[go: up one dir, main page]

CN1631899A - Application of DLP involved in Pre-mRNA splicing and cell cycle regulation - Google Patents

Application of DLP involved in Pre-mRNA splicing and cell cycle regulation Download PDF

Info

Publication number
CN1631899A
CN1631899A CN 200410009850 CN200410009850A CN1631899A CN 1631899 A CN1631899 A CN 1631899A CN 200410009850 CN200410009850 CN 200410009850 CN 200410009850 A CN200410009850 A CN 200410009850A CN 1631899 A CN1631899 A CN 1631899A
Authority
CN
China
Prior art keywords
dlp
cells
splicing
minutes
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410009850
Other languages
Chinese (zh)
Other versions
CN100360560C (en
Inventor
尚永丰
沈岩
孙晓静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CNB2004100098504A priority Critical patent/CN100360560C/en
Publication of CN1631899A publication Critical patent/CN1631899A/en
Application granted granted Critical
Publication of CN100360560C publication Critical patent/CN100360560C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention relates to DLP protein, gene codzing DLP, and the application of DLP in preparation of splicing and medicine relating to agent of Pre-mRNA and adjustment of cell period, also, it relates to the application designed for DLP in RNAi preparing medicine against tumber.

Description

DLP参与Pre-mRNA剪接与细胞周期调控的用途Application of DLP involved in Pre-mRNA splicing and cell cycle regulation

发明领域field of invention

本发明涉及DLP蛋白,编码DLP的基因,DLP在制备与Pre-mRNA剪接与细胞周期调控有关的试剂和药物中的应用,本发明还涉及针对DLP设计的RNAi(RNA干扰)在制备治疗肿瘤的药物中的用途。The present invention relates to the DLP protein, the gene encoding DLP, the application of DLP in the preparation of reagents and medicines related to Pre-mRNA splicing and cell cycle regulation, and the present invention also relates to the use of RNAi (RNA interference) designed for DLP in the preparation of drugs for treating tumors Uses in medicine.

背景技术Background technique

真核细胞的基因表达是一个多步骤的复杂过程,包括转录的起始,延伸和终止。在转录过程中,初级Pre-mRNA经过5’端加帽、内含子切除、外显子连接、3’端被切割和加多聚腺苷酸形成成熟的mRNA,并运送到胞浆翻译成蛋白质。生物体内蛋白质组的大小不仅来自基因数量的大小,而且还取决于蛋白质的多样性。而蛋白质多样性产生机制的研究对在分子水平上了解生物进化有很重要的意义。据预测,人类基因组可能有约35,000个基因,果蝇约14,000个,而简单的模式生物线虫约19,000个基因。生物的复杂性与其基因组基因数量似乎存在明显差异。原因在蛋白质组。基因重排、基因转录不同起始位点的使用、Pre-mRNA编辑、多聚腺苷酸化、选择性剪接和转录后蛋白质修饰等机制可以从一个基因产生多种蛋白,从而使蛋白质组中蛋白质的数量超过基因组中基因的数量。其中,从影响的基因数量和生物种类范围来看,选择性剪接是扩大蛋白质多样性的最重要的机制。最近人类基因组草图的完成表明Pre-mRNA的选择性剪接在生物的多样性方面扮演一个重要角色,因为有59%以上的人类基因看上去是通过选择性剪接产生的(Hastings ML and Krainer AR 2001)。另外,据估计引起人类遗传性疾病的所有突变的15%都是由于相应基因的Pre-mRNA不能正确剪接从而使基因不能正确表达造成的(Philips AV and Cooper TA 2000)。因此Pre-mRNA内含子的移走在基因调节中扮演一个重要角色。选择性Pre-mRNA剪接和不同外显子的连接可以形成不同功能的蛋白质,这是蛋白质多样性的一个重要来源(Maniatis and Tasic 2000)。Gene expression in eukaryotic cells is a multi-step complex process, including initiation, elongation and termination of transcription. During the transcription process, the primary Pre-mRNA undergoes capping at the 5' end, intron excision, exon joining, cleavage at the 3' end, and addition of polyadenylic acid to form mature mRNA, which is transported to the cytoplasm for translation into protein. The size of the proteome in an organism not only comes from the size of the number of genes, but also depends on the diversity of proteins. The research on the mechanism of protein diversity is of great significance to the understanding of biological evolution at the molecular level. It is predicted that the human genome may have about 35,000 genes, Drosophila about 14,000, and the simple model organism nematode about 19,000 genes. There appears to be a marked difference in the complexity of an organism and the number of genes in its genome. The reason lies in the proteome. Mechanisms such as gene rearrangement, use of different start sites for gene transcription, pre-mRNA editing, polyadenylation, alternative splicing, and post-transcriptional protein modification can generate multiple proteins from a single gene, thereby making proteins in the proteome The number of genes exceeds the number of genes in the genome. Among them, in terms of the number of genes affected and the range of biological species, alternative splicing is the most important mechanism for expanding protein diversity. The recent completion of the draft human genome suggests that alternative splicing of pre-mRNAs plays an important role in biological diversity, as more than 59% of human genes appear to have arisen through alternative splicing (Hastings ML and Krainer AR 2001) . In addition, it is estimated that 15% of all mutations that cause human genetic diseases are caused by the incorrect splicing of the Pre-mRNA of the corresponding gene, so that the gene cannot be expressed correctly (Philips AV and Cooper TA 2000). The removal of pre-mRNA introns thus plays an important role in gene regulation. Alternative pre-mRNA splicing and joining of different exons can form proteins with different functions, which is an important source of protein diversity (Maniatis and Tasic 2000).

Pre-mRNA的剪接反应是通过剪接体-含有5个小核RNA(U1,U2,U4,U5和U6)(Adams et al.1996;Kramer 1996;Reed 1996;Reed2000)和多种蛋白亚基组成的核糖体蛋白复合体来完成的(Ajuh et al.2001)。这些蛋白质包括与snRNA相关的一套普通的蛋白和特异的蛋白(Kramer et al.,1996,1999;Will and Luhrmann 1997),也包括很多非snRNA相关的蛋白,这些蛋白对复合物的组装和剪接的催化是关键的(Will andluhrmann 1997;Staley and Guthrie 1998)。它们可能参与snRNP的生物合成、剪接体的组装和解离及内含子切除和外显子连接的催化反应(Raker VA andkastner B et al.,1999;Reed R 2000;Arenas JE and Abelson JN 1997)。剪接反应包括两步连续的转酯反应,在第一步转酯反应中,5’剪接位点被切割产生剪接中间产物(外显子1和套索状的外显子2),在第二步转酯反应中,3’剪接位点被切割产生剪接产物(套索状的内含子和剪接的mRNA)。然后完全的剪接体解离,其中的成分重新参与到其它剪接体的形成,这叫做“剪接循环”(Jurica M.S.and Moore M.J 2003)。剪接体的组装包括snRNP颗粒和其它蛋白质在催化前顺序组装到Pre-mRNA的底物(Reed and Ralandjian1997)。剪接体复合物组装过程中,按顺序形成复合物E、A、B和C。复合物A是一个早期组装的中间产物,它含有结合到没有剪接的Pre-mRNA上U1和U2 snRNPs并且被组装到Pre-mRNA底物上。复合物B为第一步催化反应做准备,除了没有剪接的Pre-mRNA,它含有U2,U5和U6 snRNAs。和复合物B一样,复合物C也含有U2,U5和U6 snRNAs,但代表着第一步催化反应之后的一个阶段(含有剪接中间产物),它被聚集到没有完成外显子连接的Pre-mRNA上并与内含子相连(Jurica et al.,2002)。U1snRNP是第一个和mRNA前体底物结合的颗粒,接着是U2 snRNP与U1 snRNP一起形成前剪接体复合物,随后U4/U6和U5 snRNPs形成triple snRNP和前剪接体复合物连接形成剪接体(Guthrie C 1991;Ruby S.W.and Abelson J 1991;Moore M and Query C 1993;Lamond A 1993;Newman A 1994)。在这个动力学过程中,有大量的蛋白质参与。到1999年为止,大约有100个剪接因子被鉴定(Burge et al.,1999)。随着质谱的发展和剪接体纯化技术的改进,剪接因子的数目已经成倍的增长。令人满意的是,大多数以前鉴定的剪接因子已经在最近的质谱研究中被发现。但许多新的以前与剪接没有关系的蛋白质的出现是令人吃惊的。2002年美国哈佛大学分子和细胞生物实验室分离到145种不同的剪接体蛋白,其中88种是已知的剪接因子、snRNP蛋白和剪接体蛋白,43个存在于U1、U2、U4、U5、U6 sn RNPs中,58种是未知的新蛋白。90种蛋白在酵母中有同源体。至少30种蛋白质已经知道在剪接以外的基因表达的步骤中发挥作用。这些蛋白不仅在多细胞生物Pre-mRNA剪接的多个步骤中起作用,还可以介导剪接和基因表达的其它步骤广泛的联系(Zhou et al.2002)。剪接与细胞内的其它的生物学过程如细胞周期、转录和mRNA的输出都有关联,Pre-mRNA剪接和细胞周期调控已经成为近年来细胞生物学和分子生物学研究的热门领域,也是研究基因表达和调控、细胞增殖和分化、细胞癌变和凋亡、以及基因工程和细胞工程等生物技术的基础。The splicing reaction of pre-mRNA is through the spliceosome - consisting of five small nuclear RNAs (U1, U2, U4, U5 and U6) (Adams et al.1996; Kramer 1996; Reed 1996; Reed2000) and various protein subunits Ribosomal protein complex to complete (Ajuh et al.2001). These proteins include a set of general and specific proteins associated with snRNAs (Kramer et al., 1996, 1999; Will and Luhrmann 1997), as well as many non-snRNA-associated proteins, which contribute to the assembly and splicing of the complex The catalysis of is critical (Will andluhrmann 1997; Staley and Guthrie 1998). They may be involved in snRNP biosynthesis, spliceosome assembly and dissociation, and catalytic reactions of intron excision and exon junction (Raker VA and kastner B et al., 1999; Reed R 2000; Arenas JE and Abelson JN 1997). The splicing reaction consists of two consecutive transesterification reactions. In the first transesterification reaction, the 5' splice site is cleaved to generate splicing intermediates (exon 1 and lariat exon 2), and in the second In the first transesterification reaction, the 3' splice site is cleaved to generate the spliced product (lasso-shaped intron and spliced mRNA). The complete spliceosome then dissociates and its components re-engage in the formation of other spliceosomes, which is called the "splicing cycle" (Jurica M.S. and Moore M.J 2003). Assembly of the spliceosome involves the sequential assembly of snRNP particles and other proteins onto pre-mRNA substrates prior to catalysis (Reed and Ralandjian 1997). During spliceosome complex assembly, complexes E, A, B, and C are formed sequentially. Complex A is an early assembly intermediate that contains U1 and U2 snRNPs bound to unspliced pre-mRNA and assembled to the pre-mRNA substrate. Complex B prepares for the first step of the catalytic reaction and contains U2, U5 and U6 snRNAs in addition to the unspliced Pre-mRNA. Like complex B, complex C also contains U2, U5, and U6 snRNAs, but represents a stage after the first catalytic reaction (containing splicing intermediates), which is aggregated to the Pre- mRNA and connected to introns (Jurica et al., 2002). U1 snRNP is the first particle to bind to the pre-mRNA substrate, followed by U2 snRNP and U1 snRNP to form a pre-splice complex, followed by U4/U6 and U5 snRNPs to form a triple snRNP and pre-splice complex to form a splice body (Guthrie C 1991; Ruby S.W. and Abelson J 1991; Moore M and Query C 1993; Lamond A 1993; Newman A 1994). In this dynamic process, a large number of proteins are involved. As of 1999, approximately 100 splicing factors have been identified (Burge et al., 1999). With the development of mass spectrometry and improvements in spliceosome purification techniques, the number of splicing factors has multiplied. Satisfactorily, most of the previously identified splicing factors have been identified in recent mass spectrometry studies. But the emergence of many new proteins not previously associated with splicing was surprising. In 2002, the Molecular and Cellular Biology Laboratory of Harvard University isolated 145 different splice body proteins, 88 of which were known splicing factors, snRNP proteins and splice body proteins, and 43 existed in U1, U2, U4, U5, Among U6 sn RNPs, 58 are unknown novel proteins. 90 proteins have homologues in yeast. At least 30 proteins are known to function in steps of gene expression other than splicing. These proteins not only function in multiple steps of pre-mRNA splicing in multicellular organisms, but also mediate the extensive linkage between splicing and other steps of gene expression (Zhou et al. 2002). Splicing is associated with other biological processes in the cell, such as cell cycle, transcription and mRNA output. Pre-mRNA splicing and cell cycle regulation have become a hot field in cell biology and molecular biology research in recent years, and are also researches on genes. Expression and regulation, cell proliferation and differentiation, cell carcinogenesis and apoptosis, and the basis of biotechnology such as genetic engineering and cell engineering.

发明内容Contents of the invention

在对一个细胞因子类似因子-CKLF的研究过程中,发现了一种参与参与Pre-mRNA剪接与细胞周期调控的蛋白,并将该蛋白质命名为Dim1-likeprotein(DLP)。基于该发现,按以下方面构思了本发明:During the research on a cytokine-like factor-CKLF, a protein involved in Pre-mRNA splicing and cell cycle regulation was discovered, and the protein was named Dim1-likeprotein (DLP). Based on this finding, the present invention has been conceived as follows:

1、参与Pre-mRNA剪接与细胞周期调控的DLP蛋白,其特征在于它具有如序列2所示的氨基酸序列。1. A DLP protein involved in Pre-mRNA splicing and cell cycle regulation, characterized in that it has the amino acid sequence shown in Sequence 2.

2、编码DLP蛋白的核苷酸序列,其特征在于它含有如序列1所示的核苷酸序列。2. The nucleotide sequence encoding DLP protein, characterized in that it contains the nucleotide sequence shown in Sequence 1.

3、含有第2项的核苷酸序列的表达载体。3. An expression vector containing the nucleotide sequence of item 2.

4、DLP在制备与Pre-mRNA剪接或细胞周期调控有关的试剂或药物中的用途。4. The use of DLP in the preparation of reagents or medicines related to Pre-mRNA splicing or cell cycle regulation.

5、DLP的抗体。5. Antibody to DLP.

6、针对DLP设计的RNAi。6. RNAi designed for DLP.

7、根据第6项的RNAi,其特征在于它具有序列3或4所示的基因序列。7. The RNAi according to item 6, characterized in that it has the gene sequence shown in sequence 3 or 4.

8、含有第6或7项的RNAi的原核或真核表达载体。8. A prokaryotic or eukaryotic expression vector containing the RNAi of item 6 or 7.

9、第6、7或8项的RNAi用于制备治疗肿瘤的药物中的应用。9. The use of the RNAi according to Item 6, 7 or 8 in the preparation of a drug for treating tumors.

附图简述Brief description of the drawings

图1:DLPcDNA的核苷酸序列和推断的氨基酸序列。核苷酸序列的方向是从5’-3’。预测的氨基酸序列显示在核苷酸序列的下面。终止密码子用*表示,蛋白激酶C磷酸化位点用‘△’表示,酪蛋白激酶II磷酸化位点用‘○’表示,N-myristoylation位点用‘▲’表示。Figure 1: Nucleotide sequence and deduced amino acid sequence of DLP cDNA. The orientation of the nucleotide sequence is from 5'-3'. The predicted amino acid sequence is shown below the nucleotide sequence. The stop codon is indicated by *, the protein kinase C phosphorylation site is indicated by '△', the casein kinase II phosphorylation site is indicated by '○', and the N-myristoylation site is indicated by '▲'.

图2:GST Pull-down检测DLP和剪接相关因子APC4,hnRNPF,PQBP和Prp6在体外相互作用。Figure 2: GST Pull-down detection of the interaction between DLP and splicing-related factors APC4, hnRNPF, PQBP and Prp6 in vitro.

图3:上图为DLP的缺失体的图示。Del1(1-128aa),Del2(21-126aa),Del3(33-149aa)。Figure 3: The upper panel is a schematic representation of the deletion body of DLP. Del1 (1-128aa), Del2 (21-126aa), Del3 (33-149aa).

下图为DLP的不同缺失体与Prp6的GST Pull-down的结果,DLPDel3与Prp6在体外有相互作用。The figure below shows the results of different deletions of DLP and the GST Pull-down of Prp6. DLPDel3 interacts with Prp6 in vitro.

图4:DLP参与Adml-M3 Pre-mRNA的剪接的图。Figure 4: Diagram of the involvement of DLP in the splicing of Adml-M3 Pre-mRNA.

图5RT-PCR检测DLP在MCF-7,HepG2和ISH的RNAi的结果。Figure 5 RT-PCR detection results of DLP RNAi in MCF-7, HepG2 and ISH.

GAPDH为内参。GAPDH was used as an internal reference.

图6DLP对细胞周期的影响。右侧为相应的蛋白质水平用WesternBlotting检测的结果。Figure 6 Effect of DLP on cell cycle. The right side is the result of the corresponding protein level detected by Western Blotting.

DLP具有一个DIM1结构域。氨基酸序列进行同源性分析发现DLP与酵母的一个15KD的剪接体蛋白U5有弱的同源性,和一种有丝分裂蛋白DIM1及人硫氧还蛋白分别有39%、24%的同源性,同时发现它在人、鼠、Arabidopsis thaliana、Oryza、melanogaster、果蝇、酵母菌等各种属之间有相当的保守性。进化分析也表明DLP是一个保守的蛋白而且进化上与DIM1蛋白相关。进一步研究发现,它的功能与剪接和细胞周期有关。DLP has a DIM1 domain. The amino acid sequence homology analysis found that DLP has a weak homology with a 15KD splice body protein U5 of yeast, and has 39% and 24% homology with a mitotic protein DIM1 and human thioredoxin, respectively. At the same time, it is found that it is quite conserved among various genera such as human, mouse, Arabidopsis thaliana, Oryza, melanogaster, fruit fly, and yeast. Evolutionary analysis also showed that DLP is a conserved protein and is evolutionarily related to DIM1 protein. Further research found that its function is related to splicing and cell cycle.

DLP核苷酸全长2540bp,编码149氨基酸,分子量约为17KD,等电点为5.63,定位于16q22.3。Nothern Blot杂交显示DLP在骨骼肌,肝脏,心脏和胰腺中高表达,在肾脏,脑和胎盘中中等程度的表达,在肺中表达较低。RT-PCR证实DLP在人的乳腺癌细胞MCF-7,肝癌细胞HepG2和子宫内膜癌细胞Ishikawa中也有高表达。说明DLP在体内分布广泛,是一个广谱基因。The full length of DLP nucleotides is 2540bp, encoding 149 amino acids, the molecular weight is about 17KD, the isoelectric point is 5.63, and it is located at 16q22.3. Northern Blot hybridization showed that DLP was highly expressed in skeletal muscle, liver, heart and pancreas, moderately expressed in kidney, brain and placenta, and lowly expressed in lung. RT-PCR confirmed that DLP was also highly expressed in human breast cancer cell MCF-7, liver cancer cell HepG2 and endometrial cancer cell Ishikawa. It shows that DLP is widely distributed in the body and is a broad-spectrum gene.

发明人对DLP作了定位分析,用绿色荧光蛋白做定位表明DLP定位于核内,这与DLP可能在核内参与剪接的过程是一致的。The inventors analyzed the localization of DLP, and used green fluorescent protein to do localization, indicating that DLP is localized in the nucleus, which is consistent with the process that DLP may participate in splicing in the nucleus.

还做了流式检测。DLP过表达和RNAi的质粒分别瞬时转染进MCF-7细胞,用流式细胞仪检测细胞周期的改变,发现DLP在MCF-7细胞中过表达可以使G2/M期的细胞数百分比增加,当DLP的作用被RNAi抑制后,S期的细胞百分比增加,G2/M期的细胞数百分比降低。用雌激素抑制剂ICI182780将细胞阻滞在G0/G1期,再用DLP过表达和RNAi的质粒分别瞬时转染进MCF-7细胞,发现对细胞周期没有明显的影响,表明DLP对细胞周期的进入没有影响,而是可能在细胞周期的S-G2/M期的转换中发挥作用。结果显示DLP对S期-G2/M的转换是必须的和充分的。这个结果与Dim1在裂殖酵母和啤酒酵母调节G2期的进程一致(Stevens SW and AbelsonJ1999)。因此,针对DLP设计的RNAi在治疗肿瘤中重要意义。另外用MTT分析发现DLP能促进某些细胞如Hela,C2C12细胞的增殖和C2C12细胞的分化。这可能是DLP影响细胞周期的间接作用。DLP瞬时转染到293T细胞,Hela细胞,MCF-7细胞和C2C12细胞,用MTT分析细胞的增殖,发现DLP能明显促进C2C12和Hela细胞的增殖(p<0.05)。DLP还能促进C2C12细胞的分化,诱导肌管的形成。Flow testing was also done. DLP overexpression and RNAi plasmids were transiently transfected into MCF-7 cells respectively, and the cell cycle changes were detected by flow cytometry. It was found that the overexpression of DLP in MCF-7 cells could increase the percentage of cells in the G2/M phase, When the effect of DLP was inhibited by RNAi, the percentage of cells in S phase increased, and the percentage of cells in G2/M phase decreased. The cells were arrested in the G0/G1 phase with the estrogen inhibitor ICI182780, and then the DLP overexpression and RNAi plasmids were transiently transfected into MCF-7 cells, and it was found that there was no significant effect on the cell cycle, indicating that DLP has an important effect on the cell cycle. Entry has no effect, but may play a role in the S-G2/M phase transition of the cell cycle. The results showed that DLP is necessary and sufficient for the transition from S phase to G2/M. This result is consistent with Dim1 regulating G2 phase progression in fission yeast and S. cerevisiae (Stevens SW and Abelson J1999). Therefore, RNAi designed against DLP is of great significance in the treatment of tumors. In addition, MTT analysis found that DLP can promote the proliferation of certain cells such as Hela, C2C12 cells and the differentiation of C2C12 cells. This may be an indirect effect of DLP affecting the cell cycle. DLP was transiently transfected into 293T cells, Hela cells, MCF-7 cells and C2C12 cells, and the cell proliferation was analyzed by MTT. It was found that DLP could significantly promote the proliferation of C2C12 and Hela cells (p<0.05). DLP can also promote the differentiation of C2C12 cells and induce the formation of myotubes.

用GST Pull-down检测证明DLP与剪接因子存在着相互作用。首先,在原核细胞中表达了DLP,并免疫新西兰大白兔制备多克隆抗体。利用制备的多克隆抗体进行Western Blot检测,能检测到内源性DLP蛋白在MCF-7细胞中的表达。GST Pull-down实验发现DLP与剪接相关因子U5-102KD(Prp6)在体外存在直接的相互作用。为了验证DLP与U5-102KD(Prp6)相互作用的区域,发明人设计了DLP的不同缺失体,缺失体的GSTPull-down研究证实了DLPN端的33个氨基酸是与U5-102KD(Prp6)相互作用的区域。说明DLP的N端是其发挥作用的部位。U5-102KD(Prp6)是一个U4/U6特异的蛋白(Evgen 1999),Prp6已经被证明和hDim1p在酵母中的同源体Dib1相互作用(Uetz 2000),Prp6至少含有10个TPR(tetratrico peptiderepeats)结构域(Abovich 1990;Galisson 1993),U5-102KD含有19个TPR(Evgen 2000)。TPR结构域是多个蛋白质-蛋白质相互作用的结合位点(Sikorslci 1990;Vockhart 1994;Chung 1999)。这个结果更加证实了DLP可能参与Pre-mRNA剪接。接下来用免疫共沉淀和酵母双杂交以及共聚焦的方法进一步验证了DLP和U5-102KD(Prp6)蛋白存在着直接的相互作用,这三种方法都证实了GST Pull-down的结论。而且通过酵母双杂交的方法还筛选出了其它与DLP相互作用的蛋白,其中Homo sapiens nuclear receptorcoactivator 7(ERAP140)在2002年被哈佛大学Myles.Brown实验室克隆鉴定,ERAP140是一个分子量为140KD的核受体的辅助激活子,能增强与它作用的核受体的转录活性。像其它的辅助激活子一样,雌激素可以周期性募集ERAP140到启动子上,但它和以前鉴定的核受体辅助激活子没有任何结构和序列上的相似性(wenlin shao 2002)。这个结果和DLP Pre-mRNA剪接中的作用并不矛盾,而且提示DLP也许与转录的过程相连。DLP与转录激活子的作用与DLP定位于核中是一致的。GST Pull-down assay proved the interaction between DLP and splicing factors. First, DLP was expressed in prokaryotic cells, and New Zealand white rabbits were immunized to prepare polyclonal antibodies. Using the prepared polyclonal antibody for Western Blot detection, the expression of endogenous DLP protein in MCF-7 cells can be detected. GST Pull-down experiments found that there was a direct interaction between DLP and the splicing-related factor U5-102KD (Prp6) in vitro. In order to verify the region where DLP interacts with U5-102KD (Prp6), the inventors designed different deletions of DLP, and the GST Pull-down study of the deletion confirmed that the 33 amino acids at the end of DLPN interacted with U5-102KD (Prp6) area. It shows that the N-terminus of DLP is the part where it plays a role. U5-102KD (Prp6) is a U4/U6-specific protein (Evgen 1999), Prp6 has been shown to interact with hDim1p homologue Dib1 in yeast (Uetz 2000), Prp6 contains at least 10 TPR (tetratrico peptiderepeats) domain (Abovich 1990; Galisson 1993), U5-102KD contains 19 TPRs (Evgen 2000). The TPR domain is the binding site for multiple protein-protein interactions (Sikorslci 1990; Vockhart 1994; Chung 1999). This result further confirms that DLP may be involved in Pre-mRNA splicing. Next, co-immunoprecipitation, yeast two-hybrid and confocal methods were used to further verify the direct interaction between DLP and U5-102KD (Prp6) protein. These three methods all confirmed the conclusion of GST Pull-down. Moreover, other proteins interacting with DLP were screened out by yeast two-hybrid method, among which Homo sapiens nuclear receptor coactivator 7 (ERAP140) was cloned and identified by Harvard University Myles. A coactivator for receptors that enhances the transcriptional activity of nuclear receptors it interacts with. Like other coactivators, estrogen can periodically recruit ERAP140 to the promoter, but it does not have any structural and sequence similarities to previously identified nuclear receptor coactivators (Wenlin Shao 2002). This result is not inconsistent with the role of DLP in pre-mRNA splicing, and suggests that DLP may be linked to the process of transcription. The role of DLP with transcriptional activators is consistent with the localization of DLP in the nucleus.

发明人设计了体外剪接实验。发现GST-DLP的融合蛋白的加入能刺激Adml-M3剪接底物的剪接,当加入抗GST-DLP的抗体后则抑制了剪接,重新加入GST-DLP融合蛋白则恢复DLP的剪接活性,这些充分证明了DLP确实能参与剪接的过程。The inventors designed in vitro splicing experiments. It was found that the addition of the GST-DLP fusion protein can stimulate the splicing of the Adml-M3 splicing substrate, and when the anti-GST-DLP antibody was added, the splicing was inhibited, and the addition of the GST-DLP fusion protein restored the splicing activity of DLP. It proved that DLP can indeed participate in the process of splicing.

mRNA的转录包括mRNA前体的剪接,mRNA前体的剪接产生成熟mRNA,有利于遗传信息正常传递,剪接异常可导致遗传、肿瘤等疾病。本发明的DLP参与剪接过程,因此可用于制备与剪接异常有关的这类疾病的药物和诊断试剂。The transcription of mRNA includes splicing of pre-mRNA, which produces mature mRNA, which is conducive to the normal transmission of genetic information, and abnormal splicing can lead to diseases such as genetics and tumors. The DLP of the present invention is involved in the splicing process, so it can be used to prepare medicines and diagnostic reagents for such diseases related to splicing abnormalities.

含有DLP核苷酸的表达载体和宿主细胞可用于大量生产DLP。宿主细胞可以是原核细胞如细菌细胞如大肠杆菌;也可以是真核细胞,如酵母细胞,高等真核细胞,如哺乳动物细胞。转化宿主细胞可以按本领域的常规方法进行。针对DLP的抗体可用于拮抗DLP的作用。包括单克隆和多克隆抗体。针对DLP的多克隆抗体可以通过直接免疫动物获得,单克隆抗体可以通过杂交瘤技术来获得。Expression vectors and host cells containing DLP nucleotides can be used to produce large quantities of DLP. The host cells can be prokaryotic cells such as bacterial cells such as Escherichia coli; they can also be eukaryotic cells such as yeast cells, higher eukaryotic cells such as mammalian cells. Transformation of host cells can be carried out by conventional methods in the art. Antibodies against DLP can be used to antagonize the effects of DLP. Includes monoclonal and polyclonal antibodies. Polyclonal antibodies against DLP can be obtained by direct immunization of animals, and monoclonal antibodies can be obtained by hybridoma technology.

实施例Example

在以下列举了在实施例中所用的试剂和仪器。Reagents and instruments used in the examples are listed below.

1.1.质粒载体和重组克隆1.1. Plasmid vector and recombinant cloning

原核表达载体pGEX-4T-3购自Amersham Biosciences。真核表达载体pcDNA3.1(-)/myc/hisB,pEGFP,pDsRed-C1由北大医学部疾病基因中心提供。RNA干扰载体pSURER购自Brummelkamp。The prokaryotic expression vector pGEX-4T-3 was purchased from Amersham Biosciences. The eukaryotic expression vectors pcDNA3.1(-)/myc/hisB, pEGFP, and pDsRed-C1 were provided by the Disease Gene Center of Peking University Health Science Center. The RNA interference vector pSURER was purchased from Brummelkamp.

DNA结合结构域载体pGBKT7,pGBKT7-53,pGBKT7-Lam,DNA激活结构域载体pGADT7,pGADT7-T购自Clontech公司。DNA binding domain vectors pGBKT7, pGBKT7-53, pGBKT7-Lam, DNA activation domain vectors pGADT7, pGADT7-T were purchased from Clontech.

重组质粒pADML-M3由哈佛大学Reed R.教授赠送。The recombinant plasmid pADML-M3 was donated by Professor Reed R. of Harvard University.

1.2.菌株1.2. Strains

1.2.1.细菌菌株1.2.1. Bacterial strains

DH5α,基因型FΦdlacZΔM15 recA endA1 gyrA96 thi-1hsdR17(rK-mK+)supE44 relAl deoRΔ(lacZYA-argF)U169,Invitrogen。DH5α, genotype FΦdlacZΔM15 recA endA1 gyrA96 thi-1hsdR17(rK-mK+)supE44 relAl deoRΔ(lacZYA-argF)U169, Invitrogen.

BL21,基因型E.coil B F-,ompT,hsdS(rB -,mB -),gal,dcm购自AmershamBiosciences。BL21, genotype E.coil B F , ompT, hsdS (r B , m B ), gal, dcm were purchased from Amersham Biosciences.

1.2.2.酵母菌株 菌株  基因型  报告基因 AH109  Mata,trp1-901,leu2-3,112,ura3-52His3-200,gal4△,gal80△,LYS2∷GAL1USA-GAL1TATA-HIS3,GAL2USA-GAL2TATA-ADE2,URA3∷MEL1USA-MEL1TATA-lacZ  ADE2HIS3MEL1(或LacZ) Y187  MATα,ura3-52,ade2-101,trp1-901,His3-200,gal4△,gal80△,Leu2-3,112,Met-,URA3∷GAL1USA-GAL1TATA-lacZ1  LacZ CG-1945  MATa,ura3-52,his3-200,ade2-101,lys2-801Trp1-901,leu2-3,112,gal4-542,gal80-538,cyhr2LYS2∷GAL1USA -GAL1TATA-HIS3,URA3∷GAL417-mers(x3)-CYC1TATA-LACZ  HIS3,LaCZ 1.2.2. Yeast strains strain genotype reporter gene AH109 Mata, trp1-901, leu2-3, 112, ura3-52His3-200, gal4△, gal80△, LYS2::GAL1 USA -GAL1 TATA -HIS3, GAL2 USA -GAL2 TATA -ADE2, URA3::MEL1 USA -MEL1 TATA - lacZ ADE2HIS3MEL1 (or LacZ) Y187 MATα, ura3-52, ade2-101, trp1-901, His3-200, gal4△, gal80△, Leu2-3, 112, Met- , URA3::GAL1 USA -GAL1 TATA -lacZ1 LacZ CG-1945 MATa, ura3-52, his3-200, ade2-101, lys2-801Trp1-901, leu2-3, 112, gal4-542, gal80-538, cyh r 2LYS2::GAL1 USA - GAL1 TATA -HIS3, URA3::GAL4 17 -mers(x3) -CYC1 TATA -LACZ HIS3, LaCZ

1.3.细胞株1.3. Cell lines

C2C12细胞为小鼠骨骼肌细胞,Hela细胞为人子宫颈癌细胞,293T为人胚胎肾细胞。MCF-7细胞为人的乳腺癌细胞,HepG2细胞为人的肝癌细胞,Ishikawa细胞为人的子宫内膜癌细胞由本室保存。C2C12 cells are mouse skeletal muscle cells, Hela cells are human cervical cancer cells, and 293T are human embryonic kidney cells. MCF-7 cells are human breast cancer cells, HepG2 cells are human liver cancer cells, and Ishikawa cells are human endometrial cancer cells are preserved in our laboratory.

1.4.工具酶及试剂1.4. Tool enzymes and reagents

(1)限制性内切酶,DNA修饰酶,T4DNA连接酶,T7RNA聚合酶购自美国NEW England Biolabs;牛小肠碱性磷酸酶(CIP)购自Promega公司;Taq聚合酶,pfu酶购自Takara公司;RNaseA购自Sigma公司;RnaseA抑制剂购自invitrogen公司。(1) Restriction enzymes, DNA modification enzymes, T4DNA ligase, and T7RNA polymerase were purchased from New England Biolabs in the United States; calf intestinal alkaline phosphatase (CIP) was purchased from Promega; Taq polymerase and pfu enzyme were purchased from Takara Company; RNaseA was purchased from Sigma; RNaseA inhibitor was purchased from invitrogen.

(2)核苷酸,dNTP和ATP购promega和invitrogen公司。(2) Nucleotides, dNTP and ATP were purchased from promega and invitrogen companies.

(3)寡聚核苷酸,以下是用于RNAi的寡聚核苷酸(3) Oligonucleotides, the following are oligonucleotides for RNAi

oligo1,oligo1,

5’-GATCCCCCTGCAGTTTATACACAGTATTCAAGAGATACTGTGTATAAACTGCAGTTTTTGGAAA-3’5'-GATCCCCCCTGCAGTTTATACACAGTATTCAAGAGATACTGTGTATAAACTGCAGTTTTTGGAAA-3'

oligo2,oligo2,

5’-5'-

AGCTTTTCCAAAAACTGCAGTTTATACACAGTATCTCTTGAATACTGTGTATAAATGCAGGGG-3’AGCTTTTCCAAAAACTGCAGTTTATACACAGTATCTCTTGAATACTGTGTATAAATGCAGGGG-3’

1.5.分子量标准1.5. Molecular weight standard

DNA分子量标准DL2000购自Takara公司,蛋白质分子量标准购自Novangen公司。DNA molecular weight standard DL2000 was purchased from Takara Company, and protein molecular weight standard was purchased from Novangen Company.

1.6.试剂盒1.6. Kit

QIAGEN质粒大提试剂盒,胶回收试剂盒,PCR纯化试剂盒购自GENE公司;Adventage cDNA PCR试剂盒购自Clontech公司。Trizon RNA提取试剂盒购自invitrogen公司。ProtoScriptTM First Strand cDNA Synthesis Kit购自NEB公司。HelaScribe Nuclear Extract in vitro Transcription System,TNTCoupled Reticulocyte Lysate Systems购自Promega公司。Human adultmultiple tissue Northern(MTN)blots,Human cDNA normal tissue first strand,The spotlightTM Random Primer Labeling Kit购自Clontech公司。QIAGEN Plasmid Extraction Kit, Gel Recovery Kit, and PCR Purification Kit were purchased from GENE Company; Adventure cDNA PCR Kit was purchased from Clontech Company. Trizon RNA extraction kit was purchased from Invitrogen. ProtoScriptTM First Strand cDNA Synthesis Kit was purchased from NEB Company. HelaScribe Nuclear Extract in vitro Transcription System, TNT Coupled Reticulocyte Lysate Systems were purchased from Promega. Human adult multiple tissue Northern (MTN) blots, Human cDNA normal tissue first strand, and The spotlight TM Random Primer Labeling Kit were purchased from Clontech.

1.7.放射性同位素1.7. Radioisotopes

L-[35S]蛋氨酸,α-[32P]dCTP(10mci/ml),γ-[32P]dGTP(10mci/ml)购自Amersham Biosciences。L-[ 35 S]methionine, α-[ 32 P]dCTP (10 mci/ml), γ-[ 32 P]dGTP (10 mci/ml) were purchased from Amersham Biosciences.

1.8.培养基和文库来源1.8. Media and library sources

Trypton,Yeast Extract,Agar购自Oxoid公司。酵母YPD培养基(液)、SD培养基(液)的配制按照Clontech公司的要求。人乳腺文库购自Clontech公司。Trypton, Yeast Extract, and Agar were purchased from Oxoid. Yeast YPD medium (liquid) and SD medium (liquid) were prepared according to the requirements of Clontech Company. Human mammary gland library was purchased from Clontech Company.

1.9.化学试剂1.9. Chemical reagents

三羟甲基氨基甲烷(Tris)购自美国GIBCO-BRL公司。PEG3350,鲑精DNA购自sigma公司。LIPOFECTAMINE2000 Reagent购自invitrogen公司。其它试剂为进口分装或国产分析纯试剂。醋酸锂,各种氨基酸,鲑精DNA购自Clontech公司,X-gal购自Sigma公司。Tris (Tris) was purchased from GIBCO-BRL, USA. PEG3350, salmon sperm DNA was purchased from sigma company. LIPOFECTAMINE2000 Reagent was purchased from Invitrogen Company. Other reagents are imported aliquots or domestic analytical reagents. Lithium acetate, various amino acids, and salmon sperm DNA were purchased from Clontech, and X-gal was purchased from Sigma.

1.10.主要仪器1.10. Main instruments

(1)DNA扩增仪(Perkin-Elmer,USA),PCR扩增。(1) DNA amplification instrument (Perkin-Elmer, USA), PCR amplification.

(2)紫外凝胶成像系统(UVP GSD5000,UK)。(2) Ultraviolet gel imaging system (UVP GSD5000, UK).

(3)电击穿孔仪(Gene Pulser,Bio-Rad USA)。(3) Electroporator (Gene Pulser, Bio-Rad USA).

(4)PE公司ABI3700自动测序仪。(4) ABI3700 automatic sequencer from PE Company.

(5)Image Master Desk Top Scanner(Pharmacia)扫描仪。(5) Image Master Desk Top Scanner (Pharmacia) scanner.

(6)Gyrotory Water BathShaker G76(New Brunswick Scientific Co.,Inc)摇床,用于细菌和酵母的扩增。(6) Gyrotory Water BathShaker G76 (New Brunswick Scientific Co., Inc) shaker, used for the amplification of bacteria and yeast.

(7)杂交炉A10284(Gene company)(7) Hybridization furnace A10284 (Gene company)

(8)EL 311 SX酶联免疫检测仪。(8) EL 311 SX ELISA.

(9)Vibra Cell超生破碎仪(Sonic&Material Inc.)。(9) Vibra Cell Ultrasonic Crusher (Sonic&Material Inc.).

(10)BECTON DICKINSON FACScan流式细胞仪:德国。(10) BECTON DICKINSON FACScan flow cytometer: Germany.

1.11.引物名称和序列1.11. Primer names and sequences

pcDNA3.1-DLP:pcDNA3.1-DLP:

Forward:5’ATGAGCTTCCTACTGCCCAAG 3’Forward: 5'ATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’GCTCTAGATGTGCCTTCTTCTTCATC 3’Reverse: 5'GCTCTAGATGTGCCTTCTTTCTTCATC 3'

pcDNA3.1-Prp6:pcDNA3.1-Prp6:

Forward:                                          5’Forward: 5’

ATAAGAATGCGGCCGCTAAACTATACTTTGCTACGGAGTGCAT 3’ATAAGAATGCGGCCGCTAAACTATACTTTGCTACGGAGTGCAT 3’

Reverse:5’CCGGAATTCCGGCTGACACGAGACATAAAAACT 3’Reverse: 5'CCGGAATTCCGGCTGACACGAGACATAAAAACT 3'

pcDNA3.1-PQBP:pcDNA3.1-PQBP:

Forward:                                          5’Forward: 5’

ATAAGAATGCGGCCGCTAAACTATGGGAGAGGAACAGGGCCCT 3’ATAAGAATGCGGCCGCTAAACTATGGGAGAGGAACAGGGCCCT 3’

Reverse:5’CCGGAATTCCGGGGTGGGCAGGATCACCAGAA 3’Reverse: 5'CCGGAATTCCGGGGTGGGCAGGATCACCAGAA 3'

pcDNA3.1-hnRNPF:pcDNA3.1-hnRNPF:

Forward:                                          5’Forward: 5’

ATAAGAATGCGGCCGCTAAACTATTCTGGCCATTTCTCTTGAAAC 3’ATAAGAATGCGGCCGCTAAACTATTCTGGCCATTTCTCTTGAAAC 3’

Reverse 5’CCGGAATTCCGGTCAAGTTGAAAAACAAACAAATCT 3’Reverse 5’CCGGAATTCCGGTCAAGTTGAAAAACAAACAAATCT 3’

pcDNA3.1-APC4:pcDNA3.1-APC4:

Forward:                                          5’Forward: 5’

ATAAGAATGCGGCCGCTAAACTATATGTTGCGTTTTCCGACCTG 3’ATAAGAATGCGGCCGCTAAACTATATGTTGCGTTTTCCGACCTG 3’

Reverse:5’CCGGAATTCCGGTTAGGAGTCTAGCTCAGGGTC 3’Reverse: 5'CCGGAATTCCGGTTAGGAGTCTAGCTCAGGGTC 3'

pcDNA3.1-Flag-Prp6:pcDNA3.1-Flag-Prp6:

Forward:                                          5’Forward: 5’

ATAAGAATGCGGCCGCGCCACCATGGACTACAAGGACGACGATGACATAAGAATGCGGCCGCGCCACCATGGACTACAAGGACGACGATGAC

             AAGGAATTCACTTTGCTACGGAGTGCAT 3’AAGGAATTCACTTTGCTACGGAGTGCAT 3’

Reverse:5’CCGGAATTCCGGCTGACACGAGACATAAAAACT 3’Reverse: 5'CCGGAATTCCGGCTGACACGAGACATAAAAACT 3'

pEGFPN1-DLP:pEGFPN1-DLP:

Forward:5’GGAATTCATGAGCTTCCTACTGCCCAAG 3’Forward: 5'GGAATTCATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’CGGGATCCAATGTCTTGATAGCGAAGGTCATATTTG 3’Reverse: 5'CGGGATCCAATGTCTTGATAGCGAAGGTCATATTTG 3'

pGEX-4T-3-DLP:pGEX-4T-3-DLP:

Forward:5’GGAATTCCATGAGCTTCCTACTGCCCAAG 3’Forward: 5'GGAATTCCATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’AAGGAAAAAAGCGGCCGCAAAAGGAAAACTAAATGTCTTGATAGAGAAGGTCA 3’Reverse: 5'AAGGAAAAAAGCGGCCGCAAAAGGAAAACTAAATGTCTTGATAGAGAAGGTCA 3'

pGEX-4T-3-DLPDEL 1:pGEX-4T-3-DLPDEL1:

Forward:5’GGAATTCCATGAGCTTCCTACTGCCCAAG 3’Forward: 5'GGAATTCCATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’AAGGAAAAAAGCGGCCGCAAAAGGAAReverse: 5'AAGGAAAAAAGCGGCCGCAAAAGGAA

AATTAAAGCTTCCCCCTCATTGC 3’AATTAAAGCTTCCCCCCTCATTGC 3’

pGEX-4T-3-DLPDEL2:pGEX-4T-3-DLPDEL2:

Forward:5’GGAATTCCATGAGCTTCCTACTGCCCAAG 3’Forward: 5'GGAATTCCATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’AAGGAAAAAAGCGGCCGCAAAGGAAAAAAAGCTTCCCCCTCATTGC 3’Reverse: 5'AAGGAAAAAAGCGGCCGCAAAGGAAAAAAAGCTTCCCCCTCATTGC 3'

pGEX-4T-3-DLPDEL3:pGEX-4T-3-DLPDEL3:

Forward:5’GGAATTCCATGGAAGATCCTGTCTGTCTGC 3’Forward: 5'GGAATTCCATGGAAGATCCTGTCTGTCTGC 3'

Reverse:5’AAGGAAAAAAGCGGCCGCAAAAGGAAAACTAAATGTCTTGATAGAGAAGGTCA 3’Reverse: 5'AAGGAAAAAAGCGGCCGCAAAAGGAAAACTAAATGTCTTGATAGAGAAGGTCA 3'

pDsRedC1-Prp6:pDsRedC1-Prp6:

Forward:5’GGAATTCCACTTTGCTACGGAGTGCAT 3’Forward: 5'GGAATTCCACTTTGCTACGGAGTGCAT 3'

Reverse:5’GGGGTACCCTGACACGAGACATAAAAACT 3’Reverse: 5'GGGGTACCCTGACACGAGACATAAAAACT 3'

pGBKT7-DLP:pGBKT7-DLP:

Forward:5’GGAATTCATGAGCTTCCTACTGCCCAAG 3’Forward: 5'GGAATTCATGAGCTTCCTACTGCCCAAG 3'

Reverse:5’ACGCGTCGACGCTAAATGTCTTGATAGAGAAGG 3’Reverse: 5'ACGCGTCGACGCTAAATGTCTTGATAGAGAAGG 3'

pGADT7-Prp6:pGADT7-Prp6:

Forward:5’GGAATTCACTTTGCTACGGAGTGCAT 3’Forward: 5'GGAATTCACTTTGCTACGGAGTGCAT 3'

Reverse:5’CATCGATCTGACACGAGACATAAAAACT 3’Reverse: 5'CATCGATCTGACACGAGACATAAAAACT 3'

1.12.核酸序列分析1.12. Nucleic acid sequence analysis

使用序列分析软件DNASTAR对序列进行分析。同源性比较用BLAST进行。Sequences were analyzed using the sequence analysis software DNASTAR. Homology comparisons were performed using BLAST.

实施例1Example 1

总mRNA的提取Extraction of total mRNA

细胞总mRNA的提取利用Invitrogen公司的TrizolTM试剂。各取1×107的MCF-7细胞,HepG2和Ishikawa细胞,离心收集后,加入1ml TrizolTM试剂,反复吹打以破碎细胞,室温静止5分钟后加入0.2ml氯仿,剧烈振荡15秒后,4℃12000rpm 15分钟,收集上清用异丙醇沉淀,70%的乙醇洗一遍,室温干燥后,总RNA重悬于DEPC处理的H2O中,分光光度计定量后用于cDNA第一条链的合成。Total cellular mRNA was extracted using Trizol TM reagent from Invitrogen Company. Take 1×10 7 MCF-7 cells, HepG2 and Ishikawa cells, collect by centrifugation, add 1ml Trizol TM reagent, blow repeatedly to break the cells, add 0.2ml chloroform after standing at room temperature for 5 minutes, shake vigorously for 15 seconds, 4 ℃12000rpm for 15 minutes, collect the supernatant, precipitate with isopropanol, wash once with 70% ethanol, dry at room temperature, resuspend the total RNA in DEPC-treated H2O , quantify it with a spectrophotometer and use it for the first strand of cDNA Synthesis.

cDNA双链的合成cDNA duplex synthesis

利用NEB的ProtoScriptTM First Strand cDNA Synthesis Kit,利用2.3所提的mRNA为模板,进行cDNA第一链和第二链的合成。简述如下:1ng-2ugmRNA,2ul Primer dT23VN,4ul dNTP,加H2O至16ul反应体系,70℃5分钟,快速冰浴冷却,短暂离心后,加入2ul 10xRT Buffer,1ul RNaseinhibitor,1ul M-MulV Reverse Transcriptase,轻轻混匀后,42℃反应一个小时,95℃5分钟灭活,加1ul(2u)RNase H37℃20分钟,消化RNA。95℃5分钟灭活DNase。稀释反应到50ul,取2-5ul进行PCR反应。NEB's ProtoScript TM First Strand cDNA Synthesis Kit was used to synthesize the first and second strands of cDNA using the mRNA mentioned in 2.3 as a template. The brief description is as follows: 1ng-2ugmRNA, 2ul Primer dT23VN, 4ul dNTP, add H 2 O to 16ul reaction system, 70°C for 5 minutes, quickly cool in ice bath, after short centrifugation, add 2ul 10xRT Buffer, 1ul RNase inhibitor, 1ul M-MulV Reverse Transcriptase, mix gently, react at 42°C for one hour, inactivate at 95°C for 5 minutes, add 1ul (2u) RNase H at 37°C for 20 minutes, digest RNA. Inactivate DNase at 95°C for 5 minutes. Dilute the reaction to 50ul, take 2-5ul for PCR reaction.

RT-PCR反应RT-PCR reaction

反应体系如下:2.5ul 10x buffer,4ul dNTP mix,5ul(10uM)DLP上下游引物或GAPDH阳性对照引物,5ul cDNA双链或人成人组织cDNA第一链(Clontech),0.25ul pfu,3.25ul水。PCR反应条件为:94℃ 1分钟;94℃30秒,50℃ 30秒,72℃1分钟,28轮,72℃延伸10分钟。对于阳性对照反应条件为:94℃ 2分钟,94℃ 30秒,55℃ 30秒,72℃ 30秒,25轮,72℃延伸10分钟。PCR产物经TAE配制的琼脂糖电泳分离后,切下PCR条带,加三倍体积的结合缓冲液,55℃溶胶,短暂离心后,用PE洗涤缓冲液洗三次,加洗脱缓冲液洗脱。The reaction system is as follows: 2.5ul 10x buffer, 4ul dNTP mix, 5ul (10uM) DLP upstream and downstream primers or GAPDH positive control primer, 5ul cDNA double strand or human adult tissue cDNA first strand (Clontech), 0.25ul pfu, 3.25ul water . The PCR reaction conditions were: 94°C for 1 minute; 94°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute, 28 rounds, and 72°C for 10 minutes. For the positive control reaction conditions: 94°C for 2 minutes, 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds, 25 rounds, 72°C for 10 minutes. After the PCR product was separated by agarose electrophoresis prepared by TAE, the PCR band was cut off, and three times the volume of binding buffer was added, sol at 55°C, shortly centrifuged, washed three times with PE washing buffer, and eluted with elution buffer .

质粒的构建Plasmid construction

根据计算机分析的DLP的mRNA序列设计开放性读码框架两端的引物,用此引物将DLP的ORF扩增出来,扩增的产物连接在pGEM-T-Easy载体上进行测序。将DLP的开放性读码框架从pGEM-T-easy载体上用EcoRI切下,再用EcoRV和BamHI酶切,纯化后将之连接在经EcoRv和BamHI酶切后的真核表达载体pcDNA3.1(-)/myc/HisB,得到pCDNA3.1-DLP。设计DLP编码区引物,两端设计EcoRI和BamHI的酶切位点,DLP的编码区用PCR从pCDNA3.1-DLP上扩增,酶切后连到经EcoRI-BamHI酶切后pEGFP-N1的表达载体中,得到pEGFP-DLP重组质粒,此载体可以在真核细胞中表达加强的绿色荧光蛋白(EGFP)和DLP的融合蛋白,DLP的读码框架和EGFP一致,将此载体转染真核细胞后,可以在荧光显微镜下观察DLP所在的部位。设计DLP编码区引物,两端设计EcoRI和NotI的酶切位点,DLP的编码区用PCR从pCDNA3.1-DLP上扩增,酶切后连到经EcoRI-NotI酶切后pGEX-4T-3的表达载体中,得到pGEX-DLP的重组质粒。此载体可以在E.coil BL21中表达GST和DLP融合蛋白。利用Clontech公司的AdvantangeTM-cDNA PCR试剂盒,从人的cDNA panel扩增出hnRNPF,PQBP,APC4和Prp6的cDNA序列,引物两端设计NotI和EcoRI的酶切位点,酶切后连到pcDNA3.1(-)/myc/HisB载体上,得到pcDNA3.1-hnRNPF,PQBP,APC,Prp6的重组质粒,可以在体外转录翻译,用GST Pull-down研究与DLP的相互作用。对于DLP缺失体的构建,缺失体1(1-128),缺失体2(21-126),缺失体3(33-149)引物两端设计EcoRI和NotI的酶切位点,从pcDNA3.1-DLP上扩增,酶切后连到处理过的pcDNA3.1(-)/myc/HisB,得到不同缺失体的重组质粒。为了研究DLP和Prp6在真核细胞中是否共定位,构建Prp6与红色荧光蛋白的重组质粒,设计Prp6的引物,两端引物引入EcoRI和KpnI的酶切位点,将Prp6全长从pcDNA3.1-Prp6上扩增,酶切后连到EcoRI和KpnI酶切过的pDsred-C1(Clontech)载体上,得到pDsred-Prp6的重组质粒。此载体可以在真核细胞中表达红色荧光蛋白(Red)和Prp6的融合蛋白,将此载体转染真核细胞后,可以在荧光显微镜下观察Prp6所在的部位。为了研究DLP和Prp6的体内相互作用,构建了带Flag标签的重组质粒。设计引物,上游引入NotI位点和Flag标签序列,下游引入EcoRI的酶切位点,从pcDNA3.1-prp6上扩增出,酶切后连pcDNA3.1载体上。According to the mRNA sequence of DLP analyzed by computer, primers at both ends of the open reading frame were designed, and the ORF of DLP was amplified with the primers, and the amplified product was connected to the pGEM-T-Easy vector for sequencing. The open reading frame of DLP was excised from the pGEM-T-easy vector with EcoRI, then digested with EcoRV and BamHI, after purification, it was connected to the eukaryotic expression vector pcDNA3.1 digested with EcoRv and BamHI (-)/myc/HisB, resulting in pCDNA3.1-DLP. Design primers for the DLP coding region, design EcoRI and BamHI restriction sites at both ends, use PCR to amplify the coding region of DLP from pCDNA3.1-DLP, and connect to pEGFP-N1 after digestion with EcoRI-BamHI In the expression vector, the pEGFP-DLP recombinant plasmid was obtained. This vector can express the fusion protein of enhanced green fluorescent protein (EGFP) and DLP in eukaryotic cells. The reading frame of DLP is consistent with that of EGFP. Transfect this vector into eukaryotic cells After the cells are removed, the site where the DLP is located can be observed under a fluorescent microscope. Design primers for the DLP coding region, design EcoRI and NotI restriction sites at both ends, use PCR to amplify the coding region of DLP from pCDNA3.1-DLP, and connect to pGEX-4T- after digestion with EcoRI-NotI 3, the recombinant plasmid pGEX-DLP was obtained. This vector can express GST and DLP fusion protein in E.coil BL21. The cDNA sequences of hnRNPF, PQBP, APC4 and Prp6 were amplified from the human cDNA panel using Clontech's Advantage TM -cDNA PCR kit, and NotI and EcoRI restriction sites were designed at both ends of the primers, and then ligated to pcDNA3 after digestion .1(-)/myc/HisB vector, get pcDNA3.1-hnRNPF, PQBP, APC, Prp6 recombinant plasmids, which can be transcribed and translated in vitro, and use GST Pull-down to study the interaction with DLP. For the construction of DLP deletions, EcoRI and NotI restriction sites were designed at both ends of the primers for deletion 1 (1-128), deletion 2 (21-126), and deletion 3 (33-149), from pcDNA3.1 -Amplified on DLP, digested and connected to the processed pcDNA3.1(-)/myc/HisB to obtain recombinant plasmids of different deletions. In order to study whether DLP and Prp6 co-localize in eukaryotic cells, the recombinant plasmid of Prp6 and red fluorescent protein was constructed, and the primers of Prp6 were designed, and the primers at both ends were introduced into the restriction sites of EcoRI and KpnI. -Amplify on Prp6, connect to the pDsred-C1 (Clontech) vector digested with EcoRI and KpnI after enzyme digestion, and obtain the recombinant plasmid of pDsred-Prp6. The vector can express the fusion protein of red fluorescent protein (Red) and Prp6 in eukaryotic cells, and after the vector is transfected into eukaryotic cells, the location of Prp6 can be observed under a fluorescent microscope. In order to study the interaction between DLP and Prp6 in vivo, a recombinant plasmid with Flag tag was constructed. Design primers, introduce NotI site and Flag tag sequence upstream, introduce EcoRI restriction site downstream, amplify from pcDNA3.1-prp6, and connect to pcDNA3.1 vector after digestion.

对于酵母双杂研究,诱饵蛋白pGBKT7-DLP的构建如下:DLP的读码框架用PCR从pSUPER-DLP上扩增,PCR产物用EcoRI和SalI消化,连接到pGBKT7(Clontech)载体上。Prp6的编码区用PCR从pcDNA3.1-Prp6上扩增,PCR产物用EcoRI和CalI消化,连接到pGADT7(Clontech)载体上。For yeast two-hybrid studies, the bait protein pGBKT7-DLP was constructed as follows: the reading frame of DLP was amplified from pSUPER-DLP by PCR, the PCR product was digested with EcoRI and SalI, and ligated into the pGBKT7 (Clontech) vector. The coding region of Prp6 was amplified from pcDNA3.1-Prp6 by PCR, and the PCR product was digested with EcoRI and CalI, and ligated into pGADT7 (Clontech) vector.

质粒的提取和纯化Plasmid extraction and purification

用于测序和基因克隆操作的质粒纯化采用《分子克隆(第二版)》的碱裂解法和天为时代的小提质粒试剂盒。用于转染真核细胞的质粒用Qiagentip-20 Minipreparation Kit(质粒纯化):挑单菌落于3ml LB培养基中,培养12-16小时,离心,重悬于0.3ml Buffer P2,颠倒4-6次,室温放置5分钟。加4℃预冷的Buffer P3中,颠倒4-6次,冰浴5分钟。高速离心,上清加经1ml Buffer QBT平衡好的Qiagen-tip 20柱中,用1ml Buffer QC洗柱,重复三次,加0.8ml Buffer QF洗脱质粒,加0.7倍体积的异丙醇,室温高速离心30分钟。弃上清,用70%的乙醇洗两遍。空气干燥5分钟,溶于H2O中。For the purification of plasmids for sequencing and gene cloning operations, the alkaline lysis method of "Molecular Cloning (Second Edition)" and the small plasmid kit of Tianwei Times were used. Use Qiagentip-20 Minipreparation Kit (plasmid purification) for transfection of eukaryotic cells: pick a single colony in 3ml LB medium, culture for 12-16 hours, centrifuge, resuspend in 0.3ml Buffer P2, reverse 4-6 Once, place at room temperature for 5 minutes. Add to 4°C pre-cooled Buffer P3, invert 4-6 times, and ice bath for 5 minutes. Centrifuge at high speed, add the supernatant to a Qiagen-tip 20 column equilibrated with 1ml Buffer QBT, wash the column with 1ml Buffer QC, repeat three times, add 0.8ml Buffer QF to elute the plasmid, add 0.7 times the volume of isopropanol, and run at room temperature at high speed Centrifuge for 30 minutes. Discard the supernatant and wash twice with 70% ethanol. Air dry for 5 min and dissolve in H2O .

测序sequencing

使用ABI公司的3700DNA测序仪测序。测序结果如图1所示。Sequencing was performed using ABI's 3700 DNA sequencer. The sequencing results are shown in Figure 1.

Northern BlotNorthern Blot

探针的标记和杂交操作参照Clontech公司的SpotlightTM Random PrimerLabeling Kit试剂盒说明书。过程简述如下:Probe labeling and hybridization operations refer to the instructions of the Spotlight TM Random Primer Labeling Kit kit from Clontech Company. The process is briefly described as follows:

(1)探针标记:25ng-1ug DNA溶于20ul体积中,90-100℃ 2-3分钟,迅速冰浴5分钟,加5ul[α-32P]dCTP标记的Random Primers and ReactionBuffer Mix,补水至50ul,37℃孵育5-10分钟。(1) Probe labeling: Dissolve 25ng-1ug DNA in 20ul volume, incubate at 90-100°C for 2-3 minutes, quickly ice-bath for 5 minutes, add 5ul [α- 32 P]dCTP-labeled Random Primers and ReactionBuffer Mix, replenish water To 50ul, incubate at 37°C for 5-10 minutes.

(2)杂交:68℃预热杂交液,将吸附有核酸的尼龙膜放入含又杂交液的杂交瓶中,加入含有100ug/ml的鲑精DNA的杂交液0.1ml/cm2,68℃预杂交30分钟。20ng/ml探针混入杂交液,95℃2-5分钟,冰浴5分钟。加入杂交瓶,68℃杂交1小时。(2) Hybridization: Preheat the hybridization solution at 68°C, put the nylon membrane adsorbed with nucleic acid into the hybridization bottle containing the hybridization solution, add 0.1ml/cm 2 of the hybridization solution containing 100ug/ml salmon sperm DNA, and heat at 68°C Prehybridize for 30 minutes. 20ng/ml probe was mixed into the hybridization solution, kept at 95°C for 2-5 minutes, and ice-bathed for 5 minutes. Add to the hybridization flask and hybridize at 68°C for 1 hour.

(3)洗膜:用Wash Buffer 1室温洗膜30-40分钟,用Wash Buffer 2 50℃洗膜40分钟。(3) Membrane washing: wash the membrane with Wash Buffer 1 at room temperature for 30-40 minutes, and wash the membrane with Wash Buffer 2 at 50°C for 40 minutes.

(4)显色:用镊子取出膜,洗干Wash Buffer 2,用保鲜膜覆盖,-70℃曝光1-3天后显影,定影。(4) Color development: Take out the film with tweezers, wash and dry Wash Buffer 2, cover with plastic wrap, expose at -70°C for 1-3 days, develop and fix.

DLP在原核细胞中的表达和纯化Expression and purification of DLP in prokaryotic cells

GST-DLP可以在大肠杆菌BL21菌株中30℃中诱导表达GST-DLP的融合蛋白,首先制备BL21的感受态细胞:挑取单克隆到适量培养基中,37℃250rpm培养至A600 0.4-0.5,2500g离心15分钟,备用。将1-50ngGST-DLP转化到感受态细胞中,用Glutathione Sepharose 4B进行纯化,纯化的步骤如下:GST-DLP can induce the expression of GST-DLP fusion protein in Escherichia coli BL21 strain at 30°C. First, prepare competent cells of BL21: pick a single clone into an appropriate amount of medium, and cultivate it at 37°C and 250rpm to A600 0.4-0.5. Centrifuge at 2500g for 15 minutes and set aside. Transform 1-50ngGST-DLP into competent cells and purify with Glutathione Sepharose 4B. The purification steps are as follows:

(1)挑取单克隆到2-3ml LBA培养基中培养4-5小时。转到100ml的锥形瓶中生长过夜。(1) Pick a single clone and culture it in 2-3ml LBA medium for 4-5 hours. Transfer to a 100ml Erlenmeyer flask and grow overnight.

(2)转到500ml的锥形瓶中培养3-5小时。(2) Transfer to a 500ml Erlenmeyer flask and cultivate for 3-5 hours.

(3)加0.5ml 1M IPTG 30℃培养3个小时。(3) Add 0.5ml 1M IPTG and incubate at 30°C for 3 hours.

(4)3000rpm 10分钟离心收集细胞。(4) Collect the cells by centrifugation at 3000rpm for 10 minutes.

(5)用25ml PBS重悬细胞。超声10分钟。(5) Resuspend the cells with 25ml PBS. Sonicate for 10 minutes.

(6)加1.25ml 20% Triton X-100,混匀1小时。(6) Add 1.25ml 20% Triton X-100 and mix for 1 hour.

(7)1000rpm 10分钟离心,加入0.5ml 50%slurry of Glutathione Sepharose 4B,室温30分钟。(7) Centrifuge at 1000rpm for 10 minutes, add 0.5ml 50% slurry of Glutathione Sepharose 4B, and keep at room temperature for 30 minutes.

(8)1000rpm 5分钟离心,PBS洗三遍。(8) Centrifuge at 1000rpm for 5 minutes, wash with PBS three times.

(9)用0.5ml洗脱buffer洗脱,短暂离心后收集上清。(9) Elute with 0.5ml elution buffer, and collect the supernatant after brief centrifugation.

结果,DLP在大肠杆菌中获得成功的表达,纯度可达90%以上。As a result, DLP was successfully expressed in Escherichia coli with a purity of over 90%.

实施例2Example 2

抗GST-DLP多克隆抗体的制备和Western blot印迹杂交Preparation of anti-GST-DLP polyclonal antibody and Western blot hybridization

纯化的GST-DLP融合蛋白用来免疫新西兰大白兔以制备抗DLP的多克隆抗体。对于Western blot,提取的蛋白质利用Bio-Rad公司的DC蛋白定量试剂进行定量后,进行15%的SDS-PAGE电泳,电泳后将蛋白质电转移到硝酸纤维膜上。膜用5%的脱脂奶粉封闭2小时后,加入1∶30稀释的兔抗DLP多抗或1∶5000稀释的anti-c-myc的单克隆抗体(Invitrogen)4℃过夜,用TBST洗三遍后)(10分钟/次),加入1∶4000稀释的辣根酶标记的抗兔IgG(Amersham Pharmacia Biotech)或羊抗鼠IgG(Santa Cruz),孵育1小时,膜用TBS再洗三遍后加入底物液进行显色。The purified GST-DLP fusion protein was used to immunize New Zealand white rabbits to prepare polyclonal antibodies against DLP. For Western blot, the extracted protein was quantified by Bio-Rad's DC protein quantification reagent, and then subjected to 15% SDS-PAGE electrophoresis, and the protein was transferred to a nitrocellulose membrane after electrophoresis. After the membrane was blocked with 5% skimmed milk powder for 2 hours, a 1:30 dilution of rabbit anti-DLP polyclonal antibody or a 1:5000 dilution of anti-c-myc monoclonal antibody (Invitrogen) was added at 4°C overnight, and washed three times with TBST After) (10 minutes/time), add horseradish enzyme-labeled anti-rabbit IgG (Amersham Pharmacia Biotech) or goat anti-mouse IgG (Santa Cruz) diluted 1:4000, incubate for 1 hour, and wash the membrane three times with TBS Add substrate solution for color development.

实施例3Example 3

GST Pull-downGST Pull-down

利用Promega公司的TNT Rabbit Reticulocyte lysate and TNT T7polymerase labels试剂盒,在体外转录翻译pcDNA-Prp6,hnRNPF,PQBP andAPC4。步骤如下:Using Promega's TNT Rabbit Reticulocyte lysate and TNT T7polymerase labels kit, in vitro transcription and translation of pcDNA-Prp6, hnRNPF, PQBP and APC4. Proceed as follows:

(1)在1.5ml管中按如下顺序加入试剂(1) Add the reagents to the 1.5ml tube in the following order

25ul    TNT溶解产物25ul TNT lysate

2ul     TNT反应缓冲剂2ul TNT reaction buffer

1ul     TNT RNA聚合酶1ul TNT RNA polymerase

1ul     氨基酸混合物,minus Met(1mM)1ul amino acid mixture, minus Met(1mM)

2ul     [35S]甲硫氨酸(>1000ci/mmol)2ul [ 35 S]methionine (>1000ci/mmol)

1ul     Rnasin Ribonuclease inhibitor1ul Rnasin Ribonuclease inhibitor

2ul     pcDNA-Prp6,hnRNPF,PQBP and APC42ul pcDNA-Prp6, hnRNPF, PQBP and APC4

16ul    不含核酸酶的水                   16ul Nuclease-free water

50ul    总体积50ul total volume

30℃作用90分钟。30°C for 90 minutes.

(2)在1.5ml管中加入50ul glutathione agarose beads,500ng-10ug GST或GST-DLP,4-5ul体外转录翻译产物。(2) Add 50ul glutathione agarose beads, 500ng-10ug GST or GST-DLP, and 4-5ul in vitro transcription and translation products into a 1.5ml tube.

(3)4℃孵育2小时,13000rpm 2分钟,弃上清。用1ml预冷的裂解缓冲液洗glutathione agarose beads。(3) Incubate at 4°C for 2 hours, 13000rpm for 2 minutes, discard the supernatant. Wash glutathione agarose beads with 1ml of cold lysis buffer.

(4)13000rpm离心1分钟,弃上清,重复洗两次。(4) Centrifuge at 13,000 rpm for 1 minute, discard the supernatant, and repeat washing twice.

(5)用50ul 20mM还原谷胱甘肽洗脱,室温10分钟。(5) Elution with 50ul 20mM reduced glutathione, room temperature for 10 minutes.

(6)13000rpm离心2分钟。(6) Centrifuge at 13000 rpm for 2 minutes.

(7)加入2xSDS-PAGE上样缓冲液,100℃煮沸5分钟。上样12%SDS-PAGE聚丙烯酰氨胶。(7) Add 2xSDS-PAGE loading buffer and boil at 100°C for 5 minutes. Load on 12% SDS-PAGE polyacrylamide gel.

(8)取下凝胶,室温固定30分钟。(8) Remove the gel and fix it at room temperature for 30 minutes.

(9)在干胶仪上干燥30-90分钟。(9) Dry on a gel dryer for 30-90 minutes.

(10)-70℃曝光,4-16小时后显影。(10) Expose at -70°C, develop after 4-16 hours.

结果发现DLP与U5-102KD(酵母中的同源体为Prp6)存在相互作用,与PQBP、hnRNPF及APC4没有相互作用(图2)。为了研究DLP与Prp6相互作用的部位,构建了DLP的不同缺失体。GST Pull-down实验证明DLP的N端1-33aa与Prp6相互作用(图3)。It was found that DLP interacted with U5-102KD (the homologue in yeast is Prp6), but did not interact with PQBP, hnRNPF and APC4 (Figure 2). To investigate the site where DLP interacts with Prp6, different deletions of DLP were constructed. GST Pull-down experiments proved that the N-terminal 1-33aa of DLP interacted with Prp6 (Figure 3).

实施例4Example 4

免疫共沉淀co-immunoprecipitation

(1)MCF-7细胞培养至106,用LIPOFECTAMINE 2000试剂转染pcDNA-Flag-Prp6重组质粒。(1) MCF-7 cells were cultured to 10 6 , and the pcDNA-Flag-Prp6 recombinant plasmid was transfected with LIPOFECTAMINE 2000 reagent.

(2)48小时后,收集细胞,先用预冷的PBS洗两遍,用细胞刮刀将细胞刮下,PBS重悬。(2) After 48 hours, the cells were collected, washed twice with pre-cooled PBS, scraped off with a cell scraper, and resuspended in PBS.

(3)2000g离心5分钟,弃上清,加入裂解缓冲液[50mM Tris-HCL PH7.5,100mM Nacl,10%(v/v)glycerol,0.1%(v/v)NP-40,1mM dithiothreitol,1mMEDTA,protease inhibitor cocktail]孵育10分钟。(3) Centrifuge at 2000g for 5 minutes, discard the supernatant, add lysis buffer [50mM Tris-HCL PH7.5, 100mM Nacl, 10% (v/v) glycerol, 0.1% (v/v) NP-40, 1mM dithiothreitol , 1mM EDTA, protease inhibitor cocktail] for 10 minutes.

(4)超声两次,每次10秒钟裂解细胞,裂解液和Protein-A-Sepharose在4℃孵育2小时。(4) Sonicate twice, 10 seconds each time to lyse the cells, and incubate the lysate and Protein-A-Sepharose at 4°C for 2 hours.

(5)14000g离心10分钟,上清分别加入免疫前血清或抗Flag抗体(invitrogen)(1ug),4℃孵育16小时。免疫复合物用Protein-A-Sepharose捕获。(5) Centrifuge at 14000 g for 10 minutes, add pre-immune serum or anti-Flag antibody (invitrogen) (lug) to the supernatant, and incubate at 4°C for 16 hours. Immune complexes were captured with Protein-A-Sepharose.

(6)6000g离心10分钟,Protein-A-Sepharose用NETN Buffer[20mM Tris(PH8.0),1mM EDTA,900mM Nacl,0.5%(v/v)NP-40,Protease inhibitor cocktail]洗4-5遍。(6) Centrifuge at 6000g for 10 minutes, wash Protein-A-Sepharose with NETN Buffer [20mM Tris (PH8.0), 1mM EDTA, 900mM Nacl, 0.5% (v/v) NP-40, Protease inhibitor cocktail] for 4-5 all over.

(7)95-100℃5分钟,加入2xSDS上样缓冲液。免疫复合物在12%SDS变性聚丙烯酰氨凝胶上分离。(7) 95-100°C for 5 minutes, add 2xSDS loading buffer. Immune complexes were separated on a 12% SDS denaturing polyacrylamide gel.

(8)取下凝胶,电转移到硝酸纤维素膜上,加入5%的脱脂奶粉室温封闭1-2小时。(8) Remove the gel, electrotransfer to the nitrocellulose membrane, add 5% skim milk powder to block at room temperature for 1-2 hours.

(9)加入抗GST-DLP的多克隆抗体(1∶30),室温1-2小时。(9) Add anti-GST-DLP polyclonal antibody (1:30), room temperature for 1-2 hours.

(10)TBST洗膜3次,每次10分钟。(10) Wash the membrane 3 times with TBST, 10 minutes each time.

(11)加入辣根酶偶连的猴抗兔IgG(Amersham Pharmacia Biotech)的二抗,室温孵育1-2小时。(11) Add the secondary antibody of monkey anti-rabbit IgG (Amersham Pharmacia Biotech) coupled with horseradish enzyme, and incubate at room temperature for 1-2 hours.

(12)TBST洗膜三次,每次10分钟。(12) Wash the membrane three times with TBST, 10 minutes each time.

(13)用Pharmacia公司的ECL试剂曝光。(13) Expose with ECL reagent from Pharmacia Company.

为了检测DLP和Prp6在细胞内相互作用,MCF-7细胞用pcDNA3.1-Flag-Prp6转染,提取总蛋白,用抗Flag的单克隆免疫沉淀,然后Western blotting抗GST-DLP的多克隆抗体检测DLP。结果发现,DLP的确能和带Flag标签的Prp6相互作用,这和GST Pull-down的结果是一致的。To detect the intracellular interaction between DLP and Prp6, MCF-7 cells were transfected with pcDNA3.1-Flag-Prp6, total protein was extracted, immunoprecipitated with anti-Flag monoclonal, and then Western blotting with anti-GST-DLP polyclonal antibody Detect DLP. It was found that DLP can indeed interact with Flag-tagged Prp6, which is consistent with the results of GST Pull-down.

DLP在细胞内的定位及与Prp6的共定位Localization of DLP in cells and co-localization with Prp6

利用CLONTECH公司的pEGFP-N1 N末端蛋白融合载体构建了pEGFPN1-DLP载体,它可以在真核细胞内表达GFP-DLP的融合蛋白,将这些载体用LipofectinTM的方法转染进MCF-7细胞中,转染的细胞进行爬片,24小时后,片子用PBS洗三遍,用PBS/4%多聚甲醛进行固定,室温15分钟,然后用PBS洗三遍。用0.1%的Triton/PBS透化15分钟,然后用PBS洗三遍,加入200ul 2.5mg/ml的DAPI,室温作用30分钟,然后用PBS洗三遍后,在荧光显微镜下分别用常规荧光波长和DAPI波长进行观察,并进行拍照。The pEGFPN1-DLP vector was constructed using the pEGFP-N1 N-terminal protein fusion vector from CLONTECH, which can express the GFP-DLP fusion protein in eukaryotic cells, and these vectors were transfected into MCF-7 cells by Lipofectin TM After 24 hours, the slides were washed three times with PBS, fixed with PBS/4% paraformaldehyde, room temperature for 15 minutes, and then washed three times with PBS. Permeabilize with 0.1% Triton/PBS for 15 minutes, then wash three times with PBS, add 200ul 2.5mg/ml DAPI, react at room temperature for 30 minutes, then wash three times with PBS, and use conventional fluorescent wavelengths under a fluorescence microscope Observe with DAPI wavelength and take pictures.

为了研究DLP和Prp6是否在真核细胞中相互作用,利用CLONTECH公司的pDsred-C1 C末端蛋白融合载体构建了pDsredC1-Prp6载体,它可以在真核细胞内表达pDsred-Prp6的融合蛋白。将pEGFP-DLP和pDsred-Prp6载体用LipofectinTM的方法转染进MCF-7细胞中,转染的细胞进行爬片,24小时后,片子用PBS洗三遍,用PBS/4%多聚甲醛进行固定,室温15分钟,然后用PBS洗三遍。在荧光显微镜下分别用常规荧光波长进行观察,并进行拍照。In order to study whether DLP and Prp6 interact in eukaryotic cells, the pDsredC1-Prp6 vector was constructed using the pDsred-C1 C-terminal protein fusion vector of CLONTECH, which can express the fusion protein of pDsred-Prp6 in eukaryotic cells. The pEGFP-DLP and pDsred-Prp6 vectors were transfected into MCF-7 cells by the method of Lipofectin TM , and the transfected cells were sliced. After 24 hours, the slices were washed three times with PBS, and washed with PBS/4% paraformaldehyde. For fixation, room temperature for 15 minutes, and then washed three times with PBS. Under a fluorescence microscope, the samples were observed with conventional fluorescence wavelengths and photographed.

为了进一步证实DLP和Prp6的相互作用,做了DLP和Prp6的亚细胞共定位。pEGFP-DLP和pDsRed-Prp6的融合表达载体被共转染进MCF-7细胞。转染后24小时,用共聚焦显微镜观察两者的共定位。结果发现,所标记的绿色和红色荧光主要在细胞核内观察到并且重叠,表明DLP和Prp6存在相互作用,并且和Pre-mRNA剪接有关。In order to further confirm the interaction between DLP and Prp6, the subcellular colocalization of DLP and Prp6 was done. The fusion expression vector of pEGFP-DLP and pDsRed-Prp6 was co-transfected into MCF-7 cells. 24 hours after transfection, the colocalization of the two was observed by confocal microscopy. It was found that the labeled green and red fluorescence were mainly observed in the nucleus and overlapped, indicating that DLP and Prp6 interacted and were related to Pre-mRNA splicing.

实施例5Example 5

体外剪接实验in vitro splicing experiment

先利用Promega公司的HelaScribe Nuclear Extract in vitro TranscriptionSystem在体外转录Pre-mRNA剪接底物。步骤如下:First, the Pre-mRNA splicing substrate was transcribed in vitro using HelaScribe Nuclear Extract in vitro Transcription System from Promega. Proceed as follows:

(1)用XbaI将剪接底物pAdML-M3 mRNA线性化。利用Gene公司的胶回收试剂盒回收纯化。(1) Splicing substrate pAdML-M3 mRNA was linearized with XbaI. The Gel Recovery Kit from Gene Company was used to recover and purify.

(2)在1.5ml无菌的硅化管中依次加入以下成分(2) Add the following ingredients in sequence to a 1.5ml sterile siliconized tube

6ul Hela Nuclear Extract 1X Transcription Buffer6ul Hela Nuclear Extract 1X Transcription Buffer

2ul Mgcl2 50mM2ul Mgcl 2 50mM

1ul 25X rNTP Mix1ul 25X rNTP Mix

5ul lined pAdML-M3 mRNA subtracts5ul lined pAdML-M3 mRNA subtracts

1ul[α-32P]rGTP(3000Ci/mmol,10mCi/ml)1ul [α- 32P ]rGTP (3000Ci/mmol, 10mCi/ml)

5ul Nuclease-Free ddH2O5ul Nuclease-Free ddH 2 O

5ul HelaScribe Nuclear Extract5ul HelaScribe Nuclear Extract

25ul 总体积25ul total volume

(3)30℃孵育60分钟。(3) Incubate at 30°C for 60 minutes.

(4)25℃预热Hela Extract stop buffer 1小时,加175ul到反应体系终止反应。(4) Preheat Hela Extract stop buffer at 25°C for 1 hour, add 175ul to the reaction system to terminate the reaction.

(5)加200ul TE饱和的酚,混匀60秒,14000g离心5分钟。(5) Add 200ul TE-saturated phenol, mix for 60 seconds, and centrifuge at 14000g for 5 minutes.

(6)转移150ul上清到一干净的1.5ml管。(6) Transfer 150ul supernatant to a clean 1.5ml tube.

(7)重新加入200ul终止Buffer,用酚重新抽提一次。如上混匀离心。两次上清加入300ul氯仿∶异戊醇(24∶1)抽提,混匀并短暂离心。(7) Add 200ul stop buffer again, and re-extract once with phenol. Mix well and centrifuge as above. Add 300ul chloroform: isoamyl alcohol (24:1) to the supernatant twice for extraction, mix well and centrifuge briefly.

(8)转移上清到一新的无菌的硅化管。(8) Transfer the supernatant to a new sterile siliconized tube.

(9)加700ul 100%的乙醇,混匀。-70℃至少15分钟。(9) Add 700ul of 100% ethanol and mix well. -70°C for at least 15 minutes.

(10)转移乙醇混合物到一个无菌1.5ml的微离心管。14000g 4℃离心10分钟。(10) Transfer the ethanol mixture to a sterile 1.5ml microcentrifuge tube. Centrifuge at 14000g for 10 minutes at 4°C.

(11)小心移走上清,室温干燥。用10-20ul无核酸酶的水溶解RNA。(11) Carefully remove the supernatant and dry at room temperature. Dissolve RNA with 10-20ul nuclease-free water.

(12)加入2X SDS loading buffer,100℃ 5分钟。(12) Add 2X SDS loading buffer, 100°C for 5 minutes.

(13)在含有7M尿素的6%变性聚丙烯酰氨胶上分离RNA.(13) RNA was isolated on 6% denatured polyacrylamide gel containing 7M urea.

(14)从胶上切下全长RNA,加入洗脱缓冲液(0.75M醋酸胺,10mM醋酸镁,0.1%SDS,0.1mM EDTA)过夜。(14) Cut the full-length RNA from the gel, add elution buffer (0.75M ammonium acetate, 10mM magnesium acetate, 0.1% SDS, 0.1mM EDTA) overnight.

(15)洗脱的RNA用0.45um的滤器分离,乙醇沉淀,用无核酸酶的水溶解RNA。(15) The eluted RNA was separated with a 0.45um filter, ethanol precipitated, and the RNA was dissolved with nuclease-free water.

剪接过程简述如下:The splicing process is briefly described as follows:

(1)1.5ml无菌的微离心管中依次加入下述溶液:(1) Add the following solutions in sequence to a 1.5ml sterile microcentrifuge tube:

6-8ul Hela Nuclear Extract6-8ul Hela Nuclear Extract

5ul[α-32P]-radiolabled transcription products5ul[α- 32P ]-radioabled transcription products

1.25ul 50mM Mgcl2 1.25ul 50mM Mgcl 2

3.75ul 100mM ATP3.75ul 100mM ATP

1.28ul 20mM creatine phosphate1.28ul 20mM creatine phosphate

1.25ul 10mM DTT1.25ul 10mM DTT

1ul    Rnasin inhibitor(40u/ul)1ul Rnasin inhibitor (40u/ul)

5-6ul Nuclease-Free ddH2O(or pre-immune,GST,GST-DLP,5-6ul Nuclease-Free ddH 2 O (or pre-immune, GST, GST-DLP,

      Anti GST-DLP antibody)                       —Anti GST-DLP antibody) --

25ul       总体积25ul total volume

(2)30℃孵育1小时。(2) Incubate at 30°C for 1 hour.

(3)加入终浓度为4ug/ml和0.1%的蛋白酶K和SDS终止反应。37℃孵育20分钟。用125mM Tris(PH8.0),1mM EDTA,0.3M醋酸钠稀释体积到100ul。(3) Add proteinase K and SDS at a final concentration of 4ug/ml and 0.1% to terminate the reaction. Incubate at 37°C for 20 minutes. Dilute the volume to 100ul with 125mM Tris (PH8.0), 1mM EDTA, 0.3M sodium acetate.

(4)用200ul TE饱和的酚/氯仿∶异戊醇抽提一遍。14000g离心5分钟。(4) Extract once with 200ul TE-saturated phenol/chloroform: isoamyl alcohol. Centrifuge at 14000g for 5 minutes.

(5)转移上清到一新的微离心管,用200ul氯仿抽提一遍。14000g离心5分钟。(5) Transfer the supernatant to a new microcentrifuge tube, and extract it once with 200ul chloroform. Centrifuge at 14000g for 5 minutes.

(6)转移上清到一新的微离心管,用300ul无水乙醇沉淀RNA,-80℃过夜。(6) Transfer the supernatant to a new microcentrifuge tube, use 300ul of absolute ethanol to precipitate the RNA, and overnight at -80°C.

(7)14000g离心10分钟,弃上清,室温干燥。(7) Centrifuge at 14000 g for 10 minutes, discard the supernatant, and dry at room temperature.

(8)20ul DEPC处理的水溶解RNA。加入等体积的2x SDS loadingbuffer。(8) 20ul DEPC-treated water dissolved RNA. Add an equal volume of 2x SDS loadingbuffer.

(9)90-100℃ 5分钟,在含有7M尿素的12%变性聚丙烯酰氨胶上分离RNA。(9) 90-100°C for 5 minutes, isolate RNA on 12% denatured polyacrylamide gel containing 7M urea.

(10)室温固定30分钟,干胶90分钟。(10) Fix at room temperature for 30 minutes, and dry the glue for 90 minutes.

(11)-80℃曝光1-2天后,显影。(11) After exposure at -80°C for 1-2 days, develop.

体外剪接实验用来证实DLP在剪接中的作用,32p标记的Adml-M3Pre-mRNA被合成,在标准剪接条件下和Hela细胞的核提取物孵育。在剪接实验中,抗GST-DLP的多克隆抗体用来抵消Hela细胞中内源性DLP的作用。如图4所示,加入非特异的血清对剪接没有明显的影响。加入抗GST-DLP的多克隆抗体后明显抑制剪接,过量的原核细胞纯化的GST-DLP融合蛋白则可以恢复Adml-M3 Pre-mRNA的剪接。这些结果表明DLP参与Adml-M3 Pre-mRNA的剪接。In vitro splicing experiments were used to confirm the role of DLP in splicing. 32 p-labeled Adml-M3Pre-mRNA was synthesized and incubated with nuclear extracts of Hela cells under standard splicing conditions. In splicing experiments, a polyclonal antibody against GST-DLP was used to neutralize the effect of endogenous DLP in HeLa cells. As shown in Figure 4, the addition of non-specific serum had no significant effect on splicing. Splicing was significantly inhibited after adding anti-GST-DLP polyclonal antibody, and excess prokaryotic purified GST-DLP fusion protein could restore the splicing of Adml-M3 Pre-mRNA. These results suggest that DLP is involved in the splicing of Adml-M3 Pre-mRNA.

实施例6Example 6

RNAi重组质粒的构建和Western blottingConstruction of RNAi recombinant plasmid and Western blotting

利用pSUPER载体构建DLPRNAi的重组质粒,简述如下:Use the pSUPER vector to construct the recombinant plasmid of DLPRNAi, as follows:

(1)选择DLP开放性读码的197-215bp,设计寡核苷酸序列。(1) Select 197-215 bp of the DLP open reading frame and design the oligonucleotide sequence.

Oligo1:Oligo1:

5’GATCCCCCTGCAGTTTATACACAGTATTCAAGAGATACTGTGTATAAACTGCAGTTTTTGGAAA 3’5'GATCCCCCCTGCAGTTTATACACAGTATTCAAGAGATACTGTGTATAAACTGCAGTTTTTGGAAA 3'

Oligo2:Oligo2:

5’AGCTTTTCCAAAAACTGCAGTTTATACACAGTATCTCTTGAATACTGTGTATAAATGCAGGGG 3’5’AGCTTTTCCAAAACTGCAGTTTATACACAGTATCTCTTGAATACTGTGTATAAATGCAGGGG 3’

(2)寡核苷酸被重悬在退火buffer(100mM potassium acetate,30mMHEPES-KOH,PH7.4,2mM acetate),95℃4分钟,70℃ 10分钟,然后冷却到室温以产生双链DNA。(2) The oligonucleotides were resuspended in annealing buffer (100mM potassium acetate, 30mM HEPES-KOH, PH7.4, 2mM acetate), 95°C for 4 minutes, 70°C for 10 minutes, and then cooled to room temperature to generate double-stranded DNA.

(3)双链DNA用磷酸化酶磷酸化并插入到用BglII/HindIII处理过的pSUPER载体中。(3) The double-stranded DNA was phosphorylated with phosphorylase and inserted into the pSUPER vector treated with BglII/HindIII.

(4)DLP RNAi的重组质粒用LIPOFECTAMINE 2000试剂转染MCF-7细胞。48小时后,收集细胞,用GST-DLP的多克隆抗体检测DLP被抑制的程度。步骤如前所述。(4) The recombinant plasmid of DLP RNAi was transfected into MCF-7 cells with LIPOFECTAMINE 2000 reagent. After 48 hours, the cells were collected, and the degree of DLP inhibition was detected with the polyclonal antibody of GST-DLP. The steps are as described above.

为了进一步验证DLP RNAi是否能抑制内源性DLP mRNA,用DLPRNAi转染MCF-7,HepG2和Ishikawa细胞,提取mRNA,反转录做RCR,发现DLP RNAi的确能抑制这三种细胞中DLP的内源性表达(图5)。In order to further verify whether DLP RNAi can inhibit the endogenous DLP mRNA, MCF-7, HepG2 and Ishikawa cells were transfected with DLP RNAi, the mRNA was extracted, reverse-transcribed for RCR, and it was found that DLP RNAi could indeed inhibit the endogenous DLP in these three cells Original expression (Figure 5).

实施例7Example 7

流式细胞仪检测细胞周期Cell cycle detection by flow cytometry

(1)细胞的准备:MCF-7细胞用pcDNA-DLP和pSUPER-DLP的重组质粒转染,转染后12小时,加入雌激素抑制剂ICI182780至终浓度10nM,48小时后,贴壁细胞经0.25%胰酶消化约10分钟,吹落细胞离心收集,2000rpm,10分钟。用PBS洗两遍,加70%的乙醇固定过夜。(1) Preparation of cells: MCF-7 cells were transfected with recombinant plasmids of pcDNA-DLP and pSUPER-DLP. 12 hours after transfection, the estrogen inhibitor ICI182780 was added to a final concentration of 10 nM. After 48 hours, the adherent cells were treated with Digest with 0.25% trypsin for about 10 minutes, blow off the cells and collect them by centrifugation at 2000 rpm for 10 minutes. Wash twice with PBS, add 70% ethanol to fix overnight.

(2)染色程序:细胞经离心,PBS洗一遍,加入PI染液使终浓度为50ug/ml,RnaseA使终浓度为100U/ml,室温染30分钟。上流式细胞仪检测细胞周期的变化。(2) Staining procedure: the cells were centrifuged, washed once with PBS, added PI staining solution to make the final concentration 50ug/ml, RNaseA to make the final concentration 100U/ml, and stained at room temperature for 30 minutes. Cell cycle changes were detected by flow cytometry.

MTT法测定细胞的增殖Determination of cell proliferation by MTT assay

为了检测DLP对细胞生长的影响,pcDNA3.1-DLP和pSUPER-DLP重组质粒被瞬时转染至C2C12、293T、Hela和MCF-7细胞中。细胞培养终止前4小时,在培养孔中加入10ul 10mg/ml的MTT(溶在PBS中),细胞继续培养4小时后加入裂解液(50%DMSO,20%SDS,PH4.4)后过夜,第二天用酶标仪测定570mM波长的光吸收值。To detect the effect of DLP on cell growth, pcDNA3.1-DLP and pSUPER-DLP recombinant plasmids were transiently transfected into C2C12, 293T, Hela and MCF-7 cells. 4 hours before the termination of cell culture, add 10ul of 10mg/ml MTT (dissolved in PBS) in the culture well, and add the lysate (50%DMSO, 20%SDS, PH4.4) after the cells continue to culture for 4 hours overnight, The next day, the absorbance value at 570 mM wavelength was measured with a microplate reader.

MCF-7细胞被pSUPER-DLP或pcDNA3.1-DLP转染,24小时后,加入雌激素抑制剂ICI182780作用16小时,细胞被阻滞在G0/G1期。细胞被收集,用流式细胞仪检测细胞周期的变化。相应的蛋白质水平用WesternBlotting检测。如图6所示,内源性的DLP被沉默后,G2/M期的细胞所占的百分比明显减少,S期的百分比升高。另一方面,DLP的过表达导致G2/M期细胞数明显升高。然而当用雌激素抑制剂ICI182780将细胞周期阻滞在G0/G1期,DLP的过表达对细胞周期没有明显影响。这些结果表明DLP在细胞周期的S-G2/M期扮演一个重要角色。MCF-7 cells were transfected with pSUPER-DLP or pcDNA3.1-DLP. After 24 hours, the estrogen inhibitor ICI182780 was added for 16 hours, and the cells were arrested in G0/G1 phase. Cells were collected and cell cycle changes were detected by flow cytometry. The corresponding protein levels were detected by Western Blotting. As shown in Figure 6, after endogenous DLP was silenced, the percentage of cells in G2/M phase decreased significantly, and the percentage in S phase increased. On the other hand, the overexpression of DLP resulted in a significant increase in the number of cells in G2/M phase. However, when the cell cycle was arrested in G0/G1 phase by the estrogen inhibitor ICI182780, the overexpression of DLP had no obvious effect on the cell cycle. These results suggest that DLP plays an important role in the S-G2/M phase of the cell cycle.

细胞分化实验Cell Differentiation Experiment

C2C12细胞被pcDNA-DLP的细胞转染,24小时后,更换含有2%马血清的培养基继续培养4-5天,每天更换同样的培养基。48小时后,细胞用PBS洗两遍,用Wright-Gimsa室温染色1小时,荧光显微镜观察。C2C12 cells were transfected with pcDNA-DLP cells. After 24 hours, the culture medium containing 2% horse serum was replaced for 4-5 days, and the same medium was replaced every day. After 48 hours, the cells were washed twice with PBS, stained with Wright-Gimsa at room temperature for 1 hour, and observed under a fluorescence microscope.

DLP在C2C12、293T、Hela和MCF-7细胞中过表达,然后用MTT分析对细胞增殖的影响。DLP的过表达能刺激C2C12和Hela细胞的增殖,在293T和MCF-7中作用不明显。另外还发现DLP能促进小鼠骨骼肌细胞C2C12的分化,能促进骨骼肌肌管的形成。这些结果与DLP影响细胞周期的过程是一致的。DLP was overexpressed in C2C12, 293T, Hela and MCF-7 cells, and then the effect on cell proliferation was analyzed by MTT. Overexpression of DLP can stimulate the proliferation of C2C12 and Hela cells, but the effect is not obvious in 293T and MCF-7. It was also found that DLP can promote the differentiation of mouse skeletal muscle cells C2C12 and the formation of skeletal muscle myotubes. These results are consistent with a process by which DLP affects the cell cycle.

                          序列表Sequence Listing

                     SEQUENCE LISTINGSEQUENCE LISTING

<110>尚永丰<110> Shang Yongfeng

<120>DLP参与Pre-mRNA剪接与细胞周期调控的用途<120> Application of DLP involved in Pre-mRNA splicing and cell cycle regulation

<130><130>

<160>4<160>4

<170>PatentIn version 3.1<170>PatentIn version 3.1

<210>1<210>1

<211>451<211>451

<212>DNA<212>DNA

<213>大肠杆菌<213> Escherichia coli

<220><220>

<221>CDS<221> CDS

<222>(1)..(447)<222>(1)..(447)

<223><223>

<400>1<400>1

atg agc ttc cta ctg ccc aag ctg act agc aaa aag gaa gta gac cag       48atg agc ttc cta ctg ccc aag ctg act agc aaa aag gaa gta gac cag 48

Met Ser Phe Leu Leu Pro Lys Leu Thr Ser Lys Lys Glu Val Asp GlnMet Ser Phe Leu Leu Pro Lys Leu Thr Ser Lys Lys Glu Val Asp Gln

1               5                   10                  151 5 10 15

gcg ata aaa agt act gct gag aag gtg ttg gtt ctc agg ttt ggg aga       96gcg ata aaa agt act gct gag aag gtg ttg gtt ctc agg ttt ggg aga 96

Ala Ile Lys Ser Thr Ala Glu Lys Val Leu Val Leu Arg Phe Gly ArgAla Ile Lys Ser Thr Ala Glu Lys Val Leu Val Leu Arg Phe Gly Arg

            20                  25                  3020 25 30

gat gaa gat cct gtc tgt ctg cag cta gat gat att ctt tct aag acc      144gat gaa gat cct gtc tgt ctg cag cta gat gat att ctt tct aag acc 144

Asp Glu Asp Pro Val Cys Leu Gln Leu Asp Asp Ile Leu Ser Lys ThrAsp Glu Asp Pro Val Cys Leu Gln Leu Asp Asp Ile Leu Ser Lys Thr

        35                  40                  4535 40 45

tct tct gac tta agt aaa atg gct gct ata tac ctg gta gat gtg gac      192tct tct gac tta agt aaa atg gct gct ata tac ctg gta gat gtg gac 192

Ser Ser Asp Leu Set Lys Met Ala Ala Ile Tyr Leu Val Asp Val AspSer Ser Asp Leu Set Lys Met Ala Ala Ile Tyr Leu Val Asp Val Asp

    50                  55                  6050 55 60

caa act gca gtt tat aca cag tat ttt gac atc agt tat att cca tct      240caa act gca gtt tat aca cag tat ttt gac atc agt tat att cca tct 240

Gln Thr Ala Val Tyr Thr Gln Tyr Phe Asp Ile Ser Tyr Ile Pro SerGln Thr Ala Val Tyr Thr Gln Tyr Phe Asp Ile Ser Tyr Ile Pro Ser

65                  70                  75                  8065 70 75 80

act gtc ttt ttc ttc aat ggg cag cat atg aaa gtg gat tat gga tct      288act gtc ttt ttc ttc aat ggg cag cat atg aaa gtg gat tat gga tct 288

Thr Val Phe Phe Phe Asn Gly Gln His Met Lys Val Asp Tyr Gly SerThr Val Phe Phe Phe Asn Gly Gln His Met Lys Val Asp Tyr Gly Ser

                85                  90                  9585 90 95

cca gat cac act aag ttt gtg gga agc ttc aaa acc aaa caa gac ttc      336cca gat cac act aag ttt gtg gga agc ttc aaa acc aaa caa gac ttc 336

Pro Asp His Thr Lys Phe Val Gly Ser Phe Lys Thr Lys Gln Asp PhePro Asp His Thr Lys Phe Val Gly Ser Phe Lys Thr Lys Gln Asp Phe

            100                 105                 110100 105 110

ata gat ttg att gaa gta atc tat cga gga gca atg agg ggg aag ctt      384ata gat ttg att gaa gta atc tat cga gga gca atg agg ggg aag ctt 384

Ile Asp Leu Ile Glu Val Ile Tyr Arg Gly Ala Met Arg Gly Lys LeuIle Asp Leu Ile Glu Val Ile Tyr Arg Gly Ala Met Arg Gly Lys Leu

        115                 120                 125115 120 125

att gtc caa agt cct att gat ccc aag aat att ccc aaa tat gac ctt      432att gtc caa agt cct att gat ccc aag aat att ccc aaa tat gac ctt 432

                                  序列表Sequence Listing

Ile Val Gln Ser Pro Ile Asp Pro Lys Asn Ile Pro Lys Tyr Asp LeuIle Val Gln Ser Pro Ile Asp Pro Lys Asn Ile Pro Lys Tyr Asp Leu

    130                 135                 140130 135 140

ctc tat caa gac att tagt                                            451ctc tat caa gac att tagt 451

Leu Tyr Gln Asp IleLeu Tyr Gln Asp Ile

145145

<210>2<210>2

<211>149<211>149

<212>PRT<212>PRT

<213>大肠杆菌<213> Escherichia coli

<400>2<400>2

Met Ser Phe Leu Leu Pro Lys Leu Thr Ser Lys Lys Glu Val Asp GlnMet Ser Phe Leu Leu Pro Lys Leu Thr Ser Lys Lys Glu Val Asp Gln

1               5                   10                  151 5 10 15

Ala Ile Lys Ser Thr Ala Glu Lys Val Leu Val Leu Arg Phe Gly ArgAla Ile Lys Ser Thr Ala Glu Lys Val Leu Val Leu Arg Phe Gly Arg

            20                  25                  3020 25 30

Asp Glu Asp Pro Val Cys Leu Gln Leu Asp Asp Ile Leu Ser Lys ThrAsp Glu Asp Pro Val Cys Leu Gln Leu Asp Asp Ile Leu Ser Lys Thr

        35                  40                  4535 40 45

Ser Ser Asp Leu Ser Lys Met Ala Ala Ile Tyr Leu Val Asp Val AspSer Ser Asp Leu Ser Lys Met Ala Ala Ile Tyr Leu Val Asp Val Asp

    50                  55                  6050 55 60

Gln Thr Ala Val Tyr Thr Gln Tyr Phe Asp Ile Ser Tyr Ile Pro SerGln Thr Ala Val Tyr Thr Gln Tyr Phe Asp Ile Ser Tyr Ile Pro Ser

65                  70                  75                  8065 70 75 80

Thr Val Phe Phe Phe Asn Gly Gln His Met Lys Val Asp Tyr Gly SerThr Val Phe Phe Phe Asn Gly Gln His Met Lys Val Asp Tyr Gly Ser

                85                  90                  9585 90 95

Pro Asp His Thr Lys Phe Val Gly Ser Phe Lys Thr Lys Gln Asp PhePro Asp His Thr Lys Phe Val Gly Ser Phe Lys Thr Lys Gln Asp Phe

            100                 105                 110100 105 110

Ile Asp Leu Ile Glu Val Ile Tyr Arg Gly Ala Met Arg Gly Lys LeuIle Asp Leu Ile Glu Val Ile Tyr Arg Gly Ala Met Arg Gly Lys Leu

        115                 120                 125115 120 125

Ile Val Gln Ser Pro Ile Asp Pro Lys Asn Ile Pro Lys Tyr Asp LeuIle Val Gln Ser Pro Ile Asp Pro Lys Asn Ile Pro Lys Tyr Asp Leu

    130                 135                 140130 135 140

Leu Tyr Gln Asp IleLeu Tyr Gln Asp Ile

145145

<210>3<210>3

                                 序列表Sequence Listing

<211>64<211>64

<212>DNA<212>DNA

<213>人工合成<213> Synthetic

<400>3<400>3

gatccccctg cagtttatac acagtattca agagatactg tgtataaact gcagtttttg    60gatccccctg cagtttatac acagtattca agagatactg tgtataaact gcagtttttg 60

gaaa                                                                 64gaaa 64

<210>4<210>4

<211>63<211>63

<212>DNA<212>DNA

<213>人工合成<213> Synthetic

<400>4<400>4

agcttttcca aaaactgcag tttatacaca gtatctcttg aatactgtgt ataaatgcag    60agcttttcca aaaactgcag tttatacaca gtatctcttg aatactgtgt ataaatgcag 60

ggg                                                                  63ggg 63

Claims (9)

1、参与Pre-mRNA剪接与细胞周期调控的DLP蛋白,其特征在于它具有如序列2所示的氨基酸序列。1. A DLP protein involved in Pre-mRNA splicing and cell cycle regulation, characterized in that it has the amino acid sequence shown in Sequence 2. 2、编码DLP蛋白的核苷酸序列,其特征在于它含有如序列1所示的核苷酸序列。2. The nucleotide sequence encoding DLP protein, characterized in that it contains the nucleotide sequence shown in Sequence 1. 3、含有权利要求2的核苷酸序列的表达载体。3. An expression vector comprising the nucleotide sequence of claim 2. 4、权利要求1的DLP在制备与Pre-mRNA剪接或细胞周期调控有关的试剂或药物中的用途。4. The use of the DLP of claim 1 in the preparation of reagents or medicines related to Pre-mRNA splicing or cell cycle regulation. 5、权利要求1的DLP的抗体。5. An antibody to the DLP of claim 1. 6、针对DLP设计的RNAi。6. RNAi designed for DLP. 7、根据权利要求6的RNAi,其特征在于它具有序列3或4所示的基因序列。7. The RNAi according to claim 6, characterized in that it has the gene sequence shown in sequence 3 or 4. 8、含有权利要求6或7的RNAi的原核或真核表达载体。8. A prokaryotic or eukaryotic expression vector containing the RNAi according to claim 6 or 7. 9、权利要求6、7或8的RNAi用于制备治疗肿瘤的药物中的应用。9. The use of RNAi according to claim 6, 7 or 8 in the preparation of drugs for treating tumors.
CNB2004100098504A 2004-11-24 2004-11-24 Application of DLP involved in Pre-mRNA splicing and cell cycle regulation Expired - Fee Related CN100360560C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100098504A CN100360560C (en) 2004-11-24 2004-11-24 Application of DLP involved in Pre-mRNA splicing and cell cycle regulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100098504A CN100360560C (en) 2004-11-24 2004-11-24 Application of DLP involved in Pre-mRNA splicing and cell cycle regulation

Publications (2)

Publication Number Publication Date
CN1631899A true CN1631899A (en) 2005-06-29
CN100360560C CN100360560C (en) 2008-01-09

Family

ID=34845528

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100098504A Expired - Fee Related CN100360560C (en) 2004-11-24 2004-11-24 Application of DLP involved in Pre-mRNA splicing and cell cycle regulation

Country Status (1)

Country Link
CN (1) CN100360560C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159457A (en) * 2021-12-03 2022-03-11 温州医科大学 Long-chain non-coding RNA, binding protein and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159457A (en) * 2021-12-03 2022-03-11 温州医科大学 Long-chain non-coding RNA, binding protein and application thereof

Also Published As

Publication number Publication date
CN100360560C (en) 2008-01-09

Similar Documents

Publication Publication Date Title
CN1416467A (en) Zinc finger domains and methods of identifying same
CN1497049A (en) androgen receptor complex-associated protein
CN1550501A (en) Oligonucleotides Inhibiting Human Tumor Necrosis Factor Activity
CN1170941C (en) Human BMP-7 promoter and method for detecting bone-related substances using it
CN1250728C (en) Method for generating active isdime AMV-RT in procaryotic cell
CN1631899A (en) Application of DLP involved in Pre-mRNA splicing and cell cycle regulation
CN1170850C (en) Human angiopoietin-like protein and coding sequence and use thereof
CN1671843A (en) Factor participating in transcriptional regulation
CN1749415A (en) Method and kit for detecting curative effect of nitroglycerin in treating acute angina pectoris
CN1170848C (en) Novel human liver cancer-associated protein and its coding sequence
CN1311080C (en) Enhancer sequence of the 5-aminolevulinic acid synthase gene
CN1273600C (en) Coding sequence of Chinese yew tarad-ane C13-lateral chain-N-benzoyl transiting enzymic protein
CN1243017C (en) Tumor suppressor, coded protein and application thereof
CN1289524C (en) Human telomerase active inhibitor protein and use thereof
CN1155613C (en) Human tumor associated gene in 1-zone 3-band 3-subband of short arm of human chromosome No.17 and its coding protein
CN1170844C (en) Human longevity guarantee protein and coding sequence and use thereof
CN1696155A (en) The gene and its coded polypeptide inhibit the activation of NF-kB and NFAT
CN1169955C (en) Polynucleotide encoding a human protein with the function of inhibiting the growth of cancer cells
CN1169958C (en) Polynucleotide encoding a human protein with the function of inhibiting the growth of cancer cells
CN1932016A (en) Polynucleotide affecting SRE activity and its coding polypeptides and use
CN1194989C (en) Novel human protein able to suppress cancer cell growth and its coding sequence
CN1590405A (en) White candidas transcription factor gene and its use
CN101054413A (en) Tumor correlated albumen, coding gene and application thereof
CN1160472C (en) Human tumor-related genes and detection kits in the region 3, zone 3, and subband 3 of human chromosome 17
CN1209372C (en) Human tumor relative gene CT120 in human 17p 13.3 area and coding protein thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080109

Termination date: 20101124