[go: up one dir, main page]

CN1562730A - 面向纳米微加工嵌段共聚物模板自组装形态调控方法 - Google Patents

面向纳米微加工嵌段共聚物模板自组装形态调控方法 Download PDF

Info

Publication number
CN1562730A
CN1562730A CN 200410013641 CN200410013641A CN1562730A CN 1562730 A CN1562730 A CN 1562730A CN 200410013641 CN200410013641 CN 200410013641 CN 200410013641 A CN200410013641 A CN 200410013641A CN 1562730 A CN1562730 A CN 1562730A
Authority
CN
China
Prior art keywords
block copolymer
nano
self
template
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410013641
Other languages
English (en)
Other versions
CN100429142C (zh
Inventor
王铀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CNB2004100136417A priority Critical patent/CN100429142C/zh
Publication of CN1562730A publication Critical patent/CN1562730A/zh
Application granted granted Critical
Publication of CN100429142C publication Critical patent/CN100429142C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

面向纳米微加工嵌段共聚物模板自组装形态调控方法,它涉及一种在纳米微加工时所需要的模板图案的调控方法。目前能调控嵌段共聚物形态的处理方法具有调控能力有限、处理工艺比较复杂、所需时间很长的缺点。本发明的操作方法为:将嵌段共聚物溶解在二甲苯溶剂中配制成溶液,将溶液浇铸在基片表面自然挥发成膜,然后将基片放置于密闭容器内,再向密闭容器内滴加有机溶剂后密封,取出即为模板。本发明具有调控出来模板的形态多样性、调控过程高度可控、模板形态高度有序、调控不需复杂设备,工艺简单,成本低,效率高、能在基片上得到几百纳米尺度的各种图案等诸多优点,用本发明的方法还可以得到类似于圆锥齿轮形状的自组装模板图案。

Description

面向纳米微加工嵌段共聚物模板自组装形态调控方法
技术领域:本发明涉及一种在纳米微加工时所需要的模板图案的调控方法。
背景技术:目前,制备加工纳米结构有三种不同的途径:一种是用宏观的块体物质,通过去掉多余的部分,加工成纳米结构,通常称之为自上向下方法,属于传统的微细加工技术,包括光刻技术和分子束外延技术;另一种是把微观体系的物质单元组装成纳米器件,通常称之为自下向上方法,属于正在兴起的微细加工技术,包括扫描探针的操纵装配技术、分子模板技术与化学合成技术。以上两种纳米加工都存在一个无法回避问题:即当材料包含纳米结构时,其结构单元数量是惊人的。如果沿用传统的加工方式对逐个结构进行加工,即使工艺上可行,从所需的时间与成本角度去考虑则根本行不通。难怪有人感叹:纳米材料是科学家的梦想,工程师的梦魇。第三种途径是把第一种与第二种方法结合在一起“自组装”技术。所谓自组装是一种无外来因素条件下形成超分子结构或介观超结构的过程。自组装制造过程是绿色的、环境友好的,效率是极高的。由于以上诸多优点并源于纳米科技发展的需要,源于生物的自组装技术近年来已引起科学家高度重视并迅速成为最热门的研究领域。1996年,Whitesides等人(发表于Science)首先利用离子刻蚀技术将嵌段共聚物的球形微区图案复制到50nm厚的SiN2模板材料上,得到每平方厘米具有1011个微孔的SiN2膜材料(见图1),标志着利用嵌段共聚物自组装模板技术进行纳米微加工新技术技术的开始。
对于自组装技术作为加工方法而言,新的机遇与挑战并存:一方面是是如何利用自组装模板制备相应结构纳米材料(模板图案的复制);另一方面的是如何人为调控自组装模板图案以调控希望构造的纳米结构(模板图案的调控)。图案的复制已知可以通过刻蚀技术实现(离子、臭氧、紫外线选择性地除去部分材料)。模板图案的调控技术目前还亟待提高,因为它是模板纳米加工技术的关键:只有调控出所需图案的模板才有可能复制出理想的结构。目前能调控嵌段共聚物形态的处理方法主要有:高温退火处理、外加电场处理、剪切处理等三种方法。其中剪切处理由于对处理样品厚度有要求,不适用于涉及模板应用的形态调控。剩余的两种方法一方面对于形态调控能力有限,调控得到的有序形态是唯一的,更谈不上进行几百纳米微小模板调控;另一方面处理工艺比较复杂,所需时间很长。
发明内容:本发明的目的在于提供一种简单、高效的面向纳米微加工嵌段共聚物模板自组装形态调控方法,具体操作方法为:将嵌段共聚物溶解在二甲苯溶剂中配制成0.1~1wt%浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,有机溶剂的滴加量为足以使溶剂蒸汽压达到饱和,1小时~7天后取出即为面向纳米微加工嵌段共聚物模板。模板形态的自由调控是实现按人的意愿进行纳米微加工的前提与基础,本发明丰富了嵌段共聚物纳米模板的调控技术,与现有的调控技术相比,它具有如下优点:1.它具有调控参数的多样性:本发明可以针对不同的需要使用不同类型的有机溶剂;通过调控温度改变溶剂蒸汽压;另外,溶剂与模板接触时间的不同也会产生不同的效果,从而影响着模板的调控结果。总之,调控参数的多样性决定着调控出来模板的形态具有多样性;2.调控过程高度可控;3.调控模板形态高度有序;4.调控不需复杂设备,工艺简单,成本低,效率高;5.在调控的同时溶剂蒸汽还具有刻蚀的功能,能在基片上得到几百纳米尺度的各种图案,这一点对于未来纳米零件的加工技术有重要意义;6.通过局部刻蚀与调控,用本发明的方法还可以得到类似于圆锥齿轮形状的自组装模板图案(见图6),这意味着将来利用这类模板可以加工纳米齿轮(见图7)。
附图说明:图1是利用离子刻蚀技术将嵌段共聚物SBS的球形微区图案复制到50nm厚的SiN2模板材料上,得到每平方厘米具有1011个微孔的SiN2膜材料的结构示意图,图2(尺寸800×800nm)是原子力显微镜(AFM)关于SEBS或SBS嵌段共聚物溶于二甲苯之后浇铸在基片上自然挥发成膜的形态图,图3是用具体实施方式三方法调控所得模板的AFM形态图(尺寸800×800nm),图4是用具体实施方式四方法调控所得模板的AFM形态图(尺寸800×800nm),图5是用具体实施方式五方法调控所得模板的AFM形态图(尺寸500×500nm),图6是是用具体实施方式六方法调控兼刻蚀的微小尺寸模板AFM形态图(尺寸800×800nm),图7是由图6模板所能加工微小零件的示意图。
具体实施方式一:嵌段共聚物自组装模板一般需要溶剂浇铸制备,模板的厚度需控制在纳米尺度以内。我们发现将厚度控制在100纳米以内嵌段共聚物薄膜,在室温下,利用有机良溶剂或选择性溶剂进行熏蒸,可以对模板的自组装图案进行全面的调控。将嵌段共聚物溶解在二甲苯溶剂中配制成0.1~1wt%浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,有机溶剂的滴加量为足以使溶剂蒸汽压达到饱和,1小时~7天后取出即为面向纳米微加工嵌段共聚物模板。用这种方法调控的模板图案形态丰富、高度有序。
具体实施方式二:本实施方式模板的调控方法为:将聚苯乙烯-饱和聚丁二烯-聚苯乙烯(SEBS)嵌段共聚物溶解在二甲苯溶剂中配制成0.1wt%浓度的溶液,20-30℃条件下浇铸在云母片上自然挥发成膜,膜的厚度最好要小于100纳米,模板形态如图2所示,将此浇铸膜与附着的云母片放置于垫有滤纸的培养皿内恒温在25℃,滴加良溶剂甲苯于培养皿底部的滤纸上,迅速盖好盖子,甲苯的滴加量为足以使溶剂蒸汽压达到饱和,3小时后将所得产品取出,调控后模板形态如图3所示。然后再通过水面将嵌段共聚物薄膜(即模板)转移到要复型材料表面进行复型。
具体实施方式三:本实施方式模板的调控方法为:将聚苯乙烯-聚丁二烯-聚苯乙烯(SBS)三嵌段共聚物溶解在二甲苯溶剂中配制成1wt%浓度的溶液,将单晶硅片放置于垫有绵花的培养皿内,室温条件下滴加二甲苯于培养皿底部的绵花上,然后将足以使溶剂蒸汽压达到饱和量的二甲苯浇铸在单晶硅片上,迅速盖好盖,10小时后将产品取出即得模板,调控后模板形态如图3所示,然后可以通过水面将嵌段共聚物模板转移到要复型材料表面进行复型即可。
具体实施方式四:本实施方式模板的调控方法为:将美国Shell公司生产的SEBS嵌段共聚物溶解在二甲苯溶剂中配制成0.5wt%浓度的溶液,20-30℃条件下浇铸在云母片上自然挥发成膜,膜的厚度为20纳米,模板形态如图2所示,将此浇铸膜与附着的云母片放置于垫有滤纸的培养皿内恒温在25℃,然后将足以使溶剂蒸汽压达到饱和量的选择性溶剂庚烷滴加于培养皿底部的滤纸上,迅速盖好盖,1小时后将产品取出即得调控后模板,所得模板形态如图4所示,然后可以通过水面将嵌段共聚物薄膜(即为所得模板)转移到要复型材料表面进行复型即可。
具体实施方式五:本实施方式模板的调控方法为:将美国Shell公司生产的SBS三嵌段共聚物溶解在二甲苯溶剂中配制成0.2wt%浓度的溶液,室温条件下浇铸在单晶硅片上自然挥发成膜,所得膜的厚度为40纳米,模板形态如图2所示,将此浇铸膜与附着的单晶硅片放置于垫有滤纸的培养皿内恒温在25℃,滴加足以使溶剂蒸汽压达到饱和量的环己烷于培养皿底部的滤纸上,迅速盖好盖,24小时后将产品取出即得调控后模板,所得模板形态如图5所示,然后可以通过水面将嵌段共聚物薄膜(即用本发明方法所得模板)转移到要复型材料表面进行复型即可。
具体实施方式六:本实施方式模板的调控方法为:将聚苯乙烯-饱和聚丁二烯-聚苯乙烯嵌段共聚物溶解在二甲苯溶剂中配制成0.8wt%浓度的溶液,20-30℃条件下浇铸在云母片上自然挥发成膜,模板形态如图2所示,将此浇铸膜放置带有磨口密闭性能非常好的称量瓶中,样品距离称量瓶底部1cm,滴加足以使溶剂蒸汽压达到饱和量的二甲苯于称量瓶底部迅速盖好盖,恒温25℃7天后将产品取出即得调控后模板,所得模板形态如图6所示,此时溶剂蒸汽已将大部分嵌段共聚物模板腐蚀掉,留下局部微小尺寸的模板图案,为利用此模板加工微纳米零件提供了条件。

Claims (7)

1、一种面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于将嵌段共聚物溶解在二甲苯溶剂中配制成0.1~1wt%浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,有机溶剂的滴加量为足以使溶剂蒸汽压达到饱和,1小时~7天后取出即为面向纳米微加工嵌段共聚物模板。
2、根据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述嵌段共聚物为聚苯乙烯—饱和聚丁二烯—聚苯乙烯嵌段共聚物或聚苯乙烯—聚丁二烯—聚苯乙烯嵌段共聚物。
3根据权利要求1或2所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于二甲笨溶液浇涛于基片上挥发成膜的厚度小于100纳米。
4、根据权利要求1或2所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述原子水平级平整的基片为云母片或单晶硅。
5、根据权利要求1或2所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述密闭容器为培养皿或称量瓶。
6、根据权利要求1或2所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述具有吸附溶剂蒸汽能力的材料为滤纸或绵花。
7、根据权利要求1或2所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于良溶剂为甲苯或二甲苯,选择性溶剂为环乙烷或庚烷。
CNB2004100136417A 2004-03-24 2004-03-24 面向纳米微加工嵌段共聚物模板自组装形态调控方法 Expired - Fee Related CN100429142C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100136417A CN100429142C (zh) 2004-03-24 2004-03-24 面向纳米微加工嵌段共聚物模板自组装形态调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100136417A CN100429142C (zh) 2004-03-24 2004-03-24 面向纳米微加工嵌段共聚物模板自组装形态调控方法

Publications (2)

Publication Number Publication Date
CN1562730A true CN1562730A (zh) 2005-01-12
CN100429142C CN100429142C (zh) 2008-10-29

Family

ID=34478227

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100136417A Expired - Fee Related CN100429142C (zh) 2004-03-24 2004-03-24 面向纳米微加工嵌段共聚物模板自组装形态调控方法

Country Status (1)

Country Link
CN (1) CN100429142C (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
CN101405216B (zh) * 2006-03-23 2012-05-09 美光科技公司 形貌引导的图案化
US8283258B2 (en) 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8425982B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8450418B2 (en) 2010-08-20 2013-05-28 Micron Technology, Inc. Methods of forming block copolymers, and block copolymer compositions
US8551808B2 (en) 2007-06-21 2013-10-08 Micron Technology, Inc. Methods of patterning a substrate including multilayer antireflection coatings
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8669645B2 (en) 2008-10-28 2014-03-11 Micron Technology, Inc. Semiconductor structures including polymer material permeated with metal oxide
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
CN105384952A (zh) * 2015-09-15 2016-03-09 北京航空航天大学 一种利用机械剪切力对嵌段共聚物自组装取向的调控方法
CN105713189A (zh) * 2016-02-16 2016-06-29 浙江大学 嵌段共聚物以及形成微相分离的垂直相畴结构的方法和应用
CN106222752A (zh) * 2016-08-29 2016-12-14 上海理工大学 一种制备有机晶体薄膜的方法
CN111303478A (zh) * 2020-04-22 2020-06-19 北京航空航天大学 裸眼3d显示屏材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541539B1 (en) * 1998-11-04 2003-04-01 President And Fellows Of Harvard College Hierarchically ordered porous oxides
AU2002213181A1 (en) * 2000-10-11 2002-04-22 Uab Research Foundation Nanostructures formed through cyclohexadiene polymerization
US7132475B2 (en) * 2000-10-19 2006-11-07 Ecole Polytechnique Federale De Lausanne Block copolymers for multifunctional self-assembled systems
JP5101791B2 (ja) * 2001-04-13 2012-12-19 コーネル・リサーチ・ファンデーション・インコーポレイテッド 超常磁性ナノ構造材料
JP4280813B2 (ja) * 2001-11-19 2009-06-17 独立行政法人産業技術総合研究所 非シリカ系メソ構造体及びその製造方法
CN1425706A (zh) * 2003-01-14 2003-06-25 天津大学 聚乙二醇嵌段修饰的聚己内酯及其制备方法

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405216B (zh) * 2006-03-23 2012-05-09 美光科技公司 形貌引导的图案化
CN101588988B (zh) * 2007-01-24 2013-07-31 美光科技公司 通过自我组装的嵌段共聚物形成二维阵列的具有亚光刻直径的孔洞
US8512846B2 (en) 2007-01-24 2013-08-20 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8409449B2 (en) 2007-03-06 2013-04-02 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8801894B2 (en) 2007-03-22 2014-08-12 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8784974B2 (en) 2007-03-22 2014-07-22 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US9768021B2 (en) 2007-04-18 2017-09-19 Micron Technology, Inc. Methods of forming semiconductor device structures including metal oxide structures
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US8609221B2 (en) 2007-06-12 2013-12-17 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8513359B2 (en) 2007-06-19 2013-08-20 Micron Technology, Inc. Crosslinkable graft polymer non preferentially wetted by polystyrene and polyethylene oxide
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8445592B2 (en) 2007-06-19 2013-05-21 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8551808B2 (en) 2007-06-21 2013-10-08 Micron Technology, Inc. Methods of patterning a substrate including multilayer antireflection coatings
US8283258B2 (en) 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US8618000B2 (en) 2007-08-16 2013-12-31 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US10005308B2 (en) 2008-02-05 2018-06-26 Micron Technology, Inc. Stamps and methods of forming a pattern on a substrate
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US10828924B2 (en) 2008-02-05 2020-11-10 Micron Technology, Inc. Methods of forming a self-assembled block copolymer material
US11560009B2 (en) 2008-02-05 2023-01-24 Micron Technology, Inc. Stamps including a self-assembled block copolymer material, and related methods
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US9315609B2 (en) 2008-03-21 2016-04-19 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8425982B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US10153200B2 (en) 2008-03-21 2018-12-11 Micron Technology, Inc. Methods of forming a nanostructured polymer material including block copolymer materials
US11282741B2 (en) 2008-03-21 2022-03-22 Micron Technology, Inc. Methods of forming a semiconductor device using block copolymer materials
US8455082B2 (en) 2008-04-21 2013-06-04 Micron Technology, Inc. Polymer materials for formation of registered arrays of cylindrical pores
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8518275B2 (en) 2008-05-02 2013-08-27 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US8669645B2 (en) 2008-10-28 2014-03-11 Micron Technology, Inc. Semiconductor structures including polymer material permeated with metal oxide
US8450418B2 (en) 2010-08-20 2013-05-28 Micron Technology, Inc. Methods of forming block copolymers, and block copolymer compositions
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9431605B2 (en) 2011-11-02 2016-08-30 Micron Technology, Inc. Methods of forming semiconductor device structures
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US10049874B2 (en) 2013-09-27 2018-08-14 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US11532477B2 (en) 2013-09-27 2022-12-20 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
CN105384952A (zh) * 2015-09-15 2016-03-09 北京航空航天大学 一种利用机械剪切力对嵌段共聚物自组装取向的调控方法
CN105713189A (zh) * 2016-02-16 2016-06-29 浙江大学 嵌段共聚物以及形成微相分离的垂直相畴结构的方法和应用
CN106222752A (zh) * 2016-08-29 2016-12-14 上海理工大学 一种制备有机晶体薄膜的方法
CN106222752B (zh) * 2016-08-29 2019-02-15 上海理工大学 一种制备有机晶体薄膜的方法
CN111303478A (zh) * 2020-04-22 2020-06-19 北京航空航天大学 裸眼3d显示屏材料及其制备方法
CN111303478B (zh) * 2020-04-22 2021-06-08 北京航空航天大学 裸眼3d显示屏材料及其制备方法

Also Published As

Publication number Publication date
CN100429142C (zh) 2008-10-29

Similar Documents

Publication Publication Date Title
CN1562730A (zh) 面向纳米微加工嵌段共聚物模板自组装形态调控方法
Fattakhova-Rohlfing et al. Three-dimensional titanium dioxide nanomaterials
Gu et al. Pattern transfer using block copolymers
Antonietti Surfactants for novel templating applications
CN101077768B (zh) 微细结构体的制造方法和图案介质的制造方法
Dai et al. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments
Faustini et al. From chemical solutions to inorganic nanostructured materials: a journey into evaporation-driven processes
Martin et al. Submicrometer-scale patterning of ceramic thin films
CN106486209A (zh) 一种图案化3d石墨烯导电薄膜及其绿色制备方法和应用
Meldrum et al. Template‐Directed Control of Crystal Morphologies
CN101225179A (zh) 一种大面积有序多孔膜材料及其制备方法
Daly et al. Taming self-organization dynamics to dramatically control porous architectures
Yue et al. Macroporous inorganic solids from a biomineral template
Yao et al. Influence of glycerol cosolvent on the synthesis of size controllable zeolite A
WO2004088005A1 (ja) 高密度柱状ZnO結晶膜体とその製造方法
CN101613076B (zh) 三维微纳结构印章的制备及批量复制方法
Miura et al. Emergence of acute morphologies consisting of iso-oriented calcite nanobricks in a binary poly (acrylic acid) system
Hetherington et al. Crystallization on surfaces of well-defined topography
CN110656311A (zh) 一种自上而下制备纳米粒子的方法
CN107986224A (zh) 大面积多级次表面褶皱结构及其制备
Xiong et al. Honeycomb structured porous films prepared by the method of breath figure: history and development
Mandal et al. Techniques for microscale patterning of zeolite-based thin films
Tang Crack-free TiO2 thin films with selfassembling nano-particles fabricated through in-situ sol–gel processing in reverse micelles
Wang et al. Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays
JP2004330330A (ja) ハニカム構造体を鋳型としたメゾ構造体の作製

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081029