[go: up one dir, main page]

CN1555624A - A full-rate TURBO space-time encoding method and device - Google Patents

A full-rate TURBO space-time encoding method and device Download PDF

Info

Publication number
CN1555624A
CN1555624A CNA028181255A CN02818125A CN1555624A CN 1555624 A CN1555624 A CN 1555624A CN A028181255 A CNA028181255 A CN A028181255A CN 02818125 A CN02818125 A CN 02818125A CN 1555624 A CN1555624 A CN 1555624A
Authority
CN
China
Prior art keywords
signal
time
space
turbo
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028181255A
Other languages
Chinese (zh)
Inventor
李永会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linkair Communications Inc
Original Assignee
Linkair Communications Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linkair Communications Inc filed Critical Linkair Communications Inc
Publication of CN1555624A publication Critical patent/CN1555624A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种全速率TURBO时空编码方法及装置,其中包括:在发射端对发射信号进行TURBO时空编码和信号交织,形成编码信息和交织后编码信息的混合信号;在接收端对接收的混合信号进行译码,在译码时需要从接收的混合信号中恢复相应信号的边信息。本发明在现有时空编码技术中具有最优的性能,特别是在接收端,可以同时达到很高的编码增益和分集增益。

Figure 02818125

The present invention provides a full-rate TURBO time-space encoding method and device, which includes: performing TURBO time-space encoding and signal interleaving on the transmitted signal at the transmitting end to form a mixed signal of encoded information and interleaved encoded information; The mixed signal is decoded, and the side information of the corresponding signal needs to be recovered from the received mixed signal during decoding. The present invention has the best performance in the existing space-time coding technology, especially at the receiving end, and can achieve high coding gain and diversity gain at the same time.

Figure 02818125

Description

一种全速率 TURBO时空编码方法及装置 技术领域 A full-rate TURBO space-time coding method and device Technical field

本发明涉及电通信技术领域, 具体的讲是一种全速率 TURBO 时空编 码方法及装置。 The present invention relates to the technical field of telecommunication, in particular to a full-rate TURBO space-time encoding method and device.

背景技术 Background technique

众所周知, 在衰落信道中, 信号的衰落将严重恶化系统的性能。 克服 衰落最有效的手段是采用 "分集"。 时空编码技术(如文献 [1]至 [ 3]所述) 可以获得分集增益, 克服衰落的影响。 It is well known that in a fading channel, the fading of the signal will seriously deteriorate the performance of the system. The most effective means to overcome fading is to use "diversity". Space-time coding technology (as described in [1] to [3]) can obtain diversity gain and overcome the influence of fading.

近来, 将时空编码与 FEC结合已经引起了人们的关注, 两者的有效结 合可以使系统同时莰得分集增益和编码增益。 Recently, the combination of spatio-temporal coding and FEC has attracted people's attention, and the effective combination of the two can make the system obtain the diversity gain and the coding gain at the same time.

在原始的级连时空编码(如文献 [4], [5]所述), 外码是标准的 TURBO 码, 内码是时空分组编码, 其构成了串行或并行的级连时空 TURBO码。 In the original concatenated space-time coding (as described in literature [4], [5]), the outer code is a standard TURBO code, and the inner code is a space-time block code, which constitutes a serial or parallel concatenated space-time TURBO code.

另外, 在文献 [6] , [8]中提出了一种全速率的编码方案, 即通过在两 个天线之间交互发射原始信息和交织后的信息来获得分集增益, 这种方案 可以获得较大的编码增益, 但是由于只是发送部分信号, 所以没有获得全 分集增益。 In addition, a full-rate coding scheme is proposed in literature [6], [8], that is, the diversity gain is obtained by alternately transmitting the original information and the interleaved information between the two antennas. Large coding gain, but because only part of the signal is sent, no full diversity gain is obtained.

另一种全速率和全分集的时空 TURBO 编码方案在文献 [7]中给出, 这 种方案通过交替(Scramb le )输入信息比特, 来达到全速率和全分集。 这 种方案的主要缺陷在于抗突发性较差。 Another full-rate and full-diversity space-time TURBO coding scheme is given in [7]. This scheme achieves full-rate and full-diversity by alternately (Scramble) inputting information bits. The main defect of this scheme is that the anti-burst is poor.

发明内容 Contents of the invention

本发明的目的在于, 提供一种全速率 TURBO时空编码方法及装置, 用以 解决现有技术存在的缺陷和不足。 本发明能很好地改进系统的性能, 可以 在达到全速率的条件下, 获得很大的编码增益和分集增益, 本发明在现有 时空编码技术中具有最优的性能, 特别是在接收端, 可以同时达到很高的 编码增益和分集增益。 本发明的技术方案为: 本发明提供了一种全速率 TURBO 时空编码方法, 其中包括: 在发射端 对发射信号进行 TURBO时空编码和信号交织, 形成编码信息和交织后编码 信息的混合信号; The object of the present invention is to provide a full-rate TURBO space-time coding method and device to solve the defects and deficiencies in the prior art. The present invention can improve the performance of the system very well, and can obtain a large coding gain and diversity gain under the condition of reaching the full rate. The present invention has the best performance in the existing space-time coding technology, especially at the receiving end , can achieve high coding gain and diversity gain at the same time. The technical solution of the present invention is: The present invention provides a full-rate TURBO space-time encoding method, which includes: performing TURBO space-time encoding and signal interleaving on the transmitted signal at the transmitting end to form encoded information and interleaved encoding Mixed signals of information;

在接收端对接收的混合信号进行译码, 在译码时需要从接收的混合信 号中恢复相应信号的边信息。 The received mixed signal is decoded at the receiving end, and the side information of the corresponding signal needs to be recovered from the received mixed signal during decoding.

所述的在发射端对发射信号进行 TURBO 时空编码和信号交织包括: 发 射端可对发射信号进行串行级连 TURBO时空编码,其中: The TURBO space-time encoding and signal interleaving of the transmitted signal at the transmitting end includes: the transmitting end can perform serial concatenation TURBO space-time encoding on the transmitting signal, wherein:

可用 表示由 fw到 )的变换矩阵; "可表示 TURBO 时空编码的 输入比特序列, 〉可表示 TURBO时空编码的输出比特序列; Can represent the transformation matrix from f to ); " can represent the input bit sequence of TURBO space-time coding, > can represent the output bit sequence of TURBO space-time coding;

当 i, j,k = 1,2时串行级连 TURBO时空编码的步驟为: When i, j, k = 1, 2, the steps of serially concatenated TURBO space-time coding are:

和 7(2)变换为 w和 (12) , 和 12)经交织后输出的比特流为 (O(11) , O(12) ) ; and 7 (2) are transformed into w and (12) , and 12 ) is interleaved and the output bit stream is (O (11) , O (12) ) ;

V{n) . 12)经交织和 TURBO时空编码后输出的比特流为(d(21),0(22)) ; V {n) . 12) The output bit stream after interleaving and TURBO space-time coding is (d (21) ,0 (22) );

7(2)经 TURBO 时空编码变换为 21)和^ 22) , 21)22)经交织后输 出的比特流为(d(31) (32)) ; 7 (2) transformed into 21) and ^ 22) by TURBO space-time coding, 21) and 22 ) output bit stream after interleaving is (d (31) (32) );

f(21)22)经交织和 TURBO时空编码后输出的比特流为(d(41),d(42))。 所述的在发射端对发射信号进行 TURBO 时空编码和信号交织包括: 发 射端可对发射信号进行并行级连 TURBO时空编码,其中: After f (21) , 22) are interleaved and TURBO space-time coded, the output bit stream is (d (41) , d (42) ). The said TURBO time-space encoding and signal interleaving of the transmitted signal at the transmitting end includes: The transmitting end can perform parallel concatenated TURBO time-space encoding on the transmitting signal, wherein:

可用 表示由 到 〉的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列, 可表示 TURBO时空编码的输出比特序列; can be used to represent the transformation matrix from to >; can represent the input bit sequence of TURBO space-time coding, and can represent the output bit sequence of TURBO space-time coding;

当 i,j,k = 1,2时并行级连 TURBO时空编码的步骤为: When i, j, k = 1, 2, the steps of parallel cascading TURBO space-time encoding are:

f(2)输出的比特流为 (11),(5(12)); The output bit stream of f( 2 ) is (11 ),(5( 12 ));

/(,)(2)经 TURBO时空编码后输出的比特流为 21),d(22)); / (,) , (2) the output bit stream after TURBO space-time coding is 21) , d (22) );

、 /(2)经交织后输出的比特流为(d(31),d(32)); , /( 2 ) the output bit stream after interleaving is (d( 31 ), d( 32 ));

、 经交织和 TURBO时空编码后输出的比特流为(d(41) (42))。 , the output bit stream after interleaving and TURBO space-time coding is (d (41 ) ( 42) ).

所述的在发射端对发射信号进行 TURBO 时空编码和信号交织包括: 发 射端可对发射信号进行串行级连调制扩展的 TURBO时空编码,其中: The TURBO time-space encoding and signal interleaving of the transmitted signal at the transmitting end includes: the transmitting end can perform TURBO space-time encoding for serial concatenation modulation and expansion of the transmitting signal, wherein:

可用 7 ^)表示由 〉到^ »的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列, 可表示 TURBO时空编码的输出比特序列; 7 ^) can be used to represent the transformation matrix from > to ^ »; it can represent the input bit sequence of TURBO space-time coding, and can represent the output bit sequence of TURBO space-time coding;

当 = 1,2时串行级连调制扩展的 TURBO时空编码的步骤为: (1)(2)变换为 、 f(12) , (n) > 12)经交织后输出的比特流为When = 1, 2, the steps of TURBO space-time coding of serial concatenated modulation extension are: (1) , (2) transformed into, f (12) , (n) > 12) and the output bit stream after interleaving is

(„ ); („);

F(11)12)经交织和 TURBO时空编码后输出的比特流为(<5(21),d(22)); ("、 (2)经 TURBO 时空编码变换为 f(21)、 V(22) , f(21)、 22)经交织后输 出的比特流为(d(31),d(32)); F (11) , 12) the output bit stream after interleaving and TURBO space-time coding is (<5 (21) ,d (22) ); (", ( 2 ) are transformed into f( 21 ), V (22) , f( 21 ), 22 ) the output bit stream after interleaving is (d (31) ,d (32) );

V K 22)经交织和 TURBO时空编码后输出的比特流为(<5(41 d(42)); 输出的比特流映射为 QPSK信号后的符号为 , S12, S2l and ¾2VK 22 ) The output bit stream after interleaving and TURBO space-time encoding is (<5( 41 d (42) ); the output bit stream is mapped to the QPSK signal and the symbols are, S 12 , S 21 and ¾ 2 ;

Su, 512, 和 将通过变换函数 /(c, 调制扩展为 16QAM信号后的 符号为 和 , 即 和 S u , 5 12 , and the symbols after the modulation and expansion into 16QAM signals through the transformation function /(c, and

S,和 经过信道交织后可在两个天线上发射出去。 S, and can be transmitted on two antennas after channel interleaving.

所述的在发射端对发射信号进行 TURBO 时空编码和信号交织包括: 发 射端可对发射信号进行并行级连调制扩展的 TURBO时空编码,其中: The TURBO time-space coding and signal interleaving of the transmitted signal at the transmitting end includes: the transmitting end can perform TURBO space-time coding for parallel concatenated modulation and expansion of the transmitted signal, wherein:

可用 W表示由 "到 〉的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列, )可表示 TURBO时空编码的输出比特序列; W can be used to represent the transformation matrix from " to >; it can represent the input bit sequence of TURBO space-time coding, and ) can represent the output bit sequence of TURBO space-time coding;

当 i,j,k = 1,2时并行级连调制扩展的 TURBO时空编码的步骤为: When i, j, k = 1, 2, the steps of TURBO space-time coding for parallel concatenated modulation extension are:

7(1)、 )输出的比特流为(<5(11),ό(12)); 7 (1) , ) output bit stream is (<5 (11 ), ό( 12 ));

(2)经 TURBO时空编码后输出的比特流为 (21),d(22)); , (2 ) the output bit stream after TURBO space-time coding is (21) , d( 22) );

(2)经交织后输出的比特流为((5(31) (32)); , (2) the bit stream output after interleaving is ((5 (31) (32) );

(2)经交织和 TURBO时空编码后输出的比特流为(d(41) 。 , (2) The output bit stream after interleaving and TURBO space-time encoding is (d (41 ).

输出的比特流映射为 QPSK信号后的符号为 , S12, s21 and s22\The symbols after the output bit stream is mapped to the QPSK signal are, S 12 , s 21 and s 22 \

Sn, Sn, 4和 2 将通过变换函数/ ( )调制扩展为 16QAM信号后的 符号为 和 ¾ , 即 ¾ = f(Su,Su)和 = f(S2VS22); S n , S n , 4 and 2 will be expanded to 16QAM signals by the transformation function / ( ) and the symbols after modulation are and ¾ , that is, ¾ = f(S u , S u ) and = f(S 2V S 22 );

S,和 经过信道交织后可在两个天线上发射出去。 S, and can be transmitted on two antennas after channel interleaving.

所述的在接收端对接收的混合信号进行译码包括: 在接收端可对接收 的混合信号进行扩展的 LOG-MAP译码. The decoding of the received mixed signal at the receiving end includes: LOG-MAP decoding that can extend the received mixed signal at the receiving end.

所述的在接收端对接收的混合信号进行译码包括: The decoding of the received mixed signal at the receiving end includes:

在接收端可对接收的混合信号进行扩展的 2维 LOG-MAP译码, 其中: 接收信号的形式为: Ri = hu ■S1 +h21 -S2 = 2hu -Sn +2h21 -S21 +hn -Sn +h21 -S22 Extended 2-dimensional LOG-MAP decoding can be performed on the received mixed signal at the receiving end, where: The form of the received signal is: Ri = h u S 1 +h 21 -S 2 = 2h u -S n +2h 21 -S 21 +h n -S n +h 21 -S 22

R2 = hn -Sx +h22 - S2 = 2hn -Su +2h22 -S2l +h -Sn +h22 -S22. R 2 = h n -S x +h 22 -S 2 = 2h n -S u +2h 22 -S 2l +h -S n +h 22 -S 22 .

在时刻 k的接收信号为 The received signal at time k is

r\k ~ ksn, k +2k21 ks2l k +hu fcsl2 k + h 2, k s 22k — ksu, k +2h2l kpll k +huks 2 k + h 2k p l2k , r2k =

Figure IMGF000006_0001
, A + hi2, kS l,k + A 22, 22, A:
Figure IMGF000006_0002
k ' r\k ~ k s n, k +2k 21 k s 2l k +h u fc s l2 k + h 2 , k s 22k — k s u, k +2h 2l k p ll k +h uk s 2 k + h 2k p l2k , r2k =
Figure IMGF000006_0001
, A + hi2, k S l, k + A 22, 22, A:
Figure IMGF000006_0002
k '

式中, Α,,=¾,Λ.是信源 ^的校验序列 在时刻 k 的值, 同理 Α2Λ. = ½,Α 是 交织后的序列的校验序列在时刻 k的值; In the formula, Α,, = ¾, Λ . is the value of the check sequence of the source ^ at time k, and similarly Α 2 Λ. = ½, Α is the value of the check sequence of the interleaved sequence at time k value;

每个接收信号, 实际上都是 4 部分的和, 包括信息序列, 交织后的信 息序列, 信息序列的校验序列, 交织后的信息序列的校^ r序列, 他们分别 经过不同的衰落信道后合成为接收信号。 Each received signal is actually the sum of 4 parts, including the information sequence, the interleaved information sequence, the check sequence of the information sequence, and the check sequence of the interleaved information sequence, after they respectively pass through different fading channels synthesized into the received signal.

所述的在接收端对接收的混合信号进行译码包括: The decoding of the received mixed signal at the receiving end includes:

在接收端可对接收的混合信号进行滤波、 射频及中频解调、 解扩, 计 算处理后基带信号的 APP; 所述译码包括 4个环路, 迭代译码在这 4个环 路上进行; 其中: Filtering, radio frequency and intermediate frequency demodulation, and despreading can be performed on the received mixed signal at the receiving end, and the APP of the processed baseband signal is calculated; the decoding includes 4 loops, and iterative decoding is performed on these 4 loops; in:

联合概率密度需满足下列条件: The joint probability density needs to meet the following conditions:

f

Figure IMGF000006_0003
tk 2 ,u j)p{ulk = u(i))p(u2k = u(j)) f
Figure IMGF000006_0003
tk 2 ,uj)p{u lk = u(i))p(u 2k = u(j))

P(yk I σ,',η,,σ^ ,η^ = (πΝ0ΥΜ exp(--^- || yk ~ E7HAS, ||"; 后验概率需满足下列条件: P(y k I σ,',η,,σ^ ,η^ = (πΝ 0 Υ Μ exp(--^- || y k ~ E7H A S, ||"; the posterior probability must meet the following conditions:

("u = u{i),u2k = u(j) I 7) ("u = u{i),u 2k = u(j) I 7)

信息比特需满足下列条件: Information bits need to meet the following conditions:

P( u = u(i) I 7) P( u = u(i) I 7)

交织后信息比特需满足下列条件: P(u2k = u(j) I 7) The interleaved information bits need to meet the following conditions: P(u 2k = u(j) I 7)

在多径条件下: Under multipath conditions:

2 one 2

P(yk I ak l ,u ak 2 ,Uj ) = {ττΝ0ΥΜ exp(- || )P(y k I a k l ,ua k 2 ,Uj ) = {ττΝ 0 Υ Μ exp(- || )

边信息需满足下列条件: Side information needs to meet the following conditions:

V (F I u(i)) = P(uu = "(0 I Y)-P(uu = "()) V (FI u(i)) = P(u u = "(0 IY)-P(u u = "())

Le{Y I u{j)) = P{u2k = u{j) I Y)-P{ulk = u(j)) - 在迭代译码时, 每 3个边信息的和将作为另 1路信息的先验信息, 即: P(u = ux(i)) = C I ^) + 3("() I y2) + L^(u(j) I y2) L e {YI u{j)) = P{u 2k = u{j) IY)-P{u lk = u(j)) - During iterative decoding, the sum of every 3 side information will be used as another 1 The prior information of road information, namely: P(u = u x (i)) = CI ^) + 3 ("() I y 2 ) + L^(u(j) I y 2 )

同理, 其他三路信息比特中每一路先验信息都等于其他三路的边信息之 和。 所述的在接收端对接收的混合信号进行译码包括: Similarly, each path of prior information in the other three paths of information bits is equal to the sum of the other three paths of side information. The decoding of the received mixed signal at the receiving end includes:

在接收端可对接收的混合信号进行滤波、 射频及中频解调、 解扩, 计 算处理后基带信号的 ΑΡΡ; 所述译码包括 2个环路, 迭代译码在这 2个环 路上进行; 其中: 联合概率密度需满足下列条件: Filtering, radio frequency and intermediate frequency demodulation, and despreading can be performed on the received mixed signal at the receiving end, and the APP of the processed baseband signal is calculated; the decoding includes 2 loops, and iterative decoding is performed on these 2 loops; Among them: The joint probability density needs to meet the following conditions:

u(i))p(uu = "(_/)) 2 u(i))p(u u = "(_/)) 2

); );

Figure IMGF000007_0002
Figure IMGF000007_0002

后验概率需满足下列条件: The posterior probability needs to meet the following conditions:

P("u- = uf),uu = u(j) I Y) P("u- = uf), u u = u(j) IY)

信息比特需满足下列条件: Information bits need to meet the following conditions:

P( lk = u(i) I Y) σ k l σ k 2 P( lk = u(i) IY) σ k l σ k 2

交织后信息比特需满足下列条件: The information bits after interleaving need to meet the following conditions:

P( 2k = (j) I Y) P( 2k = (j) IY)

"i* σ t 1 σ 4 2 "i* σ t 1 σ 4 2

在多径条件下: P(yk I ,u ak 2 ,Uj ) = (πΝ0)~Μ exp(- || )Under multipath conditions: P(y k I ,ua k 2 ,Uj ) = (πΝ 0 )~ Μ exp(- || )

Figure IMGF000008_0001
Figure IMGF000008_0001

边信息需满足下列条件: Side information needs to meet the following conditions:

Le(Y I "(0) = P(ulk = "(!·) I Y)-P(uu = u(i)) L e (YI "(0) = P(u lk = "(!·) IY)-P(u u = u(i))

Le{Y I u{j)) = P(u2k = u(j) I Y)-P(u2k = u(j)) L e {YI u{j)) = P(u 2k = u(j) IY)-P(u 2k = u(j))

在迭代译码时有 1个边信息输出, 它们分别作为下一次迭代译码的先验 信息。 There is one side information output during iterative decoding, and they are respectively used as prior information for the next iterative decoding.

所述的 TURBO时空编码可为递归时空卷积编码。 The TURBO space-time coding can be recursive space-time convolutional coding.

本发明还提供了一种全速率 TURBO 时空编码装置, 包括发射装置和接 收装置, 其特征在于: 发射装置至少包括 TURBO时空编码器和信号交织器, TURBO时空编码器对发射信号进行编码, 信号交织器对发射信号进行交织, 形成编码信息和交织后编码信息的混合信号; The present invention also provides a full-rate TURBO space-time encoding device, including a transmitting device and a receiving device, characterized in that: the transmitting device includes at least a TURBO space-time encoder and a signal interleaver, the TURBO space-time encoder encodes the transmitted signal, and the signal is interleaved The device interleaves the transmitted signal to form a mixed signal of encoded information and interleaved encoded information;

接收装置对接收的混合信号进行译码, 在译码时需要从接收的混合信 号中恢复相应信号的边信息。 The receiving device decodes the received mixed signal, and needs to recover the side information of the corresponding signal from the received mixed signal during decoding.

所述的发射装置至少包括 TURBO时空编码器和信号交织器是指: TURBO 时空编码器和信号交织器可构成串行级连 TURBO时空编码装置。 The transmitting device at least includes a TURBO space-time encoder and a signal interleaver means: The TURBO space-time encoder and the signal interleaver can form a serial cascaded TURBO space-time encoding device.

所述的发射装置至少包括 TURBO时空编码器和信号交织器是指: TURBO 时空编码器和信号交织器可构成并行级连 TURBO时空编码装置。 The transmitting device at least includes a TURBO space-time encoder and a signal interleaver means that: the TURBO space-time encoder and the signal interleaver can form a parallel cascaded TURBO space-time encoding device.

所述的发射装置包括: TURBO 时空编码器与信源交织器构成的串行级 连 TURBO时空编码装置、 调制及扩展装置、 信道交织器; 其中: The transmitting device includes: a serial concatenation TURBO space-time coding device, a modulation and expansion device, and a channel interleaver composed of a TURBO space-time encoder and a source interleaver; wherein:

发射信号经 TURBO时空编码器与信源交织器构成的串行级连 TURBO时 空编码装置的编码, 调制及扩展装置的调制扩展, 信道交织器的交织后从 对应的天线发射出去。 The transmitted signal is transmitted from the corresponding antenna after being encoded by the TURBO space-time encoding device, modulated and expanded by the modulation and expansion device, and interleaved by the channel interleaver through the serial concatenation of the TURBO space-time encoder and the source interleaver.

所述的发射装置包括: TURBO 时空编码器与信源交织器构成的并行级 连 TURBO时空编码装置、 调制及 T展装置、 信道交织器; 其中: The transmitting device includes: a parallel cascaded TURBO space-time coding device, a modulation and T spreading device, and a channel interleaver composed of a TURBO space-time encoder and a source interleaver; wherein:

发射信号经 TURBO时空编码器与信源交织器构成的并行级连 TURBO时 空编码装置的编码, 调制及扩展装置的调制扩展, 信道交织器的交织后从 对应的天线发射出去。 The transmitted signal is encoded by the parallel cascaded TURBO space-time encoding device formed by the TURBO space-time encoder and the source interleaver, modulated and expanded by the modulation and expansion device, and interleaved by the channel interleaver, and then transmitted from the corresponding antenna.

所述的接收装置至少包括: 扩展的 LOG- MAP译码装置, 该扩展的 LOG - MAP译码装置可对接收的混合信号进行译码。 The receiving device at least includes: an extended LOG-MAP decoding device, the extended LOG- The MAP decoding device can decode the received mixed signal.

所述的扩展的 LOG- MAP译码装置可为扩展的 2维 LOG- MAP译码装置, 其中包括匹配滤波器, APP计算器, 解交织器, 加法器, 交织器; The extended LOG-MAP decoding device can be an extended 2-dimensional LOG-MAP decoding device, which includes a matched filter, an APP calculator, a deinterleaver, an adder, and an interleaver;

在译码时: 迭代译码在 4个环路上进行。 When decoding: Iterative decoding is performed on 4 loops.

所述的扩展的 LOG-MAP译码装置可为扩展的 2维 LOG- MAP译码装置, 其中包括匹配滤波器, APP计算器, 解交织器, 加法器, 交织器; The extended LOG-MAP decoding device may be an extended 2-dimensional LOG-MAP decoding device, which includes a matched filter, an APP calculator, a deinterleaver, an adder, and an interleaver;

在译码时: 迭代译码在 1个环路上进行。 When decoding: Iterative decoding is performed on 1 loop.

本发明的有益效果为: 本发明能很好地改进系统的性能, 可以在达到全 速率的条件下, 获得很大的编码增益和分集增益, 本发明在现有时空编码 技术中具有最优的性能, 特别是在接收端, 可以同时达到 ^艮高的编码增益 和分集增益。 The beneficial effects of the present invention are: the present invention can well improve the performance of the system, and can obtain a large coding gain and diversity gain under the condition of reaching the full rate, and the present invention has the best performance in the existing space-time coding technology Performance, especially at the receiving end, can achieve high coding gain and diversity gain at the same time.

附图说明 Description of drawings

图 1 为本发明方法在具体实施中的 2/8速率串行级连 TURBO时空编码 的结构示意图; Fig. 1 is a schematic structural diagram of the 2/8 rate serial concatenated TURBO space-time coding in the specific implementation of the method of the present invention;

图 2 为本发明方法在具体实施中的 2/8速率并行级连 TURBO 时空编 码的结构示意图; Fig. 2 is a schematic structural diagram of 2/8 rate parallel concatenated TURBO space-time coding in the specific implementation of the method of the present invention;

图 3 为本发明方法的 QPSK信号星座图; FIG. 3 is a QPSK signal constellation diagram of the method of the present invention;

图 4为本发明方法的 16QAM信号星座图; FIG. 4 is a 16QAM signal constellation diagram of the method of the present invention;

图 5 为本发明装置在具体实施中的串行级连调制扩展的 TURBO时空编 码结构框图; Fig. 5 is a structural block diagram of the TURBO space-time encoding of the serial concatenated modulation expansion of the device of the present invention in a specific implementation;

图 6为本发明装置在具体实施中的并行级连调制扩展的 TURBO时空编 码结构框图; FIG. 6 is a block diagram of the TURBO space-time coding structure of parallel concatenated modulation expansion in the specific implementation of the device of the present invention;

图 7为本发明两发两收系统的信道衰落示意图; FIG. 7 is a schematic diagram of channel fading of the two-transmit and two-receive system of the present invention;

图 8 为本发明装置在具体实施中的调制扩展的时空 TURBO编码的扩展 2维 LGO- MAP译码算法 1的结构示意图; FIG. 8 is a schematic structural diagram of the extended 2-dimensional LGO-MAP decoding algorithm 1 of the modulated extended space-time TURBO code in the specific implementation of the device of the present invention;

图 9为本发明装置在具体实施中的调制扩展的时空 TURBO编码的扩展 2维 LOG-MAP译码算法 2的结构示意图; FIG. 9 is a schematic structural diagram of an extended 2-dimensional LOG-MAP decoding algorithm 2 of modulated and extended space-time TURBO coding in a specific implementation of the device of the present invention;

图 10 为本发明衰落信道下全速率扩展时空编码的 BER性能与其他编 码方案的 BER性能的比较图。 具体实施方式 本发明提供了一种全速率 TURBO时空编码方法, 其中包括: 在发射端 对发射信号进行 TURBO时空编码和信号交织, 形成编码信息和交织后编码 信息的混合信号; FIG. 10 is a graph comparing the BER performance of the full-rate extended space-time coding of the present invention with the BER performance of other coding schemes in a fading channel. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a full-rate TURBO space-time encoding method, which includes: performing TURBO space-time encoding and signal interleaving on the transmitted signal at the transmitting end to form a mixed signal of encoded information and interleaved encoded information;

在接收端对接收的混合信号进行译码, 在译码时需要从接收的混合信 号中恢复相应信号的边信息。 The received mixed signal is decoded at the receiving end, and the side information of the corresponding signal needs to be recovered from the received mixed signal during decoding.

以如图 1 所示的 2/8 速率串行级连 TURBO 时空编码的结构示意图为 例, 来详细阐述这种编码方案。 在 [8]中已经指出, 递归时空卷积编码的 性能要优于非递归的编码, 所以在图 1和图 2中的时空编码器, 一般采用 递归时空卷积编码器。 Taking the structural diagram of 2/8 rate serial concatenated TURBO space-time coding as shown in Figure 1 as an example, this coding scheme is described in detail. It has been pointed out in [8] that the performance of recursive space-time convolutional coding is better than that of non-recursive coding, so the space-time encoders in Figure 1 and Figure 2 generally use recursive space-time convolutional coders.

用 Ty{k) 表示由 到 ( i,j,k = \,2 ) 的变换矩阵。 Let Ty{k) denote the transformation matrix from to ( i,j,k = \,2 ).

其中 (4), = 1,2 和 f i, j = 1,2是递归卷积编码器的输入和输出比特序 列。 级连编码器最终输出的 4列比特流为 ((^" ), (0(31)(32)), (0(21)(22)) 和 (<5(41),d(42)), 其映射为 QPSK信号后的符号为 S12, S21 and 2where (4) , = 1,2 and fi, j = 1,2 are the input and output bit sequences of the recursive convolutional encoder. The final 4-column bit stream output by the concatenated encoder is ((^" ), (0 (31)(32) ), (0 (21)(22) ) and (<5( 41 ),d ( 42 )), the symbols mapped to QPSK signals are S 12 , S 21 and 2 .

sn, s12, ¾和 2 将通过下面的变换函数 / c, 组装为两个符号s n , s 12 , ¾ and 2 will be assembled into two symbols by the following transformation function /c,

^和^ , 即 ^ and ^ , namely

(1) (1)

S2 = f(S2l)S22) (2) S 2 = f(S 2l) S 22 ) (2)

^和¾经过信道交织后将最终在两个天线上发射出去。 . ^ and ¾ will finally be transmitted on two antennas after channel interleaving. .

下面只讨论当 /(X, 为 的线性函数时的情况, 此时有

Figure IMGF000010_0001
The following only discusses the case when /(X, is a linear function of
Figure IMGF000010_0001

式中, Pf 被称为功率归一化因子, 用来确保在/变换前后, 信号功 率保持不变。 《, 被称为合并系数, α„,Α,被称为归一化的合并系数。 In the formula, Pf is called a power normalization factor, which is used to ensure that the signal power remains unchanged before and after conversion. «, is called the pooling coefficient, α…, Α, is called the normalized pooling coefficient.

经计算, (4) Calculated, (4)

可以是常量, 也可以因星座图中信号点的不同而不同, 这样可以 产生相位的旋转。 下面只讨论 α, 是常量的情形。 It can be constant, or it can be different due to different signal points in the constellation diagram, so that phase rotation can be generated. In the following, we only discuss the case where α, is a constant.

此时, 可以表示为 At this time, it can be expressed as

其中 = [ β] 被称为系数矩阵 t 例如, α = ^,β = 那么 f(x,y) where = [β] is called the coefficient matrix t. For example, α = ^,β = then f (x , y)

Figure IMGF000011_0002
Figure IMGF000011_0002

此时 QPSK信号 , ¾, S2l2 将被/x )变换成为矩形 16QAM 信号 At this time, the QPSK signal, ¾, S 2l and 2 will be transformed into a rectangular 16QAM signal by /x

2S、 + S. 22 2S, +S. 22

Figure IMGF000011_0003
Figure IMGF000011_0003

QPSK符号 , , s2l2的信号星座图和变换后 和 的 16QAM信 号星座图如图 3, 图 4所示。 The signal constellation diagrams of QPSK symbols , , s 2l and 2 and the transformed 16QAM signal constellation diagrams are shown in Fig. 3 and Fig. 4 .

因此, 这种方案实际上是一种调制扩展的时空编码方案, 可以利用扩 展的调制因子去换取分集或编码增益。 Therefore, this scheme is actually a modulation-extended space-time coding scheme, which can use the expanded modulation factor in exchange for diversity or coding gain.

如图 2 所示, 并行级连调制扩展时空编码由并行级连的卷积编码器, 信源符号交织器, 信号的变换和映射器, 以及信道交织等组成。 As shown in Figure 2, the parallel concatenated modulation spread space-time coding is composed of a parallel concatenated convolutional encoder, a source symbol interleaver, a signal transform and mapper, and a channel interleave.

以上讨论了时空频维数设计的基本思想, 以及利用该思想设计的一种 串并行级连的编码方案。 合理利用时空频维数可以满足不同的需要, 以最 大程度达到分集增益, 编码增益和增加容量。 The basic idea of space-time-frequency dimension design and a serial-parallel cascading coding scheme designed using this idea are discussed above. Reasonable use of space-time-frequency dimensions can meet different needs, and achieve diversity gain, coding gain and increase capacity to the greatest extent.

对于调制扩展的时空频 TURBO编码, 由于在每个接收信号中实际上同 时含有了两个未知的信号 及相应的校验, 所以传统的 LOG- MAP算法无 法完成这种编码结构系统的译码, 本节将推广传统的 LOG-MAP算法, 得到 一种扩展的 LOG-LOG译码方法, 可以有效的解决这个问题, 所以本节先给 出上面所述的扩展时空频 Turbo编码的 MAP译码方法。 采用以上所述的编 码方法时, 接收信号的形式为: For the space-time-frequency TURBO coding of modulation expansion, since each received signal actually contains two unknown signals and corresponding checksums at the same time, the traditional LOG-MAP algorithm cannot complete the decoding of this coding structure system. This section will promote the traditional LOG-MAP algorithm and obtain an extended LOG-LOG decoding method, which can effectively solve this problem, so this section first gives the MAP decoding method of the above-mentioned extended space-time frequency Turbo coding . When the encoding method described above is used, the form of the received signal is:

?】 = hn . Sr + h21 · S2 = 2h · Sn + 2 "hΓ 2l · S = 21 + hu . S12 + h2l . S2 (7) ?] = h n . S r + h 21 S 2 = 2h S n + 2 "h Γ 2l S = 21 + h u . S 12 + h 2l . S 2 (7)

R2 = i · Sl + i · S2 -

Figure IMGF000011_0004
(8) R 2 = i · S l + i · S 2 -
Figure IMGF000011_0004
(8)

在时刻 k的接收信号为 The received signal at time k is

Figure IMGF000011_0005
+ 2h2ks ,k + hu,ksn,k + 2l ks22 k — 2hu,ksu,k + 2h2ltkpnk + hnksnJi + h kpilk (9)
Figure IMGF000011_0005
+ 2h 2k s , k + h u , k s n , k + 2l k s 22 k — 2h u , k s u , k + 2h 2ltk p nk + h nk s nJi + h k p ilk (9)

r2k = 2hl2,ksu,k + 2h22ks2lk + huksnk + h22ks22k r2k = 2h l2 , k s u , k + 2h 22k s 2lk + h uk s nk + h 22k s 22k

(10) 式中, ;^=¾4是信源 的校验序列 在时刻 k的值, 同理 P1U ^^是^交织后的序列的校验序列在时刻 k的值。 (10) In the formula, ^=¾ 4 is the value of the check sequence of the source at time k, and similarly P 1U ^^ is the value of the check sequence of the interleaved sequence at time k.

由(9), (10)可以看出, 每个接收信号, 实际上都是 4部分的和, 包 括信息序列, 交织后的信息序列, 信息序列的校验序列, 交织后的信息序 列的校验序列, 他们分别经过不同的衰落信道后合成为接收信号。 It can be seen from (9) and (10) that each received signal is actually a sum of four parts, including the information sequence, the interleaved information sequence, the check sequence of the information sequence, and the check sequence of the interleaved information sequence. After passing through different fading channels, they are synthesized into received signals.

(9),(10)中的 ,4, 如图 7所示, 表示第 个发射天线与笫 个发射 天线之间的信道衰落, (9), 4 in (10), as shown in FIG. 7, represents the channel fading between the first transmitting antenna and the first transmitting antenna,

图 8给出了对 2发 2收, 并行级连调制扩展时空编码的译码框图。 2 个接收信号首先经过两个接收匹配滤波器, 完成射频及中频解调, 解扩的 功能。 处理后的基带信号被送入两个 APP (后验概率)计算器。 从图 8中 可以看出, 这个译码包括 4个环路, 迭代译码就是在这些环路上进行的。 下面给出较详细的译码算法。 Fig. 8 shows a decoding block diagram of 2-transmit-2-receive, parallel concatenated modulation and extended space-time coding. The two received signals first pass through two received matched filters to complete the functions of radio frequency and intermediate frequency demodulation and despreading. The processed baseband signal is fed into two APP (posterior probability) calculators. It can be seen from FIG. 8 that this decoding includes 4 loops, and iterative decoding is performed on these loops. A more detailed decoding algorithm is given below.

为利用 MAP算法, 可假设 是独立的, 为与传统的 LOG- MAP译码 思想的推导一致, 令: In order to use the MAP algorithm, it can be assumed that is independent, in order to be consistent with the derivation of the traditional LOG-MAP decoding idea, let:

SU,k " U ,SV2,k ~ U2k (11) S U,k " U , S V2,k ~ U 2k (11)

现在需要求: Now require:

P(¾ P(¾

Figure IMGF000012_0001
Figure IMGF000012_0001

(12) (12)

为采用 LOG- MAP译码方法, 定义: To adopt the LOG-MAP decoding method, define:

= piuik

Figure IMGF000012_0002
= p i u ik
Figure IMGF000012_0002

ak (σ^ ,σ,2) = P(ak l ,σ^,Υ') (14) a k (σ^ ,σ, 2 ) = P(a k l ,σ^,Υ') (14)

(15)

Figure IMGF000012_0003
Figure IMGF000013_0001
, 从状态 σ¾'到 + , 并且输入为 u{j) , 从状态 24+1 2, 输出为 时的联合概率密度。 (15)
Figure IMGF000012_0003
Figure IMGF000013_0001
, from state σ ¾ ' to + , and the input is u{j) , from state 2 to 4+1 2 , the joint probability density when the output is .

经化简, 可以得到, After simplification, we can get,

ΥΪ 1 > σΜ σΜ ,yk) = p(yk I σ w« > σ¾ 2 ' uj )P(u = u f))p ulk =" )) (17) ΥΪ 1 > σ Μ σ Μ ,y k ) = p(y k I σ w « > σ ¾ 2 ' u j )P( u = u f))pu lk = )) (17)

上式中利用了 的独立性。 式中 p、yk I ||2) (18)Independence is used in the above formula. where p, y k I || 2 ) (18)

Figure IMGF000013_0002
Figure IMGF000013_0002

2s, u. +5. 2s, u . +5.

上式中, st = 1 - ' °\2k , 如果 Λ= ι, Hk = (h k A214),而如果; t =r2,In the above formula, s t = 1 - ' °\2k , if Λ = ι , H k = (h k A 214 ), and if; t = r 2 ,

2Puk +Pm)

Figure IMGF000013_0003
2 Puk +Pm)
Figure IMGF000013_0003

式中 Μ表示接收天线的个数。 In the formula, M represents the number of receiving antennas.

上式是假设没有并行路径是推导出来的, 有并行路径时的算法与前面 的处理方法相同。 The above formula is derived assuming that there is no parallel path, and the algorithm when there is parallel path is the same as the previous processing method.

同理, 可以求出 的迭代公式, Similarly, the iterative formula of can be obtained,

β/ ( ', σ 2 ) σΜ 2 ,yk) (20)β/ ( ', σ 2 ) σ Μ 2 ,y k ) (20)

Figure IMGF000013_0004
Figure IMGF000013_0004

利用上面的公式,可以求出后验概率表示式, Using the above formula, the posterior probability expression can be obtained,

P(uk = u(i),u2k = u(j) I Y) P(u k = u(i),u 2k = u(j) IY)

(21) ( 21 )

从而求出 so as to obtain

P(u,k =u(i)\Y) P(u, k =u(i)\Y)

(22)

Figure IMGF000013_0006
( 22) and
Figure IMGF000013_0006

P( 2k = u(j) I Y) P( 2k = u(j) IY)

= ΛΣΣΣ%(σ ^2 (σ ^+/,σ ,σ,+ Λ)Α-+1 + ^+1 2) (23) 在计算 h时, 只要保证上两式对所有输入和的概率为 1, 即可求出相 应的 h。 = Λ ΣΣΣ%( σ ^ 2 (σ ^ + /,σ , σ , + Λ)Α- +1 + ^ +1 2 ) (23) When calculating h, as long as the probability of the above two formulas for all input sums is guaranteed is 1, the corresponding h can be obtained.

在多径条件下, 计算; )的公式可修正为: p{yk I yki - sHklskl \\ ) (24)

Figure IMGF000014_0001
Under multipath conditions, the formula for calculating ; ) can be modified as: p{y k I y ki - s H kl s kl \\ ) (24)
Figure IMGF000014_0001

上式中, 下标 /表示第 /径信号和衰落, L为多径的数目, M为接收天 线的个数, ^表示时刻 1, 第/径的信道矩阵。 In the above formula, the subscript / represents the /th path signal and fading, L is the number of multipaths, M is the number of receiving antennas, and ^ represents the channel matrix of the /th path at time 1.

在存在并行路径时, 所有计算过程相同, 只须把并行路径也当作为普 通的路径处理即可, 而在计算 α,Α 时, 还需要对并行路径求和。 所以 α,Α 应该是对应于每一个路径而言的。 对具有并行路径的系统, 不建议 用上面的所述的方法, 在 [10]中, Bruce E.Wahlen 给出过一种针对并行 路径设计的 Pragmatic Trellis编码, 可以考虑将其级连用于时空编码系 统中。 When there are parallel paths, all calculation processes are the same, only the parallel paths need to be treated as ordinary paths, and when calculating α, Α, it is also necessary to sum the parallel paths. So α, Α should correspond to each path. For systems with parallel paths, it is not recommended to use the method described above. In [10], Bruce E.Wahlen gave a Pragmatic Trellis code designed for parallel paths, which can be concatenated for space-time coding system.

这样, 就分别求出了 的全信息, 同时, 边信息被给出如下: In this way, the full information of is obtained respectively, and the side information of is given as follows:

Le (Y I "(0) = P(uik = u(i) I Y)― P(ulk = u{i)) (25) L e (YI "(0) = P(u ik = u(i) IY)― P(u lk = u{i)) (25)

Le (Y I u(j)) = P{u2k = u(j) I Y) - P{ u = u(j)) (26) L e (YI u(j)) = P{u 2k = u(j) IY) - P{ u = u(j)) (26)

在每个接收天线上, 可以分别求出信息比特和交织后信息比特的边信 息, 这样, 在两个接收天线时, 实际上, 可以求出 4个有关信息比特的边 信息, 因此如果采用迭代译码, 可以达到 1/4码率的编码效率。 On each receiving antenna, the information bits and the side information of the interleaved information bits can be obtained separately. In this way, when there are two receiving antennas, in fact, the side information of 4 related information bits can be obtained. Therefore, if iterative Decoding can achieve a coding efficiency of 1/4 code rate.

迭代译码的系统框图如图 8、 9 所示: The system block diagram of iterative decoding is shown in Figures 8 and 9:

对两发两收系统, 对第一个接收天线, 按照上述公式, 可以分别求出 信息比特 ¾和交织后信息比特 ^的边信息 ( |M(0) , L\{y, \u{j)) 同理对 第一个接收天线, 按照上述公式, 可以分别求出信息比特^和交织后信息 比特 的边信息 ^(^"(o), ο^" >)。 这样实际上得到了有关信息比特 的 4个边信息,记为 Le k(yi I "(0)交织后的值为 L {yx I u(i))。 For a two-transmit and two-receive system, for the first receiving antenna, according to the above formula, the side information of the information bit ¾ and the interleaved information bit ^ can be obtained respectively ( | M (0) , L\{y, \u{j )) Similarly, for the first receiving antenna, according to the above formula, the side information ^(^"(o), ο^">) of the information bits ^ and the interleaved information bits can be obtained respectively. In this way, four side information about the information bits are actually obtained, which are denoted as L e k ( yi I "(0) after interleaving is L {y x I u(i)).

所以在迭代译码时, 这相当于多 TURBO码的迭代译码.在迭代译码时, 每 3个边信息的和将作为另外一路信息的先验信息。 例如, 如图 8所示, 第一个接收天线中的 Ulk的先验信息在迭代译码时, 将等于 (u(j) |^), Le 3(u(i)\y2) , «)| 2)的和。 Therefore, during iterative decoding, this is equivalent to the iterative decoding of multiple TURBO codes. During iterative decoding, the sum of every three side information will be used as the prior information of another channel of information. For example, as shown in Figure 8, the prior information of Ulk in the first receiving antenna will be equal to (u(j) |^), L e 3 (u(i)\y 2 ) during iterative decoding, «)| 2 ) and.

即: P(uu = ux (0) = (u(j) \yi) + L (u(i) \y2) + L^ (u(j) \ y2 ) (27) 同理 , 其他三路信息比特中每一路先验信息都等于其他三路的边信息 之和。 Namely: P(u u = u x (0) = (u(j) \ yi ) + L (u(i) \y 2 ) + L^ (u(j) \ y 2 ) (27) Similarly, Each path of prior information in the other three paths of information bits is equal to the sum of the other three paths of side information.

上面给出的译码算法 1 , 实质上是在两个接收天线上做迭代译码。 实 际上, 两个接收天线之间可以不用来做迭代译码, 而是在计算度量时进行 合并, 去获得分集增益, 我们称之为译码方案 2。 图 9给出了译码算法 2 的译码框图, 此时译码器只包含两个环路, 迭代译码只这两路信息中进行。 The decoding algorithm 1 given above essentially performs iterative decoding on two receiving antennas. In fact, the two receiving antennas may not be used for iterative decoding, but combined when calculating the metric to obtain diversity gain, which we call decoding scheme 2. Fig. 9 shows the decoding block diagram of the decoding algorithm 2. At this time, the decoder only includes two loops, and the iterative decoding is only performed in these two channels of information.

此时两个接收天线的信号只是在计算 Λ |σΛ",.,σΛ" 时进行分集合 并用此时, 度量的计算应为两个接收天线度量之和, 此时在计算 ^时会发 生变化:

Figure IMGF000015_0001
(28) At this time, the signals of the two receiving antennas are only combined in diversity when calculating Λ |σΛ",.,σΛ". At this time, the calculation of the metric should be the sum of the metrics of the two receiving antennas, and it will change when calculating ^ :
Figure IMGF000015_0001
(28)

上式中的条件概率 ( I )应 ~正为: The conditional probability ( I ) in the above formula should ~ be exactly:

P(yk I σΛ",.,σΛ" Λ,· - II ) (29)P(y k I σΛ",.,σΛ" Λ,· - II ) ( 29 )

Figure IMGF000015_0002
Figure IMGF000015_0002

除此之外, 其他概率的计算都与译码算法 1中相同。 In addition, the calculation of other probabilities is the same as that in decoding algorithm 1.

因而此时只有一个 APP计算器, 只有两个边信息输出, 它们分别作为 下一一次迭代译码的先验信息。 Therefore, there is only one APP calculator at this time, and only two side information outputs, which are respectively used as prior information for the next iterative decoding.

下面给出仿真结果分析, 如图 10所示, 给出采用扩展 LOG- MAP译码 算法, 映射函数/ ( ^^^x + ^y , α„ ·. βη =2 ·. 1时, 该方案与在 [6] , [8] 中提出的全速率时空 TURBO编码方案以及 Tarokh在 [2]中提出的方案的性 能比较。 仿真中, 本方案采用 4状态, 每个信道模型为单径衰落信道, 信 道估计采用连续导频辅助信道估计, 移动速度 60km/h,内交织采用 512bi t 的随机交织器, 信道交织采用 9800bi t的随机交织器, 扩频增益 32 , 采用 连续导频信道估计, 迭代 6次。 在下面给出的仿真结果中, 假设两个发射 天线的总发射功率与无发射分集时单天线的总发射功率相同。 The analysis of the simulation results is given below, as shown in Figure 10, when the extended LOG-MAP decoding algorithm is used, the mapping function / ( ^^^x + ^y , α „·. β η =2 ·.1, the The scheme is compared with the performance of the full-rate space-time TURBO coding scheme proposed in [6], [8] and the scheme proposed by Tarokh in [2]. In the simulation, this scheme adopts 4 states, and each channel model is single-path fading Channel, channel estimation uses continuous pilot assisted channel estimation, moving speed 60km/h, internal interleaving uses 512bit random interleaver, channel interleaving uses 9800bit random interleaver, spreading gain 32, adopts continuous pilot channel estimation, The iteration is 6. In the simulation results given below, it is assumed that the total transmit power of the two transmit antennas is the same as the total transmit power of a single antenna without transmit diversity.

本发明能很好地改进系统的性能, 可以在达到全速率的条件下, 获得 很大的编码增益和分集增益, 本发明在现有时空编码技术中具有最优的性 能, 特别是在接收端, 可以同时达到艮高的编码增益和分集增益。 本发明所引用的参考文献如下: [I] . S. M. Alamouti, " A simple transmit diversity technique for wireless [2] . V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space time block coding for wireless communications: Performance results, " IEEE JSAC, voll.17, pp.451-460, Mar.1999. The present invention can improve the performance of the system very well, and can obtain a large coding gain and diversity gain under the condition of reaching the full rate. The present invention has the best performance in the existing space-time coding technology, especially at the receiving end , can simultaneously achieve high coding gain and diversity gain. The cited references of the present invention are as follows: [I] . S. M. Alamouti, " A simple transmit diversity technique for wireless [2] . V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space time block coding for wireless communications: Performance results, " IEEE JSAC, voll.17 , pp.451-460, Mar.1999.

[3] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block coding for wireless communications: Theory of generalized orthogonal designs, " IEEE Trans. On Information Theory, vol.45, pp.1456-1467, July. 1999. [3] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block coding for wireless communications: Theory of generalized orthogonal designs," IEEE Trans. On Information Theory, vol.45, pp.1456-1467, July . 1999.

[4] G. Bauch, "Concatenation of space-time block codes and turbo TCM,,, IEEE International Conference on Communications (ICC'99) , pp.1202-1206, June 1999. [4] G. Bauch, "Concatenation of space-time block codes and turbo TCM," IEEE International Conference on Communications (ICC'99), pp.1202-1206, June 1999.

[5] K. R. Narayanan, "Turbo decoding of concatenated space-time codes, " 37th [5] KR Narayanan, "Turbo decoding of concatenated space-time codes," 37 th

Annual Allerton Conference on Communication, Control and Computing, Sept, 1999. Annual Allerton Conference on Communication, Control and Computing, Sept, 1999.

[6] Hsuan-Jung Su and Evaggelos Geraniotis, "Space-Time Turbo Codes with Full Antenna Diversity", IEEE Tans, on Commun, vol.49, NO.1, Jan 2001. [6] Hsuan-Jung Su and Evaggelos Geraniotis, "Space-Time Turbo Codes with Full Antenna Diversity", IEEE Tans, on Commun, vol.49, NO.1, Jan 2001.

[7] Y.Liu ?M. P. Fitz and 0· Y, Takeshi ta, "QPSK space-time turbo codes," IEEE International Conference on Communications (ICC'OO) , June 2000. [7] Y.Liu ? MP Fitz and 0· Y, Takeshi ta, "QPSK space-time turbo codes," IEEE International Conference on Communications (ICC'OO) , June 2000.

[8] D. Cui and A. M. Haimovich, "A new bandwidth efficient antenna diversity scheme using turbo codes, " 34th Annual Conference on Information Sciences and Systems (CISS'00), vol.1, pp. TA— 6.24- 29, Mar.2000, Princeton, NL [8] D. Cui and AM Haimovich, "A new bandwidth efficient antenna diversity scheme using turbo codes," 34th Annual Conference on Information Sciences and Systems (CISS'00), vol.1, pp. TA— 6.24-29, Mar. 2000, Princeton, NL

[9] Robert J. McElience, David J. C. Mackay and Jung-Fu, " Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm", IEEE JSAC, [9] Robert J. McElience, David J. C. Mackay and Jung-Fu, "Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm", IEEE JSAC,

Vol.16, No.2, Feb 1998. Vol.16, No.2, Feb 1998.

[10] Bruce E. Wahlen and Calvin Y.Mai, "Turbo Coding Applied to Pragmatic Trellis- coded", IEEE Communication Letters, VOL.4, NO.2, Feb 2000. [10] Bruce E. Wahlen and Calvin Y. Mai, "Turbo Coding Applied to Pragmatic Trellis-coded", IEEE Communication Letters, VOL.4, NO.2, Feb 2000.

[II] D, J. C. MacKay, "A free energy minimization framework for inference problems in modulo 2 arithmetic, " in Fast Software Encryption, B. Preneel, Ed. [II] D, J. C. MacKay, "A free energy minimization framework for inference problems in modulo 2 arithmetic, " in Fast Software Encryption, B. Preneel, Ed.

Berlin, Germany: Spr inger-Verlag Lecture Notes in Computer Science, vol.1008, 1995, pp.179-195. Berlin, Germany: Springer-Verlag Lecture Notes in Computer Science, vol.1008, 1995, pp.179-195.

[12] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes, " Electron. Lett. , vol.32pp.1645-1646, Aug.1996. [12] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes, " Electron. Lett. , vol.32pp.1645-1646, Aug.1996.

[13] . E. Telatar, "Capacity of Multi-antenna Gaussian Channels", IEEE Trans. [13] . E. Telatar, "Capacity of Multi-antenna Gaussian Channels", IEEE Trans.

Commun, vol.42, No.2/3/4, pp.1617-1627, November-December 1999. Commun, vol.42, No.2/3/4, pp.1617-1627, November-December 1999.

[14] . C. Chuah, J. M. Kahn and D. Tse? "Capacity of Multi-Antenna Array Systems in Indoor Wireless Environment", accepted for publication in Globecom, Sydney, 1998, [14]. C. Chuah, JM Kahn and D. Tse ? "Capacity of Multi-Antenna Array Systems in Indoor Wireless Environment", accepted for publication in Globecom, Sydney, 1998,

Claims (1)

权 利 要 求 Rights request 1. 一种全速率 TURBO 时空编码方法, 其中包括: 在发射端对发射信 号进行 TURBO时空编码和信号交织, 形成编码信息和交织后编码信息的混 合信号; 1. A full-rate TURBO space-time encoding method, which includes: performing TURBO space-time encoding and signal interleaving on the transmitted signal at the transmitting end to form a mixed signal of encoded information and interleaved encoded information; 在接收端对接收的混合信号进行译码, 在译码时需要从接收的混合信 号中恢复相应信号的边信息。 The received mixed signal is decoded at the receiving end, and the side information of the corresponding signal needs to be recovered from the received mixed signal during decoding. 2. 根据权利要求 1 所迷的方法, 其特征在于, 所述的在发射端对发 射信号进行 TURBO 时空编码和信号交织包括: 发射端可对发射信号进行串 行级连 TURBO时空编码,其中: 2. The method according to claim 1, wherein said performing TURBO space-time encoding and signal interleaving on the transmitting signal at the transmitting end comprises: the transmitting end can perform serial concatenation TURBO space-time encoding on the transmitting signal, wherein: 可用 2 . (A)表示由 到^ "的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列 , 可表示 TURBO时空编码的输出比特序列; 2. (A) can be used to represent the transformation matrix from to ^ "; it can represent the input bit sequence of TURBO space-time coding, and can represent the output bit sequence of TURBO space-time coding; 当 = 1,2时串行级连 TURBO时空编码的步骤为: When = 1,2, the steps of serial concatenation TURBO space-time encoding are: /(,)和 )变换为 和 2) , f(n)12)经交织后输出的比特流为 (0(,1 ,0(12)); / (,) and) are transformed into and 2) , f (n) and 12) are interleaved and the output bit stream is (0 (,1 ,0 (12) ); V(W , 2)经交织和 TURBO时空编码后输出的比特流为((5(21^(22)); lK (2)经 TURBO 时空编码变换为 21)22) ,. 21)和^ 22)经交织后输 出的比特流为(d(31),d(32)) ; The output bit stream of V (W , 2) after interleaving and TURBO space-time coding is ((5 (21 ^ (22) ); lK (2) is transformed into 21) and 22 ) by TURBO space-time coding,. 22) The output bit stream after interleaving is (d (31) , d (32) ); V{2l 22)经交织和 TURBO时空编码后输出的比特流为(d(41),d(42))。The output bit stream of V {2l 22 ) after interleaving and TURBO space-time encoding is (d( 41) ,d (42) ). 3. 根据权利要求 1 所述的方法, 其特征在于, 所述的在发射端对发 射信号进行 TURBO 时空编码和信号交织包括: 发射端可对发射信号进行并 行级连 TURBO时空编码,其中: 3. The method according to claim 1, characterized in that, performing TURBO space-time coding and signal interleaving on the transmitted signal at the transmitting end comprises: the transmitting end can perform parallel concatenated TURBO space-time coding on the transmitting signal, wherein: 可用 2 )表示由 到 )的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列, 可表示 TURBO时空编码的输出比特序列; 2) can be used to represent the transformation matrix from to ); It can represent the input bit sequence of TURBO space-time coding, and can represent the output bit sequence of TURBO space-time coding; 当 i,j,k = 1,2时并行级连 TURBO时空编码的步骤为: When i, j, k = 1, 2, the steps of parallel cascading TURBO space-time coding are: )、 /(2)输出的比特流为(d(11),d(12)) ; ), /( 2 ) the output bit stream is (d (11 ), d( 12 )) ; 、 7(2)经 TURBO时空编码后输出的比特流为(<5(21),0(22)); , 7 (2) the output bit stream after TURBO space-time coding is (<5 (21) , 0 (22) ); (2)经交织后输出的比特流为(d(31),d(32)) ; , (2) The output bit stream after interleaving is (d (31) , d (32) ); 、 7(2)经交织和 TURBO时空编码后输出的比特流为(<5(41) (42))。 , 7 (2) The output bit stream after interleaving and TURBO space-time coding is (<5 (41) (42) ). 4. 根据权利要求 1 所述的方法, 其特征在于, 所述的在发射端对发 射信号进行 TURBO 时空编码和信号交织包括: 发射端可对发射信号进行串 行级连调制扩展的 TURBO时空编码,其中: 4. The method according to claim 1, characterized in that, performing TURBO space-time coding and signal interleaving on the transmitted signal at the transmitting end comprises: performing TURBO space-time coding for serial concatenated modulation and expansion of the transmitting signal at the transmitting end ,in: 可用 7 )表示由 ("到 )的变换矩!1卒; ("可表示 TURBO 时空编码的 输入比特序列, 可表示 TURBO时空编码的输出比特序列; 7 ) can be used to represent the transformation moment from ( "to)! 当 ,A: = 1,2时串行级连调制扩展的 TURBO时空编码的步骤为: When ,A: = 1,2, the steps of TURBO space-time coding for serial concatenated modulation extension are: 、 /(2)变换为 ")、 (12) , f(n)(,2)经交织后输出的比特流为 „ ); , / (2) transformed into "), (12) , f (n) , (,2) the output bit stream after interleaving is „ ); f(n)12)经交织和 TURBO时空编码后输出的比特流为(0(21),d(22)); /(2)经 TURBO 时空编码变换为^ 21)、 V22) , V ) 22)经交织后输 出的比特流为(<5(31),d(32)); ' f (n) , 12) the output bit stream after interleaving and TURBO space-time encoding is (0 (21 ), d (22) ); /( 2 ) is transformed into ^ 21 ), V 22) , V ) 22 ) The output bit stream after interleaving is (<5 (31) ,d (32) ); ' V(21 22)经交织和 TURBO时空编码后输出的比特流为(d(41) (42)); 输出的比特流映射为 QPSK信号后的符号为 l2, S2l and S22; Sn, Sl2, 和 2 将通过变换函数 /(x, 调制扩展为 16QAM信号后的 符号为 和 , 即 =/( 11,4)和)¾=/( 1, 2); The output bit stream of V (21 22) after interleaving and TURBO space-time encoding is (d (41) (42) ); the output bit stream is mapped to QPSK signals and the symbols are l2 , S 2l and S 22 ; S n , S l2 , and 2 will be the sum of symbols after modulation and expansion into 16QAM signals through the transformation function /(x, ie =/( 11 ,4) and ) ¾=/( 1 , 2 ); sx和 经过信道交织后可在两个天线上发射出去。 s x and can be transmitted on two antennas after channel interleaving. 5. 根据权利要求 1 所述的方法, 其特征在于, 所述的在发射端对发 射信号进行 TURBO 时空编码和信号交织包括: 发射端可对发射信号进行并 行级连调制扩展的 TURBO时空编码,其中: 5. The method according to claim 1, characterized in that, performing TURBO space-time coding and signal interleaving on the transmitting signal at the transmitting end comprises: performing TURBO space-time coding for parallel concatenated modulation and expansion of the transmitting signal at the transmitting end, in: 可用 7. )表示由 到^ ^的变换矩阵; 可表示 TURBO 时空编码的 输入比特序列, ^ 可表示 TURBO时空编码的输出比特序列; 7. ) can be used to represent the transformation matrix from to ^ ^; can represent the input bit sequence of TURBO space-time coding, and ^ can represent the output bit sequence of TURBO space-time coding; 当 = 1,2时并行级连调制扩展的 TURBO时空编码的步骤为: When = 1,2, the steps of TURBO space-time coding for parallel concatenated modulation expansion are: /(,)、 : r(2)输出的比特流为(d"1),^1 ); / (,) , : The bit stream output by r( 2 ) is (d" 1 ),^ 1 ); (2)经 TURBO时空编码后输出的比特流为(<5(21) (22)); , (2) the bit stream output after TURBO space-time coding is (<5( 21)(22) ); 7(1)、 /(2)经交织后输出的比特流为(0(31),0(32)); 7 (1) , / (2) the output bit stream after interleaving is (0 (31) ,0 (32) ); J(1), /(2)经交织和 TURBO时空编码后输出的比特流为(0(41),d(42))。 The output bit stream of J (1) , / (2) after interleaving and TURBO space-time coding is (0 (41) ,d (42) ). 输出的比特流映射为 QPSK信号后的符号为 , Sn, S2l and ¾2; Sn, Su, ^和^ 将通过变换函数 / 调制扩展为 16QAM信号后的 符号为 S和 , 即^ =/(U12)和 =/( 212); The symbols after the output bit stream is mapped to the QPSK signal are, S n , S 2l and ¾ 2 ; S n , S u , ^ and ^ will be extended to the 16QAM signal through the transformation function/modulation and the symbols are S and, namely ^ =/(U 12 ) and =/( 21 , 2 ); 5.和 经过信道交织后可在两个天线上发射出去。 5. and can be transmitted on two antennas after channel interleaving. 6. 根据权利要求 1 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 在接收端可对接收的混合信号进行扩展的 LOG-MAP译码。 6. The method according to claim 1, wherein said decoding the received mixed signal at the receiving end comprises: LOG-MAP decoding capable of extending the received mixed signal at the receiving end. 7. 根据权利要求 2 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 7. The method according to claim 2, wherein said decoding the received mixed signal at the receiving end comprises: 在接收端可对接收的混合信号进行扩展的 2维 LOG- MAP译码, 其中: 接收信号的形式为: At the receiving end, the received mixed signal can be extended to 2-dimensional LOG-MAP decoding, where: The form of the received signal is: Rl = n -^. +h2l -S2 = 2hu -Su +2h -S2l +hu -S +h21 -S22 R l = n -^. +h 2l -S 2 = 2h u -S u +2h -S 2l +h u -S +h 21 -S 22 R2 = hn -S! +h21 -S2 = 2h12 - Sn +2h22 -S2l +hu -Sl2 +h22•5'22. R 2 = h n -S! +h 21 -S 2 = 2h 12 - S n +2h 22 -S 2l +h u -S l2 +h 22 •5' 22 . 在时刻 k的接收信号为 The received signal at time k is T 2k
Figure IMGF000019_0001
T 2k
Figure IMGF000019_0001
= 2/i 12> }CS k + 22, k Pll,k ^12, kS 12, k + 22、 k P \2, lc , = 2/i 12> } C S k + 22, k Pll,k ^12, k S 12, k + 22, k P \2, lc , 式中, ^=¾^是信源 的校验序列 在时刻 k 的值, 同理 Aw=¾,t 是^交织后的序列的校验序列在时刻 k的值; In the formula, ^ = ¾ ^ is the value of the check sequence of the source at time k, and similarly Aw = ¾, t is the value of the check sequence of the interleaved sequence at time k; 每个接收信号, 实际上都是 4 部分的和, 包括信息序列, 交织后的信 息序列, 信息序列的校睑序列, 交织后的信息序列的校验序列, 他们分别 经过不同的衰落信道后合成为接收信号。 Each received signal is actually the sum of 4 parts, including the information sequence, the interleaved information sequence, the check sequence of the information sequence, and the check sequence of the interleaved information sequence, which are synthesized after passing through different fading channels to receive the signal. 8. 根据权利要求 3 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 8. The method according to claim 3, wherein said decoding the received mixed signal at the receiving end comprises: 在接收端可对接收的混合信号进行扩展的 2维 LOG- MAP译码, 其中: '接收信号的形式为: At the receiving end, the received mixed signal can be extended to 2-dimensional LOG-MAP decoding, where: 'The form of the received signal is: R1 = hn -Si +h21 -S2 = 2hn -Su +2h2l -S21 +hu -Sl2 + h2l -S22 R 1 = h n -Si +h 21 -S 2 = 2h n -S u +2h 2l -S 21 +h u -S l2 + h 2l -S 22 R2 = hu . +h22 -S2 = 2hn -S +2h22 -S2l +h12 -Su +h22 -S22. R 2 = h u . +h 22 -S 2 = 2h n -S +2h 22 -S 2l +h 12 -S u +h 22 -S 22 . 在时刻 k的接收信号为 ^^u,ks \\ +2h21 k pu k ^- U) ks c +h2l cpl2} kThe received signal at time k is ^^u,k s \\ +2h 21 k p uk ^- U) k s c +h 2l c p l2} k ; r2k ~
Figure IMGF000020_0001
2, fc S , k + 22, k S 22, k
r2k ~
Figure IMGF000020_0001
2, fc S , k + 22, k S 22, k
― 2¾12( kSUt k + k ' ― 2¾ 12( k S U t k + k ' 式中 ' Al,4=¾是信源 的校验序列 在时刻 k 的值, 同理 In the formula ' Al , 4 = ¾ , is the value of the verification sequence of the source at time k, similarly Aw =½ 是¾1交织后的序列的校险序列在时刻 k的值; Aw = ½ is the value of the calibration sequence of the sequence after ¾ 1 interleaving at time k ; 每个接收信号, 实际上都是 4部分的和, 包括信息序列, 交织后的信 息序列, 信息序列的校 ¾r序列, 交织后的信息序列的校验序列, 他们分别 经过不同的衰落信道后合成为接收信号。 Each received signal is actually a sum of four parts, including an information sequence, an interleaved information sequence, a check sequence of the information sequence, and a check sequence of the interleaved information sequence, which are synthesized after passing through different fading channels respectively to receive the signal. 9. 根据权利要求 4 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 9. The method according to claim 4, wherein said decoding the received mixed signal at the receiving end comprises: 在接收端可对接收的混合信号进行扩展的 2维 LOG- MAP译码, 其中: 接收信号的形式为: · At the receiving end, the received mixed signal can be extended to 2-dimensional LOG-MAP decoding, where: The form of the received signal is: · Ri = hn -S! + ^2i = 2Λ„ -Sn +2h2l -S2l +hn -Su +h2l -S22 Ri = h n -S! + ^2i = 2Λ„ -S n +2h 2l -S 2l +h n -S u +h 2l -S 22 R2 = h12•S1 +h22 -S2 = 2hl2 -Sn +2h 22 -S21 +hl2 -S12 +h22 -S22. R 2 = h 12 •S 1 +h 22 -S 2 = 2h l2 -S n +2h 22 -S 21 +h l2 -S 12 +h 22 -S 22 . 在时刻 k的接收信号为 The received signal at time k is
Figure IMGF000020_0003
+ kS ,k + h2 kS 22k
Figure IMGF000020_0004
Figure IMGF000020_0003
+ k S , k + h 2 k S 22 , k
Figure IMGF000020_0004
r2k ~ 2Λ12) fc^n, k ^^22,kS2\,k + ^12, A ^12, k + ^ 22, A 522, A: r2k ~ 2Λ 12) fc^n, k ^^22,k S 2\,k + ^12, A ^12, k + ^22, A 5 22, A: ― 2/?12) k SUt k + 2? 22j hPu, k +, 2> k S , k + 22, k P \2, k , ― 2/? 12) k S Ut k + 2? 2 2j hPu, k +, 2> k S , k + 22 , k P \ 2 , k , 式中, AWA是信源 4的校验序列 ¾在时刻 k 的值, 同理In the formula, A W =2 A is the value of the check sequence 2 of the source 4 at time k, similarly Aw =¾ 是 交织后的序列的校验序列在时刻 k的值; Aw = ¾ is the value of the check sequence of the interleaved sequence at time k ; 每个接收信号, 实际上都是 4部分的和, 包括信息序列, 交织后的信 息序列, 信息序列的校险序列, 交织后的信息序列的校验序列, 他们分别 经过不同的衰落信道后合成为接收信号。 Each received signal is actually the sum of 4 parts, including the information sequence, the interleaved information sequence, the check sequence of the information sequence, and the check sequence of the interleaved information sequence, which are synthesized after passing through different fading channels to receive the signal. 10. 根据权利要求 5 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 10. The method according to claim 5, wherein said decoding the received mixed signal at the receiving end comprises: 在接收端可对接收的混合信号进行扩展的 2维 LOG-MAP译码, 其中: 接收信号的形式为: Extended 2-dimensional LOG-MAP decoding can be performed on the received mixed signal at the receiving end, where: The format of the received signal is: i?, = hu •Si + h21 -S 2 = 2hu -Sn +2h21 · S21 +hll -S12 + k21 ■ S22 i?, = h u S i + h 21 -S 2 = 2h u -S n +2h 21 S 21 +h ll -S 12 + k 21 S 22 R2 = •S1 +h22 - S2 = 2hl2 -Sn +2h22 -S21 +hn -Sn +h22 · S 21., R 2 = S 1 +h 22 - S 2 = 2h l2 -S n +2h 22 -S 21 +h n -S n +h 22 S 21 ., 在时刻 k的接收信号为 The received signal at time k is
Figure IMGF000021_0001
Figure IMGF000021_0001
一^1 ks k + 2h 21, k p u, k -^-hl ksl2 k + h 2, k p 2k , a^ 1 k s k + 2h 21 , k p u , k -^-h lk s l2 k + h 2 , k p 2 , k , r2k = 2/¾12l kSl\,k + 2h 22k S 2 , k chl2i k S k + Λ22, kS 22,k r2k = 2/¾ 12l k S l\,k + 2h 22k S 2 , k ch l2i k S k + Λ 2 2, k S 22,k
Figure IMGF000021_0002
A + 22kP 2k,
-
Figure IMGF000021_0002
A + 22k P 2k ,
式中, Aw=¾,t是信源 的校验序列 ¾在时刻 k 的值, 同理 Pxu = ^^是^交织后的序列的校验序列在时刻 k的值; In the formula, Aw=2, t is the value of the check sequence 2 of the source at time k, and similarly Pxu =^ is the value of the check sequence of the interleaved sequence at time k; 每个接收信号, 实际上都是 4部分的和, 包括信息序列, 交织后的信 息序列, 信息序列的校验序列, 交织后的信息序列的校验序列, 他们分别 经过不同的衰落信道后合成为接收信号。 Each received signal is actually the sum of 4 parts, including the information sequence, the interleaved information sequence, the check sequence of the information sequence, and the check sequence of the interleaved information sequence, which are synthesized after passing through different fading channels to receive the signal. 11. 根据权利要求 5 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号进行译码包括: 11. The method according to claim 5, wherein said decoding the received mixed signal at the receiving end comprises: 在接收端可对接收的混合信号进行滤波、 射频及中频解调、 解扩, 计 算处理后基带信号的 APP; 所述译码包括 4个环路, 迭代译码在这 4个环 路上进行; 其中: Filtering, radio frequency and intermediate frequency demodulation, and despreading can be performed on the received mixed signal at the receiving end, and the APP of the processed baseband signal is calculated; the decoding includes 4 loops, and iterative decoding is performed on these 4 loops; in: 联合概率密度需满足下列条件: The joint probability density needs to meet the following conditions: rl{crk l ,ak÷l l ,ak 2 ,ak + 2 ,yk) = p(yk \ σ k l ,u a k 2 ,u j)p{uxk = u{i))p(u2k = "(_/·)) rl{cr k l ,a k÷l l ,a k 2 ,a k + 2 ,y k ) = p(y k \ σ k l ,ua k 2 ,uj)p{u xk = u{i)) p(u 2k = "(_/ )) P(yk I ||2);P(y k I || 2 ); 后验概率需满足下列条件: The posterior probability needs to meet the following conditions: P{uxk = u(i),u2k = u(j) I 7) P{u xk = u(i),u 2k = u(j) I 7) 信息比特需满足下列条件: P( lk = u{i) I Y) Information bits need to meet the following conditions: P( lk = u{i) IY) = A∑∑∑«Α(σ1 'σί2)χ| (σλ·1'σ+ λ-2'σλ + ι2' ί) ?Α + ι(σί + σΑ + ι2) 交织后信息比特需满足下列条件: = A ∑∑∑«Α( σ1 ' σ ί 2 )χ| ( σ λ 1 ' σ+ λ- 2 ' σ λ + ι 2 ' ί ) ? Α + ι(σ ί + σ Α + ι 2 ) The information bits after interleaving must meet the following conditions: P(u2k = u(j) I Y) σ ί σ k P(u 2k = u(j) IY) σ ί σ k 在多径条件下: p(yk I || )Under multipath conditions: p(y k I || )
Figure IMGF000022_0001
Figure IMGF000022_0001
边信息需满足下列条件: Side information needs to meet the following conditions: Le{Y I "(!·)) = P{ulk = u(i) I Y)~P(ulk = "(/)) L e {YI "(!·)) = P{u lk = u(i) IY)~P(u lk = "(/)) Le(Y I u{j)) = P{u2k = u{j) I Y)-P(u2k = u(j)) L e (YI u{j)) = P{u 2k = u{j) IY)-P(u 2k = u(j)) 在迭代译码时, 每 3个边信息的和将作为另 1路信息的先验信息, 即: p(ulk = u, (0) = Jr «J I )+ ("(ζ·) I y2)+L7 (u(j) I y2) During iterative decoding, the sum of each 3 side information will be used as the prior information of another 1 channel information, namely: p(u lk = u, (0) = Jr «JI )+ ("(ζ ) I y 2 )+L7 (u(j) I y 2 ) 同理 , 其他三路信息比特中每一路先验信息都等于其他三路的边信息之 和。 Similarly, each path of prior information in the other three paths of information bits is equal to the sum of the other three paths of side information. 12. 根据权利要求 5 所述的方法, 其特征在于, 所述的在接收端对接 收的混合信号'进行译码包括: 12. The method according to claim 5, wherein said decoding the received mixed signal ' at the receiving end comprises: 在接收端可对接收的混合信号进行滤波、 射频及中频解调、 解扩, 计 算处理后基带信号的 ΑΡΡ; 所述译码包括 2个环路, 迭代译码在这 2个环 路上进行; 其中: Filtering, radio frequency and intermediate frequency demodulation, and despreading can be performed on the received mixed signal at the receiving end, and the APP of the processed baseband signal is calculated; the decoding includes 2 loops, and iterative decoding is performed on these 2 loops; in: 联合概率密度需满足下列条件: The joint probability density needs to meet the following conditions: r!(o-k l
Figure IMGF000022_0002
σ k 2 ,u j)p{uxk = u(i))p(u2k = "( )) p(yk I );
r!(o- k l
Figure IMGF000022_0002
σ k 2 ,uj)p{u xk = u(i))p(u 2k = "( )) p(y k I );
Figure IMGF000022_0003
Figure IMGF000022_0003
后验概率需满足下列条件: The posterior probability needs to meet the following conditions: P(ulk = (i),u2k = u(j) I 7) P(u lk = (i),u 2k = u(j) I 7) 信息比特需满足下列条件: P{ xk = u{i) I Y) Information bits need to meet the following conditions: P{ xk = u{i) IY) 交织后信息比特需满足下列条件: The information bits after interleaving need to meet the following conditions: P(u2k = (j) I Y) P(u 2k = (j) IY) 在多径条件下: p{yk I ,ut,ak 2 ,Uj) = (πΝ0)~Μ exP(~ II )Under multipath conditions: p{y k I ,u t ,a k 2 , Uj ) = (πΝ 0 )~ Μ ex P(~ II )
Figure IMGF000023_0001
Figure IMGF000023_0001
边信息需满足下列条件: Side information needs to meet the following conditions: Le(Y I "(0) = P( Uc = u(i) I Y)-P{uxk = ιι(0) L e (YI "(0) = P( Uc = u(i) IY)-P{u xk = ιι(0) Le(Y I u(j)) = P(u2k = u(j) I Y)-P(u2k = u(j)) L e (YI u(j)) = P(u 2k = u(j) IY)-P(u 2k = u(j)) 在迭代译码时有 2个边信息输出, 它们分别作为下一次迭代译码的先验 信息。 There are two side information outputs during iterative decoding, which are respectively used as prior information for the next iterative decoding. 13.根据权利要求 1至 12的任意一项所述的方法, 其特征在于, 所述 的 TURBO时空编码可为递归时空卷积编码。 13. The method according to any one of claims 1 to 12, characterized in that, the TURBO space-time coding can be recursive space-time convolutional coding. 14. 一种全速率 TURBO 时空编码装置, 包括发射装置和接收装置, 其 特征在于: 发射装置至少包括 TURBO 时空编码器和信号交织器, TURBO 时 空编码器对发射信号进行编码, 信号交织器对发射信号进行交织, 形成编 码信息和交织后编码信息的混合信号; 14. A full-rate TURBO space-time encoding device, including a transmitting device and a receiving device, characterized in that: the transmitting device includes at least a TURBO space-time encoder and a signal interleaver, the TURBO space-time encoder encodes the transmitted signal, and the signal interleaver encodes the transmitted signal The signal is interleaved to form a mixed signal of encoded information and interleaved encoded information; 接收装置对接收的混合信号进行译码, 在译码时需要从接收的混合信 号中恢复相应信号的边信息。 The receiving device decodes the received mixed signal, and needs to recover the side information of the corresponding signal from the received mixed signal during decoding. 15. 根据权利要求 14 所述的装置, 其特征在于, 所述的发射装置至 少包括 TURBO 时空编码器和信号交织器是指: TURBO 时空编码器和信号交 织器可构成串行级连 TURBO时空编码装置。 15. The device according to claim 14, characterized in that, the transmitting device at least includes a TURBO space-time encoder and a signal interleaver means: the TURBO space-time encoder and the signal interleaver can form a serial cascaded TURBO space-time code device. 16. 根据权利要求 14 所述的装置, 其特征在于, 所述的发射装置至 少包括 TURBO 时空编码器和信号交织器是指: TURBO 时空编码器和信号交 织器可构成并行级连 TURBO时空编码装置。 16. The device according to claim 14, characterized in that, the transmitting device at least includes a TURBO space-time encoder and a signal interleaver means: the TURBO space-time encoder and the signal interleaver can form a parallel concatenated TURBO space-time encoding device . 17. 根据权利要求 14 所述的装置, 其特征在于, 所述的发射装置包 括: TURBO时空编码器与信源交织器构成的串行级连 TURBO时空编码装置、 调制及扩展装置、 信道交织器; 其中: 17. The device according to claim 14, characterized in that, the transmitting device comprises: a TURBO time-space encoding device in serial concatenation composed of a TURBO time-space encoder and a source interleaver, Modulation and extension device, channel interleaver; where: 发射信号经 TURBO时空编码器与信源交织器构成的串行级连 TURBO时 空编码装置的编码, 调制及扩展装置的调制扩展, 信道交织器的交织后从 对应的天线发射出去。 The transmitted signal is transmitted from the corresponding antenna after being encoded by the TURBO space-time encoding device, modulated and expanded by the modulation and expansion device, and interleaved by the channel interleaver through the serial concatenation of the TURBO space-time encoder and the source interleaver. 18. 根据权利要求 14 所述的装置, 其特征在于, 所述的发射装置包 括: TURBO时空编码器与信源交织器构成的并行级连 TURBO时空编码装置、 调制及扩展装置、 信道交织器; 其中: 18. The device according to claim 14, characterized in that, the transmitting device comprises: a parallel concatenated TURBO time-space encoding device composed of a TURBO time-space encoder and a source interleaver, a modulation and expansion device, and a channel interleaver; in: 发射信号经 TURBO时空编码器与信源交织器构成的并行级连 TURBO时 空编码装置的编码, 调制及扩展装置的调制扩展, 信道交织器的交织后从 对应的天线发射出去。 The transmitted signal is encoded by the parallel cascaded TURBO space-time encoding device formed by the TURBO space-time encoder and the source interleaver, modulated and expanded by the modulation and expansion device, and interleaved by the channel interleaver, and then transmitted from the corresponding antenna. 19. 根据权利要求 14至 18的任意一项所述的装置, 其特征在于, 所 述的接收装置至少包括: 扩展的 LOG- MAP译码装置, 该扩展的 LOG- MAP译 码装置可对接收的混合信号进行译码。 19. The device according to any one of claims 14 to 18, wherein the receiving device at least includes: an extended LOG-MAP decoding device, and the extended LOG-MAP decoding device can receive The mixed signal is decoded. 20.根据权利要求 19所述的装置,其特征在于,所述的扩展的 LOG- MAP 译码装置可为扩展的 2 维 LOG- MAP译码装置, 其中包括匹配滤波器, APP 计算器, 解交织器, 加法器, 交织器; 20. The device according to claim 19, wherein the extended LOG-MAP decoding device can be an extended 2-dimensional LOG-MAP decoding device, which includes a matched filter, an APP calculator, a solution interleaver, adder, interleaver; 在译码时: 迭代译码在 4个环路上进行。 When decoding: Iterative decoding is performed on 4 loops. 21.根据权利要求 19所述的装置,其特征在于,所述的扩展的 LOG-MAP 译码装置可为扩展的 2 维 LOG- MAP译码装置, 其中包括匹配滤波器, APP 计算器, 解交织器, 加法器, 交织器; 21. The device according to claim 19, wherein the extended LOG-MAP decoding device can be an extended 2-dimensional LOG-MAP decoding device, which includes a matched filter, an APP calculator, a solution interleaver, adder, interleaver; 在译码时: 迭代译码在 2个环路上进行。 When decoding: Iterative decoding is performed on 2 loops.
CNA028181255A 2002-03-20 2002-03-20 A full-rate TURBO space-time encoding method and device Pending CN1555624A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2002/000180 WO2003079595A1 (en) 2002-03-20 2002-03-20 A method of full speed turbo space-time block coding and the apparatus

Publications (1)

Publication Number Publication Date
CN1555624A true CN1555624A (en) 2004-12-15

Family

ID=27810669

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028181255A Pending CN1555624A (en) 2002-03-20 2002-03-20 A full-rate TURBO space-time encoding method and device

Country Status (3)

Country Link
CN (1) CN1555624A (en)
AU (1) AU2002238369A1 (en)
WO (1) WO2003079595A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098451A3 (en) * 1999-11-02 2003-02-19 Sirius Communications N.V. Non-synchronous access scheme using CDMA and turbo coding
US7106813B1 (en) * 2000-03-16 2006-09-12 Qualcomm, Incorporated Method and apparatus for combined soft-decision based interference cancellation and decoding

Also Published As

Publication number Publication date
WO2003079595A1 (en) 2003-09-25
AU2002238369A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
Tonello Space-time bit-interleaved coded modulation with an iterative decoding strategy
US7436895B1 (en) Concatenated space-time coding
Ahmed et al. Performance evaluation of serial and parallel concatenated channel coding scheme with non-orthogonal multiple access for 6G networks
Ueng et al. Turbo coded multiple-antenna systems for near-capacity performance
WO2003092206A1 (en) A coding method and device for cascading the turbo product and space-time trellis code (sttc)
Firmanto et al. Design of space-time turbo trellis coded modulation for fading channels
Leung et al. Interleave-division-multiplexing space-time codes
Tong et al. Iterative decoding of superposition coding
CN1555624A (en) A full-rate TURBO space-time encoding method and device
Malhotra Investigation of channel coding techniques for high data rate mobile wireless systems
Chen et al. Network‐turbo‐coding‐based cooperation with distributed space‐time block codes
Del Ser et al. On combining distributed joint source-channel-network coding and turbo equalization in multiple access relay networks
Cavalec-Amis et al. Block turbo codes for space-time systems
Cam et al. Performance of joint multilevel/AES‐LDPCC‐CPFSK schemes over wireless sensor networks
Bahçeci et al. A turbo-coded multiple-description system for multiple antennas
Bahceci et al. A turbo coded multiple description system for multiple antennas
Yuan et al. Design of space-time turbo TCM on fading channels
Yanni et al. On the performance and implementation issues of block turbo code with antenna diversity
Zhang et al. A novel concatenation scheme for turbo code and unitary space-time modulation
Yuan et al. Multilevel codes (MLC) with multiple antennas over Rayleigh fading channels
Yamashita et al. Transmit diversity technique using space division multiplexing and turbo codes
Lalam et al. Iterative decoding of space-time error correcting codes
Jason et al. Low complexity turbo space-time code for system with large number of antennas
CN1555605A (en) A time-space-frequency TURBO coding method and device
Mysore et al. A linear complexity detection method and iterative equalization for coded MIMO systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned