CN1632474A - Nonlinear Evolutionary Correction Method for LFM Radar Level Meter - Google Patents
Nonlinear Evolutionary Correction Method for LFM Radar Level Meter Download PDFInfo
- Publication number
- CN1632474A CN1632474A CN 200410092447 CN200410092447A CN1632474A CN 1632474 A CN1632474 A CN 1632474A CN 200410092447 CN200410092447 CN 200410092447 CN 200410092447 A CN200410092447 A CN 200410092447A CN 1632474 A CN1632474 A CN 1632474A
- Authority
- CN
- China
- Prior art keywords
- frequency
- linear
- signal
- voltage
- curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000012937 correction Methods 0.000 title claims abstract description 37
- 230000009021 linear effect Effects 0.000 claims abstract description 25
- 238000001228 spectrum Methods 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 10
- 238000010183 spectrum analysis Methods 0.000 abstract description 3
- 238000000691 measurement method Methods 0.000 abstract description 2
- 230000009022 nonlinear effect Effects 0.000 abstract 2
- 238000005070 sampling Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010408 sweeping Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
一、技术领域1. Technical field
本发明线性调频雷达物位计非线性进化校正方法属于信号处理和自动测量技术领域,具体来说是一种利用频谱分析提取特征信息,采用进化计算的原理解决线性调频雷达调频非线性的问题。The non-linear evolution correction method of the chirp radar level gauge of the present invention belongs to the technical field of signal processing and automatic measurement, specifically, it uses spectrum analysis to extract characteristic information and adopts the principle of evolutionary calculation to solve the problem of chirp radar frequency modulation nonlinearity.
二、技术背景2. Technical Background
线性连续调频雷达物位计在料位测量中具有非接触、分辨率高,介质适应性广的优点,广泛应用于各种物位测量。由于线性连续波调频雷达中使用的压控振荡器具有本质的非线性,在采用完全线性的电压进行频率调制时,会使最终输出的频率信号呈现非线性特性,由于存在频率偏移,混频后的差拍信号不是理想线性调频信号情况下的单频信号,频谱将被展宽,从而导致LFMCW雷达料位计分辨率降低,同时还会导致FFT频谱分析后信噪比的下降,影响最终的计算精度。为了消除非线性,一般采用2种方法:开环校正和闭环校正。开环校正是预先测量VCO的电压频率关系,存储在存储器中,实际使用时按预先存储的数字量由D/A转换器进行扫频电压的输出。或者是利用电位器和放大器构成多段的非线性校正的硬件电路,进行硬件校正,这两种种方法的缺点是每个VCO的特性均不相同,在生产调试过程中工作量很大,不易批量化生产。实际使用过程中受温度影响也很大,难以保证测量精度。闭环校正的方法是采用频率或相位的测量方法求出对应电压下的频率,然后对产生控制电压的数字量进行修正,以获取满意的线性度,这将增大硬件成本和软件的工作量。The linear continuous frequency modulation radar level gauge has the advantages of non-contact, high resolution and wide media adaptability in material level measurement, and is widely used in various material level measurements. Since the voltage-controlled oscillator used in the linear continuous wave FM radar is inherently nonlinear, when a completely linear voltage is used for frequency modulation, the final output frequency signal will exhibit nonlinear characteristics. Due to the frequency offset, the frequency mixing The final beat signal is not a single-frequency signal in the case of an ideal linear frequency modulation signal, and the spectrum will be broadened, resulting in a decrease in the resolution of the LFMCW radar level gauge, and a decrease in the signal-to-noise ratio after FFT spectrum analysis, affecting the final calculation accuracy. In order to eliminate nonlinearity, two methods are generally used: open-loop correction and closed-loop correction. The open-loop correction is to measure the voltage-frequency relationship of the VCO in advance, store it in the memory, and output the frequency-sweeping voltage by the D/A converter according to the digital quantity stored in advance in actual use. Or use potentiometers and amplifiers to form a multi-stage non-linear correction hardware circuit for hardware correction. The disadvantage of these two methods is that the characteristics of each VCO are different, and the workload in the production and debugging process is very large, and it is not easy to batch. Production. It is also greatly affected by temperature in the actual use process, and it is difficult to guarantee the measurement accuracy. The method of closed-loop correction is to use the frequency or phase measurement method to find the frequency under the corresponding voltage, and then correct the digital quantity that generates the control voltage to obtain a satisfactory linearity, which will increase the hardware cost and software workload.
为了解决这个问题,人们采用直接数字合成和数字锁相环的方法对所需要的信号进行数字合成,但由于以下原因不能投入实际的应用。首先采用直接数字合成的方法目前还达不到料位雷达工作的X波段,只能采用倍频或上变频的方法,这种方法一是成本过高,系统复杂,二是经过倍频产生的微波信号有很多谐波分量,相位噪声大,会对测量结果产生负面的影响。此外,利用锁相环改变频率时需要一个过渡过程,因此其频率转换时间较长,而不能满足线性调频波雷达的高速扫频特性的要求。In order to solve this problem, people use the method of direct digital synthesis and digital phase-locked loop to digitally synthesize the required signals, but they cannot be put into practical application due to the following reasons. First of all, the method of direct digital synthesis is still not up to the X-band of the material level radar, and only the method of frequency doubling or up-conversion can be used. This method is costly and the system is complicated. Second, it is generated by frequency doubling. Microwave signals have many harmonic components and large phase noise, which will have a negative impact on the measurement results. In addition, a transition process is required when changing the frequency with the phase-locked loop, so the frequency conversion time is relatively long, which cannot meet the requirements of the high-speed frequency-sweeping characteristic of the chirp radar.
三、发明内容3. Contents of the invention
本发明线性调频雷达物位计非线性进化校正方法目的在于:提供一种简便和无须增加任何硬件的调频线性度的校正方法,解决目前线性度校正比较难和比较复杂的问题,解决由于调频非线性对测量精度带来的影响的问题,提供一种便于生产和调试的雷达物位计。The purpose of the nonlinear evolution correction method of the linear frequency modulation radar level meter of the present invention is to provide a simple correction method of frequency modulation linearity without adding any hardware, to solve the current difficult and complicated problem of linearity correction, and to solve the problems caused by the non-linearity of frequency modulation. To solve the problem of the influence of linearity on measurement accuracy, a radar level gauge that is easy to produce and debug is provided.
本发明LFMCW雷达物位计压控振荡器的线性度进化校正方法,其特征在于:利用进化原理对压控振荡器的调频非线性进行校正,I.采用一种新的基于进化方法对压控振荡器频率非线性进行闭环校正原理;II.利用调频电压曲线的非线性来弥补压控振荡器的非线性,将调频电压曲线分为若干段,对每段端点坐标划分一定的变化区域,采用进化原理求取对应最佳调频线性度的端点坐标,将各端点连接即可形成扫频电压曲线;III.采用基于差频信号频谱特征分析的方法进行校正,无须测量高频微波信号的频率或相位,现有雷达物位计不需要增加任何新的硬件设备即可进行校正,或者在微波单元增加一个延迟器即可实现在线自校正;IV.可采用重叠分析的方法获得更高的校正线性度;具体来讲,本发明LFMCW雷达物位计压控振荡器的线性度进化校正方法的硬件基础主要包括数字信号处理单元和微波单元[结构详见图1],数字信号处理单元由键盘显示通信接口模块1、D/A转换器2、数字信号处理器3、缓冲放大器4、存储器5、滤波器12、数字程控增益放大器13和高速A/D转换器14组成,微波单元由压控振荡器6、耦合器7、天线9、环行器10和混频器11组成,数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生微波调频信号,微波调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器7同时耦合出的信号作为参考信号送到混频器11,目标物体8反射回波经天线9接收,经环行器10后也传送到混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,数字信号处理器3对采样数字序列进行FFT或小波运算和分析,提取出代表非线性的特征量;The linearity evolution correction method of the LFMCW radar level gauge voltage-controlled oscillator of the present invention is characterized in that: utilize the evolutionary principle to correct the frequency modulation nonlinearity of the voltage-controlled oscillator, 1. adopt a kind of new method based on evolution Oscillator frequency nonlinearity for closed-loop correction principle; II. Use the nonlinearity of the frequency modulation voltage curve to compensate for the nonlinearity of the voltage-controlled oscillator, divide the frequency modulation voltage curve into several sections, and divide the coordinates of each end point into a certain change area. The principle of evolution obtains the coordinates of the endpoints corresponding to the best frequency modulation linearity, and connects the endpoints to form a frequency sweep voltage curve; III. Using the method based on the analysis of the frequency spectrum characteristics of the difference frequency signal for correction, there is no need to measure the frequency or frequency of high-frequency microwave signals Phase, the existing radar level gauge can be corrected without adding any new hardware equipment, or adding a delay in the microwave unit can realize online self-calibration; IV. The method of overlapping analysis can be used to obtain higher correction linearity Specifically, the hardware basis of the linearity evolution correction method of the LFMCW radar level gauge voltage-controlled oscillator of the present invention mainly includes a digital signal processing unit and a microwave unit [see Fig. 1 for structure details], and the digital signal processing unit is displayed by a keyboard Composed of communication interface module 1, D/
压控振荡器存在本质的非线性[见图3],图3中理想的调频发射信号18和理想的回波信号20混频后是点频信号,实际的调频发射信号17具有非线性特性,实际回波信号19也具有非线性特性,二者相混频后将会使频谱混叠,使测量的分辨率降低或无法分辨具体的目标物体的位置,图4中谱峰21是对应具体的物位,在相邻很近的位置存在两个峰值点22和23,有可能导致无法分辨具体的物料位置,这是在实验室测量的一种比较好的情况,实际测量过程中将会更加严重,图5是采用本发明的方法对线性度进行校正后的频谱,除代表物位的谱峰24以外,其它的成份得到有效抑制,VCO的相位噪声和非线性所带来的影响得到消除,本发明线性调频雷达物位计压控振荡器的非线性进化校正方法采用基于进化方法的原理对调频电压曲线进行分段线性校正,具体的做法是,将调频电压曲线分成若干段,图6中将调频曲线分成六段,分别为线段25、线段26、线段27、线段28、线段29、线段30,共有七个端点,分别为起始点31、终点37和分配有可变区域的中间可变端点32、33、34、35、36,起始点31和终点37为固定不变的点,连接各端点形成一条非线性的调频电压曲线,对压控振荡器的非线性进行补偿,每段的端点采用进化的方法获取,通过对FFT或小波运算后的频谱进行分析,获得代表非线性和干扰信息的特征量,图4中的谱峰21对应具体的物位,是测量过程中需要的,而另外两个峰值点22和23是由VCO的相位噪声和非线性造成的,需要得到抑制,可选择谱峰与谱峰两侧一定范围内几个峰值商的和作为评价非线性所造成影响的评价函数,通过进化方法使该函数达到一定的数值,即可有效抑制压控振荡器的相位噪声和调频非线性造成的影响,例如可选图4中谱峰21的数值与谱峰22、23数值的商的和作为评价函数,对进化校正效果的评价,进化校正的方法详见图9,图9中校正过程开始后的第一个子过程43用来在各中间可变端点变化区域内随机产生中间可变端点坐标的编码群体,编码可采用二进制编码或其它编码形式,编码的位数可根据需要确定,群体中个体的数量为N,种群的数量根据需要确定,个体中变量的数量为M,由曲线分段的数量决定,其后的子过程44将循环变量清零,子过程45将个体中曲线的各端点的编码值转换成坐标值,子过程46将起始点、各中间可变端点、终止点连在一起,生成扫频电压曲线,该曲线实际上是一个数字量序列,子过程47通过D/A转换器2将数字量序列以预定的速率连续输出,产生对压控振荡器6的扫频电压曲线,控制压控振荡器6输出微波调频信号,经过耦合器7、环行器10、天线9发射到一个平面金属薄板,天线9接收的反射回波信号经环行器10进入混频器11和通过耦合器7耦合出来的参考频率信号进行混频,产生的混频信号经过滤波器12后形成差频信号,经过数字程控增益放大器13放大或衰减后,在子过程48中由高速A/D转换器14进行采样量化形成差频信号的数字序列,在子过程49中数字信号处理器3对采样的数字序列进行FFT运算或小波分析,得到频谱曲线,进行曲线的特征量提取,其后的子过程50用来计算这条扫频电压曲线的性能评价函数,子过程51判断评价函数是否满足预定的要求,若满足要求则由子过程52保存结果,结束校正过程,否则子过程53、54对循环变量进行递增和判断,确保编码群体中每个个体所代表的曲线都能被测试和评价,在初始群体测试和评价完成后由进化计算子过程55进行进化计算,所产生的结果群体重复进行上述的测试和评价过程,图7中的粗线扫频电压曲线38表示了经过校正后的扫频电压曲线,可以看出扫频电压曲线38已经是非线性的,通过扫频电压曲线38的非线性来修正压控振荡器的非线性获得高线性度的微波调频信号,需要说明的是子过程55中可以采用遗传算法,或其它的进化算法诸如思维进化、进化规划、免疫进化方法等,同时评价函数的选择也是多样化的,本发明中对调频电压曲线分了6段,采用其它数量的分段也是可行的,分段越多校正效果也会好,提高A/D转换的采样速率,得到超过FFT点数的采样序列,采用对原始的采样序列进行重叠FFT运算,获得单一扫频曲线的多个频谱,图8详细表示了对原始采样序列进行重叠分段思想,例如可分为相互重叠序列长度相同的39、40、41、42数据段,对每一段进行FFT运算,综合多个频谱上的特征量进行评价,可以获得线性度更高的校正结果,但是会带来运算量的增加。There is an essential nonlinearity in the voltage controlled oscillator [see Fig. 3]. In Fig. 3, the ideal FM transmission signal 18 and the ideal echo signal 20 are mixed to form a point frequency signal, and the actual FM transmission signal 17 has nonlinear characteristics. The actual echo signal 19 also has nonlinear characteristics. After the two are mixed together, the frequency spectrum will be aliased, which will reduce the resolution of the measurement or make it impossible to distinguish the position of the specific target object. The spectral peak 21 in Fig. 4 is corresponding to the specific Material level, there are two peak points 22 and 23 in very close positions, which may lead to the inability to distinguish the specific material position. This is a relatively good situation measured in the laboratory, and it will be more accurate in the actual measurement process. Seriously, Fig. 5 is the frequency spectrum after the linearity is corrected by the method of the present invention, except for the spectral peak 24 representing the material level, other components are effectively suppressed, and the influence of the phase noise and nonlinearity of the VCO is eliminated , the nonlinear evolution correction method of the voltage-controlled oscillator of the linear frequency modulation radar level meter of the present invention adopts the principle based on the evolution method to carry out segmental linear correction to the frequency modulation voltage curve, and the specific method is to divide the frequency modulation voltage curve into several sections, as shown in Figure 6 The FM curve is divided into six segments, which are
本发明优点:主要用于工矿企业的各种物位的测量以及可以用于一些距离测量场合。线性调频线性度的校正依靠物位计本身即可进行,无须外部测量设备和仪器,校正方式和算法简单,校正后线性度高;仪器的造价低,生产和调试简单,提高生产效率;测量精度高、误差小、抗干扰能力强、适应恶劣工业环境,稳定可靠。The invention has the advantages that it is mainly used for the measurement of various material levels in industrial and mining enterprises and can be used for some distance measurement occasions. The calibration of chirp linearity can be done by the level meter itself, without external measuring equipment and instruments, the calibration method and algorithm are simple, and the linearity after calibration is high; the cost of the instrument is low, the production and debugging are simple, and the production efficiency is improved; the measurement accuracy High, small error, strong anti-interference ability, adapt to harsh industrial environment, stable and reliable.
四、附图说明4. Description of drawings
图1是本发明实现形式1的结构图Fig. 1 is a structural diagram of the present invention's implementation form 1
图2是本发明形式2的结构图Fig. 2 is the structural diagram of
图3是压控振荡器的非线性特性Figure 3 is the nonlinear characteristics of the voltage controlled oscillator
图4校正前的频谱Figure 4 Spectrum before correction
图5校正后的频谱Figure 5 Corrected Spectrum
图6扫频电压曲线的分段Figure 6 Segmentation of frequency sweep voltage curve
图7校正后扫频电压曲线Figure 7 Sweep voltage curve after correction
图8原始采样序列的重叠分段Figure 8 Overlapping segments of the original sampling sequence
图9线性化校正流程图Figure 9 Linearization correction flow chart
图10进化结果对应的扫频电压曲线Figure 10 The frequency sweep voltage curve corresponding to the evolution result
图中标号Label in the figure
1、 显示键盘通信接口 2、 高速D/A转换器1. Display
3、 数字信号处理器 4、 缓冲放大器3.
5、 存储器 6、 压控振荡器5.
7、 耦合器 8、 目标物体或金属平板7.
9、 天线 10、 环形器9.
11、 混频器 12、 低通滤波器11.
13、 数字程控增益放大器 14、 高速A/D转换器13. Digital
15、 微波延迟线 16、 微波开关15. Microwave delay line 16. Microwave switch
17、 实际发射的非线性信号 18、 理想的线性发射信号17. The actual transmitted nonlinear signal 18. The ideal linear transmitted signal
19、 实际接收的回波非线性信号 20、 理想的回波信号19. The actual received echo nonlinear signal 20. The ideal echo signal
21、 频谱曲线中的目标峰值 22、 由调频非线性产生的干扰峰值21. The target peak in the spectrum curve 22. The interference peak generated by the non-linearity of frequency modulation
23、 由调频非线性产生的干扰峰值 24、 进化线性校正后的单一峰值23. Interference peak generated by frequency modulation nonlinearity 24. Single peak after evolutionary linear correction
25、 扫频电压曲线分段1 26、 扫频电压曲线分段225. Frequency sweep voltage curve segment 1 26. Frequency sweep
27、 扫频电压曲线分段3 28、 扫频电压曲线分段427. Frequency sweep
29、 扫频电压曲线分段5 30、 扫频电压曲线分段629. Frequency sweep
31、 扫频电压曲线起始点 32、 扫频电压曲线中间可变端点1及其31. The starting point of the frequency
变化区域Area of change
33、 扫频电压曲线中间可变端点2 34、 扫频电压曲线中间可变端点3及其33.
及其变化区域 变化区域and its change area
35、 扫频电压曲线中间可变端点4 36、 扫频电压曲线中间可变端点5及其35.
及其变化区域 变化区域and its change area
37、 扫频电压曲线终止点 38、 校正后的扫频电压曲线37. End point of frequency
39、 原始采样序列重叠分段1 40、 原始采样序列重叠分段239. Original sampling sequence overlapping segment 1 40. Original sampling
41、 原始采样序列重叠分段3 42、 原始采样序列重叠分段441. Original sampling
43、 产生端点坐标的编码群体 44、 循环变量清零43. Generate the coding group of the endpoint coordinates 44. Clear the loop variable
45、 个体中端点编码值转换成端点 46、 连接端点生成扫频曲线45. Convert the end point encoding value in the individual into an end point 46. Connect the end points to generate a frequency sweep curve
的坐标值The coordinate value of
47、 输出扫频电压曲线 48、 获得差频信号采样数字序列47. Output frequency sweep voltage curve 48. Obtain the sampling digital sequence of the difference frequency signal
49、 进行频谱计算并提取频谱特征 50、 计算扫频电压曲线的性能49. Perform spectrum calculation and extract spectrum features 50. Calculate the performance of frequency sweep voltage curve
量 quantity
51、 判断线性度是否达到要求 52、 保存校正结果51. Judging whether the linearity meets the requirements 52. Saving the calibration results
53、 循环变量递增 54、 判断对群体中各个体是否评价完成53. Incrementing the loop variable 54. Judging whether the evaluation of each individual in the group is completed
55、 对群体进行进化计算55. Perform evolutionary calculations on populations
五、具体实施方式5. Specific implementation
实施方式1如图1所示,校正时,在雷达物位计前垂直于天线轴向位置放置一金属平板,雷达物位计和金属平板之间的距离可进行初步测量输入到雷达物位计的有关参数中,作为参考,可加快校正过程,数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生微波调频信号,微波调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器7同时耦合出的信号作为参考信号送到混频器11,目标物体8反射回波经天线9接收,经环行器10后也传送到混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,数字信号处理器3对采样数字序列进行FFT运算和分析,然后通过键盘输入命令利用本发明进化校正的线性调频雷达物位计的校正方法进行校正,表1给出了一个初始群体的示例,按6段分段的5个中间可变端点X坐标和Y坐标的初始种群二进制编码的16位整形值,个体数量N=35,个体中变量数量M=10,表2给出了进化计算后得到的5个中间可变端点X、Y坐标的编码值和经过换算后的坐标值,以及起始点坐标(0,0)和终点坐标(13383,13383)。图10是将各端点坐标连接生成的控制扫频电压的数字量序Embodiment 1 As shown in Figure 1, during calibration, a metal plate is placed perpendicular to the axial position of the antenna in front of the radar level gauge, and the distance between the radar level gauge and the metal plate can be initially measured and input to the radar level gauge Among the relevant parameters, as a reference, the correction process can be accelerated. The
表1 初始种群示例
列曲线。将该扫频曲线通过D/A转换器2输出,即可获得线性的调频频率。校正结束后即可进入正常的测量方式,安装到现场。因此,采用本发明的方法在现场进行校正也是很方便的。正常使用时,计算得到真实的料位信号,经由显示键盘通讯接口单元1利用显示的方式,或通过电流输出给外部的显示仪表,或是通过通信接口与外部的显示仪表进行通信,传输数据;column curve. The frequency sweep curve is output through the D/
表2 校正结果
实施方式2如图2所示,在进化校正的线性调频雷达物位计内部增加了微波延迟线15和微波开关16,微波延迟线15对微波产生一定的迟延,可模拟固定距离的目标信号,因此可实现在线自校正。数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生调频信号,调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器同时耦合出两路信号,一路作为参考信号送到混频器11,另一路经延迟线15产生固定延迟后送到微波开关16,经天线9接收的目标反射信号经环行器11后也传送到微波开关16,微波开关16受数字信号处理器3的控制,对经延迟线15的微波信号和经环行器10来的信号进行选择,允许其中一个通过,通过微波开关16的信号在混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,校正时,将微波开关切换到允许延迟线15的微波信号通过的状态,即可采用本发明的方法进行校正,正常测量时将微波开关切换到允许环行器10的微波信号通过的状态,数字信号处理器3对采样数字序列进行FFT运算和分析,计算得到真实的料位信号后,经由显示键盘通讯接口单元1利用显示的方式,或通过电流输出给外部的显示仪表,或是通过通信接口与外部的显示仪表进行通信,传输数据。
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100924472A CN1295486C (en) | 2004-12-23 | 2004-12-23 | Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100924472A CN1295486C (en) | 2004-12-23 | 2004-12-23 | Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1632474A true CN1632474A (en) | 2005-06-29 |
CN1295486C CN1295486C (en) | 2007-01-17 |
Family
ID=34847684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100924472A Expired - Fee Related CN1295486C (en) | 2004-12-23 | 2004-12-23 | Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1295486C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101110565B (en) * | 2007-06-28 | 2010-04-14 | 安徽蓝盾光电子股份有限公司 | Linearity correcting device for radar voltage controlled oscillator collecting vehicle information |
CN101755192B (en) * | 2007-06-05 | 2012-01-04 | 图卢兹聚合技术国家研究所 | Method and device for detecting water in a cellular structure |
CN102540262A (en) * | 2010-12-27 | 2012-07-04 | 中国电子科技集团公司第五十研究所 | Nonlinear node detector |
CN102901954A (en) * | 2012-09-04 | 2013-01-30 | 天津职业技术师范大学 | Non-linear software correction method of linear frequency modulated continuous wave radar |
US8505382B2 (en) | 2011-02-10 | 2013-08-13 | Ut-Battelle, Llc | Nonlinear nanomechanical oscillators for ultrasensitive inertial detection |
CN103502782A (en) * | 2011-04-14 | 2014-01-08 | 恩德莱斯和豪瑟尔两合公司 | Method for calibrating and/or monitoring FMCW radar filling level measuring device |
CN104079269A (en) * | 2014-05-30 | 2014-10-01 | 中国电子科技集团公司第十研究所 | Microwave VCO directly-modulated high-linearity frequency modulated signal generating circuit |
CN107765239A (en) * | 2016-08-22 | 2018-03-06 | 邹谋炎 | A kind of design and implementation method of economical short distance range radar |
CN110243436A (en) * | 2019-07-08 | 2019-09-17 | 智驰华芯(无锡)传感科技有限公司 | A kind of short distance interference signal cancellation system for radar levelmeter |
CN111175696A (en) * | 2020-04-10 | 2020-05-19 | 杭州优智联科技有限公司 | Single-base-station ultra-wideband AOA (automatic optical inspection) positioning method based on frequency modulated continuous waves |
CN111325238A (en) * | 2020-01-21 | 2020-06-23 | 全球能源互联网研究院有限公司 | A phase noise compensation method and system |
CN112654889A (en) * | 2020-03-20 | 2021-04-13 | 华为技术有限公司 | Beat frequency signal processing method and device |
CN114397650A (en) * | 2022-01-21 | 2022-04-26 | 中国科学院空天信息创新研究院 | Nonlinear estimation and correction method of frequency modulation continuous wave radar |
CN114578297A (en) * | 2020-12-01 | 2022-06-03 | 上海禾赛科技有限公司 | Linear frequency sweep control method, linear frequency sweep control device and radar |
CN114900606A (en) * | 2022-03-31 | 2022-08-12 | 浙江华创视讯科技有限公司 | Method and device for calibrating zoom tracking curve, electronic device and storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19713967A1 (en) * | 1997-04-04 | 1998-10-08 | Siemens Ag | Distance measurement device using FMCW radar |
JP3577240B2 (en) * | 1999-05-28 | 2004-10-13 | 三菱電機株式会社 | Radar equipment |
CN1093257C (en) * | 1999-06-18 | 2002-10-23 | 中国科学院上海技术物理研究所 | Linear frequency-modulation continuous wave radar feed location instrument and measuring method thereof |
-
2004
- 2004-12-23 CN CNB2004100924472A patent/CN1295486C/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101755192B (en) * | 2007-06-05 | 2012-01-04 | 图卢兹聚合技术国家研究所 | Method and device for detecting water in a cellular structure |
CN101110565B (en) * | 2007-06-28 | 2010-04-14 | 安徽蓝盾光电子股份有限公司 | Linearity correcting device for radar voltage controlled oscillator collecting vehicle information |
CN102540262A (en) * | 2010-12-27 | 2012-07-04 | 中国电子科技集团公司第五十研究所 | Nonlinear node detector |
CN102540262B (en) * | 2010-12-27 | 2013-10-30 | 中国电子科技集团公司第五十研究所 | Nonlinear node detector |
US8505382B2 (en) | 2011-02-10 | 2013-08-13 | Ut-Battelle, Llc | Nonlinear nanomechanical oscillators for ultrasensitive inertial detection |
CN103502782A (en) * | 2011-04-14 | 2014-01-08 | 恩德莱斯和豪瑟尔两合公司 | Method for calibrating and/or monitoring FMCW radar filling level measuring device |
CN103502782B (en) * | 2011-04-14 | 2015-07-15 | 恩德莱斯和豪瑟尔两合公司 | Method for calibrating and/or monitoring FMCW radar filling level measuring device |
CN102901954A (en) * | 2012-09-04 | 2013-01-30 | 天津职业技术师范大学 | Non-linear software correction method of linear frequency modulated continuous wave radar |
CN104079269A (en) * | 2014-05-30 | 2014-10-01 | 中国电子科技集团公司第十研究所 | Microwave VCO directly-modulated high-linearity frequency modulated signal generating circuit |
CN104079269B (en) * | 2014-05-30 | 2016-08-17 | 中国电子科技集团公司第十研究所 | Microwave VCO directly modulation High Linear FM signal generation circuit |
CN107765239A (en) * | 2016-08-22 | 2018-03-06 | 邹谋炎 | A kind of design and implementation method of economical short distance range radar |
CN110243436A (en) * | 2019-07-08 | 2019-09-17 | 智驰华芯(无锡)传感科技有限公司 | A kind of short distance interference signal cancellation system for radar levelmeter |
CN111325238A (en) * | 2020-01-21 | 2020-06-23 | 全球能源互联网研究院有限公司 | A phase noise compensation method and system |
CN111325238B (en) * | 2020-01-21 | 2023-06-09 | 全球能源互联网研究院有限公司 | A phase noise compensation method and system |
CN112654889A (en) * | 2020-03-20 | 2021-04-13 | 华为技术有限公司 | Beat frequency signal processing method and device |
EP4119978A4 (en) * | 2020-03-20 | 2023-04-12 | Huawei Technologies Co., Ltd. | Beat frequency signal processing method and apparatus |
CN111175696A (en) * | 2020-04-10 | 2020-05-19 | 杭州优智联科技有限公司 | Single-base-station ultra-wideband AOA (automatic optical inspection) positioning method based on frequency modulated continuous waves |
CN114578297A (en) * | 2020-12-01 | 2022-06-03 | 上海禾赛科技有限公司 | Linear frequency sweep control method, linear frequency sweep control device and radar |
CN114397650A (en) * | 2022-01-21 | 2022-04-26 | 中国科学院空天信息创新研究院 | Nonlinear estimation and correction method of frequency modulation continuous wave radar |
CN114900606A (en) * | 2022-03-31 | 2022-08-12 | 浙江华创视讯科技有限公司 | Method and device for calibrating zoom tracking curve, electronic device and storage medium |
CN114900606B (en) * | 2022-03-31 | 2024-01-05 | 浙江华创视讯科技有限公司 | Calibration method and device for zoom tracking curve, electronic device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN1295486C (en) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1295486C (en) | Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar | |
JP6556930B2 (en) | Vector network analyzer | |
CN108351405A (en) | The circuit and method of the chirp signal linearity and phase noise for determining fmcw radar | |
CN1282866C (en) | Digitized radar levelmeter | |
CN1153066C (en) | Network analytical instrument, network analytical method and recording media | |
US20090224961A1 (en) | Waveform generation method, radar device, and oscillator for radar device | |
CN110596671A (en) | Optimization processing method and system for LFMCW speed and distance measuring radar | |
CN106063132A (en) | On-chip analog-to-digital converter (adc) linearity test for embedded devices | |
CN1522364A (en) | Equipment and analytical methods for determining moisture in materials | |
CN1491348A (en) | Level-measuring device which functions with microwaves | |
CN1243243A (en) | Linear frequency-modulation continuous wave radar feed location instrument and measuring method thereof | |
CN1193503C (en) | Pulse type counting method | |
CN118169669A (en) | A method for measuring distance and speed using a 24GHz short-range altimeter based on FPGA | |
CN116047447A (en) | Target distance and speed measurement method and device based on frequency modulation continuous wave radar | |
CN114859308A (en) | Radar target simulator and calibration method thereof | |
CN108055091A (en) | A kind of millimeter wave self calibration virtual instrument and its implementation | |
Balestrieri et al. | Research trends and challenges on DAC testing | |
CN1184473C (en) | Digital ultrasonic flaw detector and its time decimal sampling method | |
CN1889697A (en) | Method for realizing quantitative measurement in television high frequency electronic tuner tester | |
CN117741639B (en) | Millimeter wave radar device with automatic zooming function and control method | |
Balestrieri et al. | DAC testing: recent research directions | |
JP2005337825A (en) | Water level measuring apparatus and water level measuring method using radio waves | |
CN113567933B (en) | Millimeter wave radar signal frequency measuring equipment and method | |
RU2808934C1 (en) | Method for determining nonlinear distortions of signals (options) | |
CN115683177B (en) | Decoding device of sine and cosine encoder and micro-control unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070117 Termination date: 20101223 |