[go: up one dir, main page]

CN1648249A - Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression - Google Patents

Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression Download PDF

Info

Publication number
CN1648249A
CN1648249A CN 200410016001 CN200410016001A CN1648249A CN 1648249 A CN1648249 A CN 1648249A CN 200410016001 CN200410016001 CN 200410016001 CN 200410016001 A CN200410016001 A CN 200410016001A CN 1648249 A CN1648249 A CN 1648249A
Authority
CN
China
Prior art keywords
sequence
seq
ribonucleic acid
sirna
antisense strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200410016001
Other languages
Chinese (zh)
Inventor
金由辛
史毅
罗海峰
李林
陆长德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institutes for Biological Sciences SIBS of CAS
Original Assignee
Shanghai Institutes for Biological Sciences SIBS of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institutes for Biological Sciences SIBS of CAS filed Critical Shanghai Institutes for Biological Sciences SIBS of CAS
Priority to CN 200410016001 priority Critical patent/CN1648249A/en
Publication of CN1648249A publication Critical patent/CN1648249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一组能够有效抑制SARS病毒RNA和蛋白表达的靶序列和小分子干扰核糖核酸(siRNA)、其载体、哺乳动物细胞及其应用,所述siRNA可以用于制备治疗和/或预防SARS病毒所引起的非典型肺炎及相关疾病的药物。The invention discloses a group of target sequences and small molecule interfering ribonucleic acid (siRNA) capable of effectively inhibiting the expression of SARS virus RNA and protein, its carrier, mammalian cells and applications thereof, and the siRNA can be used for preparing treatment and/or prevention Drugs for atypical pneumonia and related diseases caused by SARS virus.

Description

抑制SARS病毒基因表达的小分子干扰核糖核酸Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression

技术领域technical field

本发明涉及反义技术领域,具体的本发明涉及具有抑制SARS病毒复制和/或SARS病毒基因表达的小分子干扰核糖核酸及其应用。The present invention relates to the field of antisense technology, and specifically the present invention relates to a small molecule interfering ribonucleic acid capable of inhibiting SARS virus replication and/or SARS virus gene expression and its application.

背景技术Background technique

非典型肺炎即严重急性呼吸综合征(Severe Acute Respiratory SyndromeSARS)的病原体已经确认为一种冠状病毒,该病毒是一种正链RNA病毒(GENEBANK登录号:NC_004718),基因组为单链RNA,含有Poly(A),总长接近30kb。病毒表面有约20nm左右棒状结构,呈皇冠状。该病原体具有很强的感染性和传染性,病毒在患者体内经过早期复制过程后,在肺部引发大规模炎症反应,最终导致肺部组织损伤。The causative agent of atypical pneumonia, Severe Acute Respiratory Syndrome (Severe Acute Respiratory SyndromeSARS), has been identified as a coronavirus, which is a positive-strand RNA virus (GENEBANK accession number: NC_004718), with a genome of single-stranded RNA containing poly (A), the total length is nearly 30 kb. The surface of the virus has a rod-shaped structure of about 20nm, which is crown-shaped. The pathogen is highly contagious and contagious. After the virus undergoes an early replication process in the patient's body, it triggers a large-scale inflammatory response in the lungs, which eventually leads to lung tissue damage.

SARS病毒感染所引起的传染性非典型肺炎严重危害了我国和世界多国人民的身体健康,也正在严重干扰我国经济的正常开展.它已成为当前我国一个严重的社会、政治、经济问题。对SARS病毒,现无有效药物抑制其生长。小分子核糖核酸(siRNA)是在RNAi(RNA干扰)技术基础上发展起来的。与它有关的技术被美国“Science”评为2001年度国际十大科技突破的第二条,2002年度国际十大科技突破的第一条,2003年被评为第四条。其作用原理主要是siRNA部分解链,与靶mRNA反向互补的片段与靶序列结合,体内的酶系将mRNA切断。由此可抑制靶基因的表达。它是一个被认为是最有前途的核酸药物技术。Infectious atypical pneumonia caused by SARS virus infection has seriously endangered the health of people in my country and many countries in the world, and is seriously interfering with the normal development of my country's economy. It has become a serious social, political and economic problem in my country. For the SARS virus, there is no effective drug to inhibit its growth. Small molecule ribonucleic acid (siRNA) is developed on the basis of RNAi (RNA interference) technology. The technology related to it was rated as the second of the top ten international scientific and technological breakthroughs in 2001 by the US "Science", the first of the top ten international scientific and technological breakthroughs in 2002, and the fourth in 2003. Its principle of action is that the siRNA is partially unzipped, and the fragment reversely complementary to the target mRNA binds to the target sequence, and the enzyme system in the body cuts the mRNA. In this way, the expression of the target gene can be suppressed. It is one of the most promising nucleic acid drug technologies.

RNA干扰(RNA interference)是一种由双链RNA诱发的基因沉默(gene silencing)。在此过程中,与双链RNA有同源序列的信使RNA(mRNA)被降解,从而抑制了该基因的表达。RNA干扰技术在探查基因功能和治疗人类疾病方面有广阔的应用前景。RNA干扰的详细机制尚不清楚。现有实验资料提示,RNA干扰过程主要有2个步骤:(1)长双链RNA被细胞源性的双链RNA特异的核酸酶Dicer切成21~23个碱基对的短双链RNA,称为小分子干扰RNA(small interfering RNA,siRNA);(2)小分子干扰性RNA与细胞源性的某些酶和蛋白质形成复合体,称为RNA诱导的沉默复合体(RNA-induced silencing complex,RISC),该复合体可识别与小分子干扰性RNA有同源序列的mRNA,并在特异的位点将该mRNA切断。小分子干扰性RNA的发现不仅加深了人们对RNA干扰机制的认识,同时突破了一个用长双链RNA在哺乳类细胞中抑制基因表达时常常遇到的障碍,即非特异性作用。长于30个碱基对的双链RNA常常会激活蛋白激酶而诱发对蛋白质合成的非特异抑制。小分子干扰RNA一般不会在哺乳类细胞中诱发这种非特异性抑制。用人工合成的小分子干扰RNA可特异性地抑制哺乳类细胞中外源性或内源性基因的表达。实验表明,长度为21-23个碱基、3’末端有2个碱基突出的小分子干扰性RNA活性较高。小分子干扰RNA诱发的基因抑制具有高度的序列特异性。RNA干扰可以被看成是一种与免疫系统类似的防御机制。那么,通过RNA干扰治疗病毒感染性疾病在理论上完全可行。目前,已有很多研究表明:通过RNA干扰可以抑制病毒在细胞内复制,如人类免疫缺陷病毒(HIV)、脊髓灰质炎病毒、人乳头瘤病毒、乙型肝炎病毒和丙型肝炎病毒。但是,这些研究只是停留在实验室体外培养细胞水平及初步的动物实验水平,尚未有将小分子干扰RNA用于人体试验的结果。将RNA干扰技术用于临床治疗人类疾病还有许多研究工作要做,如何将小分子干扰性RNA安全、有效地导入靶组织或靶细胞就是一个必须解决的问题。尽管如此,大量的体外实验研究资料已经显现出该技术在基因功能研究中的应用前景和新药开发中的巨大潜力。RNA interference is a type of gene silencing induced by double-stranded RNA. During this process, messenger RNA (mRNA), which has a homologous sequence to the double-stranded RNA, is degraded, thereby inhibiting the expression of the gene. RNA interference technology has broad application prospects in probing gene functions and treating human diseases. The detailed mechanism of RNA interference is still unclear. The existing experimental data suggest that the process of RNA interference mainly involves two steps: (1) the long double-stranded RNA is cut into short double-stranded RNA of 21-23 base pairs by the cell-derived double-stranded RNA-specific nuclease Dicer, It is called small interfering RNA (small interfering RNA, siRNA); (2) small interfering RNA forms a complex with some cell-derived enzymes and proteins, called RNA-induced silencing complex (RNA-induced silencing complex) , RISC), this complex can recognize the mRNA with homologous sequence with the small molecule interfering RNA, and cut off the mRNA at a specific site. The discovery of small molecule interfering RNA not only deepens people's understanding of the mechanism of RNA interference, but also breaks through an obstacle often encountered when using long double-stranded RNA to inhibit gene expression in mammalian cells, that is, non-specific effects. Double-stranded RNA longer than 30 base pairs often activates protein kinases and induces nonspecific inhibition of protein synthesis. Small interfering RNAs generally do not induce such nonspecific repression in mammalian cells. Artificially synthesized small molecule interfering RNA can specifically inhibit the expression of exogenous or endogenous genes in mammalian cells. Experiments have shown that small interfering RNAs with a length of 21-23 bases and 2 bases protruding from the 3' end have higher activity. Small interfering RNA-induced gene suppression is highly sequence-specific. RNA interference can be seen as a defense mechanism similar to that of the immune system. Then, it is theoretically feasible to treat viral infectious diseases through RNA interference. At present, many studies have shown that RNA interference can inhibit the replication of viruses in cells, such as human immunodeficiency virus (HIV), poliovirus, human papillomavirus, hepatitis B virus and hepatitis C virus. However, these studies are only at the level of in vitro cultured cells in the laboratory and preliminary animal experiments, and there is no result of using small molecule interfering RNA in human trials. There is still a lot of research work to be done to apply RNA interference technology to clinical treatment of human diseases. How to safely and effectively introduce small molecule interfering RNA into target tissues or cells is a problem that must be solved. Nevertheless, a large number of in vitro experimental research data have shown the application prospect of this technology in the study of gene function and the great potential in the development of new drugs.

SARS病毒RNA编码多个蛋白质基因。其中,M蛋白、E蛋白、N蛋白均为SARS病毒所特有,人细胞中无替代其功能的其他蛋白质存在。如抑制这些蛋白质中的任何一个,SARS病毒的生长周期即不能完成,病毒生长即受到抑制。SARS virus RNA encodes multiple protein genes. Among them, the M protein, E protein, and N protein are all unique to the SARS virus, and there are no other proteins that replace their functions in human cells. If any one of these proteins is inhibited, the growth cycle of the SARS virus cannot be completed, and the growth of the virus is inhibited.

发明内容Contents of the invention

本发明的目的就是提供一组SARS病毒的小分子干扰核糖核酸(siRNA)靶序列及其应用。The purpose of the present invention is exactly to provide a small molecule interfering ribonucleic acid (siRNA) target sequence of a group of SARS virus and application thereof.

本发明的另一目的就是提供一组小分子干扰核糖核酸、其载体、宿主细胞及其应用。Another object of the present invention is to provide a set of small molecule interference ribonucleic acid, its carrier, host cell and its application.

本发明的第一方面提供了一组SARS病毒的小分子干扰核糖核酸(siRNA)靶序列,其特征在于,所述靶序列为SARS病毒M、N、E基因上的连续19-25个核酸。The first aspect of the present invention provides a group of small molecule interfering ribonucleic acid (siRNA) target sequences of SARS virus, it is characterized in that, described target sequence is the continuous 19-25 nucleic acid on M, N, E gene of SARS virus.

较佳的,所述siRNA靶序列为与SEQ ID NO:1-SEQ ID NO:26中任意一条序列的连续18个核酸序列相同的序列。更佳的,所述的siRNA靶序列为SEQ IDNO:1-SEQ ID NO:26所示的任意一条序列。Preferably, the siRNA target sequence is the same sequence as the 18 consecutive nucleic acid sequences of any one of SEQ ID NO: 1-SEQ ID NO: 26. More preferably, the siRNA target sequence is any sequence shown in SEQ ID NO: 1-SEQ ID NO: 26.

本发明的第二方面提供了上述siRNA靶序列在筛选抗SARS病毒药物中的应用。所述抗SARS病毒药物为治疗或预防SARS病毒所引起的非典型肺炎及其它相关疾病的药物。The second aspect of the present invention provides the application of the above-mentioned siRNA target sequence in screening anti-SARS virus drugs. The anti-SARS virus drug is a drug for treating or preventing atypical pneumonia and other related diseases caused by the SARS virus.

本发明的第三方面提供了一组小分子干扰核糖核酸(siRNA),其特征在于,所述核糖核酸特异性地与与上述SARS病毒位点的mRNA相结合,且能抑制SARS病毒基因的表达和/或SARS病毒的复制。The third aspect of the present invention provides a group of small molecule interfering ribonucleic acid (siRNA), characterized in that, said ribonucleic acid is specifically combined with the mRNA of the above-mentioned SARS virus site, and can inhibit the expression of SARS virus gene and/or replication of the SARS virus.

较佳的,所述核糖核酸为具有19-25对碱基的双链RNA复合体,所述双链中至少有18对碱基互补。Preferably, the ribonucleic acid is a double-stranded RNA complex with 19-25 base pairs, and at least 18 base pairs in the double strand are complementary.

在一优选例中,所述的核糖核酸包括一条正义链和一条反义链,所述反义链序列与上述siRNA靶序列有至少18个碱基互补,正义链序列与所述反义链序列有至少18个碱基互补。更佳的,所述正义链与反义链结合区域含19、20或21对碱基互补。In a preferred example, the ribonucleic acid includes a sense strand and an antisense strand, the sequence of the antisense strand has at least 18 bases complementary to the above-mentioned siRNA target sequence, and the sequence of the sense strand is complementary to the sequence of the antisense strand There are at least 18 bases complementary. More preferably, the binding region of the sense strand and the antisense strand contains 19, 20 or 21 base pairs of complementarity.

在另一优选例中,所述反义链序列与SEQ ID NO:1到SEQ ID NO:29所示的任意一条序列有至少18个碱基互补。较佳的,所述反义链序列为SEQ ID NO:30到SEQ ID NO:55所示的任意一条序列或与前述序列有连续18个碱基相同的序列。In another preferred example, the antisense strand sequence has at least 18 bases complementary to any one of the sequences shown in SEQ ID NO: 1 to SEQ ID NO: 29. Preferably, the antisense strand sequence is any sequence shown in SEQ ID NO: 30 to SEQ ID NO: 55 or a sequence having 18 consecutive bases identical to the aforementioned sequence.

在另一优选例中,所述核糖核酸的双链选自:In another preference, the double strand of the ribonucleic acid is selected from:

(1)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),X为30-55中任一自然数;(1) The sequence of the antisense strand is SEQ ID NO: X, the sequence of the sense strand is SEQ ID NO: (X-29), and X is any natural number in 30-55;

(2)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),但与反义链5’端配对的正义链上相应位置的碱基被替换为不配对的碱基,X为30-55中任一自然数;(2) The sequence of the antisense strand is SEQ ID NO: X, and the sequence of the sense strand is SEQ ID NO: (X-29), but the bases at the corresponding positions on the sense strand paired with the 5' end of the antisense strand are replaced by different paired bases, X is any natural number in 30-55;

(3)反义链序列为SEQ ID NO:41,正义链序列为SEQ ID NO:27;(3) The sequence of the antisense strand is SEQ ID NO: 41, and the sequence of the sense strand is SEQ ID NO: 27;

(4)反义链序列为SEQ ID NO:54,正义链序列为SEQ ID NO:28;(4) The sequence of the antisense strand is SEQ ID NO: 54, and the sequence of the sense strand is SEQ ID NO: 28;

(5)反义链序列为SEQ ID NO:53,正义链序列为SEQ ID NO:29。(5) The sequence of the antisense strand is SEQ ID NO: 53, and the sequence of the sense strand is SEQ ID NO: 29.

较佳的,所述与反义链5’端配对的正义链上相应位置的碱基的替换选自:Preferably, the substitution of bases at corresponding positions on the sense strand paired with the 5' end of the antisense strand is selected from:

(1)C→U;(1) C → U;

(2)U→C;(2) U → C;

(3)A→G或I;(3) A→G or I;

(4)G→A或I。(4) G → A or I.

在另一优选例中,上述核糖核酸的正义链和反义链的3’端连接有两个以上脱氧寡核苷酸的末端。较佳的,所述末端为dTdT、dAdA、dCdC、dGdG或dIdI。更佳的,所述末端为dTdT。In another preferred example, the 3' ends of the sense strand and the antisense strand of the above-mentioned ribonucleic acid are connected with more than two ends of deoxyoligonucleotides. Preferably, the end is dTdT, dAdA, dCdC, dGdG or dIdI. More preferably, the end is dTdT.

本发明的第四方面提供了一种载体,其特征在于,所述载体至少包含一条上述核糖核酸。较佳的,所述核糖核酸包括一个正义链区域和一个反义链区域,所述反义链区域包含与上述siRNA靶序列互补的序列,正义链区域序列与所述反义链区域序列互补。The fourth aspect of the present invention provides a vector, characterized in that the vector comprises at least one ribonucleic acid. Preferably, the ribonucleic acid includes a sense strand region and an antisense strand region, the antisense strand region comprises a sequence complementary to the above-mentioned siRNA target sequence, and the sense strand region sequence is complementary to the antisense strand region sequence.

在一优选例中,所述核糖核酸的双链选自:In a preferred example, the double strand of the ribonucleic acid is selected from:

(1)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),X为30-55中任一自然数;(1) The sequence of the antisense strand is SEQ ID NO: X, the sequence of the sense strand is SEQ ID NO: (X-29), and X is any natural number in 30-55;

(2)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),但与反义链5’端配对的正义链上相应位置的碱基被替换为不配对的碱基,X为30-55中任一自然数;(2) The sequence of the antisense strand is SEQ ID NO: X, and the sequence of the sense strand is SEQ ID NO: (X-29), but the bases at the corresponding positions on the sense strand paired with the 5' end of the antisense strand are replaced by different paired bases, X is any natural number in 30-55;

(3)反义链序列为SEQ ID NO:41,正义链序列为SEQ ID NO:27;(3) The sequence of the antisense strand is SEQ ID NO: 41, and the sequence of the sense strand is SEQ ID NO: 27;

(4)反义链序列为SEQ ID NO:54,正义链序列为SEQ ID NO:28;(4) The sequence of the antisense strand is SEQ ID NO: 54, and the sequence of the sense strand is SEQ ID NO: 28;

(5)反义链序列为SEQ ID NO:53,正义链序列为SEQ ID NO:29。(5) The sequence of the antisense strand is SEQ ID NO: 53, and the sequence of the sense strand is SEQ ID NO: 29.

本发明的第五方面提供了一种宿主细胞,其特征在于,所述宿主细胞包含上述载体。较佳的,所述宿主细胞为哺乳动物细胞。更佳的,所述哺乳动物细胞为人类细胞。The fifth aspect of the present invention provides a host cell, characterized in that the host cell comprises the above-mentioned vector. Preferably, the host cells are mammalian cells. More preferably, the mammalian cells are human cells.

本发明的第六方面提供了上述核糖核酸的应用,其特征在于上述核糖核酸在制备治疗和/或预防SARS病毒所引起的非典型肺炎及其它相关疾病的药物中的应用。The sixth aspect of the present invention provides the application of the above-mentioned ribonucleic acid, which is characterized in that the above-mentioned ribonucleic acid is used in the preparation of medicines for the treatment and/or prevention of atypical pneumonia and other related diseases caused by the SARS virus.

本发明的第七方面提供了一种组合物,其特征在于,它包括安全有效量的上述核糖核酸以及药学上可接受的载体。较佳的,所述核糖核酸包含一条正义链和一条反义链,所述反义链为选自SEQ NO:30到SEQ NO:55所示的任意一条核苷酸序列,正义链区域序列与所述反义链区域序列互补。The seventh aspect of the present invention provides a composition, which is characterized in that it includes a safe and effective amount of the above ribonucleic acid and a pharmaceutically acceptable carrier. Preferably, the ribonucleic acid comprises a sense strand and an antisense strand, the antisense strand is selected from any nucleotide sequence shown in SEQ NO: 30 to SEQ NO: 55, and the region sequence of the sense strand is the same as The sequences of the antisense strand regions are complementary.

本发明的第八方面提供了上述载体在制备治疗和/或预防SARS病毒所引起的非典型肺炎及其它相关疾病的药物中的应用。The eighth aspect of the present invention provides the application of the above carrier in the preparation of medicines for treating and/or preventing atypical pneumonia and other related diseases caused by SARS virus.

本发明的第九方面提供了上述宿主细胞在制备治疗和/或预防SARS病毒所引起的非典型肺炎及其它相关疾病的药物中的应用。较佳的,所述宿主细胞为哺乳动物细胞。更佳的,所述哺乳动物细胞为人类细胞。The ninth aspect of the present invention provides the application of the above-mentioned host cells in the preparation of medicines for treating and/or preventing SARS virus-induced atypical pneumonia and other related diseases. Preferably, the host cells are mammalian cells. More preferably, the mammalian cells are human cells.

如本发明所用,术语“小分子干扰核糖核酸”是指包含SEQ ID NO:1-SEQID NO:55所示序列的siRNA和其类似物,也指一系列化学物质,这些化学物质具有一系列核苷酸碱基序列,能通过与SARS病毒的核苷酸碱基氢键相互作用识别SARS病毒序列或其部分序列。As used in the present invention, the term "small molecule interfering ribonucleic acid" refers to siRNA and its analogues comprising sequences shown in SEQ ID NO: 1-SEQID NO: 55, and also refers to a series of chemical substances, which have a series of nuclear The nucleotide base sequence can recognize the SARS virus sequence or its partial sequence by interacting with the nucleotide base hydrogen bond of the SARS virus.

这些RNA类似物包括但不限于2’-O-烷基糖修饰、甲基磷酸脂、硫代磷酸酯、二磷酸酯、甲缩醛(formacetal)、3’-硫代甲缩醛(3’-thioformacetal)、砜、氨基磺酸酯和硝基骨架修饰、氨基化合物和其中碱基部分已被修饰的类似物。而且,分子的类似物可以为多聚物,其中的核糖部分已被其它合适的部分修饰或替换,产生的多聚物包括但不限于吗琳代类似物和肽核酸(PNA)、锁核酸(LNA)及其它类似物。这些类似物包括上述修饰的不同组合,包含连接基团和/或糖或碱基的结构修饰来改进RNaseH介导的SARS病毒RNA的破坏、结合亲和力、核酸酶抗性和/或其特异性。These RNA analogs include, but are not limited to, 2'-O-alkyl sugar modifications, methylphospholipids, phosphorothioates, diphosphates, formacetals, 3'-thioformals (3' -thioformacetal), sulfone, sulfamate, and nitro backbone modifications, amino compounds, and analogs in which the base moiety has been modified. Furthermore, analogs of molecules may be polymers in which the ribose moiety has been modified or replaced by other suitable moieties, resulting polymers include but are not limited to morphine analogs and peptide nucleic acid (PNA), locked nucleic acid ( LNA) and other analogues. These analogs include different combinations of the above modifications, including structural modifications of linking groups and/or sugars or bases to improve RNaseH-mediated destruction of SARS virus RNA, binding affinity, nuclease resistance and/or its specificity.

在本发明中,术语“小分子核糖核酸”、“小分子干扰核糖核酸”或“siRNA”“本发明核糖核酸”可互换使用,它们都指具有抑制SARS病毒表达的核糖核酸序列,包括正义链区域(SEQ ID NO:1到SEQ ID NO:29中任一条序列)和反义链区域(SEQ ID NO:30到SEQ ID NO:55中任一条序列)的核糖核酸(RNA)。In the present invention, the terms "small molecule ribonucleic acid", "small molecule interfering ribonucleic acid" or "siRNA" and "ribonucleic acid of the present invention" can be used interchangeably, and they all refer to ribonucleic acid sequences that inhibit the expression of SARS virus, including sense The ribonucleic acid (RNA) of the strand region (any one of SEQ ID NO: 1 to SEQ ID NO: 29) and the antisense strand region (any one of SEQ ID NO: 30 to SEQ ID NO: 55).

目前,已经可以完全通过化学合成来得到编码本发明的RNA序列。然后可将该RNA序列引入本领域中已知的各种现有的RNA分子(或如载体)和细胞中。At present, the RNA sequence encoding the present invention can be obtained completely through chemical synthesis. This RNA sequence can then be introduced into various existing RNA molecules (or eg, vectors) and cells known in the art.

本发明也涉及包含本发明的核糖核酸的载体和用本发明的载体经基因工程产生的宿主细胞。所述载体可以是质粒、病毒颗粒及其他载体形式。表达载体中的核糖核酸序列可以可操作地和表达控制序列连接,还包含用于翻译起始和转录终止的核糖体结合位点,优选的包含一个或多个选择性标记。所述宿主细胞可以是细菌如大肠杆菌,真菌如酵母,昆虫细胞如Sf9,动物细胞(尤其是哺乳动物细胞)如CHO、COS或人类的细胞等。通过本文的阐述,适当的载体、宿主细胞的选择都在本领域技术人员的知识范围内。The present invention also relates to a vector comprising the ribonucleic acid of the present invention and a host cell produced by genetic engineering using the vector of the present invention. The vectors can be in the form of plasmids, virus particles and other vectors. The ribonucleic acid sequence in the expression vector can be operably linked to the expression control sequence, and also contains ribosome binding sites for translation initiation and transcription termination, and preferably contains one or more selectable markers. The host cells may be bacteria such as Escherichia coli, fungi such as yeast, insect cells such as Sf9, animal cells (especially mammalian cells) such as CHO, COS or human cells, etc. Based on the description herein, the selection of appropriate vectors and host cells is within the knowledge of those skilled in the art.

在治疗应用中,本发明的核糖核酸能够根据不同给药方式配成制剂,包括口服、局部或局部化给药。技术和配方通常在最新版的Remington’sPharmaceutical Sciences,Mack Publishing Co.,Easton,Pa中可以找到。活性组分为siRNA,其通常结合着一种载体如稀释的赋形剂,包括装填物、补充剂、接合剂、润湿剂、分解质、表面活性剂、可降解的多聚物或润滑剂、依赖于给药模式的性质和配药形式。典型的配药形式包括药片、药粉,药粒和胶囊,液体制剂包括悬浮液、乳化液和溶液。In therapeutic applications, the ribonucleic acid of the present invention can be formulated into preparations according to different administration methods, including oral, topical or topical administration. Techniques and formulations are generally found in the latest edition of Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. The active ingredient is siRNA, which is usually combined with a carrier such as dilute excipients, including fillers, extenders, binders, wetting agents, disintegrants, surfactants, degradable polymers, or lubricants , depending on the nature of the mode of administration and the form of dosing. Typical dosage forms include tablets, powders, granules and capsules, and liquid preparations include suspensions, emulsions and solutions.

本发明的核糖核酸特别适合于口服给药,这在常规的药物传送条件下需要在将药暴露于胃酸条件下长达4小时,当以持续释放的形式呈递时,能够长达12小时。将这些siRNA配成以持续释放形式的制剂对于治疗非典型肺炎和由SARS病毒引起的疾病非常有利。The ribonucleic acid of the present invention is particularly suitable for oral administration, which requires exposure of the drug to gastric acid for up to 4 hours under conventional drug delivery conditions, and can last up to 12 hours when presented in a sustained release form. It is very beneficial to formulate these siRNAs into preparations in the form of sustained release for the treatment of atypical pneumonia and diseases caused by SARS virus.

还可以通过跨粘膜或经皮方法获得siRNA系统给药,或口服复合物。对于跨粘膜或经皮给药,适合于穿透屏障的渗透剂可以被用于制剂中。这些渗透剂在本领域中通常是已知的,包括,例如用于跨粘膜给药的胆酸盐和梭链孢酸衍生物。此外,去垢剂可以被用来协助透过。跨粘膜给药,例如可以是通过用鼻腔喷雾,以及适合于吸入或栓剂给药的制剂。鼻腔喷雾制剂可用于治疗和/或预防非典型肺炎和由SARS病毒引起的疾病。Systemic administration of siRNA, or oral complexes can also be achieved by transmucosal or transdermal methods. For transmucosal or transdermal administration, penetrants suitable to penetrate the barrier may be used in the formulation. Such penetrants are generally known in the art and include, for example, cholates and fusidic acid derivatives for transmucosal administration. Additionally, detergents can be used to assist penetration. Transmucosal administration can be, for example, by nasal spray, and formulations suitable for inhalation or suppository administration. The nasal cavity spray preparation can be used for treating and/or preventing atypical pneumonia and diseases caused by SARS virus.

本发明的核糖核酸也能够与适于被试者施用的可药用载体结合。合适的药物载体的例子为各种阳离子脂质体,包括但不限于N-(1-2,3-二油基氧)丙基-n,n,n-三甲基铵氯(N-(1-2,3-dioleyloxy)ProPyl)-n,n,n-trimethylammonium chloride)(DOTMA)和二油酰基磷脂酸基乙醇胺(dioleoylphophotidyl ethanolamine)(DOPE)。脂质体也是本发明的siRNA的合适载体。其它合适的载体为包含所要求的siRNA的缓释凝胶或聚合体。The ribonucleic acid of the present invention can also be combined with a pharmaceutically acceptable carrier suitable for administration to a subject. Examples of suitable pharmaceutical carriers are various cationic liposomes including, but not limited to, N-(1-2,3-dioleyloxy)propyl-n,n,n-trimethylammonium chloride (N-( 1-2,3-dioleyloxy)ProPyl)-n,n,n-trimethylammonium chloride) (DOTMA) and dioleylphophotidyl ethanolamine (DOPE). Liposomes are also suitable carriers for the siRNAs of the invention. Other suitable carriers are slow release gels or polymers containing the desired siRNA.

本发明的核糖核酸可以通过任何有效途径施用给病人,包括肌肉注射、静脉内注射、胸内注射、鼻内注射、腹膜注射、皮下注射、和口服给药。口服给药需要肠衣以保护所要求的反义分子和其类似物在胃肠道中不被降解。siRNA可以与一定量的生理上可接受的载体和稀释剂混合,例如盐溶液或其它合适的液体。The ribonucleic acid of the present invention can be administered to patients by any effective route, including intramuscular injection, intravenous injection, intrathoracic injection, intranasal injection, peritoneal injection, subcutaneous injection, and oral administration. Oral administration requires enteric coatings to protect the desired antisense molecules and their analogs from degradation in the gastrointestinal tract. siRNA can be mixed with a certain amount of physiologically acceptable carrier and diluent, such as saline solution or other suitable liquid.

任何所施用的特定siRNA的实际用量依赖于很多因素,如疾病或感染的类型和阶段、siRNA对体内其它细胞的毒性、其被细胞吸收的速率、施用反义分子的病人的年龄和体重。通过常规方法例如:逐渐增加siRNA的剂量使其从对抑制细胞增殖无效到有效,可以确定病人的有效量。呈递给疾病细胞的浓度范围从5nM到约5μM都能够有效抑制基因表达并表现出可检测的表型。较佳的,浓度范围从10nM到约100nM,如15号siRNA的较佳浓度为13nM。当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。The actual amount of any particular siRNA administered depends on many factors, such as the type and stage of the disease or infection, the toxicity of the siRNA to other cells in the body, its rate of uptake by cells, the age and weight of the patient to whom the antisense molecule is being administered. An effective amount for a patient can be determined by routine methods such as gradually increasing the dose of siRNA from ineffective to effective in inhibiting cell proliferation. Concentrations ranging from 5 nM to approximately 5 μM presented to diseased cells were effective in inhibiting gene expression and exhibiting a detectable phenotype. Preferably, the concentration ranges from 10 nM to about 100 nM, for example, the preferred concentration of siRNA No. 15 is 13 nM. Of course, factors such as the route of administration and the health status of the patient should also be considered for the specific dosage, which are within the skill of skilled physicians.

附图说明Description of drawings

图1.RT-PCR循环圈数的确定。Figure 1. Determination of the cycle number of RT-PCR.

图2.RT-PCR循环数与DNA产量的关系曲线。Figure 2. The relationship curve between RT-PCR cycle number and DNA yield.

图3.针对E基因的siRNA的筛选。Figure 3. Screening of siRNA against the E gene.

图4.针对M基因的siRNA的筛选。Figure 4. Screening of siRNAs against the M gene.

图5.针对N基因的siRNA的筛选。Figure 5. Screening of siRNAs against the N gene.

图6.No.90号siRNA对SARS病毒E基因表达的抑制效果与其剂量的关系。Figure 6. No.90 siRNA's inhibitory effect on SARS virus E gene expression and its dose relationship.

图7.No.15号siRNA对SARS病毒M基因表达的抑制效果与其剂量的关系。Figure 7. No. No. 15 siRNA's inhibitory effect on SARS virus M gene expression and its dose relationship.

图8.No.58号siRNA对SARS病毒N基因表达的抑制效果与其剂量的关系。Figure 8. No.58 siRNA's inhibitory effect on SARS virus N gene expression and its dose relationship.

图9.No.90号siRNA对GFP-E融合蛋白表达的抑制。Figure 9. Inhibition of GFP-E fusion protein expression by No. 90 siRNA.

图10.No.15号siRNA对GFP-M融合蛋白表达的抑制。Figure 10. Inhibition of GFP-M fusion protein expression by No. 15 siRNA.

图11.No.58号siRNA对GFP-N融合蛋白表达的抑制。Figure 11. Inhibition of GFP-N fusion protein expression by No. 58 siRNA.

图12.反义链5’端不配对的siRNA在Vero E6细胞中对SARS基因表达的抑制作用。Figure 12. Inhibition of SARS gene expression in Vero E6 cells by unpaired siRNA at the 5' end of the antisense strand.

图13.针对E基因的siRNA靶位点mRNA的二级结构模拟图Figure 13. Secondary structure simulation of siRNA target site mRNA for E gene

图14.针对M基因的siRNA靶位点mRNA的二级结构模拟图Figure 14. Secondary structure simulation diagram of siRNA target site mRNA for M gene

图15.针对N基因的siRNA靶位点mRNA的二级结构模拟图Figure 15. Secondary structure simulation of siRNA target site mRNA for N gene

具体实施方式Detailed ways

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York:ColdSpring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. The experimental method that does not indicate specific conditions in the following examples, usually according to conventional conditions such as Sambrook et al., molecular cloning: the conditions described in the laboratory manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer's instructions suggested conditions.

实施例一siRNA靶位点的设计The design of embodiment one siRNA target site

对SARS病毒RNA进行二级结构计算机模拟。在M、N、E蛋白编码区内和在负链RNA中选取下列位点:   靶基因     编号  靶位点序列     序列号   小信封蛋白E(smallenvelopepritein E)     19  26167 5’uuu cgu ggu auu cuu gcu agu 3’26187     8     51  26263 5’aac ggu uua cgu cua cuc gcg 3’26283     25     88  26211 5’uuc gau ugu gug cgu acu gcu 3’26231     9     89  26135 5’uua aua guu aau agc gua cuu 3’26155     10     90  26305 5’uga agg agu ucc uga ucu ucu 3’26325     26   M蛋白(proteinM)     7  26768 5’cca gac cgc uca ugg aaa gug 3’26788     11     8  26927 5’cgu cgc agc gug uag gca cug 3’26947     12     15  26414 5’agc uua aac aac ucc ugg aac 3’26434     13     16  26985 5’aaa cua uaa auu aaa uac aga 3’27005     1     52  26580 5’ugc ugc ugu cua cag aau uaa 3’26600     2     53  26658 5’uag cua cuu cgu ugc uuc cuu 3’26678     14     54  26877 5’aga gau cac ugu ggc uac auc 3’26897     15     55  26637 5’uau ugu agg cuu gau gug gcu 3’26657     16     56  26824 5’uug cga aug gcc gga cac ucc 3’26844     3     57  26957 5’uug cug cau aca acc gcu acc 3’26977     17   N蛋白(Nucleocapsidprotein)     10  28525 5’aau aca ccc aaa gac cac auu 3’28545     18     17  28555 5’aau ccu aau aac aau gcu gcc 3’28575     19     58  28111 5’gau aau gga ccc caa uca aac 3’28131     20     59  28288 5’aag gag gaa cuu aga uuc ccu 3’28308     21     60  28483 5’aac aaa gaa ggc auc gua ugg 3’28503     4     61  28863 5’uga ggc auc uaa aaa gcc ucg 3’28883     5     62  28246 5’aau aau acu gcg ucu ugg uuc 3’28266     22     63  28371 5’aag agc uac ccg acg agu ucg 3’28391     26     64  28593 5’uca agg aac aac auu gcc aaa 3’28613     23     65  28889 5’aac gua cug cca caa aac agu 3’28909     24     91  28212 5’aag gcc aaa aca gcg ccg acc 3’28232     7 Computer simulation of the secondary structure of SARS virus RNA. Select the following sites in the M, N, E protein coding regions and in the negative strand RNA: target gene serial number target site sequence serial number Small envelope protein E (smallenvelopepritein E) 19 26167 5'uuu cgu ggu auu cuu gcu agu 3'26187 8 51 26263 5'aac ggu uua cgu cua cuc gcg 3'26283 25 88 26211 5'uuc gau ugu gug cgu acu gcu 3'26231 9 89 26135 5'uua aua guu aau agc gua cuu 3'26155 10 90 26305 5'uga agg agu ucc uga ucu ucu 3'26325 26 M protein (proteinM) 7 26768 5'cca gac cgc uca ugg aaa gug 3'26788 11 8 26927 5'cgu cgc agc gug uag gca cug 3'26947 12 15 26414 5'agc uua aac aac ucc ugg aac 3'26434 13 16 26985 5'aaa cua uaa auu aaa uac aga 3'27005 1 52 26580 5'ugc ugc ugu cua cag aau uaa 3'26600 2 53 26658 5'uag cua cuu cgu ugc uuc cuu 3'26678 14 54 26877 5'aga gau cac ugu ggc uac auc 3'26897 15 55 26637 5'uau ugu agg cuu gau gug gcu 3'26657 16 56 26824 5'uug cga aug gcc gga cac ucc 3'26844 3 57 26957 5'uug cug cauu aca acc gcu acc 3'26977 17 N protein (Nucleocapsidprotein) 10 28525 5'aau aca ccc aaa gac cac auu 3'28545 18 17 28555 5'aau ccu aau aac aau gcu gcc 3'28575 19 58 28111 5'gau aau gga ccc caa uca aac 3'28131 20 59 28288 5'aag gag gaa cuu aga uuc ccu 3'28308 twenty one 60 28483 5'aac aaa gaa ggc auc gua ugg 3'28503 4 61 28863 5'uga ggc auc uaa aaa gcc ucg 3'28883 5 62 28246 5'aau aau acu gcg ucu ugg uuc 3'28266 twenty two 63 28371 5'aag agc uac ccg acg agu ucg 3'28391 26 64 28593 5'uca agg aac aac auu gcc aaa 3'28613 twenty three 65 28889 5'aac gua cug cca caa aac agu 3'28909 twenty four 91 28212 5'aag gcc aaa aca gcg ccg acc 3'28232 7

          表1(二级结构模拟图见附图13、14、15)      Table 1 (see attached drawings 13, 14, and 15 for the secondary structure simulation diagram)

表1所示靶位点序列与相同编号的siRNA的正义链序列相同,其序列表中的序列号见最右侧一例。本表格所示序列仅用于说明本发明而不用于限制本发明的范围。The target site sequence shown in Table 1 is the same as the positive-sense strand sequence of the siRNA with the same number, and the sequence number in the sequence table is shown in the case on the far right. The sequences shown in this table are only used to illustrate the present invention and not to limit the scope of the present invention.

实施例二.siRNA的合成Example 2. Synthesis of siRNA

1.用Bechman Oligo 1000M合成仪(Bechman)合成siRNA的正义链和反义链(序列见表2,表3)。1. Use Bechman Oligo 1000M synthesizer (Bechman) to synthesize the sense strand and antisense strand of siRNA (see Table 2 and Table 3 for the sequence).

2.退火形成siRNA:2. Annealing to form siRNA:

1)将合成的siRNA正义反义链溶于焦磷酸二乙脂(DEPC)处理过的水中。1) Dissolve the synthetic siRNA sense and antisense strands in diethyl pyrophosphate (DEPC)-treated water.

2)制备退火缓冲液(2x):200mM乙酸钾,4mM乙酸镁,60mM Hepes-KOH(pH7.4)。2) Prepare annealing buffer (2x): 200mM potassium acetate, 4mM magnesium acetate, 60mM Hepes-KOH (pH7.4).

3)制备20uM的siRNA贮存液:3) Prepare 20uM siRNA stock solution:

           2x退火缓冲液  100ul            2x Annealing Buffer 100ul

           siRNA正义链   Xul(使得终浓度为20uM)    siRNA sense strand Xul (making the final concentration 20uM)

           siRNA反义链   Yul(使得终浓度为20uM)    siRNA antisense strand Yul (making the final concentration 20uM)

           水(DEPC处理)  (100-X-Y)ul                                                                                                                            

上述成分混匀,于90℃放置1分钟,然后于37℃放置1小时。贮存于-20℃。The above ingredients were mixed well, placed at 90°C for 1 minute, and then placed at 37°C for 1 hour. Store at -20°C.

实施例三.siRNA在vero-E6细胞中抑制M、N、E蛋白表达的鉴定Example 3. Identification of siRNA inhibiting the expression of M, N, and E proteins in vero-E6 cells

1.方法:1. Method:

(1)细胞转染(1) Cell transfection

用24孔细胞培养板进行细胞转染实验。Cell transfection experiments were performed using 24-well cell culture plates.

a.转染前一天于24孔细胞培养板上每孔接种0.5×105个Vero-E6细胞(中国科学院上海生命科学研究院细胞库),5%CO2培养箱37℃培养过夜。至转染时细胞铺满孔面积的30-50%。a. One day before transfection, inoculate 0.5×10 5 Vero-E6 cells (Cell Bank, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences) per well on a 24-well cell culture plate, and culture overnight at 37°C in a 5% CO 2 incubator. When the cells are transfected, the cells cover 30-50% of the well area.

b.M、N、E蛋白表达载体的转染用阳离子脂质体Lipofectamine 2000(Invitrogen)转染试剂,按其操作说明进行转染实验。具体用量为每孔细胞加靶基因载体50ng,siRNA用量为0.75ug,Lipofectamine 2000 2ul。b. Cationic liposome Lipofectamine 2000 (Invitrogen) transfection reagent was used for transfection of M, N, E protein expression vectors, and the transfection experiment was carried out according to its operating instructions. The specific dosage is 50ng of target gene carrier per well of cells, 0.75ug of siRNA, and 2ul of Lipofectamine 2000.

c.6小时后补加胎牛血清至终浓度为10%。于5%CO2、37℃继续培养至48小时后检测。c. After 6 hours, add fetal bovine serum to a final concentration of 10%. Continue culturing at 5% CO 2 at 37°C until 48 hours before detection.

(2)RT-PCR检测(2) RT-PCR detection

a.转染后48小时,除去培养基,用无菌PBS缓冲液清洗细胞三次。a. 48 hours after transfection, remove the medium and wash the cells three times with sterile PBS buffer.

b.用Trizol Reagent(GIBCO)抽提细胞总RNA溶于30ul水(RNase free)中。用无RNA酶(RNase free)的DNA酶(DNase)于37℃消化30分钟,然后于60℃处理10分钟将DNase热灭活。b. Extract total cellular RNA with Trizol Reagent (GIBCO) and dissolve in 30ul of water (RNase free). Digest with RNase free DNase (DNase) at 37°C for 30 minutes, and then treat at 60°C for 10 minutes to heat inactivate the DNase.

c.用One step RNA PCR kit(TaKaRa)对抽提的总RNA,取5ul为模板进行RT-PCR检测,以确定siRNA的抑制效果并进行筛选。RT-PCR条件如下:c. Use the One step RNA PCR kit (TaKaRa) to extract 5ul of the total RNA as a template for RT-PCR detection to determine the inhibitory effect of siRNA and perform screening. RT-PCR conditions are as follows:

50℃,30min;50℃, 30min;

94℃,2min;94°C, 2min;

Figure A20041001600100121
Figure A20041001600100121

72℃,10min72℃, 10min

反应总体积为50ul。The total reaction volume was 50ul.

d.RT-PCR循环数的确定:d. Determination of RT-PCR cycle number:

以M基因为样本,于24孔板中转入50ng M基因的表达载体。24小时后抽总RNA溶于30ul水(RNase free)中。取5ul为模板,如上条件做RT-PCR。分别于20、25、26、27、28、29、32、34个循环处取样20ul进行1%琼脂糖凝胶电泳,EB染色。实验结果见图1、图2。由图2可得,取28个循环做RT-PCR能较真实的反应模板量。Taking the M gene as a sample, transfer 50ng of the expression vector of the M gene into a 24-well plate. After 24 hours, the total RNA was extracted and dissolved in 30ul water (RNase free). Take 5ul as a template, and do RT-PCR under the above conditions. 20ul samples were taken at 20, 25, 26, 27, 28, 29, 32, and 34 cycles respectively for 1% agarose gel electrophoresis and EB staining. The experimental results are shown in Figure 1 and Figure 2. It can be seen from Figure 2 that taking 28 cycles to do RT-PCR can achieve a more realistic reaction template amount.

(3)siRNA对基因表达抑制率的计算(3) Calculation of the inhibition rate of gene expression by siRNA

Figure A20041001600100122
Figure A20041001600100122

其中:A为加药组靶mRNA RT-PCR条带的灰度;A’为加药组作为RT-PCR对照的β-actine mRNA RT-PCR条带的灰度;B为对照组靶mRNA RT-PCR条带的灰度;B’为对照组作为RT-PCR对照的β-actine mRNA RT-PCR条带的灰度。Among them: A is the gray scale of the target mRNA RT-PCR band in the drug-dosing group; A' is the gray level of the β-actine mRNA RT-PCR band in the drug-dosing group as the RT-PCR control; B is the target mRNA RT-PCR band in the control group -The gray scale of the PCR band; B' is the gray scale of the control group as the β-actine mRNA RT-PCR band of the RT-PCR control.

(4)在蛋白水平检测siRNA对SARS病毒基因表达的抑制作用(4) Detection of siRNA inhibitory effect on SARS virus gene expression at the protein level

由于目前尚未有针对SARS病毒结构及功能蛋白的抗体,因此,构建SARS病毒E,M及N蛋白基因与报告基因-绿色荧光蛋白(GFP)融合的哺乳动物细胞表达载体:pEGFP/E,pEGFP/M,及pEGFP/N(GFP表达载体pEGFP-N3购自Clontech)。将siRNA与此GFP融合蛋白表达载体共转染Vero E6细胞。48小时后,通过荧光显微镜(Olympus BX-50)检测荧光的强度来判定蛋白的表达水平。Since there are no antibodies against SARS virus structure and functional proteins, the mammalian cell expression vectors of SARS virus E, M and N protein genes and reporter gene-green fluorescent protein (GFP) fusion are constructed: pEGFP/E, pEGFP/ M, and pEGFP/N (the GFP expression vector pEGFP-N3 was purchased from Clontech). The siRNA and this GFP fusion protein expression vector were co-transfected into Vero E6 cells. After 48 hours, the expression level of the protein was determined by detecting the intensity of fluorescence with a fluorescence microscope (Olympus BX-50).

(5)针对E、M、N基因的siRNA的筛选方法。(5) A method for screening siRNAs against E, M, and N genes.

将siRNA与E、M或N基因表达载体(pCDNA3.1/E,pCDNA3.1/M或pCDNA3.1/N)共转染Vero E6细胞,48小时后抽提总RNA做RT-PCR检测,将RT-PCR产物跑2%的Agarose凝胶电泳。A,B为两次独立实验的电泳结果。C.两次结果的凝胶图象扫描测出条带密度数据,以只转pCDNA3.1/X(X即E、M或N)载体的结果做参照(抑制效果定为0%)计算出各种siRNA的抑制强度,取两次结果的平均值作图。实验结果分别见图3、4、5。具体结果见表2、表3。Co-transfect siRNA with E, M or N gene expression vectors (pCDNA3.1/E, pCDNA3.1/M or pCDNA3.1/N) into Vero E6 cells, extract total RNA 48 hours later for RT-PCR detection, The RT-PCR product was run on 2% Agarose gel electrophoresis. A and B are the electrophoresis results of two independent experiments. C. The band density data was measured by scanning the gel image of the two results, and calculated with the result of only transfecting the pCDNA3.1/X (X is E, M or N) vector as a reference (the inhibitory effect is set as 0%) The inhibitory strength of various siRNAs was plotted by taking the average value of the two results. The experimental results are shown in Figures 3, 4, and 5, respectively. See Table 2 and Table 3 for specific results.

2.结果2. Results

1).siRNA的筛选1).SiRNA screening

I.筛选结果I. Screening Results

                             抑制效率<30%的siRNA:   靶基因     siRNA编号 序列号 siRNA序列(*) 抑制效率   蛋白M     No.16   1/30 (+)5’aaa cua uaa auu aaa uac aga tt 3’(-)5’ucu gua uuu aau uua uag uuu tt 3’ <30%     No.52   2/31 (+)5’ugc ugc ugu cua cag aau uaa tt 3’(-)5’uua auu cug uag aca gca gca tt 3’     No.56   3/32 (+)5’uug cga aug gcc gga cac ucc tt 3’(-)5’gga gug ucc ggc cau ucg caa tt 3’ 蛋白N     No.60   4/33 (+)5’aac aaa gaa ggc auc gua ugg tt 3’(-)5’cca uac gau gcc uuc uuu guu tt 3’     No.61   5/34 (+)5’uga ggc auc uaa aaa gcc ucg tt 3’(-)5’cga ggc uuu uua gau gcc uca tt 3’     No.63   6/35 (+)5’aag agc uac ccg acg agu ucg tt 3’(-)5’cga acu cgu cgg gua gcu cuu tt 3’     No.91   7/36 (+)5’aag gcc aaa aca gcg ccg acc tt 3’(-)5’ggu cgg cgc ugu uuu ggc cuu tt 3’   蛋白E     No.19   8/37 (+)5’uuu cgu ggu auu cuu gcu agu tt 3’(-)5’acu agc aag aau acc acg aaa tt 3’     No.88   9/38 (+)5’uuc gau ugu gug cgu acu gcu tt 3’(-)5’agc agu acg cac aca auc gaa tt 3’     No.89   10/39 (+)5’uua aua guu aau agc gua cuu tt 3’(-)5’aag uac gcu auu aac uau uaa tt 3’ siRNA with inhibition efficiency <30%: target gene siRNA ID serial number siRNA sequence(*) Inhibition efficiency Protein M No.16 1/30 (+)5'aaa cua uaa auu aaa uac aga tt 3'(-)5'ucu gua uuu aau uua uag uuu tt 3' <30% No.52 2/31 (+)5'ugc ugc ugu cua cag aau uaa tt 3'(-)5'uua auu cug uag aca gca gca tt 3' No.56 3/32 (+)5'uug cga aug gcc gga cac ucc tt 3'(-)5'gga gug ucc ggc cau ucg caa tt 3' Protein N No.60 4/33 (+)5'aac aaa gaa ggc auc gua ugg tt 3'(-)5'cca uac gau gcc uuc uuu guu tt 3' No.61 5/34 (+)5'uga ggc auc uaa aaa gcc ucg tt 3'(-)5'cga ggc uuu uua gau gcc uca tt 3' No.63 6/35 (+)5'aag agc uac ccg acg agu ucg tt 3'(-)5'cga acu cgu cgg gua gcu cuu tt 3' No.91 7/36 (+)5'aag gcc aaa aca gcg ccg acc tt 3'(-)5'ggu cgg cgc ugu uuu ggc cuu tt 3' Protein E No.19 8/37 (+)5'uuu cgu ggu auu cuu gcu agu tt 3'(-)5'acu agc aag aau acc acg aaa tt 3' No.88 9/38 (+)5'uuc gau ugu gug cgu acu gcu tt 3'(-)5'agc agu acg cac aca auc gaa tt 3' No.89 10/39 (+)5'uua aua guu aau agc gua cuu tt 3'(-)5'aag uac gcu auu aac uau uaa tt 3'

                                      表2 Table 2

                             抑制效率>30%的siRNA:   靶基因  siRNA编号   序列号 .siRNA序列(*)   抑制效率   蛋白M  No.7   11/40 (+)5’cca gac cgc uca ugg aaa gug tt 3’(-)5’cac uuu cca uga gcg guc ugg tt 3’   39.8%  No.8   12/41 (+)5’cgu cgc agc gug uag gca cug tt 3’(-)5’cag ugc cua cac gcu gcg acg tt 3’   40.9%  No.15   13/42 (+)5’agc uua aac aac ucc ugg aac tt 3’(-)5’guu cca gga guu guu uaa gcu tt 3’   75.8%  No.53   14/43 (+)5’uag cua cuu cgu ugc uuc cuu tt 3’(-)5’aag gaa gca acg aag uag cua tt 3’   54.9%     No.54   15/44 (+)5’aga gau cac ugu ggc uac auc tt 3’(-)5’gau gua gcc aca gug auc ucu tt 3’   47.2%     No.55   16/45 (+)5’uau ugu agg cuu gau gug gcu tt 3’(-)5’agc cac auc aag ccu aca aua tt 3’   46.2%     No.57   17/46 (+)5’uug cug cau aca acc gcu acc tt 3’(-)5’ggu agc ggu ugu aug cag caa tt 3’   62.9%   蛋白N     No.10   18/47 (+)5’aau aca ccc aaa gac cac auu tt 3’(-)5’aau gug guc uuu ggg ugu auu tt 3’   35.8%     No.17   19/48 (+)5’aau ccu aau aac aau gcu gcc tt 3’(-)5’ggc agc auu guu auu agg auu tt 3’   56.1%     No.58   20/49 (+)5’gau aau gga ccc caa uca aac tt 3’(-)5’guu uga uug ggg ucc auu auc tt 3’   74.7%     No.59   21/50 (+)5’aag gag gaa cuu aga uuc ccu tt 3’(-)5’agg gaa ucu aag uuc cuc cuu tt 3’   48.1%     No.62   22/51 (+)5’aau aau acu gcg ucu ugg uuc tt 3’(-)5’gaa cca aga cgc agu auu auu tt 3’   47.5%     No.64   23/52 (+)5’uca agg aac aac auu gcc aaa tt 3’(-)5’uuu ggc aau guu guu ccu uga tt 3’   51.0%     No.65   24/53 (+)5’aac gua cug cca caa aac agu tt 3’(-)5’acu guu uug ugg cag uac guu tt 3’   37.3% 蛋白E     No.51   25/54 (+)5’aac ggu uua cgu cua cuc gcg tt 3’(-)5’cgc gag uag acg uaa acc guu tt 3’   52.3%     No.90   26/55 (+)5’uga agg agu ucc uga ucu ucu tt 3’(-)5’aga aga uca gga acu ccu uca tt 3’   70.1% siRNAs with >30% inhibition efficiency: target gene siRNA ID serial number .siRNA sequence(*) Inhibition efficiency Protein M No.7 11/40 (+)5'cca gac cgc uca ugg aaa gug tt 3'(-)5'cac uuu cca uga gcg guc ugg tt 3' 39.8% No.8 12/41 (+)5'cgu cgc agc gug uag gca cug tt 3'(-)5'cag ugc cua cac gcu gcg acg tt 3' 40.9% No.15 13/42 (+)5'agc uua aac aac ucc ugg aac tt 3'(-)5'guu cca gga guu guu uaa gcu tt 3' 75.8% No.53 14/43 (+)5'uag cua cuu cgu ugc uuc cuu tt 3'(-)5'aag gaa gca acg aag uag cua tt 3' 54.9% No.54 15/44 (+)5'aga gau cac ugu ggc uac auc tt 3'(-)5'gau gua gcc aca gug auc ucu tt 3' 47.2% No.55 16/45 (+)5'uau ugu agg cuu gau gug gcu tt 3'(-)5'agc cac auc aag ccu aca aua tt 3' 46.2% No.57 17/46 (+)5'uug cug cau aca acc gcu acc tt 3'(-)5'ggu agc ggu ugu aug cag caa tt 3' 62.9% Protein N No.10 18/47 (+)5'aau aca ccc aaa gac cac auu tt 3'(-)5'aau gug guc uuu ggg ugu auu tt 3' 35.8% No.17 19/48 (+)5'aau ccu aau aac aau gcu gcc tt 3'(-)5'ggc agc auu guu auu agg auu tt 3' 56.1% No.58 20/49 (+)5'gau aau gga ccc caa uca aac tt 3'(-)5'guu uga uug ggg ucc auu auc tt 3' 74.7% No.59 21/50 (+)5'aag gag gaa cuu aga uuc ccu tt 3'(-)5'agg gaa ucu aag uuc cuc cuu tt 3' 48.1% No.62 22/51 (+)5'aau aau acu gcg ucu ugg uuc tt 3'(-)5'gaa cca aga cgc agu auu auu tt 3' 47.5% No.64 23/52 (+)5'uca agg aac aac auu gcc aaa tt 3'(-)5'uuu ggc aau guu guu ccu uga tt 3' 51.0% No.65 24/53 (+)5'aac gua cug cca caa aac agu tt 3'(-)5'acu guu uug ugg cag uac guu tt 3' 37.3% Protein E No.51 25/54 (+)5'aac ggu uua cgu cua cuc gcg tt 3'(-)5'cgc gag uag acg uaa acc guu tt 3' 52.3% No.90 26/55 (+)5'uga agg agu ucc uga ucu ucu tt 3'(-)5'aga aga uca gga acu ccu uca tt 3' 70.1%

                                      表3 table 3

表2和表3中(+)表示正义链;(-)表示反义链。其中正义链序列号与表一中相应编号靶位点序列的序列号相同,正义链序列号(Y)为相应编号的反义链序列号(X,X为30-55中任一自然数)减29,即Y=X-29。表2,表3第三列“/”左侧为正义链序列号,右侧为反义链序列号。如编号为65的siRNA的正义链为SEQ ID NO:24,反义链为SEQ ID NO:53。In Table 2 and Table 3, (+) indicates the sense strand; (-) indicates the antisense strand. Wherein, the sequence number of the sense strand is the same as the sequence number of the corresponding numbered target site sequence in Table 1, and the sequence number (Y) of the sense strand is the sequence number of the antisense strand (X, X is any natural number in 30-55) minus 29, that is, Y=X-29. The left side of the third column "/" in Table 2 and Table 3 is the sequence number of the sense strand, and the right side is the sequence number of the antisense strand. For example, the sense strand of siRNA numbered 65 is SEQ ID NO: 24, and the antisense strand is SEQ ID NO: 53.

实施例四 No.90号siRNA对SARS病毒E基因表达的抑制效果与其剂量的关系。Embodiment four No.90 No. siRNA is to the relation of the inhibitory effect of SARS virus E gene expression and its dosage.

将不同浓度的No.90号siRNA与E基因表达载体(pCDNA3.1/E)共转染VeroE6细胞,48小时后抽提总RNA做RT-PCR检测。Different concentrations of No.90 siRNA and E gene expression vector (pCDNA3.1/E) were co-transfected into VeroE6 cells, and total RNA was extracted for RT-PCR detection after 48 hours.

A.将RT-PCR产物跑2%的Agarose凝胶电泳。A. Run the RT-PCR product on 2% Agarose gel electrophoresis.

B.两次独立实验结果的凝胶图象扫描测出条带密度数据,以共转中文名称(control siRNA)与pCDNA3.1/E载体的结果做参照(抑制效果定为0%),计算出各种siRNA的抑制强度,取两次结果的平均值对siRNA的浓度作量效关系曲线图。图6显示15nM的No.90号siRNA就可达到50%的抑制效率。B. Gel image scanning of the results of two independent experiments measured the band density data, and used the results of co-transformation of the Chinese name (control siRNA) and pCDNA3.1/E vector as a reference (inhibition effect was set as 0%) to calculate The inhibitory strength of various siRNAs was obtained, and the average value of the two results was used to make a dose-effect relationship curve for the concentration of siRNA. Figure 6 shows that 15nM No.90 siRNA can achieve 50% inhibition efficiency.

实施例五.No.15号siRNA对SARS病毒M基因表达的抑制效果与其剂量的关系。方法同实施例四。图7显示13nM的No.15号siRNA就可达到50%的抑制效率。Embodiment five.No.15 No. siRNA is to the relation of the inhibitory effect of SARS virus M gene expression and its dosage. Method is the same as embodiment four. Figure 7 shows that 13nM No.15 siRNA can achieve 50% inhibition efficiency.

实施例六 No.58号siRNA对SARS病毒N基因表达的抑制效果与其剂量的关系。The relationship between the inhibitory effect of No.58 siRNA on the expression of SARS virus N gene and its dose in embodiment six.

方法同实施例四。图8显示13nM的No.58号siRNA就可达到50%的抑制效率。Method is the same as embodiment four. Figure 8 shows that 13nM No.58 siRNA can achieve 50% inhibition efficiency.

实施例七 No.90号siRNA对GFP-E融合蛋白表达的抑制。Example 7 Inhibition of No. 90 siRNA on the expression of GFP-E fusion protein.

用30nM No.90号siRNA与SARS病毒E蛋白与绿色荧光蛋白的融合蛋白的表达载体(pEGFP/E)共转染Vero E6细胞,48小时后用荧光显微镜观察绿色荧光的强度。30nM No.90 siRNA and the expression vector (pEGFP/E) of the fusion protein of SARS virus E protein and green fluorescent protein were co-transfected into Vero E6 cells, and the intensity of green fluorescence was observed with a fluorescence microscope after 48 hours.

A.只转pEGFP/E载体(none);B.pEGFP/E与非特异的对照siRNA共转染(control);A. Transfection of pEGFP/E vector only (none); B. Co-transfection of pEGFP/E with non-specific control siRNA (control);

C,pEGFP/E与No.90号siRNA共转染。A,B,C为荧光检测结果;D,E,F分别为同一视野下用明场观察的细胞情况。G.分别计数每组实验的四个视野中发绿色荧光的细胞的数目及总细胞数,换算成每500个总细胞中带荧光的细胞的数目,取平均值。将control siRNA的抑制效率设定为0%时,可算得30nM的90号siRNA抑制效率为88.0%(见图9)。C, co-transfection of pEGFP/E and No.90 siRNA. A, B, C are the results of fluorescence detection; D, E, F are the conditions of cells observed in bright field under the same field of view. G. Count the number of green fluorescent cells and the total number of cells in the four fields of view of each experiment, convert them into the number of fluorescent cells per 500 total cells, and take the average value. When the inhibition efficiency of control siRNA is set as 0%, the inhibition efficiency of No. 90 siRNA at 30 nM can be calculated as 88.0% (see Figure 9).

实施例八 No.15号siRNA对GFP-M融合蛋白表达的抑制。Example 8 Inhibition of No. 15 siRNA on the expression of GFP-M fusion protein.

用30nM No.15号siRNA与SARS病毒M蛋白与绿色荧光蛋白的融合蛋白的表达载体(pEGFP/M)共转染Vero E6细胞,48小时后用荧光显微镜观察绿色荧光的强度。30nM No.15 siRNA and the expression vector (pEGFP/M) of the fusion protein of SARS virus M protein and green fluorescent protein were co-transfected into Vero E6 cells, and the intensity of green fluorescence was observed with a fluorescent microscope after 48 hours.

A,只转pEGFP/M载体(none);B,pEGFP/M与非特异的对照siRNA共转染(control);C,pEGFP/M与No.15号siRNA共转染。A,B,C为荧光检测结果;D,E,F分别为同一视野下用明场观察的细胞情况。G.分别计数每组实验的四个视野中发绿色荧光的细胞的数目及总细胞数,换算成每500个总细胞中带荧光的细胞的数目,取平均值。将control siRNA的抑制效率设定为0%时,可算得30nM的15号siRNA抑制效率为89.4%(见图10)。A, pEGFP/M vector only (none); B, pEGFP/M co-transfected with non-specific control siRNA (control); C, pEGFP/M co-transfected with No.15 siRNA. A, B, C are the results of fluorescence detection; D, E, F are the conditions of cells observed in bright field under the same field of view. G. Count the number of green fluorescent cells and the total number of cells in the four fields of view of each experiment, convert them into the number of fluorescent cells per 500 total cells, and take the average value. When the inhibition efficiency of control siRNA is set as 0%, the inhibition efficiency of No. 15 siRNA of 30 nM can be calculated as 89.4% (see Figure 10).

实施例九.No.58号siRNA对GFP-N融合蛋白表达的抑制。Example 9. Inhibition of No. 58 siRNA on the expression of GFP-N fusion protein.

用30nM No.58号siRNA与SARS病毒N蛋白与绿色荧光蛋白的融合蛋白的表达载体(pEGFP/N)共转染Vero E6细胞,48小时后用荧光显微镜观察绿色荧光的强度。Vero E6 cells were co-transfected with 30nM No.58 siRNA and the fusion protein expression vector (pEGFP/N) of SARS virus N protein and green fluorescent protein, and the intensity of green fluorescence was observed with a fluorescent microscope after 48 hours.

A,只转pEGFP/N载体(none);B,pEGFP/N与非特异的对照siRNA共转染(control);C,pEGFP/M与No.58号siRNA共转染。A,B,C为荧光检测结果;D,E,F分别为同一视野下用明场观察的细胞情况。G.分别计数每组实验的四个视野中发绿色荧光的细胞的数目及总细胞数,换算成每500个总细胞中带荧光的细胞的数目,取平均值。将control siRNA的抑制效率设定为0%时,可算得30nM的58号siRNA抑制效率为88.8%(见图11)。A, pEGFP/N vector only (none); B, co-transfection of pEGFP/N and non-specific control siRNA (control); C, co-transfection of pEGFP/M and No.58 siRNA. A, B, C are the results of fluorescence detection; D, E, F are the conditions of cells observed in bright field under the same field of view. G. Count the number of green fluorescent cells and the total number of cells in the four fields of view of each experiment, convert them into the number of fluorescent cells per 500 total cells, and take the average value. When the inhibition efficiency of control siRNA is set as 0%, the inhibition efficiency of 30 nM siRNA No. 58 can be calculated as 88.8% (see Figure 11).

实施例十 反义链5’端不配对的siRNA在Vero E6细胞中对SARS基因表达的抑制作用Example 10 Antisense strand 5' end unpaired siRNA inhibits SARS gene expression in Vero E6 cells

1.依据:1. Basis:

根据Dianne S.Schwarz等人最新研究发现,siRNA双链两端配对的稳定性决定了哪一端更容易先解链,从而使该端为5’端的那条链更多的进入RISC复合体(一种siRNA与蛋白质的复合体,能特异性的降解靶基因mRNA)。(Cell,Vol 115,199-208,17 October 2003)According to the latest research by Dianne S. Schwarz et al., the stability of the pairing at both ends of the siRNA double strand determines which end is easier to unwind first, so that the strand that is the 5' end enters the RISC complex more (a A complex of siRNA and protein can specifically degrade target gene mRNA). (Cell, Vol 115, 199-208, 17 October 2003)

选出三个siRNA:No.8、No.51、及No.65,将正义链3’端最后一个核苷酸(21位)突变如下Select three siRNAs: No.8, No.51, and No.65, and mutate the last nucleotide (position 21) at the 3' end of the sense strand as follows

No.8*:(正义链序列号为SEQ ID NO:27)No.8*: (sense chain sequence number is SEQ ID NO: 27)

            5’CGU CGC AGC GUG UAG GCA CUA dTdT 3’5’CGU CGC AGC GUG UAG GCA CUA dTdT 3’

               ||| ||| ||| ||| ||| ||| || о||| ||| ||| ||| ||| ||| || о

       3’dTdT GCA GCG UCG CAC AUC CGU GAC 5’3’dTdT GCA GCG UCG CAC AUC CGU GAC 5’

No.51*:(正义链序列号为SEQ ID NO:28)No.51*: (sense chain sequence number is SEQ ID NO: 28)

               5’AAC GGU UUA CGU CUA CUC GCA dTdT 3’5’AAC GGU UUA CGU CUA CUC GCA dTdT 3’

                  ||| ||| ||| ||| ||| ||| || о||| ||| ||| ||| ||| ||| || о

          3’dTdT UUG CCA AAU GCA GAU GAG CGC 5’3’dTdT UUG CCA AAU GCA GAU GAG CGC 5’

No.65*:(正义链序列号为SEQ ID NO:29)No.65*: (sense strand sequence number is SEQ ID NO: 29)

               5’AAC GUA CUG CCA CAA AAC AGC dTdT 3’5’AAC GUA CUG CCA CAA AAC AGC dTdT 3’

                  ||| ||| ||| ||| ||| ||| || о||| ||| ||| ||| ||| ||| || о

          3’dTdT UUG CAU GAC GGU GUU UUG UCA 5’3’dTdT UUG CAU GAC GGU GUU UUG UCA 5’

(注:突变位点以带下划线的粗斜体标出,*表示带突变的siRNA,下同。)(Note: The mutation site is marked in bold italics with underline, * indicates the siRNA with mutation, the same below.)

用pCDNA3.1/E与No.51 siRNA或No.51*siRNA、pCDNA3.1/M与No.8 siRNA或No.8*siRNA、pCDNA3.1/N与No.65 siRNA或No.65*siRNA分别共转染VeroE6细胞,以及单转SARS病毒基因表达载体(none)或其与非特异组siRNA(control)共转染Vero E6细胞,48小时后RT-PCR检测SARS病毒基因表达水平。2%agarose电泳,EB染色(A)。灰度扫描条带深浅,将control组抑制率设为0%,算出各组siRNA的抑制百分率(B)。Use pCDNA3.1/E and No.51 siRNA or No.51*siRNA, pCDNA3.1/M and No.8 siRNA or No.8*siRNA, pCDNA3.1/N and No.65 siRNA or No.65* siRNA co-transfected VeroE6 cells, and a single transfected SARS virus gene expression vector (none) or a non-specific group siRNA (control) co-transfected Vero E6 cells, and RT-PCR detected the level of SARS virus gene expression after 48 hours. 2% agarose electrophoresis, EB staining (A). The intensity of the strips was scanned in gray scale, and the inhibition rate of the control group was set as 0%, and the inhibition percentage of siRNA in each group was calculated (B).

与反义链5’端第一个碱基不配对的siRNA抑制SARS病毒基因表达的效果是正常组siRNA的1.5倍,可以按照这种方法将筛选过程中得到的抑制效果不佳的siRNA重新设计,应能使之能更有效的抑制SARS病毒基因的表达(见图12)。The siRNA that does not pair with the first base at the 5' end of the antisense strand can inhibit the gene expression of SARS virus by 1.5 times that of the normal group siRNA, and the siRNA with poor inhibitory effect obtained during the screening process can be redesigned according to this method , should be able to make it more effectively suppress the expression of SARS virus gene (see Figure 12).

较佳的,与反义链5’端第一个碱基不配对的siRNA的正义链3’端碱基可按如下原则替换,嘧啶(包括C、U)与嘧啶替换,嘌呤(包括G、A)与嘌呤(包括G、A、I(次黄嘌呤))替换。如C与U互换,G替换为A或工。Preferably, the bases at the 3' end of the sense strand of the siRNA that do not pair with the first base at the 5' end of the antisense strand can be replaced according to the following principles: pyrimidine (including C, U) is replaced with pyrimidine, and purine (including G, U) is replaced with pyrimidine. A) Replacement with purines (including G, A, I (hypoxanthine)). For example, C and U are interchanged, and G is replaced by A or 工.

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

                               序列表Sequence Listing

<110>中国科学院上海生命科学研究院<110> Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

<120>抑制SARS病毒基因表达的小分子干扰核糖核酸<120>Small molecule interfering ribonucleic acid inhibiting gene expression of SARS virus

<130>XQ041027N<130>XQ041027N

<160>55<160>55

<170>PatentIn version 3.1<170>PatentIn version 3.1

<210>1<210>1

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>1<400>1

aaacuauaaa uuaaauacag a                                             21aaacuauaaa uuaaauacag a 21

<210>2<210>2

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>2<400>2

ugcugcuguc uacagaauua a                                             21ugcugcuguc uacagaauua a 21

<210>3<210>3

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>3<400>3

uugcgaaugg ccggacacuc c                                             21uugcgaaugg ccggacacuc c 21

<210>4<210>4

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>4<400>4

aacaaagaag gcaucguaug g                                             21aacaaagaag gcaucguaug g 21

<210>5<210>5

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>5<400>5

 ugaggcaucu aaaaagccuc g                                            21ugaggcaucu aaaaagccuc g 21

<210>6<210>6

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>6<400>6

aagagcuacc cgacgaguuc g                                             21aagagcuacc cgacgaguuc g 21

<210>7<210>7

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>7<400>7

aaggccaaaa cagcgccgac c                                             21aaggccaaaa cagcgccgac c 21

<210>8<210>8

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>8<400>8

uuucguggua uucuugcuag u                                             21uuucguggu uucuugcuag u 21

<210>9<210>9

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>9<400>9

uucgauugug ugcguacugc u                                             21uucgauugg ugcguacugc u 21

<210>10<210>10

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>10<400>10

uuaauaguua auagcguacu u                                             21uuaauaguua auagcguacu u 21

<210>11<210>11

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>11<400>11

ccagaccgcu cauggaaagu g                                             21ccagaccgcu cauuggaagu g                                                                  

<210>12<210>12

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>12<400>12

cgucgcagcg uguaggcacu g                                             21cgucgcagcg uguaggcacu g 21

<210>13<210>13

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>13<400>13

agcuuaaaca acuccuggaa c                                             21agcuuaaaca acuccuggaa c 21

<210>14<210>14

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>14<400>14

uagcuacuuc guugcuuccu u                                             21uagcuacuuc guugcuuccu u 21

<210>15<210>15

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>15<400>15

agagaucacu guggcuacau c                                              21agagaucacu guggcuacau c 21

<210>16<210>16

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>16<400>16

uauuguaggc uugauguggc u                                              21uauuguaggc uugauguggc u 21

<210>17<210>17

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>17<400>17

uugcugcaua caaccgcuac c                                              21uugcugcaua caaccgcuac c 21

<210>18<210>18

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>18<400>18

aauacaccca aagaccacau u                                              21aauacaccca aagaccacau u 21

<210>19<210>19

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>19<400>19

aauccuaaua acaaugcugc c                                              21aauccuaaua acaaugcugc c 21

<210>20<210>20

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>20<400>20

gauaauggac cccaaucaaa c                                              21gauaauggac cccaaucaaa c 21

<210>21<210>21

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>21<400>21

aaggaggaac uuagauuccc u                                              21aaggaggaac uuagauuccc u 21

<210>22<210>22

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>22<400>22

aauaauacug cgucuugguu c                                              21aauaauacug cgucuugguu c 21

<210>23<210>23

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>23<400>23

ucaaggaaca acauugccaa a                                              21ucaaggaaca acauugccaa a 21

<210>24<210>24

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>24<400>24

aacguacugc cacaaaacag u                                              21aacguacugc cacaaaacag u 21

<210>25<210>25

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>25<400>25

aacgguuuac gucuacucgc g                                              21aacgguuuac gucuacucgc g 21

<210>26<210>26

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>26<400>26

ugaaggaguu ccugaucuuc u                                              21ugaaggaguu ccugaucuuc u 21

<210>27<210>27

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>27<400>27

cgucgcagcg uguaggcacu a                                              21cgucgcagcg uguaggcacu a 21

<210>28<210>28

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>28<400>28

aacgguuuac gucuacucgc a                                              21aacgguuuac gucuacucgc a 21

<210>29<210>29

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>29<400>29

aacguacugc cacaaaacag c                                              21aacguacugc cacaaaacag c 21

<210>30<210>30

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>30<400>30

ucuguauuua auuuauaguu u                                              21ucuguauuua auuuauaguu u 21

<210>31<210>31

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>31<400>31

uuaauucugu agacagcagc a                                              21uuaauucugu aagacagcagc a 21

<210>32<210>32

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>32<400>32

ggaguguccg gccauucgca a                                              21ggaguguccg gccauucgca a 21

<210>33<210>33

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>33<400>33

ccauacgaug ccuucuuugu u                                              21ccauacgaug ccuucuuugu u 21

<210>34<210>34

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>34<400>34

cgaggcuuuu uagaugccuc a                                              21cgaggcuuuu uagaugccuc a 21

<210>35<210>35

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>35<400>35

cgaacucguc ggguagcucu u                                              21cgaacucguc ggguagcucu u 21

<210>36<210>36

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>36<400>36

ggucggcgcu guuuuggccu u                                              21ggucggcgcu guuuuggccu u 21

<210>37<210>37

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>37<400>37

acuagcaaga auaccacgaa a                                              21acuagcaaga auaccacgaa a 21

<210>38<210>38

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>38<400>38

agcaguacgc acacaaucga a                                              21agcaguacgc acacaaucga a 21

<210>39<210>39

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>39<400>39

aaguacgcua uuaacuauua a                                              21aaguacgcua uuaacuauua a 21

<210>40<210>40

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>40<400>40

cacuuuccau gagcggucug g                                              21cacuuuccau gagcggucug g 21

<210>41<210>41

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>41<400>41

cagugccuac acgcugcgac g                                              21cagugccuac acgcugcgac g 21

<210>42<210>42

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>42<400>42

guuccaggag uuguuuaagc u                                              21guuccaggag uuguuuaagc u 21

<210>43<210>43

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>43<400>43

aaggaagcaa cgaaguagcu a                                              21aaggaagcaa cgaaguagcu a 21

<210>44<210>44

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>44<400>44

gauguagcca cagugaucuc u                                              21gauguagcca cagugaucuc u 21

<210>45<210>45

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>45<400>45

agccacauca agccuacaau a                                              21agccacauca agccuacaau a 21

<210>46<210>46

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>46<400>46

gguagcgguu guaugcagca a                                              21gguagcgguu guaugcagca a 21

<210>47<210>47

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>47<400>47

aauguggucu uuggguguau u                                              21aauggucu uuggguau u 21

<210>48<210>48

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>48<400>48

ggcagcauug uuauuaggau u                                              21ggcagcauug uuauuaggau u 21

<210>49<210>49

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>49<400>49

guuugauugg gguccauuau c                                              21guuugauugg gguccauuau c 21

<210>50<210>50

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>50<400>50

agggaaucua aguuccuccu u                                              21agggaaucua aguuccuccu u 21

<210>51<210>51

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>51<400>51

gaaccaagac gcaguauuau u                                              21gaaccaagac gcaguauuau u 21

<210>52<210>52

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>52<400>52

uuuggcaaug uuguuccuug a                                              21uuuggcaaug uuguuccuug a 21

<210>53<210>53

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>53<400>53

acuguuuugu ggcaguacgu u                                              21accuguuuugu ggcaguacgu u 21

<210>54<210>54

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>54<400>54

cgcgaguaga cguaaaccgu u                                              21cgcgaguaga cguaaaccgu u 21

<210>55<210>55

<211>21<211>21

<212>RNA<212> RNA

<213>SARS冠状病毒<213> SARS coronavirus

<400>55<400>55

agaagaucag gaacuccuuc a                                              21agaagaucag gaacuccuuc a 21

Claims (18)

1.一组SARS病毒的小分子干扰核糖核酸(siRNA)靶序列,其特征在于,所述靶序列为SARS病毒M、N、E基因上的连续19-25个核酸。1. the small molecule interfering ribonucleic acid (siRNA) target sequence of a group of SARS virus, it is characterized in that, described target sequence is the continuous 19-25 nucleic acid on SARS virus M, N, E gene. 2.如权利要求1所述的siRNA靶序列,其特征在于,所述靶序列为SEQ ID NO:1-SEQID NO:26中任意一条序列。2. The siRNA target sequence as claimed in claim 1, wherein the target sequence is any sequence in SEQ ID NO: 1-SEQ ID NO: 26. 3.权利要求1或2所述的siRNA靶序列在筛选抗SARS病毒药物中的应用。3. the application of the siRNA target sequence described in claim 1 or 2 in screening anti-SARS virus medicine. 4.一组小分子干扰核糖核酸(siRNA),其特征在于,所述核糖核酸特异性地与权利要求1所述的SARS病毒位点的mRNA相结合,且能抑制SARS病毒基因的表达和/或SARS病毒的复制。4. a group of small molecule interfering ribonucleic acid (siRNA), it is characterized in that, described ribonucleic acid is specifically combined with the mRNA of SARS virus site according to claim 1, and can suppress the expression of SARS virus gene and/or Or the replication of the SARS virus. 5.如权利要求4所述的核糖核酸,其特征在于,所述核糖核酸为具有19-25对碱基的双链RNA复合体,所述双链中至少有18个碱基互补配对。5. The ribonucleic acid according to claim 4, wherein said ribonucleic acid is a double-stranded RNA complex with 19-25 base pairs, and at least 18 bases are complementary to each other in said double strand. 6.如权利要求4或5所述的核糖核酸,其特征在于,所述核糖核酸包括一条正义链和一条反义链,所述反义链序列与权利要求2所述siRNA靶序列有至少18个碱基互补,正义链序列与所述反义链序列有至少18个碱基互补。6. ribonucleic acid as claimed in claim 4 or 5, is characterized in that, described ribonucleic acid comprises a sense strand and an antisense strand, and described antisense strand sequence and the siRNA target sequence described in claim 2 have at least 18 18 bases are complementary, and the sense strand sequence has at least 18 bases complementary to the antisense strand sequence. 7.如权利要求6所述的核糖核酸,其特征在于,所述正义链与反义链结合区域含19、20或21对互补碱基。7. The ribonucleic acid according to claim 6, wherein said sense strand and antisense strand binding region contains 19, 20 or 21 pairs of complementary bases. 8.如权利要求6所述的核糖核酸,其特征在于,所述反义链序列与SEQ ID NO:1到SEQ ID NO:29所示的任意一条序列有至少18个碱基互补。8. The ribonucleic acid according to claim 6, wherein the antisense strand sequence has at least 18 bases complementary to any one of the sequences shown in SEQ ID NO: 1 to SEQ ID NO: 29. 9.如权利要求4或5所述的核糖核酸,其特征在于,所述核糖核酸的双链选自:9. ribonucleic acid as claimed in claim 4 or 5, is characterized in that, the double strand of described ribonucleic acid is selected from: (1)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),X为30-55中任一自然数;(1) The sequence of the antisense strand is SEQ ID NO: X, the sequence of the sense strand is SEQ ID NO: (X-29), and X is any natural number in 30-55; (2)反义链序列为SEQ ID NO:X,正义链序列为SEQ ID NO:(X-29),但与反义链5’端配对的正义链上相应位置的碱基被替换为不配对的碱基,X为30-55中任一自然数;(2) The sequence of the antisense strand is SEQ ID NO: X, and the sequence of the sense strand is SEQ ID NO: (X-29), but the bases at the corresponding positions on the sense strand paired with the 5' end of the antisense strand are replaced by different paired bases, X is any natural number in 30-55; (3)反义链序列为SEQ ID No:41,正义链序列为SEQ ID NO:27;(3) The sequence of the antisense strand is SEQ ID No: 41, and the sequence of the sense strand is SEQ ID NO: 27; (4)反义链序列为SEQ ID NO:54,正义链序列为SEQ ID NO:28;(4) The sequence of the antisense strand is SEQ ID NO: 54, and the sequence of the sense strand is SEQ ID NO: 28; (5)反义链序列为SEQ ID NO:53,正义链序列为SEQ ID NO:29。(5) The sequence of the antisense strand is SEQ ID NO: 53, and the sequence of the sense strand is SEQ ID NO: 29. 10.如权利要求9所述的核糖核酸,其特征在于,所述与反义链5’端配对的正义链上相应位置的碱基的替换选自:10. ribonucleic acid as claimed in claim 9, is characterized in that, the replacement of the base of corresponding position on the positive sense strand paired with antisense strand 5 ' end is selected from: (1)C→U;(1) C → U; (2)U→C;(2) U → C; (3)A→G或I;(3) A→G or I; (4)G→A或I。(4) G → A or I. 11.如权利要求5所述的核糖核酸,其特征在于,所述正义链和反义链的3’端连接有两个以上脱氧寡核苷酸的末端。11. ribonucleic acid as claimed in claim 5 is characterized in that, the 3 ' end of described sense strand and antisense strand is connected with the end of more than two deoxyoligonucleotides. 12.如权利要求6所述的核糖核酸,其特征在于,所述正义链和反义链的3’端连接有两个以上脱氧寡核苷酸的末端。12. ribonucleic acid as claimed in claim 6 is characterized in that, the 3 ' end of described sense strand and antisense strand is connected with the end of more than two deoxy oligonucleotides. 13.一种载体,其特征在于,所述载体至少包含一条权利要求4所述的核糖核酸。13. A vector, characterized in that the vector comprises at least one ribonucleic acid according to claim 4. 14.一种哺乳动物细胞,其特征在于,所述哺乳动物细胞包含权利要求10所述的载体。14. A mammalian cell, characterized in that the mammalian cell comprises the vector of claim 10. 15.如权利要求14所述的哺乳动物细胞,其特征在于,所述哺乳动物细胞为人类细胞。15. The mammalian cell of claim 14, wherein the mammalian cell is a human cell. 16.如权利要求4所述的核糖核酸的应用,其特征在于所述核糖核酸在制备治疗和/或预防SARS病毒所引起的非典型肺炎及其它相关疾病的药物中的应用。16. The application of ribonucleic acid as claimed in claim 4, characterized in that said ribonucleic acid is used in the preparation of medicines for the treatment and/or prevention of SARS virus-induced atypical pneumonia and other related diseases. 17.一种组合物,其特征在于,它包括安全有效量的权利要求4或5所述的核糖核酸以及药学上可接受的载体。17. A composition, characterized in that it comprises a safe and effective amount of the ribonucleic acid according to claim 4 or 5 and a pharmaceutically acceptable carrier. 18.如权利要求17所述的组合物,其特征在于所述的核糖核酸包含一条正义链和一条反义链,所述反义链为选自SEQ NO:30到SEQ NO:55所示的任意一条核苷酸序列,正义链区域序列与所述反义链区域序列互补。18. compositions as claimed in claim 17 is characterized in that described ribonucleic acid comprises a sense strand and an antisense strand, and described antisense strand is selected from SEQ NO:30 shown in SEQ NO:55 For any nucleotide sequence, the sense strand region sequence is complementary to the antisense strand region sequence.
CN 200410016001 2004-01-19 2004-01-19 Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression Pending CN1648249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410016001 CN1648249A (en) 2004-01-19 2004-01-19 Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410016001 CN1648249A (en) 2004-01-19 2004-01-19 Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression

Publications (1)

Publication Number Publication Date
CN1648249A true CN1648249A (en) 2005-08-03

Family

ID=34868170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410016001 Pending CN1648249A (en) 2004-01-19 2004-01-19 Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression

Country Status (1)

Country Link
CN (1) CN1648249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085986B (en) * 2006-06-08 2010-09-29 中国科学院上海生命科学研究院 Interfering RNA of SARS coronavirus and its application
CN112063635A (en) * 2020-07-25 2020-12-11 上海市公共卫生临床中心 Target sequence of RNA virus and application thereof
US11365239B2 (en) 2020-03-20 2022-06-21 Tsb Therapeutics (Beijing) Co., Ltd. Anti-SARS-COV-2 antibodies and uses thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085986B (en) * 2006-06-08 2010-09-29 中国科学院上海生命科学研究院 Interfering RNA of SARS coronavirus and its application
US11365239B2 (en) 2020-03-20 2022-06-21 Tsb Therapeutics (Beijing) Co., Ltd. Anti-SARS-COV-2 antibodies and uses thereof
CN112063635A (en) * 2020-07-25 2020-12-11 上海市公共卫生临床中心 Target sequence of RNA virus and application thereof
CN112063635B (en) * 2020-07-25 2023-02-17 上海市公共卫生临床中心 Target sequence of RNA virus and application thereof
CN116254278A (en) * 2020-07-25 2023-06-13 上海市公共卫生临床中心 Target sequence of RNA virus and application thereof

Similar Documents

Publication Publication Date Title
CN1257284C (en) Method for blocking expression of hepatitis B virus in vitro
CN101031579A (en) Pancreatic islet microrna and methods for inhibiting same
CN1836042A (en) Conserved HBV and HCV sequences useful for gene silencing
CN1177378A (en) Stabilized external guide sequences
CN101052717A (en) Polynucleotide causing RNA interfere and method of regulating gene expression with the use of the same
CN1675359A (en) Novel forms of interfering rna molecules
CN1738648A (en) Small Interfering RNA Gene Therapy
CN1617929A (en) siRNA expression system and method for preparing functional gene knockdown cells using the system
CN1845993A (en) Interfering RNA duplexes with blunt ends and 3&#39; modifications
CN1703229A (en) Compositions and methods for treatment of prostate and other cancers
CN1812797A (en) Use of double-stranded ribonucleic acid for inducing cell lysis
CN1665930A (en) Expression system of stem-loop RNA molecule with RNAi effect
CN1867672A (en) Improved siRNA molecule and method of inhibiting gene expression with the use of the same
CN1840203A (en) Oligonucleotide drug for preventing and treating influenza virus infection
CN1302107C (en) Oligonucleotide sequences complementary to thioredoxin or thioredoxin reductase genes and methods of using same to modulate cell growth
CN101054577A (en) A siRNA and expression carrier capable of inhibiting Bax gene expression and application of the same used as virus hepatitis B treatment medicament
CN1648249A (en) Small Molecule Interfering RNA Inhibiting SARS Virus Gene Expression
CN1566131A (en) Small interference RNA molecule SiRNA capable of attacking human hepatitis B virus and application thereof
CN1809583A (en) Antisense oligonucleotides that inhibit expression of hif-1
CN1124142A (en) Oligonucleotides that inhibit the expression of prenyl protein transferase
CN1882690A (en) Nucleic acid and gene originating in novel hcv strain and replicon-replicating cell using the gene
CN1837366A (en) siRNA sequence for polymerase gene of influenza B virus and its application
CN1780913A (en) dsRNA induces methylation of CpG sequences in mammalian cells
CN1580259A (en) SiRAN and expression carrier for inhibiting human VEGF gene expression and their pharmaceutical use
CN1847256A (en) Antiviral effect of combined application of CpG-containing single-strand deoxyoligonucleotide and ribavirin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication