CN1533870A - 直列螺杆式可塑化射出装置 - Google Patents
直列螺杆式可塑化射出装置 Download PDFInfo
- Publication number
- CN1533870A CN1533870A CNA2004100314128A CN200410031412A CN1533870A CN 1533870 A CN1533870 A CN 1533870A CN A2004100314128 A CNA2004100314128 A CN A2004100314128A CN 200410031412 A CN200410031412 A CN 200410031412A CN 1533870 A CN1533870 A CN 1533870A
- Authority
- CN
- China
- Prior art keywords
- screw
- screw rod
- diameter
- ring
- plasticization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title description 2
- 239000007924 injection Substances 0.000 title description 2
- 239000011347 resin Substances 0.000 claims abstract description 81
- 229920005989 resin Polymers 0.000 claims abstract description 81
- 239000003365 glass fiber Substances 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 10
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 47
- 239000000835 fiber Substances 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000005755 formation reaction Methods 0.000 description 17
- 238000007789 sealing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 238000007493 shaping process Methods 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/48—Plasticising screw and injection screw comprising two separate screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
- B29C45/52—Non-return devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
螺杆的长度(L)与直径(D)的比值被设定为18-24,螺杆供给部的长度(Lf)被设定为该直径(D)的10-14倍,螺杆(14)的供给部的槽深(hf)被设定为不小于13毫米,螺杆(14)的计量部的槽深(hm)被设定为不小于8毫米,且正交于熔融树脂流动方向上的由堰板(22)和挡圈(22)形成的熔融树脂通路的宽度被设定为螺杆直径(D)的3-6%。
Description
本发明是基于日本专利申请2003-87161,在此作为参考被引用。
技术领域
本发明涉及一种具有一个直径不小于100毫米且适于包括长玻璃纤维的球粒可塑化射出的直列螺杆式可塑化射出装置,特别是涉及一种能够稳定有效地生产汽车部件等大尺寸注模制品的直列螺杆式可塑化射出装置。
背景技术
在相关技术中,当使用通常的可塑化射出装置成形出长纤维强化树脂材料时,纤维发生破损且不能得到材料本来的特性,因此,存在一种具有带有在JP-A-6-246802中所述的逆流防止环的螺杆头的可塑化射出装置,通过改进螺杆头的构成(JP-A-6-246802)用于防止长纤维的破损。
根据JP-A-6-246802中所展示的可塑化射出装置,如图5和图6所示,形成一个熔融树脂通路34,由一个中空的加热汽缸12、一个设置在螺杆头20后方的轴24、一个设置在轴24后方且起到阀座功能的堰板22和一个与轴24的周围滑动配合且能够在轴24和加热汽缸23之间的空间在螺杆头20和堰板22之间进行往复运动的环状挡圈26构成。该装置的特征在于,从堰板22到达螺杆头20的熔融树脂通路34不弯曲呈锐角,正交于流动方向上的熔融树脂通路34的宽度与螺杆直径的比值在8-20%的范围内,堰板22和加热汽缸22之间的距离与螺杆直径的比值在4-10%的范围内,且突出至熔融树脂通路34中的上述构成部件的凸出部沿流动方向被做成圆形且圆形部分的半径至少0.8毫米。
以下,对其作用进行说明。
在图5中,由供给口30装入的构成长纤维强化树脂材料的长轴球粒28通过设置在螺杆14外周的螺旋片32的咬入作用被供给至螺杆头20一侧。同时,长轴球粒28被加热汽缸12加热以熔融可塑化并通过熔融树脂通路34以熔融状态被供给至在汽缸前端的腔室15中,该熔融树脂通路由加热汽缸12、堰板22、挡圈26、螺杆头20和切口236(参见图6)所限定。此外,当一定量的熔融树脂完成供给后,加压机构16将螺杆14压向前方。此时,挡圈26封闭了堰板22和加热汽缸12之间的熔融树脂通路34,因此熔融可塑化树脂不逆流,即流回供给口30一侧。供给的长轴球粒28被熔融可塑化,从在前端的喷嘴18射出至成形模具中(未示出),并成形为所需形状。
根据JP-A-6-246802所述的可塑化装置,在使用具有夹紧力为1470千牛且螺杆直径为50毫米的射出成形机射出成形含有长度为12毫米的长纤维(GF)的聚丙烯(PP)球粒的情况下,而在通常的可塑化装置中上述GF的重量平均纤维长为2.5毫米,在JP-A-6-246802所述的可塑化装置中,该重量平均纤维长延长为6毫米;且在使用具有夹紧力为7845千牛且螺杆直径为100毫米的射出成形机射出成形含有长度为48毫米GF的PP球粒的情况下,而在通常的可塑化装置中上述GF的重量平均纤维长为4.5毫米,在JP-A-6-246802所述的可塑化装置中,该重量平均纤维长延长为17毫米,且成形制品在长纤维强化树脂材料的本来特性,例如强度、刚性、抗冲击性方面表现优良。
此外,尽管可生产包含约48毫米长的GF的长纤维强化树脂材料的PP球粒,考虑到实际生产情况,堆积比重减小,因此堆积比重的减小对包装和运输来说是不利的,此外,同样在从供给口向螺杆供给材料时,产生料斗连接且难于进行正常的可塑化和计量操作,因此在实际生产中通常不使用该材料,通常使用约10-12毫米GF长的球粒作为长纤维强化树脂。
尽管上述主要涉及具有逆流防止功能的螺杆头的构成,为了抑制长玻璃纤维的破损,从材料供给口供给材料时用于可塑化熔融材料的螺杆本身形状也构成了一个重要因素。
例如,如JP-A-2-292008所述的装置,被认为使螺杆的槽深不小于5毫米或将螺杆的长度(L)与直径(D)的比值限定为7-15且将螺杆的压缩比限制在等于或小于1.8的水平是有效的。根据如JP-A-2-292008所述的装置,螺杆的长度(L)与直径(D)的比值为7-15,因此为了熔融可塑化长纤维强化树脂,螺杆的计量部的长度(Lm)需为该直径(D)的2-3倍,螺杆的压缩部的长度(Lc)需为该直径(D)的3-5倍,因此螺杆的供给部的长度(Lf)为该直径(D)的2-7倍。
在此,螺杆的供给部(Lf)表示在螺杆根部(料斗侧)的一部分,其具有深螺杆槽且通过旋转螺杆向前输送从料斗落下的成形材料进入加热汽缸,为了有效地进行材料输送,该部分的螺杆槽要比其它部分的螺杆槽深。螺杆的压缩部(Lc)表示槽深逐渐减小的一部分且当成形材料通过该部分时,在被压缩时成形材料进行可塑化,因此材料颗粒间的空气被压出并积累了必要的压力。计量部(Lm)表示在螺杆前端部的一部分,其具有不变的螺杆槽深且该部分是用于传输以不变速度通过压缩部(Lc)而均匀可塑化的塑性材料的必要部分。此外,在供给部(Lf)的螺杆槽的一个螺杆的空间体积与在计量部(Lm)的螺杆槽的一个螺杆的空间体积的比值被叫做压缩比。
通过使用这样一种螺杆并限制螺杆转数为20-50rpm且限制螺杆背压为0-5MPa尽可能的低,而将可塑化且被计量的材料以相对比较低的速度0.2-1.0米/分钟射出以填满塑模,对于抑制纤维的破损被认为是有效的。
同时近年来,在成形用于前端组件、门板、后部车门组件等等的基材的汽车用大尺寸部件的过程中,塑模尺寸加大,因此需要具有夹紧力不小于9806牛的大尺寸成形机并使用直径不小于100毫米的螺杆。此外,在使用螺杆直径不小于100毫米的大尺寸成形机成形时,在遇到使用具有低流动性和低粘度的聚丙烯的长玻璃纤维强化树脂时,伴随着螺杆直径的大口径化而产生的剪切应力的增大使纤维显著破损且难于提供具有优良的强度、刚性、抗冲击性的成形制品。
因此,已发现在如JP-A-2002-220538所述的装置中,通过使用具有高流动性其中熔体流速(MFR)在100-300克/10分钟范围内的聚丙烯树脂作为长纤维强化树脂的基体聚合物,减轻了施加在玻璃纤维上的剪切应力且即使在大尺寸成形机中,也会有效地抑制玻璃纤维的破损(切断)并提高材料的物理性能。
在此,熔体流速构成聚合物熔融粘度的一个指标且表示基于JISK7210(ASTEM D1238)的圆筒形压出流的每10分钟聚合物射出量的克数。在圆筒形压出的条件下,根据不同的聚合物选择测试温度和测试载荷。在应用中,在测试温度为230℃和测试载荷为21.18牛的条件下测量MFR。
因此,为了应用具有这样一种粘度区间的高流动性聚丙烯树脂,需要一种与防止玻璃纤维的破损和成形能力相兼容的包括带有逆流防止阀的螺杆或螺杆头的可塑化射出装置。
当将如上所述的JP-A-6-246802或JP-A-2-292008中的螺杆或螺杆头应用在螺杆直径小于100毫米的中等尺寸成形机上时,在进行成形过程中可不存在特别存在严重问题。然而,当将螺杆或螺杆头应用在螺杆直径不小于100毫米的大型尺寸成形机上时,就出现了制品重量不稳定、不能进行稳定生产、由于长纤维发生不良解离而产生的外观不佳和可塑化功能低下等问题。因此,成形周期延长而构成了实际生产中的一个严重问题。
具体而言,当由JP-A-6-246802所示的熔融树脂通路成形的可塑化射出装置将被应用于具有螺杆直径不小于100毫米的大口径成形机上时,正交于由堰板22和挡圈26(参见图4)形成的熔融树脂通路的流动方向的通路宽度B(即密封行程)为螺杆直径的8-20%。因此,例如当螺杆直径为100毫米时,通路宽度B为8-20毫米;当螺杆直径为130毫米时,通路宽度B为10.4-26毫米;当螺杆直径为160毫米时,通路宽度B为12.8-32毫米。当使用具有这样一种宽的通路宽度B的熔融树脂通路时,直至挡圈26和堰板22在开始射出时关闭,从腔室15向螺杆14一侧回流的树脂量增多。且同时由于熔融树脂粘度等灵敏的影响作用,密封校时不能保持不变。结果是,已发现存在的缺点即:会产生短细颗粒和毛边且难于进行稳定的塑化过程,由此严重阻碍降低了实用化。
特别是,已明显意识到,通过使用具有高流动性其中熔体流速在100-300克/10分钟范围内的聚丙烯树脂作为基体聚合物难于稳定长纤维强化树脂的成形重量,如后述有效地在大尺寸成形机中成形。
同时,根据如JP-A-2-292008所述的直列螺杆式可塑化射出装置,在腔室中被计量和累积的可塑化熔融的材料被射出,因此螺杆退回一定的计量行程。由于退回行程(S)与螺杆直径(D) 的比值(S/D)通常在2-5的范围内,因此在供给部的长度(Lf)为该直径(D)的2-7倍的螺杆的情况下,供给部的有效长度(Lf)根据螺杆的退回相应减少且供给材料的功能降低,因此产生问题。
就是说,当供给部的长度(Lf)较短时,造成恶化传输材料的功能、计量时长延长、不稳定(浪涌现象)、生产率降低和难于稳定成形等问题。此外,当供给部的长度(Lf)较短时,从外部加热器向球粒材料加入的热量不足,预热不充分,球粒材料在压缩区受到高剪切力,因此造成长纤维易于断裂、其熔融不充分、由于集束长玻璃纤维解离不良而使外观不佳和在极端情况下为熔融树脂与成形材料混合由此恶化物理性能等问题。
尽管可以想到通过增大螺杆背压或增加螺杆转数以解决这种缺点,如JP-A-2-292008所述,长玻璃纤维的破损增加,因此在具有小(L/D)的螺杆的情况下,造成存在螺杆背压、螺杆转数等成形条件对应的界限的问题。
发明内容
本发明是为了解决上述问题而进行的。其目的在于提供一种通过构成适用于长玻璃纤维强化树脂最优的大口径(特别是螺杆直径不小于100毫米)螺杆的规格(L/D,供给部的长度,槽深等),而抑制长玻璃纤维的破损,从而能够稳定高效地生产出含有长玻璃纤维强化树脂材料的汽车部件等的大尺寸射出成形制品;在射出步骤中而稳定可塑化性能,进而能够改善挡圈的密封性能;而在适当范围进而能够构成挡圈的形状和熔融树脂通路的直列螺杆式可塑化射出装置。
本发明的另一目的在于通过达到由此设置的不同性能而能够自然地成形出出售的长玻璃纤维强化树脂材料,且进一步改善研制用于大尺寸汽车部件的长玻璃纤维强化树脂的物理特性并获得高度的稳定成形性能,该长玻璃纤维强化树脂使用具有高流动性其中熔体流速(MFR)在100-300克/10分钟范围内的作为基体聚合物的PP树脂。
本发明的特征在于,一种包括直径不小于100毫米的螺杆(14),形成由中空的加热汽缸(12)、设置在螺杆头(20)后侧的轴(24)、设置在轴(24)后侧的堰板(22)、和与轴(24)的周围滑动配合且能够在轴(24)和加热汽缸之间的空间在螺杆头(20)和堰板(24)之间进行往复运动的环状挡圈(26)构成的熔融树脂通路,和用于可塑化射出含有其长度与球粒长度相同且沿球粒纵向排列的长玻璃纤维的热塑性树脂球粒的加热汽缸的直列螺杆式可塑化射出装置,其特征在于,螺杆的长度(L)与直径(D)的比值被设定为18-24,螺杆(14)的供给部的长度(Lf)被设定为该直径(D)的10-14倍,螺杆供给部的槽深(hf)被设定为不小于13毫米,螺杆(14)的计量部的槽深(hm)被设定为不小于8毫米,且正交于熔融树脂流动通路方向上的由堰板(22)和挡圈(26)形成的熔融树脂通路的宽度被设定为螺杆直径(D)的3-6%。
本发明的进一步特征在于,在直列螺杆式可塑化射出装置中在堰板(22)和挡圈(26)的端面与铅直轴之间构成的角θ被设定为70°-90°。
本发明的进一步特征在于,以使设置在挡圈前侧的凸出部(26’)与螺杆头的切口(36)相配合,且在直列螺杆式可塑化射出装置中旋转螺杆(14)时,挡圈(26)随其一同旋转。
本发明的进一步特征在于,在直列螺杆式可塑化射出装置中挡圈(26)的宽度被设定为螺杆直径(D)的0.3-0.4倍。
本发明的进一步特征在于,长玻璃纤维强化热固性树脂的基体聚合物由在直列螺杆式可塑化射出装置中具有高流动性的其中熔体流速在100-300克/10分钟范围内的聚丙烯树脂构成。
此外,圆括号内的符号指定了后面本发明的一种实施形式的相应部件。
附图说明
图1是示出了本发明的一种实施形式的直列螺杆式可塑化射出装置的局部断面视图;
图2是示出了本发明的一种实施形式的直列螺杆式可塑化射出装置的螺杆的侧视图;
图3是示出了本发明的一种实施形式的直列螺杆式可塑化射出装置的具有共转型挡圈的螺杆的前端部分的放大视图;
图4是示出了根据相关技术的直列螺杆式可塑化射出装置的具有非共转型挡圈的螺杆的前端部分的放大视图;
图5是示出了根据相关技术的直列螺杆式可塑化射出装置的外形断面视图;以及
图6是图5中的可塑化射出装置的主要部分的放大视图。
具体实施方式
参考附图,对本发明的直列螺杆式可塑化射出装置的一种实施形式进行说明。图1是示出了本发明应用的一种实施形式的直列螺杆式可塑化射出装置的局部断面视图,图2是示出了该直列螺杆式可塑化射出装置的螺杆的侧视图,和图3是示出了具有共转型挡圈的螺杆的前端部分的放大视图。
此外,该直列螺杆式可塑化射出装置的基本构造与如图5所示的JP-A-6-246802中的直列螺杆式可塑化射出装置相似且因此,使用相同的标号表示具有相似构造和作用的部分。
以下,参照附图对本发明的一种实施方式进行说明。
如图5所示,用于长轴球粒的直列螺杆式可塑化射出装置基本上由加热汽缸12、能够在加热汽缸12内旋转和往复运动的螺杆14、用于将在加热汽缸12和螺杆14之间熔融可塑化的热塑性树脂射入未示出的塑模内的加热汽缸12的喷嘴18、以及设置在前方喷嘴18相对侧上的螺杆旋转和加压机构16构成。螺杆14的头部设有具有构成头部的熔融树脂通路34的多个切口36(图5仅示出其中的一部分)的锥状螺杆头20。起到阀座作用的堰板22被设置在其后侧上(喷嘴18的相对侧),且能够在螺杆头20和堰板22之间往复运动的环状挡圈26与在螺杆头20和堰板22之间的轴24周围滑动配合。加热汽缸12的上部设有用于装填长轴球粒28以制成长纤维强化树脂材料的球粒供给口30。
首先,对本发明的一种实施形式的螺杆头部的特征进行说明。在JP-A-6-246802中形成的熔融树脂通路34中,根据本发明的一种实施形式,如图1所示,通过将正交于树脂通路流动方向上的通路宽度B与螺杆直径(D)的比率约束在3-6%,且通过在挡圈26和堰板22的端面与铅直轴之间构成70°-90°的角θ,当限定长纤维树脂混合物的多种性能达到后面所述的塑性要求的水平时,可有利于射出时的密封性能。
将在挡圈26和堰板22的端面与铅直轴之间构成的角θ为70°-90°,这是因为同角θ为70°-90°相比较,当角θ等于或小于60°时,熔融树脂易于流动,且因此缺点在于:在射出开始时直至挡圈26关闭的时刻,熔融树脂易于从腔室15一侧通过熔融树脂通路34流回螺杆14一侧,且为改掉这一缺点,有必要将通路宽度B减小至等于或小于螺杆直径(D)的3%,以由此增多玻璃纤维的破损。因此,通过在堰板22和挡圈26的端面与铅直轴之间构成70°-90°的角θ,增大从腔室15一侧到螺杆15一侧的流体阻力,可减少直至通过使挡圈26与堰板22相接触而封闭通路宽度B这一时期的回流量并可提高成形的稳定性。
此外,正交于树脂通路流动方向上的通路宽度B为螺杆直径(D)的3-6%。例如,在螺杆直径为100毫米的情况下,通路宽度B为3-6毫米;在螺杆直径为130毫米的情况下,通路宽度(B)为3.9-7.8毫米;且在螺杆直径为160毫米的情况下,通路宽度B为4.8-9.5毫米。通过形成这样一种范围,在抑制玻璃纤维的破损以构成实用性非常好的残存玻璃纤维时,可防止发生由在射出开始时延迟密封校时而产生的射出重量的变动。在此,关于“密封校时”,在可塑化计量材料时,挡圈26被压到螺杆头20一侧,且熔融材料通过树脂流动通路34被供给至在前方的腔室15且其预先确定的量被计量。其后,熔融材料在后续周期中被射出,从射出开始直至流体通路宽度(B)完全关闭的时间滞后被称为密封校时。通路宽度B越宽,对树脂温度(熔融粘度)或其他进行的细微改变可使密封校时发生较大的变化,因此稳定的塑化过程需要适当的通路宽度B。例如,虽然根据JP-A-6-246802中的用于长纤维的塑化装置,正交于树脂通路流动方向上的通路宽度B为螺杆直径的8-20%,但是在具有直径不小于100毫米的大口径的螺杆的情况下,通路宽度B为3-6%是适当的。就是说,当树脂通路的通路宽度B的比率超过6%时,密封校时易于产生变动,因此存在的缺点即:会产生短细颗粒和毛边且难于进行稳定的塑化过程。因为在相反的情况下,即当通路宽度B的比率小于3%时,由于通路宽度B过窄,存在的缺点即:延长了计量时长,降低了生产率,并增加了玻璃纤维的破损,由此不能获得预定的物理性能。
同时,挡圈可被粗分成两种类型(非共转型),其中挡圈在旋转螺杆时不旋转以及类型(共转型),其中挡圈在旋转螺杆时随螺杆一同旋转,在如图3所示的根据本发明的共转构成中,其中挡圈26的前侧设置有与螺杆头20的多个切口36相配合的多个凸出部26’且在旋转螺杆时,挡圈26随螺杆头20一同旋转。由此,在具有通路宽度B的由堰板22和挡圈26形成的在铅直方向的树脂通路34b和具有通路宽度(A)的由挡圈26和螺杆头20的轴24形成的在水平方向的树脂通路34a处旋转螺杆时,通过限定沿旋转方向施加给树脂的剪切速度为零,可以减少长玻璃纤维的破损。能够限定剪切速度为零的理由在于:当挡圈26由JP-A-6-246802中如图4所示的非共转型构成时,在旋转螺杆时,挡圈26几乎不旋转,因此在处,在铅直方向的树脂通路34b和水平方向的树脂通路34a处,堰板22和螺杆头20的轴24之间产生增强的剪切速度。相反,在图3中的根据本发明的共转构成中,在旋转螺杆时,挡圈26以与堰板22和螺杆头20(轴24)同速旋转,因此沿旋转方向不产生剪切速度。
此外,根据与螺杆头20的多个切口36相配合的多个凸出部26’,挡圈26的凸出部26’与多个(3-4个)螺杆头的切口全部相配合。
此外,除去挡圈26的凸出部26’后的挡圈26的宽度(W)在螺杆直径(D)的0.3-0.4倍的范围内对于抑制玻璃纤维在水平方向的树脂通路34a处发生破损也是有效的,在以上范围中树脂从挡圈26外周泄漏不会妨碍实际生产。即宽度(W)为该直径(D)的0.3-0.4倍是因为:当该宽度小于该直径(D)的0.3倍时,从挡圈26外周和加热汽缸12的内壁之间的间隙的回流量增加,在材料装填完之后的压力保持步骤中螺杆14的前进量增加,且当螺杆14到达最前端位置时,压力不能被保持住,由此产生缩痕失效并恶化了尺寸精度。在另一方面,当宽度(D)大于0.4时,尽管不会产生上述缺点,但是由于延长了具有通路宽度(A)的在水平方向的树脂通路34a,因此长玻璃纤维的损坏趋于增多。通过将宽度(W)定为该直径(D)的0.3-0.4倍,可实现防止树脂从挡圈26外周泄漏与防止纤维在挡圈26内表面上的树脂通路34a处损坏的兼容性。通过上述协作效应,可以构造出增强可塑化性能、增强密封性能和减少长玻璃纤维的损坏的结构。
下面,对本发明的螺杆形状进行说明。如图2所示,螺杆的长度与直径的比值(L/D)被设定为18-24,供给部的长度(Lf)被设定为该直径(D)的10-14倍,压缩部的长度(Lc)被设定为该直径(D)的5-6倍,计量部的长度(Lm)被设定为该直径(D)的3-4倍。根据供给部的长度(Lf),螺杆直径(D)越大,供给部的槽深(hf)越深,就越难于传导来自外部加热器的预热热量。因此通过延长供给部的长度(Lf)设置长预热区是有效的。
螺杆的长度(L)与直径(D)的比值被设定为18-24是因为:当该比值小于18时,预热树脂的效应减少且因此产生树脂熔融不充分,由于长纤维解离不良造成的外观不佳和强度的不稳定,进一步还会恶化可塑化性能并延长了模塑周期。此外在实验中,预测当螺杆直径为160Φ且螺杆的长度(L)与直径(D)的比值为24时,可获得足够效果。此外,当(L/D)增大超过设计的必须值时,通过在螺杆中过多的剪切作用,玻璃纤维长度被缩短且冲击强度降低。此外,当(L/D)无益地增大时,产生增加成形机的全长的缺点,该长度需被限制在必要的最小值,且因此(L/D)应等于或小于24。
此外,螺杆的供给部的长度(Lf)被设定为该直径(D)的10-14倍是因为:计量行程(Smax)与螺杆直径(D)的比值Smax/D的范围为5-6,然而,在实际成形时,通常是如下情况,即计量行程使用最大行程的1/2-1/3。在任何情况下,根据直列螺杆式射出机,为保证必要的射出重量,螺杆14后退,因此由于螺杆缩回,供给部的实质长度(Lf)被缩短,且因此降低了材料的输送性能,此外还减小了来自外部加热器的预热效果。甚至在这样一种直列螺杆中,证实当(Lf)确保为该直径(D)的10-14倍时,例如,在100毫米直径的螺杆的供给部的长度(Lf)为10D时,在普通成形过程中,该长度为该直径(D)的7-8倍并保证了足够的供给性能且设置在最大行程时,确保为该直径(D)的4-5倍且因此尽管或多或少降低了可塑化性能(10-20%),也不会产生极端浪涌的现象且该材料可被塑化。就是说,在螺杆的供给部的长度(Lf)小于10D的情况下,证实通过随计量行程增大,使得材料的供给性能下降,因此会产生该浪涌现象。同时,当螺杆直径(D)增大时,供给部的槽深(hf)加深,减小了来自外部加热器的预热效果,因此。压缩部(Lc)上的负担增大,可塑化性能下降或产生该浪涌现象,因此,通过将(Lf)延长至14D可实施这一改进。另一方面,长度(Lf)不大于14D是因为:增加成形机的总长是一个缺点,将该长度限制在必要的最小值时很重要的,且因此(Lf)应等于或小于14D。
以这种方法,即通过增加螺杆的长度与直径的比值(L/D)至18-24且增长供给部的长度(Lf)至10-14D,可为下部的材料球粒提供充足的热量,该材以一种易于软化和熔融的状态被传输至压缩部,因此剪切力降低且集束玻璃纤维的破损可被受到限制而减少。此外,由于供给部的长度(Lf)大小为该直径(D)的10-14倍,即使当螺杆14退回用于在汽缸前端计量腔室15中的熔融材料的计量行程(S)的该直径(D)的2-5倍的量时,螺杆14的供给部的有效长度(Lf)被确保为该直径(D)的8-9倍,因此甚至在低速旋转条件下也可以实施稳定的计量操作。
以下设置是有效的,即对于螺杆14的槽深,形成的供给部的槽深(hf)大于球粒长度(通常约10-12毫米)且不少于13毫米,用于防止从材料口至螺杆14咬入材料而造成材料的破损;且对于计量部的槽深(hm),形成的该槽深(hm)不少于8毫米,用于防止玻璃纤维未解离并限制玻璃纤维的破损尽可能少。对于螺杆的槽深,在供给部(hf)处形成的槽深不少于13毫米,且在计量部(hm)处形成的槽深不少于8毫米。螺杆供给部的槽深(hf)不少于13毫米且计量部的槽深不少于8毫米,原因如下。尽管根据通过调整球粒长度生产用于汽车上的大尺寸结构件的球粒这一目的,可在6-24毫米的范围内改变长纤维混合物中的球粒长度,但是根据目标冲击强度、成形性、球粒处理的容易性等等,通常使用10-12毫米的球粒。在给料器到螺杆14间咬入构成长纤维强化树脂材料的球粒过程中,当供给部的槽深(hf)浅于球粒长度时,在供给螺杆14的硬质球粒时,该球粒不能顺利地进入螺杆槽,在该时点,球粒被切断或被折弯,因此,形成的槽深(hf)等于或大于13毫米,深于球粒长度,以防止在将球粒中的长纤维带入螺杆14时发生破损。下面,计量部的槽深(hm)不少于8毫米是因为:当该槽深(hm)少于8毫米时,增大了长纤维的破损程度。根据本发明,特别是由当前钢板生产出的大尺寸结构件可通过树脂成形,因此可实现大幅轻质成形并减少约20-25%的成本。具体对于汽车部件而言,本发明适用于基材的各种结构件,用于前端组件、门板、后部车门组件等等。显然,本发明还适用于汽车部件以外的大尺寸结构件。
此外,本发明的上述实施方式仅作为本发明的示例,且本发明并不局限于此。本发明可通过单个螺杆头或螺杆的单独构成要件或构成要件的任意组合进行体现。
(实施例)
表1和2列出了基于JP-A-6-246802和JP-A-2-292008生产的长纤维的直列螺杆式可塑化射出装置构成的一个比较例,通过本发明构成的一个实施例中相对于螺杆直径为100毫米、130毫米、160毫米时,由PP树脂制品切出的具有初始玻璃纤维长度为12毫米、玻璃纤维含量为40%的样品的可塑化性能、重量稳定性、制品的物理性质等等的比较。表1示出了测试装置的规格,表2示出了测试结果。
表1
比较例1 | 实施例1 | 比较例2 | 实施例2 | 比较例3 | 实施例1 | |
夹紧力(千牛) | 9806 | 9806 | 17650 | 17650 | 25495 | 25495 |
螺杆直径D(毫米) | Φ100 | Φ100 | Φ130 | Φ130 | Φ160 | Φ160 |
螺杆L/D | 13 | 18 | 14 | 21 | 15 | 24 |
供给部长度Lf | 5D | 10D | 6D | 12D | 7D | 14D |
螺杆槽深hf/hm(毫米) | 14/8 | 14/8 | 17/10 | 17/10 | 20/12 | 20/12 |
挡圈类型 | 非共转 | 共转 | 非共转 | 共转 | 非共转 | 共转 |
相对于铅直轴的角θ | 30° | 70° | 30° | 80° | 30° | 90° |
通路宽度B尺寸(毫米) | 10 | 4 | 15 | 5 | 20 | 8 |
B/D×100(%) | 10 | 4 | 11.2 | 3.8 | 12.5 | 3.8 |
挡圈宽度W(毫米) | 70 | 40 | 80 | 50 | 90 | 60 |
W/D比值 | 0.7 | 0.4 | 0.62 | 0.38 | 0.56 | 0.38 1 |
表2
比较例1 | 实施例1 | 比较例2 | 实施例2 | 比较例3 | 实施例1 | |
颗粒长度(毫米) | 12 | 12 | 12 | 12 | 12 | 12 |
螺杆转数(rpm) | 60 | 60 | 50 | 50 | 40 | 40 |
可塑化能力(千克/小时) | 110 | 160 | 170 | 280 | 220 | 400 |
制品重量稳定性1) | × | ○ | × | ○ | × | ○ |
制品外观(纤维分数)2) | △ | ○ | △ | ○ | △ | ○ |
清除制品平均纤维长(毫米) | 4.0 | 5.8 | 4.1 | 5.8 | 4.1 | 6.0 |
Isod冲击值(KJ/m2)3)(流动方向/垂直方向) | 13.98/23.10 | 15.14/25.84 | 14.11/23.50 | 15.50/26.22 | 14.40/23.13 | 19.95/26.15 |
抗弯强度(Mpa)4)(流动方向/垂直方向) | 98.34/97.98 | 105.27/106.03 | 100.5/100.8 | 112.3/114.2 | 110.5/105.3 | 130.9/122.7 |
挠曲弹性(Gpa)4)(流动方向/垂直方向) | 5.01/4.46 | 5.00/4.48 | 5.05/4.59 | 5.18/4.82 | 5.08/4.68 | 5.30/4.92 |
落锤冲击(所有吸收能量<J>5))(流道近旁/流动远端) | 17.91/12.70 | 17.78/13.83 | 17.88/12.50 | 18.14/14.22 | 17.12/11.24 | 21.21/15.38 |
落锤冲击(达到最大载荷的能量<J>5))(流道近旁/流动远端) | 6.02/6.45 | 6.91/6.58 | 6.11/6.38 | 7.03/6.84 | 5.98/6.06 | 7.56/7.442 |
注意
1)在表中,○:优良的重量稳定性及稳定成形可能×:混有短细颗粒,毛边及实际生产不可能
2)在表中,○:不用涂层可使用 △:使用涂层达到使用级别
3)测试方法:ASTM D256
4)测试方法:ASTM D790
5)测试方法:ISO06603-2
根据该实施例,当螺杆直径(D)为100毫米时,供给部的长度(Lf)被设定为10D;当螺杆直径(D)为130毫米时,供给部的长度(Lf)被设定为12D;当螺杆直径(D)为160毫米时,供给部的长度(Lf)被设定为14D。
根据该实施例,当螺杆直径(D)为100毫米时,供给部的槽深(hf)被设定为14毫米且计量部的槽深(hm)设定为8毫米;当螺杆直径(D)为130毫米时,供给部的槽深(hf)被设定为17毫米且计量部的槽深(hm)设定为10毫米;当螺杆直径(D)为160毫米时,供给部的槽深(hf)被设定为20毫米且计量部的槽深(hm)设定为12毫米。
由此发现根据本发明,在包括螺杆直径不小于100毫米的直列螺杆式可塑化射出装置的大尺寸射出成形机中,通过将螺杆的长度与直径的比值(L/D)设定为18-24且将供给部的长度(Lf)设定为该直径(D)的10-14倍,稳定了计量时间周期,将可塑化性能提高了1.4-2倍且大幅提高了生产率。
通过将正交于熔融树脂通路流动方向上的通路宽度B限定为螺杆直径(D)的3-6%,在堰板22和挡圈26的端面与铅直轴之间构成70°-90°的角θ,且在挡圈26的前侧设置与螺杆头20的切口相配合的凸出部26’,由此在旋转螺杆时,挡圈随螺杆头一同旋转并将挡圈26的宽度设定为螺杆直径(D)的0.3-0.4倍,在抑制玻璃纤维破损至实际要求水平的同时改善了密封性能,因此实现了能够实施稳定成形而不产生短细颗粒,毛边等等不良成形的效果。
特别是,在使用具有高流动性的其中熔体如基料聚合物流速在100-300克/10分钟范围内的聚丙烯树脂的长纤维强化热塑性树脂大尺寸成形制品中,这种效果很显著且证实了可高周生产出稳定制品,而不产生短细颗粒,毛边等等。此外,通过增大螺杆14的长度与直径的比值(L/D),从外部加热器向球粒材料提供充足的热量以由此促进熔融,不产生集束长纤维的解离不良并提供良好的产品外观。
如以上说明,根据本发明,通过建立以下构成,即将螺杆的长度(L)与直径(D)的比值设定为18-24且将供给部的长度(Lf)设定为该直径(D)的10-14倍,从外部加热器可向原材料球粒提供充足的热量,该材料以一种易于软化和熔融的状态被传送至压缩部,因此减小了剪切力并减小了集束长纤维的破损。此外,由于供给部的长度(Lf)大小为该直径(D)的10-14倍,即使当螺杆14退回用于在汽缸前端计量腔室15中的熔融材料的计量行程(S)的该直径(D)的2-5倍的量时,供给部的有效长度(Lf)被确保为该直径(D)的8-9倍,因此甚至在低速旋转条件下也可以实施稳定的计量操作。
此外,通过设定螺杆供给部的槽深(hf)不少于13毫米且设定计量部的槽深(hm)不少于8毫米,深于球粒长度的槽深(hf)被设定为不少于13毫米且在将球粒引入螺杆内时,可防止发生长纤维的破损,并且通过设定计量部的槽深(hm)不少于8毫米,可有效地熔融树脂且可尽可能地减少长纤维的破损。
此外,通过将正交于熔融树脂流动方向上的由堰板和挡圈形成的熔融树脂通路的宽度设定为螺杆直径的3-6%的构成,不会分散密封时限,还可减少长纤维的破损,因此该构成对于直径不小于100毫米的大口径螺杆特别有效。由此特别是,可以稳定且高效地成形大尺寸汽车部件。
根据本发明,通过将在堰板和挡圈的端面与铅直轴之间构成角θ设定为70°-90°的构成,从腔室一侧到螺杆一侧的流体阻力增大,可减少直至通过使挡圈与堰板相接触而封闭通路宽度(B)这一时期的回流量并可提高成形的稳定性。
根据本发明,通过建立一种构成,其中具有挡圈的螺杆头被安装且设置在挡圈前侧上的凸出部与螺杆头的切口相配合,以由此在旋转螺杆时,挡圈随螺杆一同旋转。由此,在由堰板和挡圈形成的树脂通路(具有通路宽度B的树脂通路34b)和由挡圈和螺杆头的轴形成的树脂通路(具有通路宽度(A)的树脂通路34a)处旋转螺杆时,沿旋转方向施加给树脂的剪切力可被限定为零,可以减少长玻璃纤维的破损。
根据本发明,通过安装具有挡圈的螺杆头且设定挡圈的宽度为螺杆直径(D)的0.3-0.4倍的构成,可防止在具有通路宽度(A)的树脂通路(34a)处发生长玻璃纤维的破损。
根据本发明,甚至当长纤维强化热固性树脂的基体聚合物由具有高流动性的其中熔体流速在100-300克/10分钟范围内的聚丙烯树脂构成时,可高周生产出稳定制品,而不产生短细颗粒,毛边等等。
Claims (5)
1、一种可塑化射出含有其长度与球粒长度基本相同且沿球粒纵向排列的长纤维的热塑性树脂球粒的直列螺杆式可塑化射出装置,该射出装置包括:
一个直径不小于100毫米的螺杆;
一个其中设置有螺杆的中空的加热汽缸;
一个通过轴与螺杆相连的螺杆头;
一个固定在轴的后端部的堰板;以及
一个在轴周围滑动配合以使得能够在由轴和加热汽缸限定的空间内在螺杆头和堰板之间进行往复运动的挡圈,以致由加热汽缸、螺杆头、轴、挡圈和堰板形成熔融树脂通路;
其特征在于,
螺杆的长度(L)与直径(D)的比值被设定为18-24,
螺杆供给部的长度(Lf)被设定为该直径(D)的10-14倍,
螺杆供给部的槽深(hf)被设定为不小于13毫米,
螺杆计量部的槽深(hm)被设定为不小于8毫米,以及
正交于熔融树脂流动通路方向上的由堰板和挡圈形成的熔融树脂通路的宽度被设定为螺杆直径(D)的3-6%。
2、根据权利要求1所述的直列螺杆式可塑化射出装置,其特征在于,在堰板和挡圈的端面与铅直轴之间构成的角θ被设定为70°-90°。
3、根据权利要求1所述的直列螺杆式可塑化射出装置,其特征在于,设置在挡圈前侧的凸出部与螺杆头的切口相配合,且在旋转螺杆时,挡圈随其一同旋转。
4、根据权利要求1所述的直列螺杆式可塑化射出装置,其特征在于,挡圈的宽度被设定为螺杆直径(D)的0.3-0.4倍。
5、根据权利要求1所述的直列螺杆式可塑化射出装置,其特征在于,长玻璃纤维强化热固性树脂的基体聚合物由具有高流动性的其中熔体流速在100-300克/10分钟范围内的聚丙烯树脂构成。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP87161/2003 | 2003-03-27 | ||
JP2003087161A JP4050644B2 (ja) | 2003-03-27 | 2003-03-27 | インラインスクリュ式可塑化射出装置 |
JP87161/03 | 2003-03-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1533870A true CN1533870A (zh) | 2004-10-06 |
CN100400260C CN100400260C (zh) | 2008-07-09 |
Family
ID=33028180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100314128A Expired - Lifetime CN100400260C (zh) | 2003-03-27 | 2004-03-29 | 直列螺杆式可塑化射出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20040228946A1 (zh) |
JP (1) | JP4050644B2 (zh) |
KR (1) | KR101056536B1 (zh) |
CN (1) | CN100400260C (zh) |
DE (1) | DE102004015303B4 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371154C (zh) * | 2004-11-04 | 2008-02-27 | 湖北工业大学 | 内循环可控剪切密炼方法和装置 |
CN100427290C (zh) * | 2004-12-16 | 2008-10-22 | 株式会社名机制作所 | 射出装置 |
TWI398343B (zh) * | 2007-12-27 | 2013-06-11 | Sumitomo Heavy Industries | Injection device and injection method |
CN105408077A (zh) * | 2013-08-27 | 2016-03-16 | 株式会社日本制钢所 | 排气式双螺杆混炼挤出装置及方法 |
CN109890590A (zh) * | 2016-10-10 | 2019-06-14 | 克劳斯玛菲科技有限公司 | 用于制造纤维增强的塑料成型件的注射成型机 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5210326B2 (ja) * | 2008-01-18 | 2013-06-12 | 住友重機械工業株式会社 | スクリュー及び射出装置 |
DE102009002521A1 (de) * | 2009-04-21 | 2010-10-28 | Zf Friedrichshafen Ag | Verfahren zum Betreiben eines Fahrzeugs mit einem Segel- bzw. Rollmodus |
JP5956150B2 (ja) * | 2011-12-26 | 2016-07-27 | 帝人株式会社 | 炭素繊維強化熱可塑性樹脂およびその成形品の製造方法 |
JP2013184404A (ja) * | 2012-03-08 | 2013-09-19 | Sumitomo Chemical Co Ltd | 導電性繊維含有熱可塑性樹脂成形体の製造方法及び射出装置 |
CN108775889B (zh) * | 2018-05-30 | 2020-03-17 | 中国航发动力股份有限公司 | 一种航空发动机燃油喷嘴旋流槽深度的检测方法 |
CN109397652A (zh) * | 2018-11-02 | 2019-03-01 | 浙江中扬螺杆制造有限公司 | 一种单螺杆夹心注射装置及工艺 |
JP7388155B2 (ja) * | 2019-11-27 | 2023-11-29 | 株式会社豊田中央研究所 | 射出成形用スクリュ |
KR102151080B1 (ko) * | 2019-12-18 | 2020-09-02 | 에쓰대시오일 주식회사 | 압출 및 사출 성형용 펠렛 및 이의 제조 장치 |
DE102021206547B4 (de) | 2021-06-24 | 2024-12-24 | Zf Friedrichshafen Ag | Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs |
DE102021206546A1 (de) | 2021-06-24 | 2022-12-29 | Zf Friedrichshafen Ag | Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs |
CN114311482B (zh) * | 2021-12-10 | 2023-12-22 | 扬州市邗江扬子汽车内饰件有限公司 | 汽车软触内饰件的注塑发泡成型生产设备及生产工艺 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH387939A (de) * | 1961-10-30 | 1965-02-15 | Buehler Ag Geb | Spritzgussmaschine mit Vakuumentgasung der plastifizierten Masse |
US4105147A (en) * | 1977-02-07 | 1978-08-08 | Stubbe Paul L | Extruder screw valve |
JPS5726704A (en) * | 1980-07-25 | 1982-02-12 | Hitachi Ltd | Measuring instrument for three-dimensional shape |
JPH0298421A (ja) * | 1988-10-04 | 1990-04-10 | Toyo Mach & Metal Co Ltd | 射出成形機の射出制御方法 |
US5041258A (en) * | 1989-04-28 | 1991-08-20 | Polyplastics Co., Ltd. | Injection process for long fiber-containing resin |
US4988281A (en) * | 1989-09-07 | 1991-01-29 | Husky Injection Molding Systems Ltd. | Valve assembly for injection molding machine |
CN2083587U (zh) * | 1990-09-30 | 1991-08-28 | 于荣久 | 一种高油脂物料挤出机 |
AU6714390A (en) * | 1990-10-06 | 1992-04-28 | Seiko Corporation | Process and apparatus for injection molding with melt filtration |
US5167971A (en) * | 1991-07-29 | 1992-12-01 | Gill Joseph R | Check valve assembly for injection molding apparatus |
JP3431657B2 (ja) * | 1993-02-26 | 2003-07-28 | ポリプラスチックス株式会社 | インラインスクリュー式可塑化射出装置 |
JPH06292008A (ja) * | 1993-04-01 | 1994-10-18 | Konica Corp | 放射線画像のダイナミックレンジ圧縮処理装置 |
CN2215400Y (zh) * | 1994-12-20 | 1995-12-20 | 王德臣 | 塑料挤出机螺杆 |
JP3755293B2 (ja) * | 1997-05-22 | 2006-03-15 | 日立金属株式会社 | 繊維強化熱可塑性樹脂の可塑化装置用スクリュおよび可塑化装置 |
JP3877190B2 (ja) * | 1997-07-18 | 2007-02-07 | 住友重機械工業株式会社 | 逆流防止装置 |
JP2002220538A (ja) * | 2000-03-28 | 2002-08-09 | Mazda Motor Corp | 成形用ガラス長繊維強化樹脂材料、該樹脂材料を射出成形してなる射出成形品及び該樹脂材料を用いた成形方法 |
JP2003087161A (ja) * | 2001-09-06 | 2003-03-20 | Ntt Docomo Inc | 無線基地局及び無線通信制御方法 |
-
2003
- 2003-03-27 JP JP2003087161A patent/JP4050644B2/ja not_active Expired - Lifetime
-
2004
- 2004-03-26 KR KR1020040020784A patent/KR101056536B1/ko active IP Right Grant
- 2004-03-29 US US10/811,386 patent/US20040228946A1/en not_active Abandoned
- 2004-03-29 DE DE102004015303A patent/DE102004015303B4/de not_active Expired - Lifetime
- 2004-03-29 CN CNB2004100314128A patent/CN100400260C/zh not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371154C (zh) * | 2004-11-04 | 2008-02-27 | 湖北工业大学 | 内循环可控剪切密炼方法和装置 |
CN100427290C (zh) * | 2004-12-16 | 2008-10-22 | 株式会社名机制作所 | 射出装置 |
TWI398343B (zh) * | 2007-12-27 | 2013-06-11 | Sumitomo Heavy Industries | Injection device and injection method |
CN105408077A (zh) * | 2013-08-27 | 2016-03-16 | 株式会社日本制钢所 | 排气式双螺杆混炼挤出装置及方法 |
CN105408077B (zh) * | 2013-08-27 | 2017-05-17 | 株式会社日本制钢所 | 排气式双螺杆混炼挤出装置及方法 |
CN109890590A (zh) * | 2016-10-10 | 2019-06-14 | 克劳斯玛菲科技有限公司 | 用于制造纤维增强的塑料成型件的注射成型机 |
Also Published As
Publication number | Publication date |
---|---|
DE102004015303B4 (de) | 2010-06-02 |
JP2004291409A (ja) | 2004-10-21 |
KR20040085032A (ko) | 2004-10-07 |
KR101056536B1 (ko) | 2011-08-12 |
DE102004015303A1 (de) | 2004-10-21 |
US20040228946A1 (en) | 2004-11-18 |
CN100400260C (zh) | 2008-07-09 |
JP4050644B2 (ja) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1533870A (zh) | 直列螺杆式可塑化射出装置 | |
CN1192062C (zh) | 成型材料及其制造方法 | |
US6228308B1 (en) | Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins | |
CN1080636C (zh) | 模制塑料制品 | |
CN1319720C (zh) | 高分子材料挤出-注射成型方法及其装置 | |
CN1571719A (zh) | 用于注射模塑多层物品的设备 | |
CN103237637B (zh) | 用于制造具有条纹的合成木的装置及方法以及该合成木 | |
CN100344434C (zh) | 注入模制和对模制产品随后进行装饰性模制的方法 | |
CN2925844Y (zh) | 纤维增强热塑性塑料双螺杆挤出机 | |
CN1215366A (zh) | 一种制造挤压塑料制品的方法和设备及塑料制品 | |
CN107686627A (zh) | 3d打印用组合物和3d打印用材料及其制备方法和应用 | |
US5041258A (en) | Injection process for long fiber-containing resin | |
CN1281398C (zh) | 可模制材料的模制加工 | |
CN103097103A (zh) | 注射组件 | |
KR102123356B1 (ko) | 필라멘트 절단장치를 포함하는 탄소섬유-고분자 복합재 3d프린터 | |
KR20180023764A (ko) | 휘광제 뭉침방지 사출장치 및 이를 이용한 사출방법 | |
CN105835374A (zh) | 一种纤维级基于反应挤出的导电产品的3d打印方法 | |
CN216329871U (zh) | 一种鱼饵注塑机的射胶机构 | |
CN102126262A (zh) | 塑料和植物纤维复合材料的叶片式加工设备及加工方法 | |
CN202088322U (zh) | 塑料和植物纤维复合材料的叶片式加工设备 | |
CN200945698Y (zh) | 微发泡双机筒注射机 | |
CN110421816B (zh) | 一种abs板加工方法及设备 | |
CN210026175U (zh) | 一种具有调节功能的注塑机胶流道 | |
CN218966103U (zh) | 一种聚氨酯流延薄膜挤出机专用螺杆 | |
CN1166506C (zh) | 一种用于硬质聚氯乙烯挤出单螺杆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20080709 |