[go: up one dir, main page]

CN1539372A - Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform - Google Patents

Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform Download PDF

Info

Publication number
CN1539372A
CN1539372A CNA2003101061292A CN200310106129A CN1539372A CN 1539372 A CN1539372 A CN 1539372A CN A2003101061292 A CNA2003101061292 A CN A2003101061292A CN 200310106129 A CN200310106129 A CN 200310106129A CN 1539372 A CN1539372 A CN 1539372A
Authority
CN
China
Prior art keywords
frequency
network
dimensional
heart disease
characteristic parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2003101061292A
Other languages
Chinese (zh)
Inventor
±���
宁新宝
徐寅林
黄晓琳
司峻峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CNA2003101061292A priority Critical patent/CN1539372A/en
Publication of CN1539372A publication Critical patent/CN1539372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

基于高频心电波形的心脏疾病早期诊断的方法:由高输入阻抗、低噪声、高共模抑制比以及宽频带多通道心电放大器;12位A/D转换板获得高频心电波形;.采用利用小波变换将时频两域结合起来分析,形成HFECG(时间—频率—幅值)三维频谱图。再从十二导联HFECG的QRS波群高频三维频谱图中提取出反映HFECG高频成分丰富程度的特征参数,包括高端截止频率等,对上述特征参数进行人工神经网络的分类诊断:它们在一个由m个特征参数构成的m维的空间中综合的影响决定了QRS波群的高频三维频谱性质,存在一个m维的曲面,这个曲面将空间分为两个部分:心脏功能的正常和异常。用于心脏疾病早期诊断。Method for early diagnosis of heart disease based on high-frequency ECG waveform: High-frequency ECG waveform obtained by high input impedance, low noise, high common-mode rejection ratio and broadband multi-channel ECG amplifier; 12-bit A/D conversion board; .Using wavelet transform to combine time and frequency domains for analysis to form HFECG (time-frequency-amplitude) three-dimensional spectrogram. Then extract the characteristic parameters reflecting the richness of the high-frequency components of HFECG from the QRS complex high-frequency three-dimensional spectrogram of the twelve-lead HFECG, including the high-end cut-off frequency, etc., and carry out the classification and diagnosis of the above-mentioned characteristic parameters by artificial neural network: they are in The comprehensive influence in an m-dimensional space composed of m characteristic parameters determines the high-frequency three-dimensional spectrum properties of the QRS complex. There is an m-dimensional surface that divides the space into two parts: the normal and abnormal. For early diagnosis of heart disease.

Description

Method and device based on the heart disease early diagnosis of high frequency electrocardiogram waveform
One. technical field
The present invention relates to a kind of method and device of the heart disease early diagnosis based on the high frequency electrocardiogram waveform, wherein relate to and adopt wavelet transformation from high frequency ECG (High Frequency Electrocardiogram, HFECG) extract fine feature in, and diagnose the method for differentiation with the neural network classification method, also comprise the circuit that obtains meticulous high frequency electrocardio signal.
Two. background technology
Trickle composition in the high frequency electrocardiogram waveform and many heart diseases comprise that ventricle left and right sides bundle branch block, myocardial ischemia, myocardial damage etc. have substantial connection.The applicant has applied for relevant patents such as high frequency ECG instrument.Normal person's cardiac muscle exists scrambling to a certain degree on form and function, this has caused the existence of these trickle compositions.And in many heart diseases, the scrambling of this transmitting medium of myocardial cell will significantly increase, and these compositions are also significantly increased, and presents characteristic separately.Chinese scholars has confirmed that by time-domain analysis and frequency-domain analysis high frequency ECG is very strong to the sensitivity of disease, has the significance of early diagnosis clinically for many years.
Wavelet transformation (Wavelet transform, WT) be a kind of linear operation, it carries out the decomposition of different scale to signal, the mixed signal that the different frequency of various weave ins is formed can be resolved into the block signal of frequency inequality, can be effectively applied to separate, improve the resolution in time-frequency two territories etc. as signal.It can combine analysis from time-frequency two territories with HFECG, forms (T/F-amplitude) three-dimensional spectrogram, therefrom extracts its characteristic parameter.
Neural network analysis system, with the imitation human brain function, finishing the work of similar human brain, is physiological true human brain neural network's 26S Proteasome Structure and Function, and certain theoretical abstraction, simplification and the simulation of some fundamental characteristics and a kind of information processing system of constituting.From systematic point of view, this artificial neural network is the self-adaptation nonlinear dynamical system that is made of by extremely abundant and perfect connection a large amount of neurons.Owing between the neuron different connecting modes is arranged, so can form the nerve network system of different structure form.Error backpropagation algorithm (BP algorithm) network and adaptive resonance theory algorithm (ART2) network all have good system identification and classification capacity, we come the characteristic parameter that extracts is carried out sort operation by means of these two kinds of artificial neural networks, thereby realize the early diagnosis of heart disease.
Three. summary of the invention
The purpose of this invention is to provide and a kind ofly obtain the early stage cardiac disease signal and differentiate the method and the device of diagnosis from the high frequency electrocardiogram waveform, carry out the method and the device of heart disease early diagnosis based on the high frequency electrocardiogram waveform, realize the heart disease early diagnosis, its realization is divided into three steps:
Obtain the method and the device of early stage cardiac disease signal from the high frequency electrocardiogram waveform:
1. the acquisition of high frequency ECG.The high frequency electrocardiogram waveform installs by high input impedance, low noise, high cmrr and broadband 12 passage ecg amplifiers by obtaining as lower device; 12 A/D change-over panels; Microsystem and ancillary equipment thereof constitute.
2. adopt wavelet transformation to extract the characteristic parameter that a series of reflection HFECG high frequency compositions enrich degree from the three-dimensional frequency spectrum of the QRS wave group high frequency of 12 lead HFECG (high frequency ECG), they are:
High-end cut-off frequency: the highest frequency of HFECG frequency band range;
Figure A20031010612900051
The number at block signal peak and sloping number sum in the three-dimensional spectrogram: the waveform complexity of describing three-dimensional frequency spectrum;
Summit frequency: describe the frequency that ceiling capacity distributes.
3. artificial neural network is to the classification diagnosis of characteristic parameter
From any one independent characteristic parameter is to can not find the frequency spectrum that definite marginal value is distinguished patient and normal person, these parameters all exist certain relatedness with heart disease, and their combined influences in the space of a m dimension that is made of m characteristic parameter have determined the three-dimensional frequency spectrum character of high frequency of QRS wave group.That is to say that have the curved surface of m dimension, this curved surface is divided into two parts with the space: cardiac function normal and unusual.
Because artificial neural network has good learning capacity and to the capability of fitting of any nonlinear function, we have introduced a feed-forward type network, utilize improved error backpropagation algorithm (BP algorithm) training network, and the ART2 algorithm training network that teacher's refinement match is arranged, well the curved surface of this m dimension of match is distinguished normal and unusual high frequency electrocardiogram characteristic parameter, realizes the early diagnosis of heart disease.
Characteristics of the present invention are: the extraction of the detection of the high frequency electrocardio signal of uniqueness exploitation, advanced wavelet transformation characteristic parameter and the classifying and analyzing method of artificial neural network are organically combined, especially early diagnosis is significant to clinical cardiopathic diagnosis for a plurality of high frequency electrocardiogram characteristic parameter new methods that the match hypersurface is classified in hyperspace, this method is that a new way has been opened up in the further investigation of high frequency ECG, belongs to initiative both at home and abroad.
Four. description of drawings
Fig. 1: 12 passage ecg amplifier block diagrams, wherein Fig. 1 a is the The general frame of ecg amplifier, and Fig. 1 b is the structured flowchart of a channel amplifier, and Fig. 1 c is standard lead and orthogonal lead circuit diagram.
Fig. 2: be the 12 passage ecg amplifier electrical schematic diagrams of Fig. 1 b
Fig. 3: be three-dimensional spectrogram
Fig. 4: be improved error backpropagation algorithm (BP algorithm) network structure
Fig. 5: be the ART2 algorithm network structure of refinement match that the teacher is arranged
System hardware comprises three parts: high-performance 12 passage ecg amplifiers (comprising that 12 lead and 3 lead systems); 12 A/D change-over panels; Microsystem and ancillary equipment thereof.Its structured flowchart as shown in Figure 1.
The apparatus features of the acquisition of high frequency ECG is: comprise that low noise broadband, high input impedance, high cmrr ecg amplifier constitute, its design is one of biomedical electronics research topic, is the important step of ecg information being carried out data acquisition and processing.Among the present invention: shown in Figure 2, the amplifier of each passage is to be made of high performance integral measuring amplifier U3 (AD620), and its performance can meet design requirement.The circuit structure of 12 channel amplifiers is identical, the performance basically identical.Integral measuring amplifier AD620 provides main voltage gain (500 times) and common mode rejection ratio (more than the 90dB).(with U12, U15A, three operational amplifiers of U15B is core for baseline stability and automatic reset circuit, the peripheral components that adds them is formed) be an integral form feedback network, for the signal that is lower than its cut-off frequency, this circuit forces to make difference amplifier to be output as zero, reaches the purpose of baseline stability.This circuit has does not influence the difference amplifier common mode rejection ratio, need not install advantages such as capacitance before difference amplifier additional.Its effect that automatically resets is when the difference amplifier output voltage amplitude exceeds outside the window setting value, forces to make difference amplifier outfan baseline to be reset to zero rapidly.The linear light buffer circuit has the favorable linearity transmission characteristic by the offset-type linear signal isolation transmitter that two the approximately uniform photo-coupler U6 of characteristic, U7 (TIL117) and operational amplifier U5B, U8B (LF353) form.12 passage ecg amplifier lead systems constitute and to be different from three-path amplifier, more are different from the single channel amplifier, its require to connect simultaneously at every turn standard lead 12 road signals (be I, II, III, aVR, aVL, aVF, V 1, V 2, V 3, V 4, V 5, V 6), (X, Y Z), connect three road signals that frank leads (X ', Y ', Z ') to switch three road signals connect orthogonal lead simultaneously by electrical switch.
Electrocardiosignal is an analogue signal, and must convert digital signal to could be handled by computer acquisition.If the high fdrequency component of electrocardiosignal 10 μ v, the equivalent input noise of amplifier is 3 μ v, and when amplification 1000, then Shu Chu high fdrequency component is 10mv, and noise is 3mv, and signal to noise ratio is 3.3.Da Xiao signal to noise ratio as long as the figure place of A/D is enough big, is the high fdrequency component in the electrocardiosignal more accurately can be changed into digital quantity like this.It is 12 A/D change-over panels of 5v that the design adopts reference voltage, and its resolution is 5v/ (2 12-1)=and 1.22mv, promptly can both be collected greater than the voltage of 1.22mv.This A/D change-over panel has 16 analog input channels,-5~+ the bipolar input of 5V, interruption of work mode, the highest sample frequency are 100KHz (being μ s conversion times 10), can satisfy 12 channel sample (the every passage 5KHz) designing requirement that sample frequency is up to 60K.
The used microcomputer of system is the III that runs quickly, the 128MB internal memory, and the 20GB hard disk, maximum clock frequency 733MHz is furnished with high-resolution (1024 * 768) colour video display unit that the SVGA card is supported, CD-ROM drive (50 speed) and laser printer.Be characterized in that the speed of service is fast, the analyzing and processing ability is strong.
Systems soft ware comprises two parts: wavelet transformation high frequency ECG characteristic parameter extraction algorithm and neural network classification algorithm.
As shown in Figure 3, utilize wavelet transformation that time-frequency two territories are combined analysis, form the three-dimensional spectrogram of HFECG (T/F-amplitude).From the three-dimensional spectrogram of the QRS wave group high frequency of 12 lead HFECG, extract the characteristic parameter that a series of HFECG of reflection high frequency compositions enrich degree again.
BP algorithm neural network structure as shown in Figure 4.Can prove, trilaminar BP network can match nonlinear function arbitrarily, for not increasing the complexity of network, we just determine that the network hidden layer is one deck.The neuron number N of the input layer of network is determined by the number of the characteristic parameter that we will study.We have selected seven characteristic parameters altogether, and input layer just needs seven like this.The selection of hidden neuron number M is according to empirical equation
P < &Sigma; i = 0 N C M i - - - - - ( C M i = 0 , i > M )
Wherein P is the number of samples in training storehouse.Formula (1) has illustrated that the hidden neuron number is relevant with the number of samples of training, its essence is that the complexity of non-linear relation of the equal calcaneus rete network of M and P match is relevant.System is complicated more, and the number of samples in required hidden neuron number and training storehouse is all many more.Through experimental debugging, find to get M=5, the diagnosis height during P ≈ 32 after network training converges faster and the training, fitting effect is better.The kind number decision that the output layer neuron number K of network need be classified by us.Because we only study healthy people and coronary disease patient's difference now, and specifically do not study the difference of various concrete diseases, so selected output neuron is one, 0 and 1 of its output valve is represented healthy and ill respectively.
ART2 neural network is actually the distance of meeting according to the analog quantity input pattern in model space classifies, and we utilize it that the high frequency ECG characteristic is classified.With the input unit of these characteristics as ART2 neural network, we find: the characteristic of many tested objects is after ART2 neural network is handled, and its output is juxtaposition.Be that the different pattern vector that their high frequency ECG characteristic of healthy people and cardiac constitutes intermeshes in the space, they are not separable two classes of simple linear just in model space.In order to solve this classification problem, we transform ART2 neural network, revise.Proposed a kind of new, fitting method after the first refinement.New ART2 neural network structure as shown in Figure 5, this structure has increased preprocessor, adapter and F3 mapper on original ART2 neural network basis.This neutral net also needs earlier through network structure and subclass are determined in the study of master sample, and when working then unknown input pattern being made comparisons with the subclass that has produced obtains classification results.
Example: following table is 4 cases of certain hospital, obtains 7 characteristic parameters from their HFECG, and
Use neural network classification, diagnostic result and practical situation meet fully.
Name High-end cut-off frequency Ratio W1 Ratio W2 Ratio W3 Absolute value P Slope number+peak number The summit frequency Diagnostic result
Du * * ??310 ?0.806 ?0.230 ?1.032 ?3.713 ??35 ??135 Unusually
Lee * ??165 ?0.430 ?0.104 ?0.641 ?7.723 ??16 ??120 Unusually
Bears * * ??245 ?0.900 ?0.267 ?0.892 ?4.168 ??27 ??190 Normally
Zhu * ??215 ?0.640 ?0.170 ?0.659 ?4.458 ??22 ??130 Normally

Claims (4)

1、基于高频心电波形的心脏疾病早期诊断的方法:由高输入阻抗、低噪声、高共模抑制比以及宽频带多通道心电放大器;12位A/D转换板获得高频心电波形;采用利用小波变换将时频两域结合起来分析,形成HFECG(时间—频率—幅值)三维频谱图;再从十二导联HFECG的QRS波群高频三维频谱图中提取出一系列反映HFECG高频成份丰富程度的特征参数,它们是:1. Method for early diagnosis of heart disease based on high frequency ECG waveform: high input impedance, low noise, high common mode rejection ratio and broadband multi-channel ECG amplifier; 12-bit A/D conversion board to obtain high frequency ECG Waveform; using wavelet transform to combine time and frequency domains to analyze to form HFECG (time-frequency-amplitude) three-dimensional spectrogram; and then extract a series of The characteristic parameters reflecting the richness of high-frequency components of HFECG are: 高端截止频率:描述HFECG(时间—频率—幅值)频带范围的最高频率;High-end cut-off frequency: describes the highest frequency of the HFECG (time-frequency-amplitude) frequency band range;
Figure A2003101061290002C1
Figure A2003101061290002C1
三维频谱图中块信号峰的个数与坡的个数之和:描述三维频谱的波形复杂程度;The sum of the number of block signal peaks and the number of slopes in the three-dimensional spectrogram: describes the waveform complexity of the three-dimensional spectrum; 最高峰频率:描述最大能量分布的频率;Highest peak frequency: describes the frequency of the maximum energy distribution; 对上述特征参数进行人工神经网络的分类诊断:Carry out the classification diagnosis of artificial neural network on the above characteristic parameters: 它们在一个由m个特征参数构成的m维的空间中综合的影响决定了QRS波群的高频三维频谱性质,存在一个m维的曲面,这个曲面将空间分为两个部分:心脏功能的正常和异常;Their comprehensive influence in an m-dimensional space composed of m characteristic parameters determines the high-frequency three-dimensional spectrum properties of the QRS complex. There is an m-dimensional surface that divides the space into two parts: the heart function normal and abnormal; BP网络中确定网络隐层为一层;网络的输入层的神经元个数N由上述特征参数的个数选定了总共七个特征参数,这样输入层神经元就需要七个;隐层神经元个数M的选择依据经验公式In the BP network, it is determined that the hidden layer of the network is one layer; the number of neurons N of the input layer of the network is selected from the number of the above-mentioned characteristic parameters, and a total of seven characteristic parameters are selected, so that seven neurons in the input layer are required; The selection of the number of elements M is based on the empirical formula PP << &Sigma;&Sigma; ii == 00 NN CC Mm ii -- -- -- (( CC Mm ii == 00 ,, ii >> Mm )) 其中P是训练库的样本个数,隐层神经元个数与训练的样本个数相关,式中M与P均跟网络拟合的非线性关系的复杂程度相关;网络的输出层神经元个数K由需要分类的种数决定,选定输出神经元为一个,其输出值的0和1分别代表健康和有病。Among them, P is the number of samples in the training library, and the number of neurons in the hidden layer is related to the number of training samples. In the formula, both M and P are related to the complexity of the nonlinear relationship fitted by the network; the number of neurons in the output layer of the network The number K is determined by the number of species that need to be classified, and one output neuron is selected, and the output values of 0 and 1 represent healthy and diseased respectively.
2、由权利要求1所述的基于高频心电波形的心脏疾病早期诊断的方法,其特征是在BP网络中隐层为一层,并取M=5,P≈32。2. The method for early diagnosis of heart disease based on high-frequency electrocardiographic waveform according to claim 1, characterized in that the hidden layer is one layer in the BP network, and M=5, P≈32. 3、由权利要求1所述的基于高频心电波形的心脏疾病早期诊断的方法,其特征是在ART2神经网络中为区别健康人和心脏病患者他们的高频心电图特征数据构成的不同的模式矢量在空间是互相交错的,因此将进行改造、修正,用先细化后拟合的方法;这种结构在原来的ART2神经网络基础上增加了预处理器、匹配器和F3映射器;这种神经网络先经过对标准样本的学习确定网络结构和子类,然后工作时将未知输入模式与已产生的子类别作比较得到分类结果。3, by the method for the early diagnosis of heart disease based on high-frequency electrocardiogram wave form described in claim 1, it is characterized in that in ART2 neural network, for distinguishing healthy people and their high-frequency electrocardiogram feature data of heart disease patients constitute different The pattern vectors are interlaced in space, so it will be modified and corrected, and the method of refinement and then fitting will be used; this structure adds a preprocessor, a matcher and an F3 mapper to the original ART2 neural network; This kind of neural network first determines the network structure and subcategory through the study of standard samples, and then compares the unknown input mode with the generated subcategory to obtain the classification result. 4、基于高频心电波形的心脏疾病早期诊断的装置,其特征是每个通道的放大器是由高性能的集成测量放大器AD620构成。基线稳定电路、自动复位电路是一积分型反馈网络,对于低于其截止频率的信号,该电路强制使差分放大器的输出为零,达到基线稳定的目的。4. The device for early diagnosis of heart disease based on high-frequency ECG waveform, characterized in that the amplifier of each channel is composed of high-performance integrated measurement amplifier AD620. The baseline stabilization circuit and the automatic reset circuit are an integral feedback network. For signals lower than its cut-off frequency, the circuit forces the output of the differential amplifier to be zero to achieve the purpose of baseline stabilization.
CNA2003101061292A 2003-10-24 2003-10-24 Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform Pending CN1539372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2003101061292A CN1539372A (en) 2003-10-24 2003-10-24 Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2003101061292A CN1539372A (en) 2003-10-24 2003-10-24 Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform

Publications (1)

Publication Number Publication Date
CN1539372A true CN1539372A (en) 2004-10-27

Family

ID=34333975

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2003101061292A Pending CN1539372A (en) 2003-10-24 2003-10-24 Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform

Country Status (1)

Country Link
CN (1) CN1539372A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785670A (en) * 2009-01-22 2010-07-28 陈跃军 Intelligent blurry electrocardiogram on-line analyzer system
CN101843480B (en) * 2009-03-27 2013-04-24 华为技术有限公司 Device for processing bioelectrical signals
CN104133999A (en) * 2014-07-29 2014-11-05 上海交通大学 Remote medical information service system for diseases of digestive tract
CN104398252A (en) * 2014-11-05 2015-03-11 深圳先进技术研究院 Electrocardiogram signal processing method and device
CN108471942A (en) * 2015-09-30 2018-08-31 心测实验室公司 Quantitative cardiac is tested
CN108968951A (en) * 2018-08-15 2018-12-11 武汉中旗生物医疗电子有限公司 Electrocardiogram detecting method, apparatus and system
CN109846471A (en) * 2019-01-30 2019-06-07 郑州大学 A Myocardial Infarction Detection Method Based on BiGRU Deep Neural Network
CN110495878A (en) * 2019-08-21 2019-11-26 中国科学院深圳先进技术研究院 ECG-based disease prediction method, device and electronic equipment
CN110584652A (en) * 2019-10-09 2019-12-20 浙江工业大学 Electrocardio scatter diagram three-dimensional image enhancement method
CN111772626A (en) * 2020-07-06 2020-10-16 华中科技大学 An ECG recording module based on big data algorithm
CN113712569A (en) * 2021-11-01 2021-11-30 毕胜普生物科技有限公司 High-frequency QRS wave group data analysis method and device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785670A (en) * 2009-01-22 2010-07-28 陈跃军 Intelligent blurry electrocardiogram on-line analyzer system
CN101843480B (en) * 2009-03-27 2013-04-24 华为技术有限公司 Device for processing bioelectrical signals
CN104133999A (en) * 2014-07-29 2014-11-05 上海交通大学 Remote medical information service system for diseases of digestive tract
CN104398252A (en) * 2014-11-05 2015-03-11 深圳先进技术研究院 Electrocardiogram signal processing method and device
CN108471942A (en) * 2015-09-30 2018-08-31 心测实验室公司 Quantitative cardiac is tested
US11445968B2 (en) 2015-09-30 2022-09-20 Heart Test Laboratories, Inc. Quantitative heart testing
CN108968951B (en) * 2018-08-15 2021-06-22 武汉中旗生物医疗电子有限公司 Electrocardiogram detection method, device and system
CN108968951A (en) * 2018-08-15 2018-12-11 武汉中旗生物医疗电子有限公司 Electrocardiogram detecting method, apparatus and system
CN109846471A (en) * 2019-01-30 2019-06-07 郑州大学 A Myocardial Infarction Detection Method Based on BiGRU Deep Neural Network
CN110495878A (en) * 2019-08-21 2019-11-26 中国科学院深圳先进技术研究院 ECG-based disease prediction method, device and electronic equipment
CN110584652A (en) * 2019-10-09 2019-12-20 浙江工业大学 Electrocardio scatter diagram three-dimensional image enhancement method
CN110584652B (en) * 2019-10-09 2022-05-03 浙江工业大学 A three-dimensional image enhancement method of ECG scattergram
CN111772626A (en) * 2020-07-06 2020-10-16 华中科技大学 An ECG recording module based on big data algorithm
CN113712569A (en) * 2021-11-01 2021-11-30 毕胜普生物科技有限公司 High-frequency QRS wave group data analysis method and device
CN113712569B (en) * 2021-11-01 2022-02-08 毕胜普生物科技有限公司 High-frequency QRS wave group data analysis method and device

Similar Documents

Publication Publication Date Title
Meste et al. Ventricular late potentials characterization in time-frequency domain by means of a wavelet transform
CN102697493B (en) Method for rapidly and automatically identifying and removing ocular artifacts in electroencephalogram signal
CN100415159C (en) A real-time trend dynamics feature analysis method for cardiac state
CN109784242A (en) EEG Noise Cancellation based on one-dimensional residual error convolutional neural networks
CN111449644A (en) A Bioelectric Signal Classification Method Based on Time-Frequency Transform and Data Enhancement Technology
CN1539372A (en) Method and device for early diagnosis of heart disease based on high-frequency electrocardiographic waveform
CN109948396B (en) Heart beat classification method, heart beat classification device and electronic equipment
CN104720797A (en) Method for eliminating myoelectricity noise in electroencephalogram signal based on single channel
Mustafa et al. The analysis of eeg spectrogram image for brainwave balancing application using ann
CN109549644A (en) A kind of personality characteristics matching system based on brain wave acquisition
Zhao et al. Ecgnn: Enhancing abnormal recognition in 12-lead ecg with graph neural network
Esmaeilpour et al. Analyzing the EEG signals in order to estimate the depth of anesthesia using wavelet and fuzzy neural networks
CN113011330A (en) Electroencephalogram signal classification method based on multi-scale neural network and cavity convolution
CN112890827A (en) Electroencephalogram identification method and system based on graph convolution and gate control circulation unit
CN113229829B (en) Quaternion electroencephalogram signal extraction method and quaternion electroencephalogram signal extraction system
CN113197583A (en) Electrocardiogram waveform segmentation method based on time-frequency analysis and recurrent neural network
CN116172576A (en) Electroencephalogram signal artifact removing method based on multi-module neural network
CN108852348A (en) The collection point sort method and system of scalp brain electricity
Aljobouri Independent component analysis with functional neuroscience data analysis
CN111554319B (en) Multichannel heart-lung sound abnormality recognition system and device based on low-rank tensor learning
RU2383295C1 (en) Method of electrocardiosignal processing for diagnostics of myocardial infarction
Li et al. Efficient online feature extraction algorithm for spike sorting in a multichannel FPGA-based neural recording system
CN113017640B (en) Method and system for removing S transform domain of background noise of magnetocardiogram signals
Naik et al. SEMG for identifying hand gestures using ICA
Zin et al. Wavelet analysis and classification of mitral regurgitation and normal heart sounds based on artificial neural networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication