[go: up one dir, main page]

CN1632474A - Nonlinear Evolutionary Correction Method for LFM Radar Level Meter - Google Patents

Nonlinear Evolutionary Correction Method for LFM Radar Level Meter Download PDF

Info

Publication number
CN1632474A
CN1632474A CN 200410092447 CN200410092447A CN1632474A CN 1632474 A CN1632474 A CN 1632474A CN 200410092447 CN200410092447 CN 200410092447 CN 200410092447 A CN200410092447 A CN 200410092447A CN 1632474 A CN1632474 A CN 1632474A
Authority
CN
China
Prior art keywords
frequency
linear
signal
voltage
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410092447
Other languages
Chinese (zh)
Other versions
CN1295486C (en
Inventor
谢克明
阎高伟
谢刚
夏路易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CNB2004100924472A priority Critical patent/CN1295486C/en
Publication of CN1632474A publication Critical patent/CN1632474A/en
Application granted granted Critical
Publication of CN1295486C publication Critical patent/CN1295486C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

This invention relates to a non-linear correction method of linear frequency-modulated radar object meter, which belongs to signal process and automatic measurement technique field. It divides the frequency-scanning voltage curve of the control oscillator and uses frequency spectrum analysis to extract characteristics information and adopts principle of evolution computation to get the end point coordinates of the curve to form non-linear frequency-scanning curve to compensate the non-linear property of the control oscillator without measurement of high-frequency microwave signals or phase to generate the linear frequency-modulated signals with high linear property. It solves the problem of linear frequency-modulated radar non-linear property.

Description

线性调频雷达物位计非线性进化校正方法Nonlinear Evolutionary Correction Method for LFM Radar Level Meter

一、技术领域1. Technical field

本发明线性调频雷达物位计非线性进化校正方法属于信号处理和自动测量技术领域,具体来说是一种利用频谱分析提取特征信息,采用进化计算的原理解决线性调频雷达调频非线性的问题。The non-linear evolution correction method of the chirp radar level gauge of the present invention belongs to the technical field of signal processing and automatic measurement, specifically, it uses spectrum analysis to extract characteristic information and adopts the principle of evolutionary calculation to solve the problem of chirp radar frequency modulation nonlinearity.

二、技术背景2. Technical Background

线性连续调频雷达物位计在料位测量中具有非接触、分辨率高,介质适应性广的优点,广泛应用于各种物位测量。由于线性连续波调频雷达中使用的压控振荡器具有本质的非线性,在采用完全线性的电压进行频率调制时,会使最终输出的频率信号呈现非线性特性,由于存在频率偏移,混频后的差拍信号不是理想线性调频信号情况下的单频信号,频谱将被展宽,从而导致LFMCW雷达料位计分辨率降低,同时还会导致FFT频谱分析后信噪比的下降,影响最终的计算精度。为了消除非线性,一般采用2种方法:开环校正和闭环校正。开环校正是预先测量VCO的电压频率关系,存储在存储器中,实际使用时按预先存储的数字量由D/A转换器进行扫频电压的输出。或者是利用电位器和放大器构成多段的非线性校正的硬件电路,进行硬件校正,这两种种方法的缺点是每个VCO的特性均不相同,在生产调试过程中工作量很大,不易批量化生产。实际使用过程中受温度影响也很大,难以保证测量精度。闭环校正的方法是采用频率或相位的测量方法求出对应电压下的频率,然后对产生控制电压的数字量进行修正,以获取满意的线性度,这将增大硬件成本和软件的工作量。The linear continuous frequency modulation radar level gauge has the advantages of non-contact, high resolution and wide media adaptability in material level measurement, and is widely used in various material level measurements. Since the voltage-controlled oscillator used in the linear continuous wave FM radar is inherently nonlinear, when a completely linear voltage is used for frequency modulation, the final output frequency signal will exhibit nonlinear characteristics. Due to the frequency offset, the frequency mixing The final beat signal is not a single-frequency signal in the case of an ideal linear frequency modulation signal, and the spectrum will be broadened, resulting in a decrease in the resolution of the LFMCW radar level gauge, and a decrease in the signal-to-noise ratio after FFT spectrum analysis, affecting the final calculation accuracy. In order to eliminate nonlinearity, two methods are generally used: open-loop correction and closed-loop correction. The open-loop correction is to measure the voltage-frequency relationship of the VCO in advance, store it in the memory, and output the frequency-sweeping voltage by the D/A converter according to the digital quantity stored in advance in actual use. Or use potentiometers and amplifiers to form a multi-stage non-linear correction hardware circuit for hardware correction. The disadvantage of these two methods is that the characteristics of each VCO are different, and the workload in the production and debugging process is very large, and it is not easy to batch. Production. It is also greatly affected by temperature in the actual use process, and it is difficult to guarantee the measurement accuracy. The method of closed-loop correction is to use the frequency or phase measurement method to find the frequency under the corresponding voltage, and then correct the digital quantity that generates the control voltage to obtain a satisfactory linearity, which will increase the hardware cost and software workload.

为了解决这个问题,人们采用直接数字合成和数字锁相环的方法对所需要的信号进行数字合成,但由于以下原因不能投入实际的应用。首先采用直接数字合成的方法目前还达不到料位雷达工作的X波段,只能采用倍频或上变频的方法,这种方法一是成本过高,系统复杂,二是经过倍频产生的微波信号有很多谐波分量,相位噪声大,会对测量结果产生负面的影响。此外,利用锁相环改变频率时需要一个过渡过程,因此其频率转换时间较长,而不能满足线性调频波雷达的高速扫频特性的要求。In order to solve this problem, people use the method of direct digital synthesis and digital phase-locked loop to digitally synthesize the required signals, but they cannot be put into practical application due to the following reasons. First of all, the method of direct digital synthesis is still not up to the X-band of the material level radar, and only the method of frequency doubling or up-conversion can be used. This method is costly and the system is complicated. Second, it is generated by frequency doubling. Microwave signals have many harmonic components and large phase noise, which will have a negative impact on the measurement results. In addition, a transition process is required when changing the frequency with the phase-locked loop, so the frequency conversion time is relatively long, which cannot meet the requirements of the high-speed frequency-sweeping characteristic of the chirp radar.

三、发明内容3. Contents of the invention

本发明线性调频雷达物位计非线性进化校正方法目的在于:提供一种简便和无须增加任何硬件的调频线性度的校正方法,解决目前线性度校正比较难和比较复杂的问题,解决由于调频非线性对测量精度带来的影响的问题,提供一种便于生产和调试的雷达物位计。The purpose of the nonlinear evolution correction method of the linear frequency modulation radar level meter of the present invention is to provide a simple correction method of frequency modulation linearity without adding any hardware, to solve the current difficult and complicated problem of linearity correction, and to solve the problems caused by the non-linearity of frequency modulation. To solve the problem of the influence of linearity on measurement accuracy, a radar level gauge that is easy to produce and debug is provided.

本发明LFMCW雷达物位计压控振荡器的线性度进化校正方法,其特征在于:利用进化原理对压控振荡器的调频非线性进行校正,I.采用一种新的基于进化方法对压控振荡器频率非线性进行闭环校正原理;II.利用调频电压曲线的非线性来弥补压控振荡器的非线性,将调频电压曲线分为若干段,对每段端点坐标划分一定的变化区域,采用进化原理求取对应最佳调频线性度的端点坐标,将各端点连接即可形成扫频电压曲线;III.采用基于差频信号频谱特征分析的方法进行校正,无须测量高频微波信号的频率或相位,现有雷达物位计不需要增加任何新的硬件设备即可进行校正,或者在微波单元增加一个延迟器即可实现在线自校正;IV.可采用重叠分析的方法获得更高的校正线性度;具体来讲,本发明LFMCW雷达物位计压控振荡器的线性度进化校正方法的硬件基础主要包括数字信号处理单元和微波单元[结构详见图1],数字信号处理单元由键盘显示通信接口模块1、D/A转换器2、数字信号处理器3、缓冲放大器4、存储器5、滤波器12、数字程控增益放大器13和高速A/D转换器14组成,微波单元由压控振荡器6、耦合器7、天线9、环行器10和混频器11组成,数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生微波调频信号,微波调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器7同时耦合出的信号作为参考信号送到混频器11,目标物体8反射回波经天线9接收,经环行器10后也传送到混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,数字信号处理器3对采样数字序列进行FFT或小波运算和分析,提取出代表非线性的特征量;The linearity evolution correction method of the LFMCW radar level gauge voltage-controlled oscillator of the present invention is characterized in that: utilize the evolutionary principle to correct the frequency modulation nonlinearity of the voltage-controlled oscillator, 1. adopt a kind of new method based on evolution Oscillator frequency nonlinearity for closed-loop correction principle; II. Use the nonlinearity of the frequency modulation voltage curve to compensate for the nonlinearity of the voltage-controlled oscillator, divide the frequency modulation voltage curve into several sections, and divide the coordinates of each end point into a certain change area. The principle of evolution obtains the coordinates of the endpoints corresponding to the best frequency modulation linearity, and connects the endpoints to form a frequency sweep voltage curve; III. Using the method based on the analysis of the frequency spectrum characteristics of the difference frequency signal for correction, there is no need to measure the frequency or frequency of high-frequency microwave signals Phase, the existing radar level gauge can be corrected without adding any new hardware equipment, or adding a delay in the microwave unit can realize online self-calibration; IV. The method of overlapping analysis can be used to obtain higher correction linearity Specifically, the hardware basis of the linearity evolution correction method of the LFMCW radar level gauge voltage-controlled oscillator of the present invention mainly includes a digital signal processing unit and a microwave unit [see Fig. 1 for structure details], and the digital signal processing unit is displayed by a keyboard Composed of communication interface module 1, D/A converter 2, digital signal processor 3, buffer amplifier 4, memory 5, filter 12, digital program-controlled gain amplifier 13 and high-speed A/D converter 14, the microwave unit is composed of voltage-controlled oscillation Composed of 6, coupler 7, antenna 9, circulator 10 and mixer 11, the digital signal processor 3 outputs the digital signal to the D/A converter 2, converts it into a voltage signal, and forms the microwave unit through the buffer amplifier 4 The control voltage of the voltage-controlled oscillator 6 excites the voltage-controlled oscillator 6 to generate a microwave frequency modulation signal, and the microwave frequency modulation signal passes through the coupler 7 and then is emitted by the antenna 9 through the circulator 10, and the signal coupled out by the coupler 7 at the same time is sent as a reference signal to the mixer 11, the echo reflected by the target object 8 is received by the antenna 9, and after passing through the circulator 10, it is also sent to the mixer 11 to mix with the reference signal, and the mixed signal passes through the low-pass filter 12 to form a difference frequency The signal and the difference frequency signal are sampled by the high-speed A/D converter 14 after passing through the digital program-controlled gain amplifier 13, converted into a digital sequence, read by the digital signal processor 3, and stored in the memory 5, and the digital signal processor 3 samples the digital sequence Carry out FFT or wavelet calculation and analysis to extract the characteristic quantity representing nonlinearity;

压控振荡器存在本质的非线性[见图3],图3中理想的调频发射信号18和理想的回波信号20混频后是点频信号,实际的调频发射信号17具有非线性特性,实际回波信号19也具有非线性特性,二者相混频后将会使频谱混叠,使测量的分辨率降低或无法分辨具体的目标物体的位置,图4中谱峰21是对应具体的物位,在相邻很近的位置存在两个峰值点22和23,有可能导致无法分辨具体的物料位置,这是在实验室测量的一种比较好的情况,实际测量过程中将会更加严重,图5是采用本发明的方法对线性度进行校正后的频谱,除代表物位的谱峰24以外,其它的成份得到有效抑制,VCO的相位噪声和非线性所带来的影响得到消除,本发明线性调频雷达物位计压控振荡器的非线性进化校正方法采用基于进化方法的原理对调频电压曲线进行分段线性校正,具体的做法是,将调频电压曲线分成若干段,图6中将调频曲线分成六段,分别为线段25、线段26、线段27、线段28、线段29、线段30,共有七个端点,分别为起始点31、终点37和分配有可变区域的中间可变端点32、33、34、35、36,起始点31和终点37为固定不变的点,连接各端点形成一条非线性的调频电压曲线,对压控振荡器的非线性进行补偿,每段的端点采用进化的方法获取,通过对FFT或小波运算后的频谱进行分析,获得代表非线性和干扰信息的特征量,图4中的谱峰21对应具体的物位,是测量过程中需要的,而另外两个峰值点22和23是由VCO的相位噪声和非线性造成的,需要得到抑制,可选择谱峰与谱峰两侧一定范围内几个峰值商的和作为评价非线性所造成影响的评价函数,通过进化方法使该函数达到一定的数值,即可有效抑制压控振荡器的相位噪声和调频非线性造成的影响,例如可选图4中谱峰21的数值与谱峰22、23数值的商的和作为评价函数,对进化校正效果的评价,进化校正的方法详见图9,图9中校正过程开始后的第一个子过程43用来在各中间可变端点变化区域内随机产生中间可变端点坐标的编码群体,编码可采用二进制编码或其它编码形式,编码的位数可根据需要确定,群体中个体的数量为N,种群的数量根据需要确定,个体中变量的数量为M,由曲线分段的数量决定,其后的子过程44将循环变量清零,子过程45将个体中曲线的各端点的编码值转换成坐标值,子过程46将起始点、各中间可变端点、终止点连在一起,生成扫频电压曲线,该曲线实际上是一个数字量序列,子过程47通过D/A转换器2将数字量序列以预定的速率连续输出,产生对压控振荡器6的扫频电压曲线,控制压控振荡器6输出微波调频信号,经过耦合器7、环行器10、天线9发射到一个平面金属薄板,天线9接收的反射回波信号经环行器10进入混频器11和通过耦合器7耦合出来的参考频率信号进行混频,产生的混频信号经过滤波器12后形成差频信号,经过数字程控增益放大器13放大或衰减后,在子过程48中由高速A/D转换器14进行采样量化形成差频信号的数字序列,在子过程49中数字信号处理器3对采样的数字序列进行FFT运算或小波分析,得到频谱曲线,进行曲线的特征量提取,其后的子过程50用来计算这条扫频电压曲线的性能评价函数,子过程51判断评价函数是否满足预定的要求,若满足要求则由子过程52保存结果,结束校正过程,否则子过程53、54对循环变量进行递增和判断,确保编码群体中每个个体所代表的曲线都能被测试和评价,在初始群体测试和评价完成后由进化计算子过程55进行进化计算,所产生的结果群体重复进行上述的测试和评价过程,图7中的粗线扫频电压曲线38表示了经过校正后的扫频电压曲线,可以看出扫频电压曲线38已经是非线性的,通过扫频电压曲线38的非线性来修正压控振荡器的非线性获得高线性度的微波调频信号,需要说明的是子过程55中可以采用遗传算法,或其它的进化算法诸如思维进化、进化规划、免疫进化方法等,同时评价函数的选择也是多样化的,本发明中对调频电压曲线分了6段,采用其它数量的分段也是可行的,分段越多校正效果也会好,提高A/D转换的采样速率,得到超过FFT点数的采样序列,采用对原始的采样序列进行重叠FFT运算,获得单一扫频曲线的多个频谱,图8详细表示了对原始采样序列进行重叠分段思想,例如可分为相互重叠序列长度相同的39、40、41、42数据段,对每一段进行FFT运算,综合多个频谱上的特征量进行评价,可以获得线性度更高的校正结果,但是会带来运算量的增加。There is an essential nonlinearity in the voltage controlled oscillator [see Fig. 3]. In Fig. 3, the ideal FM transmission signal 18 and the ideal echo signal 20 are mixed to form a point frequency signal, and the actual FM transmission signal 17 has nonlinear characteristics. The actual echo signal 19 also has nonlinear characteristics. After the two are mixed together, the frequency spectrum will be aliased, which will reduce the resolution of the measurement or make it impossible to distinguish the position of the specific target object. The spectral peak 21 in Fig. 4 is corresponding to the specific Material level, there are two peak points 22 and 23 in very close positions, which may lead to the inability to distinguish the specific material position. This is a relatively good situation measured in the laboratory, and it will be more accurate in the actual measurement process. Seriously, Fig. 5 is the frequency spectrum after the linearity is corrected by the method of the present invention, except for the spectral peak 24 representing the material level, other components are effectively suppressed, and the influence of the phase noise and nonlinearity of the VCO is eliminated , the nonlinear evolution correction method of the voltage-controlled oscillator of the linear frequency modulation radar level meter of the present invention adopts the principle based on the evolution method to carry out segmental linear correction to the frequency modulation voltage curve, and the specific method is to divide the frequency modulation voltage curve into several sections, as shown in Figure 6 The FM curve is divided into six segments, which are line segment 25, line segment 26, line segment 27, line segment 28, line segment 29, and line segment 30. There are seven endpoints in total, which are the starting point 31, the ending point 37, and the middle variable area allocated with variable regions. Change the endpoints 32, 33, 34, 35, 36, the starting point 31 and the ending point 37 are fixed points, connect the endpoints to form a nonlinear frequency modulation voltage curve, and compensate the nonlinearity of the voltage-controlled oscillator. The end point of the end point is obtained by an evolutionary method. By analyzing the frequency spectrum after FFT or wavelet operation, the characteristic quantity representing nonlinear and interference information is obtained. The spectral peak 21 in Figure 4 corresponds to the specific material level, which is required in the measurement process. , and the other two peak points 22 and 23 are caused by the phase noise and nonlinearity of the VCO, which need to be suppressed, and the sum of several peak quotients within a certain range on both sides of the spectrum peak can be selected as the evaluation of the nonlinearity caused by The evaluation function of the influence, by making the function reach a certain value through the evolution method, the influence caused by the phase noise of the voltage-controlled oscillator and the nonlinearity of frequency modulation can be effectively suppressed, for example, the value of the spectrum peak 21 and the spectrum peak 22 in Figure 4 can be selected , The sum of the quotient of 23 numerical values is used as evaluation function, to the evaluation of evolutionary correction effect, the method of evolutionary correction is shown in Fig. 9 for details, and the first sub-process 43 after the correction process starts in Fig. 9 is used for changing in each intermediate variable endpoint Randomly generate a coded population with intermediate variable endpoint coordinates in the region. The code can be binary coded or other coded forms. The number of coded digits can be determined as needed. The number of individuals in the group is N. The quantity of is M, is decided by the quantity of curve segmentation, and the subprocess 44 thereafter is cleared to loop variable, and subprocess 45 converts the coding value of each endpoint of the curve in the individual into a coordinate value, and subprocess 46 converts the starting point, The intermediate variable endpoints and termination points are connected together to generate a frequency sweep voltage curve, which is actually a digital sequence, and the sub-process 47 continuously outputs the digital sequence at a predetermined rate through the D/A converter 2 to generate For the frequency-sweeping voltage curve of the voltage-controlled oscillator 6, the voltage-controlled oscillator 6 is controlled to output a microwave frequency modulation signal, which is transmitted to a flat metal sheet through the coupler 7, the circulator 10, and the antenna 9, and the reflected echo signal received by the antenna 9 is passed through The circulator 10 enters the mixer 11 and mixes the reference frequency signal coupled through the coupler 7, and the generated mixed frequency signal passes through the filter 12 to form a difference frequency signal, and after being amplified or attenuated by the digital program-controlled gain amplifier 13, the In the sub-process 48, the high-speed A/D converter 14 carries out sampling and quantization to form the digital sequence of the difference frequency signal. In the sub-process 49, the digital signal processor 3 performs FFT operation or wavelet analysis on the sampled digital sequence to obtain a spectrum curve, and perform The feature quantity extraction of the curve, the subsequent sub-process 50 is used to calculate the performance evaluation function of this frequency-sweeping voltage curve, and the sub-process 51 judges whether the evaluation function meets the predetermined requirements, and if the requirements are met, the result is saved by the sub-process 52, and the correction is completed process, otherwise the sub-processes 53 and 54 increment and judge the cyclic variables to ensure that the curve represented by each individual in the coding population can be tested and evaluated, and the evolution calculation sub-process 55 performs evolution after the initial population testing and evaluation is completed Calculate, the resulting group of results repeats the above-mentioned test and evaluation process, the thick line sweep voltage curve 38 in Figure 7 represents the corrected sweep voltage curve, it can be seen that the sweep voltage curve 38 has been nonlinear , modify the nonlinearity of the voltage-controlled oscillator to obtain a microwave FM signal with high linearity through the nonlinearity of the frequency-sweeping voltage curve 38. It should be noted that in the sub-process 55, a genetic algorithm or other evolutionary algorithms such as thinking evolution, Evolutionary programming, immune evolution methods, etc., and the selection of evaluation functions is also diversified. In the present invention, the frequency modulation voltage curve is divided into 6 sections, and it is also feasible to use other numbers of sections. The more sections there are, the better the correction effect will be. Increase the sampling rate of A/D conversion to obtain a sampling sequence exceeding the number of FFT points, and use the overlapping FFT operation on the original sampling sequence to obtain multiple spectra of a single sweep curve. Figure 8 shows in detail the overlapping analysis of the original sampling sequence Segment thinking, for example, can be divided into 39, 40, 41, and 42 data segments of the same overlapping sequence length, perform FFT operation on each segment, and evaluate the feature quantities on multiple spectrums to obtain correction results with higher linearity , but it will increase the amount of computation.

本发明优点:主要用于工矿企业的各种物位的测量以及可以用于一些距离测量场合。线性调频线性度的校正依靠物位计本身即可进行,无须外部测量设备和仪器,校正方式和算法简单,校正后线性度高;仪器的造价低,生产和调试简单,提高生产效率;测量精度高、误差小、抗干扰能力强、适应恶劣工业环境,稳定可靠。The invention has the advantages that it is mainly used for the measurement of various material levels in industrial and mining enterprises and can be used for some distance measurement occasions. The calibration of chirp linearity can be done by the level meter itself, without external measuring equipment and instruments, the calibration method and algorithm are simple, and the linearity after calibration is high; the cost of the instrument is low, the production and debugging are simple, and the production efficiency is improved; the measurement accuracy High, small error, strong anti-interference ability, adapt to harsh industrial environment, stable and reliable.

四、附图说明4. Description of drawings

图1是本发明实现形式1的结构图Fig. 1 is a structural diagram of the present invention's implementation form 1

图2是本发明形式2的结构图Fig. 2 is the structural diagram of form 2 of the present invention

图3是压控振荡器的非线性特性Figure 3 is the nonlinear characteristics of the voltage controlled oscillator

图4校正前的频谱Figure 4 Spectrum before correction

图5校正后的频谱Figure 5 Corrected Spectrum

图6扫频电压曲线的分段Figure 6 Segmentation of frequency sweep voltage curve

图7校正后扫频电压曲线Figure 7 Sweep voltage curve after correction

图8原始采样序列的重叠分段Figure 8 Overlapping segments of the original sampling sequence

图9线性化校正流程图Figure 9 Linearization correction flow chart

图10进化结果对应的扫频电压曲线Figure 10 The frequency sweep voltage curve corresponding to the evolution result

图中标号Label in the figure

1、   显示键盘通信接口              2、   高速D/A转换器1. Display keyboard communication interface 2. High-speed D/A converter

3、   数字信号处理器                4、   缓冲放大器3. Digital signal processor 4. Buffer amplifier

5、   存储器                        6、   压控振荡器5. Memory 6. Voltage Controlled Oscillator

7、   耦合器                        8、   目标物体或金属平板7. Coupler 8. Target object or metal plate

9、   天线                          10、  环形器9. Antenna 10. Circulator

11、  混频器                        12、  低通滤波器11. Mixer 12. Low-pass filter

13、  数字程控增益放大器            14、  高速A/D转换器13. Digital programmable gain amplifier 14. High-speed A/D converter

15、  微波延迟线                    16、  微波开关15. Microwave delay line 16. Microwave switch

17、  实际发射的非线性信号          18、  理想的线性发射信号17. The actual transmitted nonlinear signal 18. The ideal linear transmitted signal

19、  实际接收的回波非线性信号      20、  理想的回波信号19. The actual received echo nonlinear signal 20. The ideal echo signal

21、  频谱曲线中的目标峰值          22、  由调频非线性产生的干扰峰值21. The target peak in the spectrum curve 22. The interference peak generated by the non-linearity of frequency modulation

23、  由调频非线性产生的干扰峰值    24、  进化线性校正后的单一峰值23. Interference peak generated by frequency modulation nonlinearity 24. Single peak after evolutionary linear correction

25、  扫频电压曲线分段1             26、  扫频电压曲线分段225. Frequency sweep voltage curve segment 1 26. Frequency sweep voltage curve segment 2

27、  扫频电压曲线分段3             28、  扫频电压曲线分段427. Frequency sweep voltage curve segment 3 28. Frequency sweep voltage curve segment 4

29、  扫频电压曲线分段5             30、  扫频电压曲线分段629. Frequency sweep voltage curve segment 5 30. Frequency sweep voltage curve segment 6

31、  扫频电压曲线起始点            32、  扫频电压曲线中间可变端点1及其31. The starting point of the frequency sweep voltage curve 32. The middle variable endpoint 1 of the frequency sweep voltage curve and its

                                          变化区域Area of change

33、  扫频电压曲线中间可变端点2     34、  扫频电压曲线中间可变端点3及其33. Variable terminal 2 in the middle of the frequency sweep voltage curve 34. Variable terminal 3 in the middle of the frequency sweep voltage curve and its

      及其变化区域                        变化区域and its change area

35、  扫频电压曲线中间可变端点4     36、  扫频电压曲线中间可变端点5及其35. Variable terminal 4 in the middle of the frequency sweep voltage curve 36. Variable terminal 5 in the middle of the frequency sweep voltage curve and its

      及其变化区域                        变化区域and its change area

37、  扫频电压曲线终止点            38、  校正后的扫频电压曲线37. End point of frequency sweep voltage curve 38. Corrected frequency sweep voltage curve

39、  原始采样序列重叠分段1         40、  原始采样序列重叠分段239. Original sampling sequence overlapping segment 1 40. Original sampling sequence overlapping segment 2

41、  原始采样序列重叠分段3         42、  原始采样序列重叠分段441. Original sampling sequence overlapping segment 3 42. Original sampling sequence overlapping segment 4

43、  产生端点坐标的编码群体        44、  循环变量清零43. Generate the coding group of the endpoint coordinates 44. Clear the loop variable

45、  个体中端点编码值转换成端点    46、  连接端点生成扫频曲线45. Convert the end point encoding value in the individual into an end point 46. Connect the end points to generate a frequency sweep curve

      的坐标值The coordinate value of

47、  输出扫频电压曲线              48、  获得差频信号采样数字序列47. Output frequency sweep voltage curve 48. Obtain the sampling digital sequence of the difference frequency signal

49、  进行频谱计算并提取频谱特征    50、  计算扫频电压曲线的性能49. Perform spectrum calculation and extract spectrum features 50. Calculate the performance of frequency sweep voltage curve

      量 quantity

51、  判断线性度是否达到要求        52、  保存校正结果51. Judging whether the linearity meets the requirements 52. Saving the calibration results

53、  循环变量递增                  54、  判断对群体中各个体是否评价完成53. Incrementing the loop variable 54. Judging whether the evaluation of each individual in the group is completed

55、  对群体进行进化计算55. Perform evolutionary calculations on populations

五、具体实施方式5. Specific implementation

实施方式1如图1所示,校正时,在雷达物位计前垂直于天线轴向位置放置一金属平板,雷达物位计和金属平板之间的距离可进行初步测量输入到雷达物位计的有关参数中,作为参考,可加快校正过程,数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生微波调频信号,微波调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器7同时耦合出的信号作为参考信号送到混频器11,目标物体8反射回波经天线9接收,经环行器10后也传送到混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,数字信号处理器3对采样数字序列进行FFT运算和分析,然后通过键盘输入命令利用本发明进化校正的线性调频雷达物位计的校正方法进行校正,表1给出了一个初始群体的示例,按6段分段的5个中间可变端点X坐标和Y坐标的初始种群二进制编码的16位整形值,个体数量N=35,个体中变量数量M=10,表2给出了进化计算后得到的5个中间可变端点X、Y坐标的编码值和经过换算后的坐标值,以及起始点坐标(0,0)和终点坐标(13383,13383)。图10是将各端点坐标连接生成的控制扫频电压的数字量序Embodiment 1 As shown in Figure 1, during calibration, a metal plate is placed perpendicular to the axial position of the antenna in front of the radar level gauge, and the distance between the radar level gauge and the metal plate can be initially measured and input to the radar level gauge Among the relevant parameters, as a reference, the correction process can be accelerated. The digital signal processor 3 outputs digital signals to the D/A converter 2, converts them into voltage signals, and forms the control of the voltage-controlled oscillator 6 of the microwave unit through the buffer amplifier 4. voltage, to excite the voltage-controlled oscillator 6 to generate a microwave frequency modulation signal, the microwave frequency modulation signal passes through the coupler 7 and then is emitted by the antenna 9 through the circulator 10, and the signal coupled by the coupler 7 is sent to the mixer 11 as a reference signal, and the target The echo reflected by the object 8 is received by the antenna 9, and after passing through the circulator 10, it is also sent to the mixer 11 to mix with the reference signal. The mixed signal passes through the low-pass filter 12 to form a difference frequency signal, and the difference frequency signal passes through the digital After the programmable gain amplifier 13 is sampled by the high-speed A/D converter 14, converted into a digital sequence read by the digital signal processor 3, and stored in the memory 5, the digital signal processor 3 performs FFT operation and analysis on the sampled digital sequence, and then Utilize the correction method of the chirp radar level gauge of evolutionary correction of the present invention to carry out correction by keyboard input command, table 1 has provided the example of an initial group, by 5 intermediate variable endpoint X coordinates and Y coordinates of 6 segments The 16-bit plastic value of the binary code of the initial population, the number of individuals N=35, the number of variables in the individual M=10, Table 2 shows the coded values of the X and Y coordinates of the five intermediate variable endpoints obtained after the evolutionary calculation and the process The converted coordinates, as well as the starting point coordinates (0, 0) and end point coordinates (13383, 13383). Figure 10 is the digital sequence of the control frequency sweep voltage generated by connecting the coordinates of each end point

                 表1  初始种群示例 序号     可变端点1     可变端点2      可变端点3       可变端点4       可变端点5    X1’    Y1’    X2’    Y2’    X3’    Y3’     X4’    Y4’     X5’     Y5’     1  16838   5202   26703   2750  28528  21293  1696  19975  413  23236     2  5758   9171   6270   879  23363  29441  18585  10519  26281  7254     3  10113   4434   13870   30989  21087  19484  13455  21472  12389  11688     4  17515   28317   11529   30134  19052  12759  92  19641  11357  5003     5  31051   24582   27499   29752  31235  15400  18288  9349  4887  32203     6  5627   6815   4500   28364  15109  6211  31755  23391  17532  8788     7  23010   4586   8607   4880  17075  4144  29167  30563  1555  23915     8  7419   9653   5808   5629  11755  15335  27412  22184  12299  1199     9  16212   26306   15725   2235  10675  22704  25030  19958  9490  13424     10  4086   7174   12457   21332  288  32520  31717  41  26460  24408     11  2749   18451   16542   24145  32053  23789  24842  27666  24911  6490     12  12767   23448   16474   3356  14157  32121  28572  23363  14183  27655     13  9084   6473   11531   5243  5758  21913  26393  25344  22704  21593     14  12060   32434   17222   3079  5222  23571  27828  2410  17412  13310     15  32225   8193   3952   3988  17488  12369  11805  28635  20961  3072     16  17543   14110   17024   807  18945  2770  3660  1006  20382  12038     17  25089   24748   19894   24979  10294  1594  5838  20068  3608  5087     18  21183   28210   24015   31357  11200  887  9046  26660  5811  1697     19  25137   29320   18247   914  5171  18093  18182  20562  7168  23526     20  25566   32049   11276   21187  14305  32317  23772  29323  20794  7448     21  26966   12956   26278   3540  7951  11188  12354  13764  12286  17497     22  4978   14162   19365   14022  6601  27640  15377  21307  13771  15802     23  20495   4166   8746   10149  23608  4295  14885  7773  27844  19649     24  10311   14997   21976   609  7214  12490  22759  10683  6684  30555     25  11367   7793   18092   29009  6377  25859  22934  9013  11255  25891     26  30054   32310   25851   24833  13865  3106  1903  8216  29227  1020     27  17031   21391   29088   16696  25369  24786  6159  28834  26960  18267     28  13145   19799   29163   5432  27215  17097  26145  15571  27448  14366     29  19882   7926   2231   24999  8030  5062  10045  15241  9086  23408     30  25736   14905   26233   28863  177  27943  26847  2303  8526  12848     31  30524   25885   29732   16369  16849  31247  17401  24754  1211  29762     32  28505   2582   21106   28676  11337  12292  29783  928  26131  22042     33  28394   15610   5411   24077  2699  16846  4167  3417  8645  23252     34  22102   5000   9874   7701  23099  3962  781  32048  11552  31440     35  24851   8052   5448   1691  8531  28479  24287  12018  18627  21810 Table 1 Initial population example serial number variable endpoint 1 variable endpoint 2 variable endpoint 3 variable endpoint 4 variable endpoint 5 X1' Y1' X2' Y2' X3' Y3' X4' Y4' X5' Y5' 1 16838 5202 26703 2750 28528 21293 1696 19975 413 23236 2 5758 9171 6270 879 23363 29441 18585 10519 26281 7254 3 10113 4434 13870 30989 21087 19484 13455 21472 12389 11688 4 17515 28317 11529 30134 19052 12759 92 19641 11357 5003 5 31051 24582 27499 29752 31235 15400 18288 9349 4887 32203 6 5627 6815 4500 28364 15109 6211 31755 23391 17532 8788 7 23010 4586 8607 4880 17075 4144 29167 30563 1555 23915 8 7419 9653 5808 5629 11755 15335 27412 22184 12299 1199 9 16212 26306 15725 2235 10675 22704 25030 19958 9490 13424 10 4086 7174 12457 21332 288 32520 31717 41 26460 24408 11 2749 18451 16542 24145 32053 23789 24842 27666 24911 6490 12 12767 23448 16474 3356 14157 32121 28572 23363 14183 27655 13 9084 6473 11531 5243 5758 21913 26393 25344 22704 21593 14 12060 32434 17222 3079 5222 23571 27828 2410 17412 13310 15 32225 8193 3952 3988 17488 12369 11805 28635 20961 3072 16 17543 14110 17024 807 18945 2770 3660 1006 20382 12038 17 25089 24748 19894 24979 10294 1594 5838 20068 3608 5087 18 21183 28210 24015 31357 11200 887 9046 26660 5811 1697 19 25137 29320 18247 914 5171 18093 18182 20562 7168 23526 20 25566 32049 11276 21187 14305 32317 23772 29323 20794 7448 twenty one 26966 12956 26278 3540 7951 11188 12354 13764 12286 17497 twenty two 4978 14162 19365 14022 6601 27640 15377 21307 13771 15802 twenty three 20495 4166 8746 10149 23608 4295 14885 7773 27844 19649 twenty four 10311 14997 21976 609 7214 12490 22759 10683 6684 30555 25 11367 7793 18092 29009 6377 25859 22934 9013 11255 25891 26 30054 32310 25851 24833 13865 3106 1903 8216 29227 1020 27 17031 21391 29088 16696 25369 24786 6159 28834 26960 18267 28 13145 19799 29163 5432 27215 17097 26145 15571 27448 14366 29 19882 7926 2231 24999 8030 5062 10045 15241 9086 23408 30 25736 14905 26233 28863 177 27943 26847 2303 8526 12848 31 30524 25885 29732 16369 16849 31247 17401 24754 1211 29762 32 28505 2582 21106 28676 11337 12292 29783 928 26131 22042 33 28394 15610 5411 24077 2699 16846 4167 3417 8645 23252 34 22102 5000 9874 7701 23099 3962 781 32048 11552 31440 35 24851 8052 5448 1691 8531 28479 24287 12018 18627 21810

列曲线。将该扫频曲线通过D/A转换器2输出,即可获得线性的调频频率。校正结束后即可进入正常的测量方式,安装到现场。因此,采用本发明的方法在现场进行校正也是很方便的。正常使用时,计算得到真实的料位信号,经由显示键盘通讯接口单元1利用显示的方式,或通过电流输出给外部的显示仪表,或是通过通信接口与外部的显示仪表进行通信,传输数据;column curve. The frequency sweep curve is output through the D/A converter 2 to obtain a linear FM frequency. After the calibration, you can enter the normal measurement mode and install it on site. Therefore, it is also very convenient to use the method of the present invention to perform calibration on site. In normal use, the real material level signal is calculated and displayed via the display keyboard communication interface unit 1, or output to an external display instrument through current, or communicates with an external display instrument through a communication interface to transmit data;

                                    表2  校正结果     起始点    可变端点1   可变端点2   可变端点3    可变端点4      可变端点5     终点   X0  Y0  X1   Y1  X2   Y2  X3  Y3    X4   Y4    X5   Y5  X6  Y6 二进制编码对应的整形值 13061 4002 3410 9286 11470 12125 5166 5896 15445 21762 坐标   0   0 2170  2608 4223  4677 6601 6820  8714  9240  11133  10986 13383 13383 Table 2 Calibration results starting point variable endpoint 1 variable endpoint 2 variable endpoint 3 variable endpoint 4 variable endpoint 5 end X0 Y0 X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 Integer value corresponding to binary encoding none none 13061 4002 3410 9286 11470 12125 5166 5896 15445 21762 none none coordinate 0 0 2170 2608 4223 4677 6601 6820 8714 9240 11133 10986 13383 13383

实施方式2如图2所示,在进化校正的线性调频雷达物位计内部增加了微波延迟线15和微波开关16,微波延迟线15对微波产生一定的迟延,可模拟固定距离的目标信号,因此可实现在线自校正。数字信号处理器3输出数字量信号给D/A转换器2,转换成电压信号,经过缓冲放大器4形成微波单元的压控振荡器6的控制电压,激励压控振荡器6产生调频信号,调频信号经过耦合器7后经环行器10由天线9发射出去,耦合器同时耦合出两路信号,一路作为参考信号送到混频器11,另一路经延迟线15产生固定延迟后送到微波开关16,经天线9接收的目标反射信号经环行器11后也传送到微波开关16,微波开关16受数字信号处理器3的控制,对经延迟线15的微波信号和经环行器10来的信号进行选择,允许其中一个通过,通过微波开关16的信号在混频器11与参考信号混频,混频后的信号通过低通滤波器12后形成差频信号,差频信号通过数字程控增益放大器13后由高速A/D转换器14采样,转换成数字序列由数字信号处理器3读取,在存储器5中存储,校正时,将微波开关切换到允许延迟线15的微波信号通过的状态,即可采用本发明的方法进行校正,正常测量时将微波开关切换到允许环行器10的微波信号通过的状态,数字信号处理器3对采样数字序列进行FFT运算和分析,计算得到真实的料位信号后,经由显示键盘通讯接口单元1利用显示的方式,或通过电流输出给外部的显示仪表,或是通过通信接口与外部的显示仪表进行通信,传输数据。Embodiment 2 As shown in Figure 2, a microwave delay line 15 and a microwave switch 16 are added inside the linear frequency modulation radar level gauge of the evolution correction. The microwave delay line 15 produces a certain delay to the microwave, which can simulate a target signal at a fixed distance. Therefore, online self-calibration can be realized. The digital signal processor 3 outputs a digital signal to the D/A converter 2, converts it into a voltage signal, forms the control voltage of the voltage-controlled oscillator 6 of the microwave unit through the buffer amplifier 4, and excites the voltage-controlled oscillator 6 to generate a frequency modulation signal. After the signal passes through the coupler 7, it is emitted by the antenna 9 through the circulator 10. The coupler simultaneously couples two signals, one of which is sent to the mixer 11 as a reference signal, and the other is sent to the microwave switch after a fixed delay through the delay line 15. 16. The target reflection signal received by the antenna 9 is also transmitted to the microwave switch 16 after passing through the circulator 11. The microwave switch 16 is controlled by the digital signal processor 3, and the microwave signal through the delay line 15 and the signal from the circulator 10 Select, allow one of them to pass, the signal passing through the microwave switch 16 is mixed with the reference signal in the mixer 11, the mixed signal passes through the low-pass filter 12 to form a difference frequency signal, and the difference frequency signal passes through the digital program-controlled gain amplifier After 13, it is sampled by the high-speed A/D converter 14, converted into a digital sequence, read by the digital signal processor 3, and stored in the memory 5. When correcting, switch the microwave switch to the state that allows the microwave signal of the delay line 15 to pass through. The method of the present invention can be used for correction. During normal measurement, the microwave switch is switched to the state where the microwave signal of the circulator 10 is allowed to pass through. The digital signal processor 3 performs FFT calculation and analysis on the sampling digital sequence, and calculates the real material level. After the signal is displayed, the display keyboard communication interface unit 1 uses a display method, or outputs to an external display instrument through a current, or communicates with an external display instrument through a communication interface, and transmits data.

Claims (1)

1. non-linear evolutional correction method for levelmeter of linear frequency-modulation radar, utilize the evolution principle to proofread and correct the frequency modulation of voltage controlled oscillator is non-linear, it is characterized in that: I. adopts and a kind ofly new to carry out closed-loop corrected principle based on evolvement method to pressuring controlling oscillator frequency is non-linear; II. utilize non-linear the non-linear of voltage controlled oscillator that remedy of fm voltage curve, the fm voltage curve is divided into plurality of sections, every section end points coordinate is divided certain region of variation, adopt the evolution principle to ask for the end points coordinate of corresponding best fm linearity, each end points connection can be formed the sweep voltage curve; III. adopt based on the method for difference frequency signal spectrum sigtral response and proofread and correct, need not measure the frequency or the phase place of high-frequency microwave signal, existing radar levelmeter does not need to increase any new hardware device can be proofreaied and correct, and perhaps increases a delayer at microwave unit and can realize online self-correcting; IV. can adopt the method for overlapping analysis to obtain the higher correction linearity.
CNB2004100924472A 2004-12-23 2004-12-23 Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar Expired - Fee Related CN1295486C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100924472A CN1295486C (en) 2004-12-23 2004-12-23 Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100924472A CN1295486C (en) 2004-12-23 2004-12-23 Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar

Publications (2)

Publication Number Publication Date
CN1632474A true CN1632474A (en) 2005-06-29
CN1295486C CN1295486C (en) 2007-01-17

Family

ID=34847684

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100924472A Expired - Fee Related CN1295486C (en) 2004-12-23 2004-12-23 Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar

Country Status (1)

Country Link
CN (1) CN1295486C (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110565B (en) * 2007-06-28 2010-04-14 安徽蓝盾光电子股份有限公司 Linearity correcting device for radar voltage controlled oscillator collecting vehicle information
CN101755192B (en) * 2007-06-05 2012-01-04 图卢兹聚合技术国家研究所 Method and device for detecting water in a cellular structure
CN102540262A (en) * 2010-12-27 2012-07-04 中国电子科技集团公司第五十研究所 Nonlinear node detector
CN102901954A (en) * 2012-09-04 2013-01-30 天津职业技术师范大学 Non-linear software correction method of linear frequency modulated continuous wave radar
US8505382B2 (en) 2011-02-10 2013-08-13 Ut-Battelle, Llc Nonlinear nanomechanical oscillators for ultrasensitive inertial detection
CN103502782A (en) * 2011-04-14 2014-01-08 恩德莱斯和豪瑟尔两合公司 Method for calibrating and/or monitoring FMCW radar filling level measuring device
CN104079269A (en) * 2014-05-30 2014-10-01 中国电子科技集团公司第十研究所 Microwave VCO directly-modulated high-linearity frequency modulated signal generating circuit
CN107765239A (en) * 2016-08-22 2018-03-06 邹谋炎 A kind of design and implementation method of economical short distance range radar
CN110243436A (en) * 2019-07-08 2019-09-17 智驰华芯(无锡)传感科技有限公司 A kind of short distance interference signal cancellation system for radar levelmeter
CN111175696A (en) * 2020-04-10 2020-05-19 杭州优智联科技有限公司 Single-base-station ultra-wideband AOA (automatic optical inspection) positioning method based on frequency modulated continuous waves
CN111325238A (en) * 2020-01-21 2020-06-23 全球能源互联网研究院有限公司 A phase noise compensation method and system
CN112654889A (en) * 2020-03-20 2021-04-13 华为技术有限公司 Beat frequency signal processing method and device
CN114397650A (en) * 2022-01-21 2022-04-26 中国科学院空天信息创新研究院 Nonlinear estimation and correction method of frequency modulation continuous wave radar
CN114578297A (en) * 2020-12-01 2022-06-03 上海禾赛科技有限公司 Linear frequency sweep control method, linear frequency sweep control device and radar
CN114900606A (en) * 2022-03-31 2022-08-12 浙江华创视讯科技有限公司 Method and device for calibrating zoom tracking curve, electronic device and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713967A1 (en) * 1997-04-04 1998-10-08 Siemens Ag Distance measurement device using FMCW radar
JP3577240B2 (en) * 1999-05-28 2004-10-13 三菱電機株式会社 Radar equipment
CN1093257C (en) * 1999-06-18 2002-10-23 中国科学院上海技术物理研究所 Linear frequency-modulation continuous wave radar feed location instrument and measuring method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755192B (en) * 2007-06-05 2012-01-04 图卢兹聚合技术国家研究所 Method and device for detecting water in a cellular structure
CN101110565B (en) * 2007-06-28 2010-04-14 安徽蓝盾光电子股份有限公司 Linearity correcting device for radar voltage controlled oscillator collecting vehicle information
CN102540262A (en) * 2010-12-27 2012-07-04 中国电子科技集团公司第五十研究所 Nonlinear node detector
CN102540262B (en) * 2010-12-27 2013-10-30 中国电子科技集团公司第五十研究所 Nonlinear node detector
US8505382B2 (en) 2011-02-10 2013-08-13 Ut-Battelle, Llc Nonlinear nanomechanical oscillators for ultrasensitive inertial detection
CN103502782A (en) * 2011-04-14 2014-01-08 恩德莱斯和豪瑟尔两合公司 Method for calibrating and/or monitoring FMCW radar filling level measuring device
CN103502782B (en) * 2011-04-14 2015-07-15 恩德莱斯和豪瑟尔两合公司 Method for calibrating and/or monitoring FMCW radar filling level measuring device
CN102901954A (en) * 2012-09-04 2013-01-30 天津职业技术师范大学 Non-linear software correction method of linear frequency modulated continuous wave radar
CN104079269A (en) * 2014-05-30 2014-10-01 中国电子科技集团公司第十研究所 Microwave VCO directly-modulated high-linearity frequency modulated signal generating circuit
CN104079269B (en) * 2014-05-30 2016-08-17 中国电子科技集团公司第十研究所 Microwave VCO directly modulation High Linear FM signal generation circuit
CN107765239A (en) * 2016-08-22 2018-03-06 邹谋炎 A kind of design and implementation method of economical short distance range radar
CN110243436A (en) * 2019-07-08 2019-09-17 智驰华芯(无锡)传感科技有限公司 A kind of short distance interference signal cancellation system for radar levelmeter
CN111325238A (en) * 2020-01-21 2020-06-23 全球能源互联网研究院有限公司 A phase noise compensation method and system
CN111325238B (en) * 2020-01-21 2023-06-09 全球能源互联网研究院有限公司 A phase noise compensation method and system
CN112654889A (en) * 2020-03-20 2021-04-13 华为技术有限公司 Beat frequency signal processing method and device
EP4119978A4 (en) * 2020-03-20 2023-04-12 Huawei Technologies Co., Ltd. Beat frequency signal processing method and apparatus
CN111175696A (en) * 2020-04-10 2020-05-19 杭州优智联科技有限公司 Single-base-station ultra-wideband AOA (automatic optical inspection) positioning method based on frequency modulated continuous waves
CN114578297A (en) * 2020-12-01 2022-06-03 上海禾赛科技有限公司 Linear frequency sweep control method, linear frequency sweep control device and radar
CN114397650A (en) * 2022-01-21 2022-04-26 中国科学院空天信息创新研究院 Nonlinear estimation and correction method of frequency modulation continuous wave radar
CN114900606A (en) * 2022-03-31 2022-08-12 浙江华创视讯科技有限公司 Method and device for calibrating zoom tracking curve, electronic device and storage medium
CN114900606B (en) * 2022-03-31 2024-01-05 浙江华创视讯科技有限公司 Calibration method and device for zoom tracking curve, electronic device and storage medium

Also Published As

Publication number Publication date
CN1295486C (en) 2007-01-17

Similar Documents

Publication Publication Date Title
CN1295486C (en) Non-linear evolutional correction method for levelmeter of linear frequency-modulation radar
JP6556930B2 (en) Vector network analyzer
CN108351405A (en) The circuit and method of the chirp signal linearity and phase noise for determining fmcw radar
CN1282866C (en) Digitized radar levelmeter
CN1153066C (en) Network analytical instrument, network analytical method and recording media
US20090224961A1 (en) Waveform generation method, radar device, and oscillator for radar device
CN110596671A (en) Optimization processing method and system for LFMCW speed and distance measuring radar
CN106063132A (en) On-chip analog-to-digital converter (adc) linearity test for embedded devices
CN1522364A (en) Equipment and analytical methods for determining moisture in materials
CN1491348A (en) Level-measuring device which functions with microwaves
CN1243243A (en) Linear frequency-modulation continuous wave radar feed location instrument and measuring method thereof
CN1193503C (en) Pulse type counting method
CN118169669A (en) A method for measuring distance and speed using a 24GHz short-range altimeter based on FPGA
CN116047447A (en) Target distance and speed measurement method and device based on frequency modulation continuous wave radar
CN114859308A (en) Radar target simulator and calibration method thereof
CN108055091A (en) A kind of millimeter wave self calibration virtual instrument and its implementation
Balestrieri et al. Research trends and challenges on DAC testing
CN1184473C (en) Digital ultrasonic flaw detector and its time decimal sampling method
CN1889697A (en) Method for realizing quantitative measurement in television high frequency electronic tuner tester
CN117741639B (en) Millimeter wave radar device with automatic zooming function and control method
Balestrieri et al. DAC testing: recent research directions
JP2005337825A (en) Water level measuring apparatus and water level measuring method using radio waves
CN113567933B (en) Millimeter wave radar signal frequency measuring equipment and method
RU2808934C1 (en) Method for determining nonlinear distortions of signals (options)
CN115683177B (en) Decoding device of sine and cosine encoder and micro-control unit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117

Termination date: 20101223