junction between the transparent electrode and the contact layer is not easy to occur, and the dimensions of the transparent electrode and the contact layer are easier to make consistent.
参阅图3,为根据本发明所指出的发光二极管结构100较佳实施例的剖面示意图。根据本发明所指出的发光二极管结构100首先是提供一基板120,此基板120可以为一绝缘物质,亦可由导电型半导体材料所制备,在此并没有特别的限制,只要是任何已知或未知可供作为发光二极管基板的材料皆可被应用在根据本发明所指出的发光二极管结构中。当其为绝缘物质时,在此可举出的例子,包含氧化铝(Al2O3,sapphire)、氮化铝(AlN)、氮化镓(GaN)、尖晶石(Spinel)、氧化锂镓(LiGaO3)或氧化铝锂(LiAlO3)等,但并不仅限于此。当其为导电型半导体材料时,在此可举出的例子,包含碳化硅(SiC)、氧化锌(ZnO)、硅(Si)、磷化镓(GaP)、砷化镓(GaAs)、硒化锌(ZnSe)、磷化铟(InP)或加入硅杂质导电型氮化镓(GaN)等,但并不仅限于此。Referring to FIG. 3 , it is a schematic cross-sectional view of a preferred embodiment of a light emitting
接着,一层第一导电型缓冲层122形成于基板120上,其材料可为AlxInyGa1-x-yN等化合物,其中x≥0;y≥0;0≤x+y<1。在此可以举出的例子,包含氮化铟(InN)、氮化铟镓(InGaN)、氮化铝镓(AlGaN)或氮化镓(GaN)。Next, a
形成下束缚层124于第一导电型缓冲层122上,其可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,此化合物可由AloInpGa1-o-pN的化学通式表示,其中o≥0;p≥0;0≤o+p<1。例如,第一导电型氮化镓(GaN)。下束缚层124上再形成一发光层126,其亦可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,例如氮化铟镓(InGaN)。于此发光层126上再形成一上束缚层128,其亦可由任何已知或未知的含有氮化镓(GaN)的III-V族元素化合物制备,例如第二导电型氮化镓(GaN)或氮化铝镓(AlGaN)。其中,发光层126是由下束缚层124及上束缚层128所包覆。且此三层含有氮化镓(GaN)的III-V族元素化合物的材料选择、成分含量、掺杂物的选用等,可以按实际所需及设计加以调整,前述所举的的例子仅为实例说明,并不限制本发明的权利范围。Form the
接着,再于上束缚层128上形成一接触层130。根据本发明所指出的发光二极管结构100中,其接触层130是由具有极高载子浓度的III-V族元素化合物材料所制成,为一建构式氧化薄膜接触层,其可由四种材料所堆叠而成,分别为P+GaN、Y1InN、Y2Inx1Ga1-x1N及Y3InN,其堆叠次序可依P型、N型掺杂物作随意堆叠变化。其中,0≤X1≤1,Y1、Y2及Y3可为P型或N型掺杂物,故其导电性亦可为P型、N型或I型。此建构式氧化薄膜接触层的厚度范围在0.1~1,000纳米(nano meter,nm)之间。Next, a
接着,于下束缚层124上,与发光层126、上束缚层128及接触层130隔离的区域上形成第一电极132,作为发光二极管结构100的阴极,其与下束缚层124有好的欧姆接触,进而有较低的接触电阻。另外,于接触层130上形成一第二电极(透明电极)134,其是由一薄金属材料所制备,做为发光二极管结构100的阳极。Next, on the
前述第一电极或第二电极为选自由铟(In)、锡(Sn)、锌(Zn)、镍(Ni)、金(Au)、铬(Cr)、钴(Co)、镉(Cd)、铝(Al)、钒(V)、银(Ag)、钛(Ti)、钨(W)、铂(Pt)、钯(Pd)、铑(Rh)、钌(Ru)等金属所形成的一元、二元或二元以上的合金的金属电极,其厚度范围在1~10,000纳米(nm)之间。The aforementioned first electrode or second electrode is selected from indium (In), tin (Sn), zinc (Zn), nickel (Ni), gold (Au), chromium (Cr), cobalt (Co), cadmium (Cd) , aluminum (Al), vanadium (V), silver (Ag), titanium (Ti), tungsten (W), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and other metals The metal electrode of a one-element, two-element or more than two-element alloy has a thickness ranging from 1 to 10,000 nanometers (nm).
根据本发明所指出的发光二极管的另一实施例如图4所示,其结构大致上与图3中的实施例相同,惟其接触层130上再形成一层导电型薄膜136,供作为电流分散及透光用。其可应用于覆晶式发光二极管材料封装上,以有效提高此发光二极管的散热特性及抗静电能力。此导电型薄膜136为由铟(In)、锡(Sn)、锌(Zn)、镍(Ni)、金(Au)、铬(Cr)、钴(Co)、镉(Cd)、铝(Al)、钒(V)、银(Ag)、钛(Ti)、钨(W)、铂(Pt)、钯(Pd)、铑(Rh)或钌(Ru)等金属所形成的一元、二元或二元以上的氧化薄膜或合金的透明氧化导电层,厚度范围在1~1,000纳米之间。此导电型薄膜136亦可由具有高反射率金属所形成的一元、二元或二元以上的合金所制备。其中,此具有高反射率的金属在此可举出的例子,包含铝(Al)、银(Ag)、铂(Pt)、钯(Pd)、铑(Rh)、钌(Ru)、钛(Ti)、金(Au)、镍(Ni)及铜(Cu)等,但并不仅限于此。According to another embodiment of the light-emitting diode pointed out by the present invention, as shown in Figure 4, its structure is substantially the same as the embodiment in Figure 3, but one layer of conductive
此外,由于建构式氧化薄膜接触层具有较本体层(bulk layer)有更高的载子浓度,使得架构于其上的透明电极可以轻易的与的形成欧姆接触(Ohmic contact),不致因载子浓度不够高而形成萧基接触(Schottkycontact),而使得组件的操作电压增加。另外,透明电极可使用与建构式氧化薄膜接触层相同导电型的材料,使得透明电极与接触层的间不易产生接合面junction),且透明电极与接触层的尺寸较易做成一致。In addition, since the contact layer of the structured oxide film has a higher carrier concentration than the bulk layer, the transparent electrode built on it can easily form an Ohmic contact with The concentration is not high enough to form a Schottky contact, which increases the operating voltage of the component. In addition, the transparent electrode can use the same conductivity type material as the contact layer of the structural oxide film, so that the junction between the transparent electrode and the contact layer is not easy to occur, and the size of the transparent electrode and the contact layer can be easily made consistent.
综上所述,根据本发明所指出的发光二极管结构至少具有以下的特色:To sum up, the light emitting diode structure pointed out according to the present invention has at least the following characteristics:
1.以本发明所指出的建构式氧化薄膜接触层作为发光二极管的接触层时,可容易的形成高载子浓度的接触层。1. When the contact layer of the structured oxide thin film pointed out by the present invention is used as the contact layer of the light-emitting diode, the contact layer with high carrier concentration can be easily formed.
2.本发明所指出的建构式氧化薄膜接触层与透明电极具有较佳的欧姆接触特性,可使发光效率提高,并降低组件的操作电压。2. The structured oxide thin film contact layer and the transparent electrode pointed out in the present invention have better ohmic contact characteristics, which can improve the luminous efficiency and reduce the operating voltage of the component.
3.透明电极与接触层两者的导电型可以为同型或不同型,当两者为同一导电型时,可进一步消除接合面的问题。3. The conductivity types of the transparent electrode and the contact layer can be the same type or different types. When the two are of the same conductivity type, the problem of the joint surface can be further eliminated.
由于发光二极管通常为静电敏感的材料,当将根据本发明所指出的发光二极管结构与已知的结构进行静电测试时,做为接触层的建构式氧化薄膜接触层,可有效提升根据本发明所指出的发光二极管的抗静电放电(Electrostatic Discharge,ESD)能力(表一)。Since light-emitting diodes are generally static-sensitive materials, when the light-emitting diode structure pointed out by the present invention is subjected to electrostatic tests with known structures, the structural oxide thin film contact layer as the contact layer can effectively improve the structure of the light-emitting diode according to the present invention. The anti-static discharge (Electrostatic Discharge, ESD) capability of the indicated light-emitting diodes (Table 1).
参阅图5,为根据本发明所指出的发光二极管电流-电压特性测试的数据分析图,由图中可以看出,当于施予相同的电流,根据本发明所指出的发光二极管于低电流的操作下,可比已知的发光二极管获得较低的电压特性。Referring to Fig. 5, it is a data analysis diagram of the light-emitting diode current-voltage characteristic test according to the present invention, as can be seen from the figure, when the same current is applied, the light-emitting diode pointed out according to the present invention is at low current In operation, lower voltage characteristics can be obtained compared to known light-emitting diodes.
参阅图6为根据本发明所指出的发光二极管的电流-亮度测试的数据分析图。于施予相同的电流下根据本发明所指出的发光二极管较已知的发光二极管能发出较高的亮度。Referring to FIG. 6 , it is a data analysis chart of the current-brightness test of the light-emitting diode pointed out according to the present invention. Under the same current applied, the light-emitting diode according to the invention can emit higher brightness than the known light-emitting diode.
综上所述,根据本发明所指出的发光二极管结构,确实能较已知的发光二极管具有较高的发光效率、较低的组件操作电压及较强的抗静电放电能力。To sum up, according to the light emitting diode structure pointed out in the present invention, it can indeed have higher luminous efficiency, lower device operating voltage and stronger anti-static discharge capability than the known light emitting diodes.
表一根据本发明所指出的发光二极管结构经静电测试后的结果
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100063878A CN1333470C (en) | 2004-02-27 | 2004-02-27 | LED structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100063878A CN1333470C (en) | 2004-02-27 | 2004-02-27 | LED structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1661818A true CN1661818A (en) | 2005-08-31 |
CN1333470C CN1333470C (en) | 2007-08-22 |
Family
ID=35010990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100063878A Expired - Fee Related CN1333470C (en) | 2004-02-27 | 2004-02-27 | LED structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1333470C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255025A (en) * | 2010-05-18 | 2011-11-23 | 展晶科技(深圳)有限公司 | Light emitting diode |
CN102610760A (en) * | 2011-12-15 | 2012-07-25 | 友达光电股份有限公司 | Light emitting device and method for manufacturing the same |
CN103078050A (en) * | 2013-02-01 | 2013-05-01 | 映瑞光电科技(上海)有限公司 | Flip LED (light-emitting diode) chip and manufacturing method thereof |
CN104282811A (en) * | 2013-07-10 | 2015-01-14 | 奚衍罡 | Light emitting device and method for making same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100565254C (en) * | 2003-03-31 | 2009-12-02 | 燕山大学 | The method for continuous production of plastics photonic crystal fiber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4150449B2 (en) * | 1998-09-25 | 2008-09-17 | 株式会社東芝 | Compound semiconductor device |
JP3614070B2 (en) * | 2000-01-17 | 2005-01-26 | 日亜化学工業株式会社 | Nitride semiconductor light emitting diode |
US6712478B2 (en) * | 2001-01-19 | 2004-03-30 | South Epitaxy Corporation | Light emitting diode |
JP2002289914A (en) * | 2001-03-28 | 2002-10-04 | Pioneer Electronic Corp | Nitride semiconductor device |
-
2004
- 2004-02-27 CN CNB2004100063878A patent/CN1333470C/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255025A (en) * | 2010-05-18 | 2011-11-23 | 展晶科技(深圳)有限公司 | Light emitting diode |
CN102610760A (en) * | 2011-12-15 | 2012-07-25 | 友达光电股份有限公司 | Light emitting device and method for manufacturing the same |
US8765506B2 (en) | 2011-12-15 | 2014-07-01 | Au Optronics Corporation | Manufacturing method of light emitting device |
CN102610760B (en) * | 2011-12-15 | 2014-11-19 | 友达光电股份有限公司 | light emitting device |
CN103078050A (en) * | 2013-02-01 | 2013-05-01 | 映瑞光电科技(上海)有限公司 | Flip LED (light-emitting diode) chip and manufacturing method thereof |
US9419173B2 (en) | 2013-02-01 | 2016-08-16 | Enraytek Optoelectronics Co., Ltd. | Flip-chip LED and fabrication method thereof |
CN104282811A (en) * | 2013-07-10 | 2015-01-14 | 奚衍罡 | Light emitting device and method for making same |
Also Published As
Publication number | Publication date |
---|---|
CN1333470C (en) | 2007-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6515306B2 (en) | Light emitting diode | |
CN101878545B (en) | Led having current spreading layer | |
US6712478B2 (en) | Light emitting diode | |
CN100563033C (en) | Group IIIA Nitride Semiconductor Devices with Low-Resistance Ohmic Contacts | |
CN1552104A (en) | Group III nitride based light emitting diode structures with a quantum well and superlattice | |
CN1277461A (en) | Unipolar light emitting device based on superlattice III-nitride semiconductor | |
CN1917246A (en) | Nitride-based white light emitting device and manufacturing method thereof | |
US20130228747A1 (en) | Nitride semiconductor light emitting device | |
US20240128404A1 (en) | Light-emitting diode and method for manufacturing the same | |
CN1617365A (en) | Nitride-based light emitting device and method for manufacturing the same | |
CN103441196B (en) | Light emitting element and manufacturing method thereof | |
CN103066176A (en) | Nitride semiconductor light emitting device | |
CN1914742A (en) | Thin film light emitting diode with current-dispersing structure | |
CN113571612A (en) | LED epitaxial structure and application thereof, light-emitting diode comprising LED epitaxial structure and preparation method of light-emitting diode | |
CN1841796A (en) | Group III Nitride Light Emitting Devices | |
CN1263172C (en) | Method for manufacturing group-III nitride compound semiconductor device | |
US8053794B2 (en) | Nitride semiconductor light emitting device and fabrication method thereof | |
CN1674310A (en) | Gallium nitride-based III-V group compound semiconductor light-emitting device and method for manufacturing same | |
CN1333470C (en) | LED structure | |
US7737453B2 (en) | Light emitting diode structure | |
CN1316782A (en) | Nitride semiconductor device | |
US20050274964A1 (en) | Light emitting diode structure | |
CN1452256A (en) | Method for producing group III element nitride semiconductor component | |
KR20070028095A (en) | Light emitting diode having low resistance | |
KR101285527B1 (en) | Light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20161028 Address after: Hsinchu City, Taiwan, China Patentee after: Jingyuan Optoelectronics Co., Ltd. Address before: Taichung City, Taiwan, China Patentee before: Guangjia Photoelectric Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070822 Termination date: 20210227 |