CN1585308A - Multi-path simulation system and method - Google Patents
Multi-path simulation system and method Download PDFInfo
- Publication number
- CN1585308A CN1585308A CNA031551483A CN03155148A CN1585308A CN 1585308 A CN1585308 A CN 1585308A CN A031551483 A CNA031551483 A CN A031551483A CN 03155148 A CN03155148 A CN 03155148A CN 1585308 A CN1585308 A CN 1585308A
- Authority
- CN
- China
- Prior art keywords
- signal
- signals
- attenuation
- paths
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004891 communication Methods 0.000 claims abstract description 58
- 230000005540 biological transmission Effects 0.000 claims abstract description 11
- 230000002238 attenuated effect Effects 0.000 claims description 20
- 230000001934 delay Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 abstract description 23
- 230000008054 signal transmission Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Landscapes
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及多重路径(multi-path)模拟系统及方法,特别涉及一种利用电波暗室(shielded anechoic chamber)避免外界电磁干扰,并且将一讯号分配调整成多个模拟讯号,以模拟此讯号在多个路径传输时产生的衰减与延迟的多重路径模拟系统及方法。The present invention relates to a multi-path (multi-path) simulation system and method, in particular to a shielded anechoic chamber (shielded anechoic chamber) to avoid external electromagnetic interference, and adjust a signal distribution into multiple analog signals to simulate the signal in multiple A multi-path simulation system and method for attenuation and delay generated during transmission of multiple paths.
背景技术Background technique
近年来,随着无线通讯技术的突飞猛进,行动电话(mobile phone)与无线局域网络(wireless local area network;WLAN)的应用也日益普遍。与仅具有固定传输路径的实体线路讯号传输相比,无线讯号的传输具有多重路径(multi-path)特性。所谓多重路径指无线讯号在空间传播时,由于空间的特性,如有墙壁、障碍物等,会造成讯号的反射,因而在发射端与接收端间有多个电波传输路径存在。对于接收端而言,这些由不同路径抵达的讯号,彼此间因相位偏差(phase difference)产生跨符干扰(inter-symbol interference)及衰变(fading)等多重路径效应,增加讯号传收上的复杂度及不稳定性,而此多重路径效应是绝大多数真实环境都会存在的现象。In recent years, with the rapid development of wireless communication technology, the applications of mobile phone and wireless local area network (WLAN) are becoming more and more common. Compared with the physical line signal transmission with only a fixed transmission path, the wireless signal transmission has a multi-path characteristic. The so-called multiple paths mean that when a wireless signal propagates in space, due to the characteristics of the space, such as walls, obstacles, etc., the signal will be reflected, so there are multiple transmission paths between the transmitting end and the receiving end. For the receiving end, these signals arriving from different paths will generate multiple path effects such as inter-symbol interference and fading due to phase difference, which increases the complexity of signal transmission and reception. degree and instability, and this multipath effect is a phenomenon that exists in most real environments.
然而,对于无线通讯设备,如电话手机、电话基地台、无线网络适配卡(network interface card)、无线桥接器(access point)等等的厂商而言,传统上多是在未能较精确掌握测试条件的环境中,如一般的开放空间,来模拟产品的讯号收送,完全无法为产品提供一个可资信赖的测试报告。因为在这种环境中,通常难以避免来自外界的电磁干扰(electromagnetic interference;EMI)及产生多余反射路径;并且在实际的测试操作上,也可能会受限于空间特性的限制,而缺乏弹性。或者虽然以信道模拟器(channel emulator)试图模拟实际环境,但因信道模拟器采电缆模式(cable mode)测试系统,排除了待测无线通讯设备的天线,不能测试重要的天线分集(antenna diversity)性能,从而无法为产品提供完整且公允的测试报告。因此,的确急需方便有效的方式以模拟此多重路径特性,进而测试其产品在接近实际使用环境下的应变性能,以作为设计研发的重要依据。However, for manufacturers of wireless communication equipment, such as telephone handsets, telephone base stations, wireless network interface cards (network interface cards), wireless bridges (access point), etc., traditionally, most of them have not been able to accurately grasp In the environment of test conditions, such as a general open space, to simulate the signal reception of the product, it is completely impossible to provide a reliable test report for the product. Because in this environment, it is usually difficult to avoid electromagnetic interference (EMI) from the outside and generate redundant reflection paths; and in actual test operations, it may also be limited by space characteristics and lack flexibility. Or although a channel emulator is used to simulate the actual environment, the channel emulator uses a cable mode test system, which excludes the antenna of the wireless communication device to be tested, and cannot test the important antenna diversity (antenna diversity) Performance, so it is impossible to provide a complete and fair test report for the product. Therefore, there is an urgent need for a convenient and effective way to simulate the multi-path characteristics, and then test the strain performance of its products in an environment close to the actual use, as an important basis for design and development.
发明内容Contents of the invention
有鉴于此,本发明提出一种多重路径模拟系统及方法,不但可避免外界的电磁干扰及产生多余反射路径,而且在操作上不受通讯空间的限制,借以达成模拟及控制真实电波空间的目的。In view of this, the present invention proposes a multi-path simulation system and method, which can not only avoid external electromagnetic interference and generate redundant reflection paths, but also not be limited by the communication space in operation, so as to achieve the purpose of simulating and controlling the real radio wave space .
为实现上述目的,本发明提供一种多重路径模拟系统,其包含一讯号产生装置,用以产生一讯号;一讯号模拟单元,耦接至该讯号产生装置,可将一讯号分配调整为N个模拟讯号,借以模拟此讯号在N个路径传输时分别产生的衰减与延迟,其中N为大于1的整数。此模拟系统还包含一电波暗室(shieldedanechoic chamber),其内部包含N个天线,耦接至讯号模拟单元,分别用来发射此N个模拟讯号。In order to achieve the above object, the present invention provides a multi-path simulation system, which includes a signal generating device for generating a signal; a signal simulation unit coupled to the signal generating device, which can adjust the distribution of a signal to N The analog signal is used to simulate the attenuation and delay of the signal when it is transmitted through N paths, where N is an integer greater than 1. The simulation system also includes a shielded anechoic chamber, which contains N antennas, coupled to the signal simulation unit, and used to transmit the N simulation signals respectively.
本发明还提供一种多重路径模拟方法,其至少包含:产生一讯号;将此讯号分配调整为N个模拟讯号,以模拟此讯号在N个路径传输时分别产生的衰减与延迟,其中N为大于1的整数;利用N个天线分别发射此N个模拟讯号,其中此N个天线位于一电波暗室中;以及利用电波暗室内的通讯装置接收此N个模拟讯号。The present invention also provides a multi-path simulation method, which at least includes: generating a signal; and adjusting the distribution of this signal to N analog signals, so as to simulate the attenuation and delay generated when the signal is transmitted in N paths, where N is An integer greater than 1; using N antennas to respectively transmit the N analog signals, wherein the N antennas are located in an anechoic room; and using a communication device in the anechoic room to receive the N analog signals.
本发明利用电波暗室来避免外界的电磁干扰及多余反射路径的产生。电波暗室内壁由特殊材料制成,讯号传至内壁,其大部分能量被吸收,反射讯号的强度可降至最低。本发明在考虑到电波暗室内既有空间传输衰减又有其它线路衰减后,利用讯号模拟单元来衰减所传输的讯号,以模拟讯号在实际空间传输过程中的衰减,这样就可控制传输衰减达到与传输延迟相当的程度,还可不受电波暗室大小的限制,从而可以模拟多种环境下的讯号传输。借由前述手段,本发明可达到模拟真实电波空间并控制此电波空间的目的,更可借由此可控制的模拟电波空间进行各种无线电实验或测量,以获得接近真实使用环境的评估结果。The invention utilizes the anechoic chamber to avoid external electromagnetic interference and generation of redundant reflection paths. The inner wall of the anechoic chamber is made of special materials. When the signal is transmitted to the inner wall, most of its energy is absorbed, and the intensity of the reflected signal can be minimized. In the present invention, after considering the space transmission attenuation and other line attenuation in the anechoic chamber, the signal simulation unit is used to attenuate the transmitted signal to simulate the attenuation of the signal in the actual space transmission process, so that the transmission attenuation can be controlled to reach The degree is equivalent to the transmission delay, and it is not limited by the size of the anechoic chamber, so that the signal transmission in various environments can be simulated. By means of the aforementioned means, the present invention can achieve the purpose of simulating and controlling the real radio wave space, and can also use the controllable simulated radio space to conduct various radio experiments or measurements to obtain evaluation results close to the real use environment.
本发明还提供一种测量通讯装置的分集增益(diversity gain)的方法,此通讯装置具有可切换的单一天线模式与天线分集模式,并置于一电波暗室中,此方法包含下列步骤:a.将此通讯装置设定为单一天线模式;b.产生一测试讯号;c.将此测试讯号衰减第一衰减幅度;d.将此测试讯号分配调整为N个模拟讯号,以模拟此测试讯号在N个路径传输时分别产生的衰减与延迟,其中N为大于1的整数;e.利用N个位于电波暗室中的天线发射此N个模拟讯号;f.通讯装置接收此N个模拟讯号;g.测量通讯装置所接收的一讯号参数,得一参考值;h.将通讯装置切换至天线分集模式,并将测试讯号衰减第二衰减幅度,以使通讯装置所接收的讯号参数等于参考值;以及i.计算第一与第二衰减幅度的差值,即为通讯装置的天线分集增益。The present invention also provides a method for measuring the diversity gain (diversity gain) of a communication device. The communication device has a switchable single antenna mode and an antenna diversity mode, and is placed in an anechoic chamber. The method includes the following steps: a. Set the communication device to a single antenna mode; b. generate a test signal; c. attenuate the test signal by the first attenuation range; d. adjust the distribution of the test signal to N analog signals to simulate the test signal in the The attenuation and delay produced respectively during transmission of N paths, wherein N is an integer greater than 1; e. Utilize N antennas located in the anechoic chamber to transmit the N analog signals; f. The communication device receives the N analog signals; g .Measure a signal parameter received by the communication device to obtain a reference value; h. Switch the communication device to the antenna diversity mode, and attenuate the test signal by a second attenuation range, so that the signal parameter received by the communication device is equal to the reference value; and i. calculating the difference between the first and second attenuation amplitudes, which is the antenna diversity gain of the communication device.
附图简要说明Brief description of the drawings
下面结合附图对本发明的具体实施方式作进一步详细的描述。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
附图中,In the attached picture,
图1A为本发明的多重路径模拟系统的较佳实施例方块图;FIG. 1A is a block diagram of a preferred embodiment of the multipath simulation system of the present invention;
图1B为本发明的多重路径模拟系统的另一较佳实施例方块图;FIG. 1B is a block diagram of another preferred embodiment of the multipath simulation system of the present invention;
图2为本发明的多重路径模拟方法的较佳实施例的动作流程图;Fig. 2 is the action flowchart of the preferred embodiment of the multipath simulation method of the present invention;
图3为运用本发明的多重路径模拟系统,借以测量天线分集增益的动作流程图;Fig. 3 is the action flowchart of measuring antenna diversity gain by using the multi-path simulation system of the present invention;
图4为运用本发明的多重路径模拟系统测量天线分集增益的另一实施例的动作流程图。FIG. 4 is a flow chart of another embodiment of measuring antenna diversity gain by using the multipath simulation system of the present invention.
具体实施方式Detailed ways
下面将以具体实施例,来详细说明本发明的多重路径模拟系统及方法的实施方式,并说明本发明的一应用例,即无线通讯装置的分集增益的测量。The implementation of the multipath simulation system and method of the present invention will be described in detail below with specific embodiments, and an application example of the present invention, that is, the measurement of diversity gain of a wireless communication device will be described.
图1A为本发明的多重路径模拟系统的较佳实施例方块图。图中,多重路径模拟系统10a用来模拟具有N个路径的无线通讯空间(N为大于1的整数),其包含:一讯号产生装置11,用来产生一讯号;一讯号模拟单元12a,耦接至讯号产生装置11,将此讯号分配调整为N个模拟讯号,借以模拟此讯号在此N个路径传输时分别产生的衰减与延迟;一控制单元13a,耦接至讯号产生装置11,以控制讯号的产生;以及一电波暗室14,借以隔绝外部产生的电磁干扰及多余反射路径,从而使电波暗室14内部的无用反射效应降至最低。FIG. 1A is a block diagram of a preferred embodiment of the multi-path simulation system of the present invention. In the figure, the
讯号模拟单元12a则包含:一衰减装置121,用以衰减讯号产生装置11所产生的讯号,而产生一衰减讯号;一功率分配器(power divider)122,耦接至衰减装置121,将此衰减讯号分配为N个子衰减讯号;N个衰减器123a,耦接至功率分配器122,分别用于衰减此N个子衰减讯号,借以模拟讯号在N个路径传输时分别产生的衰减;以及N个延迟线(delay line)124,耦接至N个衰减器123a,分别用于延迟经N个衰减器123a所衰减的N个子衰减讯号,借以模拟讯号在N个路径传输时分别产生的延迟。The
在另一实施例中,在此N个路径中选择一参考路径,以模拟一直接路径,并可省略此参考路径上的延迟线124。并且,当N等于2时,在参考路径上增设一移相器(phase shifter),对于参考路径上经衰减器123a衰减后的子衰减讯号,进行相位调整,借以模拟讯号在两个路径传输时的相位差。In another embodiment, a reference path is selected from the N paths to simulate a direct path, and the
图1A中,控制单元13a也耦接至衰减装置121,而衰减装置121可为一步进衰减器(step attenuator),由控制单元13a以逐步方式调整其衰减幅度,便于调整讯号产生装置11所产生的讯号,使其模拟在无线通讯空间传输过程中所造成的衰减。通常衰减幅度愈大,代表讯号传输的距离愈长。此外,控制单元13a还可耦接至N个衰减器123a(图中未显示),以分别控制此N个衰减器123a的衰减幅度。In Fig. 1A, the
电波暗室14的内部则包含:N个天线141,分别耦接至讯号模拟单元12a的N个延迟线路124,借以分别发射N个模拟讯号;以及一通讯装置142,借以接收此N个模拟讯号。其中,此N个天线124采用指向性(directional)天线,如号角式天线(horn antenna),以组成一天线阵列(antenna array)。The interior of the
电波暗室14还包含一静音区(quiet zone)143,用以放置通讯装置142。静音区143因电波暗室14本身的特性而产生,在此区域内,由天线141发射的讯号,除了天线141直接传送到通讯装置142(即未经反射的直接路径)的部分外,其余间接路径的反射讯号都会降至最低。因此,将通讯装置142置于静音区143,可得到较佳的模拟效果。The
电波暗室14还包含一转台144,可承载通讯装置142,以改变通讯装置142接收讯号的方位(azimuth)。由于此方位的改变影响通讯装置142对讯号的接收特性,在利用模拟系统10a测试待测的通讯装置142时,可借由转台144调整接收方位,以测量通讯装置142在不同方位的接收特性,诸如天线分集效应、以及辐射场形(radiation pattern)等。The
此外,为使模拟系统10a获得较佳的模拟效果,讯号产生装置11采用通讯装置142的一精选样本(Golden Sample),其特性相对于通讯装置142远符合应遵循的技术标准及规格,因而产生的讯号品质较佳且合乎测试需求。此外,也可使用一向量讯号产生器(vector signal generator)根据需要搭配功率放大器(power amplifier)作为讯号产生装置11,可根据需要产生更精确、更多样的讯号。In addition, in order to obtain a better simulation effect for the
请再参阅图1A,控制单元13a也耦接至转台144,借以控制转台144的旋转角度。控制单元13a还耦接至通讯装置142,以取得通讯装置142所接收的讯号特性。此处讯号特性可以包含:讯号强度(signal strength)、讯号品质(signal quality)、讯框错误率(Frame Error Rate)及资料吞吐量(Throughput)等。借由控制单元13a,除了可控制讯号的产生及调整讯号的衰减幅度外,还可控制转台144以测量不同方位的天线分集效应及辐射场形,并取得所接收的讯号特性,进行后续的分析步骤。Please refer to FIG. 1A again, the
图1B为本发明的多重路径模拟系统的另一较佳实施例方块图。与图1A相较,图1B的多重路径模拟系统10b利用衰减器123b,将图1A中衰减装置121与衰减器123a的功能合并。所以,在讯号模拟单元12b中,功率分配器122直接耦接至讯号产生装置11,将其产生的讯号分配为N个子讯号;N个衰减器123b耦接至功率分配器122,分别用于衰减此N个子讯号,以模拟讯号在N个路径传输时分别产生的衰减;N个延迟线(delay line)124则耦接至N个衰减器123b,分别用于延迟经N个衰减器123b所衰减的N个子讯号,以模拟讯号在N个路径传输时分别产生的延迟。同样的,在此较佳实施例中,也可省略此N个路径中的一参考路径上的延迟线124。而在N等于2时,可在参考路径上增设一移相器,用来调整参考路径上经衰减器123b衰减后的子讯号的相位,借以模拟讯号在两个路径传输时的相位差。FIG. 1B is a block diagram of another preferred embodiment of the multi-path simulation system of the present invention. Compared with FIG. 1A , the multipath analog system 10 b in FIG. 1B utilizes the attenuator 123 b to combine the functions of the attenuating
此外,在图1B中,控制单元13b耦接至N个衰减器123b,借以分别调整其衰减幅度。关于控制单元13b的其它运作方式,则与图1A的控制单元13a相同。至于电波暗室14的组成与运作,也与图1A相同。In addition, in FIG. 1B, the control unit 13b is coupled to N attenuators 123b, so as to adjust the attenuation amplitudes respectively. Other operating modes of the control unit 13b are the same as those of the
接着说明如何利用前述的模拟系统10a,来实施本发明的多重路径模拟方法。图2为本发明的多重路径模拟方法的较佳实施例的动作流程图。如图2所示,此方法包含以下步骤:Next, how to implement the multi-path simulation method of the present invention by using the
21 使讯号产生装置11产生一讯号;21 make the signal generating device 11 generate a signal;
22 利用衰减装置121衰减此讯号,而产生一衰减讯号;22 using the
23 利用功率分配器122将此衰减讯号分配为N个子衰减讯号;23 using the
24 借由N个衰减器123a分别衰减此N个子衰减讯号,借以模拟该讯号在N个路径传输时分别产生的衰减;24 Attenuate the N sub-attenuated signals respectively by
25 借由N个延迟线124分别延迟此N个子衰减讯号,而产生N个模拟讯号,以模拟该讯号在N个路径传输时分别产生的延迟;25. The N sub-attenuation signals are respectively delayed by
26 利用N个天线141分别发射此N个模拟讯号;以及26 using
27 利用通讯装置142接收此N个模拟讯号。27 Use the
步骤27中,还可通过控制单元13a调整转台144的旋转角度,借以改变通讯装置142接收讯号的方位。In
在此较佳实施例中,也可在N个路径中选择一参考路径,而在步骤25中,利用N-1个延迟线124,分别延迟参考路径外的其余路径上的N-1个子衰减讯号(即不对参考路径上的子衰减讯号进行延迟)。并且,当N等于2时,在步骤25与26间增加一步骤,利用参考路径上的一移相器,对于参考路径上经衰减器123a衰减后的子衰减讯号,进行相位调整,以模拟讯号在两个路径传输时产生的相位差。In this preferred embodiment, a reference path may also be selected among the N paths, and in
在另一较佳实施例中,则利用前述的模拟系统10b,实施本发明的多重路径模拟方法。与图2流程的差异处在于步骤22至25,其中步骤22省略;步骤23中,利用功率分配器122将此讯号分配为N个子讯号;步骤24中,借由N个衰减器123b分别衰减此N个子讯号;而步骤25中,则借由N个延迟线124分别延迟此N个子讯号,以产生N个模拟讯号。In another preferred embodiment, the aforementioned simulation system 10b is used to implement the multi-path simulation method of the present invention. The difference with the process in Figure 2 lies in
利用本发明的多重路径模拟系统10a及10b,可对无线通讯装置进行各种讯号接收的测试。以下将讨论运用模拟系统10a及10b,来测量一无线通讯装置的分集增益的方法。此处模拟系统10a及10b中的通讯装置142,为一具有可切换为单一天线模式或天线分集模式的通讯装置。图3为运用本发明的多重路径模拟系统10a,借以测量天线分集增益的动作流程图。如图3所示,此流程包含下列步骤:Using the
31 借由控制单元13a将通讯装置142设定为单一天线模式;31. Set the
32 使讯号产生装置11产生一测试讯号;32 make the signal generating device 11 generate a test signal;
33 利用衰减装置121将此测试讯号衰减第一衰减幅度;33 Utilize the
34 利用讯号模拟单元12a将此衰减后的测试讯号分配调整为N个模拟讯号,以模拟此测试讯号在N个路径传输时分别产生的衰减与延迟;34 Use the
35 利用N个天线141发射此N个模拟讯号;35 Utilize
36 使通讯装置142接收此N个模拟讯号;36 Make the
37 借由控制单元13a测量通讯装置142所接收的讯号参数,得一参考值;37 Obtain a reference value by measuring the signal parameters received by the
38 借由控制单元13a将通讯装置142切换至天线分集模式,并将测试讯号衰减第二衰减幅度,以使通讯装置142所接收的讯号参数等于参考值;以及38 Switch the
39 借由控制单元13a计算第一与第二衰减幅度的差值,即为通讯装置142的分集增益。39. The difference between the first and second attenuation amplitudes is calculated by the
利用控制单元13a调整转台144的旋转角度,可改变通讯装置142接收讯号的方位,针对不同的方位重复进行步骤31至39,即可得知通讯装置142的接收方位对分集增益造成的影响。此外,前述的讯号参数,可以是讯号强度、讯号品质或资料吞吐量(throughput)等信息。Using the
图4为运用本发明的多重路径模拟系统10b,以测量天线分集增益的动作流程图。在模拟系统10b中,其分配式的调整方法与模拟系统10a相比虽有不同,但不影响分集增益的计算。如图4所示,此流程包含下列步骤:FIG. 4 is a flow chart of the operation of measuring antenna diversity gain by using the multipath simulation system 10b of the present invention. In the analog system 10b, although the distributed adjustment method is different from that of the
41 借由控制单元13b将通讯装置142设定为单一天线模式;41. Set the
42 使讯号产生装置11产生一测试讯号;42 make the signal generating device 11 generate a test signal;
43 利用讯号模拟单元12b将此测试讯号分配调整为N个模拟讯号,以模拟此测试讯号在N个路径传输时分别产生的衰减与延迟;43 Use the signal simulation unit 12b to adjust the distribution of the test signal to N analog signals, so as to simulate the attenuation and delay of the test signal when it is transmitted in N paths;
44 利用N个天线141发射此N个模拟讯号;44 Utilize
45 使通讯装置142接收此N个模拟讯号;45 Make the
46 借由控制单元13b测量通讯装置142所接收的讯号参数,得一参考值;46 Obtain a reference value by measuring the signal parameters received by the
47 借由控制单元13b将通讯装置142切换至天线分集模式,并重复步骤42至46,以使通讯装置142所接收的讯号参数等于参考值;以及47 Switch the
48 借由控制单元13b选取N个路径其中之一,并计算所选取路径在单一天线模式与天线分集模式下的模拟讯号的差值,即为通讯装置142的天线分集增益。48. Select one of the N paths by the control unit 13b, and calculate the difference between the analog signals of the selected path in the single antenna mode and the antenna diversity mode, which is the antenna diversity gain of the
同样的,可利用控制单元13b调整转台144的旋转角度,来改变通讯装置142接收讯号的方位,再重复进行步骤41至48,借以得知接收方位对分集增益的影响。而讯号参数则是讯号强度、讯号品质或资料吞吐量等信息。Similarly, the control unit 13b can be used to adjust the rotation angle of the
可以理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明所附的权利要求的保护范围。It can be understood that, for those of ordinary skill in the art, various other corresponding changes and modifications can be made according to the technical scheme and technical concept of the present invention, and all these changes and modifications should belong to the appended rights of the present invention. the scope of protection required.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA031551483A CN1585308A (en) | 2003-08-20 | 2003-08-20 | Multi-path simulation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA031551483A CN1585308A (en) | 2003-08-20 | 2003-08-20 | Multi-path simulation system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1585308A true CN1585308A (en) | 2005-02-23 |
Family
ID=34598049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA031551483A Pending CN1585308A (en) | 2003-08-20 | 2003-08-20 | Multi-path simulation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1585308A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010148671A1 (en) * | 2010-01-25 | 2010-12-29 | 中兴通讯股份有限公司 | System and method for antenna testing |
CN102790991A (en) * | 2012-07-23 | 2012-11-21 | 上海同耀通信技术有限公司 | System and method for testing performance of AP in WLAN |
CN103957403A (en) * | 2014-04-21 | 2014-07-30 | 深圳市视晶无线技术有限公司 | Testing system for simulating remote wireless high-definition video transmission |
CN107645739A (en) * | 2017-07-31 | 2018-01-30 | 中国人民解放军63892部队 | A kind of different high lifting real-time measurement apparatus of ultrashort wave propagation meteorology K factor and method |
CN110514907A (en) * | 2018-05-21 | 2019-11-29 | 川升股份有限公司 | Air Transmission Measurement System for Wireless Communication Devices |
CN110954755A (en) * | 2018-09-26 | 2020-04-03 | 川升股份有限公司 | Antenna Radiation Pattern Automatic Measurement System |
CN111198304A (en) * | 2018-11-19 | 2020-05-26 | 川升股份有限公司 | Automated system for measuring antennas |
CN113960373A (en) * | 2020-07-20 | 2022-01-21 | 川升股份有限公司 | Antenna radiation pattern measurement system |
JP2022113233A (en) * | 2021-01-25 | 2022-08-04 | アンリツ株式会社 | Signal generation device and control method for the same |
JP2022124749A (en) * | 2021-02-16 | 2022-08-26 | アンリツ株式会社 | Signal generation device and attenuation correction method thereof |
-
2003
- 2003-08-20 CN CNA031551483A patent/CN1585308A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102136873B (en) * | 2010-01-25 | 2015-06-03 | 中兴通讯股份有限公司 | Antenna testing system and antenna testing method |
WO2010148671A1 (en) * | 2010-01-25 | 2010-12-29 | 中兴通讯股份有限公司 | System and method for antenna testing |
CN102790991A (en) * | 2012-07-23 | 2012-11-21 | 上海同耀通信技术有限公司 | System and method for testing performance of AP in WLAN |
CN103957403A (en) * | 2014-04-21 | 2014-07-30 | 深圳市视晶无线技术有限公司 | Testing system for simulating remote wireless high-definition video transmission |
CN107645739A (en) * | 2017-07-31 | 2018-01-30 | 中国人民解放军63892部队 | A kind of different high lifting real-time measurement apparatus of ultrashort wave propagation meteorology K factor and method |
CN110514907B (en) * | 2018-05-21 | 2021-11-09 | 川升股份有限公司 | Air transmission measuring system for wireless communication device |
CN110514907A (en) * | 2018-05-21 | 2019-11-29 | 川升股份有限公司 | Air Transmission Measurement System for Wireless Communication Devices |
CN110954755A (en) * | 2018-09-26 | 2020-04-03 | 川升股份有限公司 | Antenna Radiation Pattern Automatic Measurement System |
CN111198304A (en) * | 2018-11-19 | 2020-05-26 | 川升股份有限公司 | Automated system for measuring antennas |
CN113960373A (en) * | 2020-07-20 | 2022-01-21 | 川升股份有限公司 | Antenna radiation pattern measurement system |
JP2022113233A (en) * | 2021-01-25 | 2022-08-04 | アンリツ株式会社 | Signal generation device and control method for the same |
JP7299255B2 (en) | 2021-01-25 | 2023-06-27 | アンリツ株式会社 | SIGNAL GENERATOR AND CONTROL METHOD OF SIGNAL GENERATOR |
JP2022124749A (en) * | 2021-02-16 | 2022-08-26 | アンリツ株式会社 | Signal generation device and attenuation correction method thereof |
JP7379398B2 (en) | 2021-02-16 | 2023-11-14 | アンリツ株式会社 | Signal generator and its attenuation correction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7224941B2 (en) | System and method for multi-path simulation | |
US8718122B2 (en) | Testing performance of a wireless device | |
US9209914B2 (en) | Method and apparatus for virtual desktop OTA | |
US20050059355A1 (en) | System and method for multi-path simulation | |
US11362741B2 (en) | Distributed system for radio frequency environment simulation | |
Kildal et al. | OTA testing in multipath of antennas and wireless devices with MIMO and OFDM | |
CN101056149A (en) | Test device and method for multi-path simulation system | |
US8995511B2 (en) | Emulation and controlled testing of MIMO OTA channels | |
JP5358021B2 (en) | Over-the-air test system | |
JP7470686B2 (en) | Method and system for testing wireless performance of wireless terminal | |
US20100233969A1 (en) | Reconfigurable chamber for emulating multipath fading | |
US20050176376A1 (en) | Batch testing system and method for wireless communication devices | |
US20100171650A1 (en) | Multi-antenna measurement method and multi-antenna measurement system | |
Andersson et al. | Measuring performance of 3GPP LTE terminals and small base stations in reverberation chambers | |
CN113783630B (en) | Terminal performance dynamic test system and method | |
EP3505944A1 (en) | Distributed system for radio frequency environment simulation | |
US10581538B2 (en) | Distributed system for radio frequency environment simulation | |
CN1585308A (en) | Multi-path simulation system and method | |
JP2009049966A (en) | Wireless evaluation device | |
CN2686219Y (en) | Multipath Simulation System | |
CN101051876A (en) | Radio demodulation performance detecting system and method | |
JP2010117275A (en) | Multi-antenna measuring system | |
US11024959B2 (en) | Signal transmission apparatus and system | |
Staniec et al. | Review of applications of the Laboratory for Electromagnetic Compatibility infrastructure | |
TWI223510B (en) | System and method for multi-path simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20050223 |