CN1570601A - Method for testing nano material dispersivity in rubber - Google Patents
Method for testing nano material dispersivity in rubber Download PDFInfo
- Publication number
- CN1570601A CN1570601A CN 200410018279 CN200410018279A CN1570601A CN 1570601 A CN1570601 A CN 1570601A CN 200410018279 CN200410018279 CN 200410018279 CN 200410018279 A CN200410018279 A CN 200410018279A CN 1570601 A CN1570601 A CN 1570601A
- Authority
- CN
- China
- Prior art keywords
- rubber
- parts
- zinc oxide
- nano
- freezing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 52
- 239000005060 rubber Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000011787 zinc oxide Substances 0.000 claims abstract description 16
- 239000006185 dispersion Substances 0.000 claims abstract description 13
- 230000008014 freezing Effects 0.000 claims abstract description 7
- 238000007710 freezing Methods 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 5
- 238000007796 conventional method Methods 0.000 claims abstract description 3
- 239000012595 freezing medium Substances 0.000 claims abstract description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 claims description 6
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 claims description 5
- 230000003712 anti-aging effect Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 235000021355 Stearic acid Nutrition 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 4
- 239000008117 stearic acid Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 244000043261 Hevea brasiliensis Species 0.000 claims description 3
- 239000005062 Polybutadiene Substances 0.000 claims description 3
- 229920003052 natural elastomer Polymers 0.000 claims description 3
- 229920001194 natural rubber Polymers 0.000 claims description 3
- 229920002857 polybutadiene Polymers 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- 229920000459 Nitrile rubber Polymers 0.000 claims description 2
- 229920003049 isoprene rubber Polymers 0.000 claims description 2
- 238000010059 sulfur vulcanization Methods 0.000 claims description 2
- CGKQZIULZRXRRJ-UHFFFAOYSA-N Butylone Chemical compound CCC(NC)C(=O)C1=CC=C2OCOC2=C1 CGKQZIULZRXRRJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000012936 vulcanization activator Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Sampling And Sample Adjustment (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种测试橡胶中纳米材料分散性的方法。包括如下步骤:将含有纳米氧化锌粉体的橡胶通过冷冻介质冷冻至-115~-130℃,冷冻时间为20~40分钟,然后将其置于采用商业化的冷冻切片机切片上,根据纳米氧化锌粒径的大小,把橡胶切成厚度为50~90纳米的薄片,然后采用常规的方法进行电镜扫描,即可获得纳米氧化锌粉体在橡胶中分散性的数据,用于指导生产。本发明的方法,简便易行,能够清晰地观察纳米氧化锌在所述橡胶中的的分散状态,因此,为一种便于工业应用的测试橡胶中纳米材料分散性的方法。The invention discloses a method for testing the dispersibility of nanometer materials in rubber. The method includes the following steps: freezing the rubber containing nano-zinc oxide powder to -115--130°C through a freezing medium, and the freezing time is 20-40 minutes, and then placing it on a commercial frozen microtome slicer, according to the nano The size of the particle size of zinc oxide, the rubber is cut into thin slices with a thickness of 50-90 nanometers, and then scanned by an electron microscope using conventional methods to obtain the dispersion data of nano-zinc oxide powder in rubber, which can be used to guide production. The method of the present invention is simple and easy to implement, and can clearly observe the dispersion state of nano-zinc oxide in the rubber, so it is a method for testing the dispersion of nano-materials in rubber that is convenient for industrial application.
Description
技术领域technical field
本发明涉及一种测试橡胶中纳米材料分散性的方法,具体涉及一种测试橡胶中纳米氧化锌分散性的方法。The invention relates to a method for testing the dispersibility of nanometer materials in rubber, in particular to a method for testing the dispersibility of nanometer zinc oxide in rubber.
背景技术Background technique
氧化锌在橡胶工业中主要用作橡胶的硫化活化剂,有时也可做填充剂来提高橡胶的定伸应力、硬度和导热性。近年来,纳米氧化锌材料在橡胶领域获得了广泛的应用,赋予了橡胶制品新的品质。与此同时,由于纳米材料的特性所至,其在橡胶中的分散性也引起了人们的关注。In the rubber industry, zinc oxide is mainly used as a vulcanization activator for rubber, and sometimes as a filler to improve the modulus, hardness and thermal conductivity of rubber. In recent years, nano-zinc oxide materials have been widely used in the field of rubber, endowing rubber products with new qualities. At the same time, due to the characteristics of nanomaterials, their dispersion in rubber has also attracted people's attention.
目前,常用的测试橡胶中纳米材料分散性的方法,通常有如下几种:At present, the commonly used methods for testing the dispersion of nanomaterials in rubber usually include the following:
(1)《橡胶工业》2003,50(1):15~18公开了采用硬质胶法将混炼胶制成条形试样,切片机切片电镜下观察,但是在室温下处理顺丁橡胶是不能获得纳米级的橡胶切片;(1) "Rubber Industry" 2003, 50 (1): 15-18 discloses that the mixed rubber is made into a strip sample by the hard glue method, and the microtome is sliced for observation under an electron microscope, but the butadiene rubber is processed at room temperature It is impossible to obtain nano-scale rubber slices;
(2)《橡胶工业手册》第八分册公开了采用直接法和间接法测定炭黑分散度的方法,但是用这些方法来测定纳米级氧化锌的分散性也是不可能的。(2) The eighth volume of "Rubber Industry Handbook" discloses the method for measuring the dispersion of carbon black by direct method and indirect method, but it is also impossible to measure the dispersion of nano-sized zinc oxide with these methods.
因此寻求一种新的测试橡胶中纳米材料分散性的方法,是橡胶工业领域所十分期望的。Therefore, seeking a new method for testing the dispersion of nanomaterials in rubber is highly desired in the field of rubber industry.
发明内容Contents of the invention
本发明需要解决的技术问题是公开一种测试橡胶中纳米材料分散性的方法,以克服现有技术存在的上述缺陷,满足橡胶工业领域生产的需要。The technical problem to be solved in the present invention is to disclose a method for testing the dispersion of nanomaterials in rubber, so as to overcome the above-mentioned defects in the prior art and meet the production needs in the rubber industry.
本发明的方法包括如下步骤:Method of the present invention comprises the steps:
将含有纳米氧化锌粉体的橡胶通过冷冻介质冷冻至-115~-130℃,冷冻时间为20~40分钟,然后将其置于采用商业化的冷冻切片机上,根据纳米氧化锌粒径的大小,把橡胶切成厚度为50~90纳米的薄片,然后采用常规的方法用透射电镜扫描,即可获得纳米氧化锌粉体在橡胶中的分散性的数据,用于指导生产。Freeze the rubber containing nano-zinc oxide powder to -115~-130°C through the freezing medium, and the freezing time is 20-40 minutes, and then place it on a commercialized cryostat, according to the size of the nano-zinc oxide particle size , Cut the rubber into thin slices with a thickness of 50-90 nanometers, and then use conventional methods to scan with a transmission electron microscope to obtain data on the dispersion of nano-zinc oxide powder in rubber, which can be used to guide production.
所说的商业化的冷冻切片机切片为一种通用设备,优选采用德国LEICA公司生产的型号为Reickert-Jung FC-4D型冷冻切片机。Said commercial cryostat section is a kind of general-purpose equipment, and the model that preferably adopts German LEICA company to produce is the Reickert-Jung FC-4D type cryostat.
橡胶为采用硫黄硫化体系的胶种包括天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、丁基橡胶或丁腈橡胶中的一种。其基本配方包括:The rubber is one of natural rubber, styrene-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber or nitrile rubber that adopts a sulfur vulcanization system. Its basic formula includes:
橡胶100份,硫磺1.0~3.0份,硬脂酸1.0~3.0份,促进剂M 0.2~2.0份,促进剂D 0.2~2.0份,促进剂NZ 0.5~2.0份,防老剂D 1.0~2.0份,氧化锌2.0~5.0份。100 parts of rubber, 1.0-3.0 parts of sulfur, 1.0-3.0 parts of stearic acid, 0.2-2.0 parts of accelerator M, 0.2-2.0 parts of accelerator D, 0.5-2.0 parts of accelerator NZ, 1.0-2.0 parts of anti-aging agent D, 2.0-5.0 parts of zinc oxide.
所述及的促进剂和防老剂均为本领域公知的物质。促进剂M的化学名称为2-硫醇基苯并噻唑,促进剂D的化学名称为二苯胍,促进剂NZ的化学名称为N-叔丁基-2-苯并噻唑次磺酰胺,防老剂D的化学名称为N-苯基-β-萘胺。The mentioned accelerator and anti-aging agent are all materials well known in the art. The chemical name of accelerator M is 2-mercaptobenzothiazole, the chemical name of accelerator D is diphenylguanidine, the chemical name of accelerator NZ is N-tert-butyl-2-benzothiazole sulfenamide, anti-aging The chemical name of agent D is N-phenyl-β-naphthylamine.
对于上述组分的橡胶,切片时,温度不能过低,如过低,会损坏冷冻切片机的刀片,温度也不能过高,过高将引起橡胶的软化,造成切片的失败;For the rubber of the above components, when slicing, the temperature should not be too low. If it is too low, the blade of the cryostat will be damaged.
冷冻时间也不能过长,过长将导致橡胶变脆,冷冻时间也不能过短,过短则使橡胶软硬不均,这些都会造成切片不平整;。The freezing time should not be too long, too long will cause the rubber to become brittle, and the freezing time should not be too short, otherwise the rubber will be soft and hard, which will cause uneven slices;
在上述的条件下,所获得的切片通过透射电镜的扫描,能够清晰地观察到所述纳米氧化锌的分散状态。Under the above conditions, the dispersed state of the nano zinc oxide can be clearly observed by scanning the obtained slice through a transmission electron microscope.
本发明的方法,简便易行,能够清晰地观察纳米氧化锌在所述橡胶中的的分散状态,因此,为一种便于工业应用的测试橡胶中纳米材料分散性的方法。The method of the present invention is simple and easy to implement, and can clearly observe the dispersion state of nano-zinc oxide in the rubber, so it is a method for testing the dispersion of nano-materials in rubber that is convenient for industrial application.
附图说明Description of drawings
图1为LEICA冷冻切片机外形图。Figure 1 is the outline drawing of the LEICA cryostat.
图2为实施例1的电镜照片。Fig. 2 is the electron micrograph of embodiment 1.
图3为实施例2的电镜照片。Fig. 3 is the electron micrograph of embodiment 2.
具体实施方式Detailed ways
参见图1,所述LEICA冷冻切片机包括刀座推进钮1、刀台2、样品夹头3、显微镜4、刀台转动钮5、样品手动推进钮6和刀台平移钮等,具体的结构和操作方法可参见该设备的说明书。Referring to Fig. 1, the LEICA cryostat includes a knife seat push button 1, a knife table 2, a sample chuck 3, a microscope 4, a knife table rotation button 5, a sample manual push button 6 and a knife table translation button, etc., the specific structure And operation method can refer to the instruction manual of this equipment.
实施例1Example 1
样品:sample:
橡胶的基本配方为:The basic formula of rubber is:
天然橡胶100份,硫磺2.5份,硬脂酸1.0份,促进剂M 1.5份,促进剂D 1.0份,防老剂D 1.0份,纳米氧化锌5.0份。100 parts of natural rubber, 2.5 parts of sulfur, 1.0 parts of stearic acid, 1.5 parts of accelerator M, 1.0 parts of accelerator D, 1.0 parts of anti-aging agent D, 5.0 parts of nano zinc oxide.
将上述的橡胶样品采用液氮冷冻至-130℃,冷冻时间为25分钟,然后将其置于采用商业化的冷冻切片机切片上,根据纳米氧化锌粒径的大小,把橡胶切成厚度为60纳米的橡胶薄片,然后采用透射电镜,其结果见图2。The above-mentioned rubber sample was frozen to -130°C with liquid nitrogen for 25 minutes, and then placed on a commercial cryostat slicer. According to the size of the nano-zinc oxide particle size, the rubber was cut into thicknesses of 60nm rubber flakes were then subjected to transmission electron microscopy, and the results are shown in Figure 2.
实施例2Example 2
采用与实施例1相同的方法,橡胶的基本配方如下:Adopt the method identical with embodiment 1, the basic formula of rubber is as follows:
丁苯橡胶1502 100份,硫磺1.75份,硬脂酸1.0份,促进剂NS 1.0份,纳米氧化锌3.0份。100 parts of styrene-butadiene rubber 1502, 1.75 parts of sulfur, 1.0 parts of stearic acid, 1.0 parts of accelerator NS, 3.0 parts of nano zinc oxide.
将上述的橡胶样品采用液氮冷冻至-115℃,冷冻时间为20分钟,然后将其置于采用商业化的冷冻切片机切片上,根据纳米氧化锌粒径的大小,把橡胶切成厚度为80纳米的橡胶薄片,然后采用透射电镜,其结果见图3。The above-mentioned rubber sample was frozen to -115°C with liquid nitrogen for 20 minutes, and then placed on a commercial cryostat slicer. According to the particle size of the nano-zinc oxide, the rubber was cut into thicknesses of 80nm rubber flakes were then subjected to transmission electron microscopy, and the results are shown in Figure 3.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410018279 CN1268913C (en) | 2004-05-12 | 2004-05-12 | Method for testing nano material dispersivity in rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410018279 CN1268913C (en) | 2004-05-12 | 2004-05-12 | Method for testing nano material dispersivity in rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1570601A true CN1570601A (en) | 2005-01-26 |
CN1268913C CN1268913C (en) | 2006-08-09 |
Family
ID=34479428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410018279 Expired - Fee Related CN1268913C (en) | 2004-05-12 | 2004-05-12 | Method for testing nano material dispersivity in rubber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1268913C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101290275B (en) * | 2008-05-26 | 2010-07-21 | 中国热带农业科学院农产品加工研究所 | A preparation method for studying microwave-dried natural rubber ultrastructure samples |
CN102296452A (en) * | 2011-06-03 | 2011-12-28 | 苏州大学 | Method for quickly judging inorganic nanometer material on textile |
CN107505480A (en) * | 2017-08-16 | 2017-12-22 | 四川理工学院 | A kind of method for detecting filler dispersiveness in rubber composite material |
CN109354874A (en) * | 2018-09-17 | 2019-02-19 | 深圳市驭晟新能源科技有限公司 | A kind of preparation of new type silicone rubber heat-conducting pad and cutting process |
CN113933325A (en) * | 2021-10-14 | 2022-01-14 | 思通检测技术有限公司 | Method for preparing transmission electron microscope sample from rubber in stretching state and performing transmission electron microscope characterization |
-
2004
- 2004-05-12 CN CN 200410018279 patent/CN1268913C/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101290275B (en) * | 2008-05-26 | 2010-07-21 | 中国热带农业科学院农产品加工研究所 | A preparation method for studying microwave-dried natural rubber ultrastructure samples |
CN102296452A (en) * | 2011-06-03 | 2011-12-28 | 苏州大学 | Method for quickly judging inorganic nanometer material on textile |
CN102296452B (en) * | 2011-06-03 | 2013-05-22 | 苏州大学 | A method for judging inorganic nanomaterials on textiles |
CN107505480A (en) * | 2017-08-16 | 2017-12-22 | 四川理工学院 | A kind of method for detecting filler dispersiveness in rubber composite material |
CN109354874A (en) * | 2018-09-17 | 2019-02-19 | 深圳市驭晟新能源科技有限公司 | A kind of preparation of new type silicone rubber heat-conducting pad and cutting process |
CN113933325A (en) * | 2021-10-14 | 2022-01-14 | 思通检测技术有限公司 | Method for preparing transmission electron microscope sample from rubber in stretching state and performing transmission electron microscope characterization |
Also Published As
Publication number | Publication date |
---|---|
CN1268913C (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites | |
Matos et al. | Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide | |
Liscio et al. | Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation | |
Zhang et al. | Fracture toughness of graphene | |
Maiti et al. | New insights into rubber–clay nanocomposites by AFM imaging | |
Ning et al. | A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites | |
Satapathy et al. | Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites | |
Burris et al. | A route to wear resistant PTFE via trace loadings of functionalized nanofillers | |
CN1268913C (en) | Method for testing nano material dispersivity in rubber | |
Tsai et al. | Berkovich nanoindentation and deformation mechanisms in GaN thin films | |
Kueseng et al. | Anisotropic studies of multi-wall carbon nanotube (MWCNT)-filled natural rubber (NR) and nitrile rubber (NBR) blends | |
Krzemińska et al. | Effects of curing agents and modified graphene oxide on the properties of XNBR composites | |
Ji et al. | Comparative study on the effect of carbon nanotubes and carbon black on fatigue properties of natural rubber composites | |
Vasudevan et al. | Classification of environmentally assisted fatigue crack growth behavior | |
El-Tayeb et al. | Effect of soft carbon black on tribology of deproteinised and polyisoprene rubbers | |
Xiang et al. | Competition between strain-induced crystallization and cavitation at the crack tip of unfilled and carbon black-filled natural rubber | |
Aguiar et al. | Effect of incorporating multi-walled carbon nanotube and graphene in UHMWPE matrix on the enhancement of thermal and mechanical properties | |
RU2619782C2 (en) | Dust-free method for nanoparticles (cnt) containing master batch production in high viscosity rubber by triorolls | |
Lee et al. | A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method | |
Xiangyu et al. | Small fatigue crack growth in an extruded dual-phase Mg-Li alloy | |
Glebova et al. | Nano-mechanical imaging reveals heterogeneous cross-link distribution in sulfur-vulcanized butadiene-styrene rubber comprising ZnO particles | |
Mohammadsalih et al. | Nanomechanical behavior of polystyrene/graphene oxide nanocomposites | |
Spriano et al. | Texture, hardening and mechanical anisotropy in AA 8090-T851 plate | |
Costa et al. | XNBR/LDH nanocomposites: Effect of vulcanization and organic modifier on nanofiller dispersion and strain‐induced crystallization | |
CN1912574A (en) | Method for expressing nano-steel microstructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |