[go: up one dir, main page]

CN1472680A - Crosstalk reduction method used in standard cell overall wiring process - Google Patents

Crosstalk reduction method used in standard cell overall wiring process Download PDF

Info

Publication number
CN1472680A
CN1472680A CNA03124095XA CN03124095A CN1472680A CN 1472680 A CN1472680 A CN 1472680A CN A03124095X A CNA03124095X A CN A03124095XA CN 03124095 A CN03124095 A CN 03124095A CN 1472680 A CN1472680 A CN 1472680A
Authority
CN
China
Prior art keywords
crosstalk
wiring
net
grg
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA03124095XA
Other languages
Chinese (zh)
Other versions
CN1219269C (en
Inventor
洪先龙
经彤
许静宇
张凌
胡昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 03124095 priority Critical patent/CN1219269C/en
Publication of CN1472680A publication Critical patent/CN1472680A/en
Application granted granted Critical
Publication of CN1219269C publication Critical patent/CN1219269C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

标准单元总体布线过程中用的减少串扰的方法属于集成电路计算机辅助设计领域,其特征在于:它是在标准单元总体布线中优化时延后进行的,它先在统计电路串扰基础上进行信号线网间的串扰减少控制,然后再根据用户给出的时延约束指标来进行优化延时判别,若不满足,则继续迭代时延优化和串扰减少控制程序,一直到得出一组满足优化目标的所有线网在总体布线图中的布线树为止。它是在优化电路时延程序之后再通过控制相邻线网的平行走线长度和布线间隔来减少信号线网间的串扰的;判断参数则是线网串扰溢出量的变化值。与在后续阶段来减少串扰相比,它有更大的空间;它在减少串扰特别是关键路径串扰的同时,也兼顾了时延性能。

Figure 03124095

The method for reducing crosstalk used in the overall wiring of standard cells belongs to the field of computer-aided design of integrated circuits, and is characterized in that it is carried out after optimizing the time delay in the overall wiring of standard cells, and it first performs signal line on the basis of statistical circuit crosstalk. The crosstalk reduction control between networks, and then optimize the delay judgment according to the delay constraint index given by the user. If it is not satisfied, continue to iterate the delay optimization and crosstalk reduction control program until a set of optimization goals is obtained. All nets in the general wiring diagram up to the wiring tree. After optimizing the circuit delay program, it reduces the crosstalk between the signal nets by controlling the parallel wiring length and wiring interval of adjacent nets; the judgment parameter is the change value of the crosstalk overflow of the nets. Compared with reducing crosstalk in the subsequent stages, it has more space; while reducing crosstalk, especially critical path crosstalk, it also takes delay performance into consideration.

Figure 03124095

Description

标准单元总体布线过程中用的减少串扰的方法Crosstalk reduction method used in standard cell overall wiring process

技术领域technical field

标准单元总体布线过程中用的减少串扰的方法属于集成电路计算机辅助设计(IC CAD)领域,尤其涉及标准单元(SC)总体布线领域。The method of reducing crosstalk used in the overall wiring of standard cells belongs to the field of integrated circuit computer aided design (IC CAD), especially the field of overall wiring of standard cells (SC).

背景技术Background technique

在集成电路(IC)设计中, 物理设计是IC设计过程中主要的一环,也是其中最耗时的一步。与物理设计相关的计算机辅助设计技术称为 布图设计。在布图设计中, 总体布线是一个极为重要的环节,它的结果对最后 详细布线的成功与否和芯片的性能影响极大。In integrated circuit (IC) design, physical design is the main link in the IC design process, and it is also the most time-consuming step. A computer-aided design technique related to physical design is called layout design . In layout design, overall routing is an extremely important link, and its results have a great impact on the success of the final detailed routing and the performance of the chip.

集成电路的制造工艺目前正从 超深亚微米(VDSM)进入到 纳米(nanometer)阶段;集成电路的设计规模正由 超大规模(VLSI)甚大规模(ULSI)G大规模(GSI)方向发展;集成电路的工作频率由 G赫兹向更高迈进。在这种条件下,一方面,集成电路设计中 互连线延迟已经大大超过了 门延迟,成为影响芯片性能的主要因素。这时除了要优化 布线拥挤外,还要进行时延优化。另一方面,由于模块、互连线排列更加紧密,电路工作频率更高,使得互连线之间的 耦合效应变得非常强烈:该效应进一步 劣化电路时延;尤其是,耦合电容导致的 线间串 成为一个突出的问题。因此,若标准单元总体布线进行性能优化时仍按照以往的方法而忽略线间串扰的影响,将会使所得到的实际布线结果在性能上受到很大影响,甚至使电路不能正常工作。The manufacturing process of integrated circuits is currently entering the nanometer (nanometer) stage from ultra-deep submicron (VDSM) ; the design scale of integrated circuits is developing from very large-scale (VLSI) , very large-scale (ULSI) to G-scale (GSI) ; The operating frequency of integrated circuits is moving from GHz to higher. Under such conditions, on the one hand, the delay of the interconnect line in the design of the integrated circuit has greatly exceeded the delay of the gate , becoming the main factor affecting the performance of the chip. At this time, in addition to optimizing wiring congestion , delay optimization must also be performed. On the other hand, due to the closer arrangement of modules and interconnection lines, the higher operating frequency of the circuit makes the coupling effect between the interconnection lines very strong: this effect further deteriorates the circuit delay ; especially, the coupling capacitance caused by the line Crosstalk becomes a prominent problem. Therefore, if the performance optimization of standard unit overall wiring is still carried out according to the previous method and the influence of crosstalk between lines is ignored, the actual wiring results obtained will be greatly affected in performance, and even the circuit will not work normally.

由两条相邻连线之间 电容性耦合产生的串扰,能够造成电路信号不正确的逻辑转变。结果,芯片的性能不可能达到设计目标的要求。这一问题严重阻碍着电路的集成度和工作频率的进一步提高、以及特征宽度的进一步减小。因此,在新的技术发展与工艺要求下,要研究消除串扰并进行 时延、布线拥挤挤优化的总体布线方法。Crosstalk, produced by capacitive coupling between two adjacent wires, can cause incorrect logic transitions in circuit signals. As a result, the performance of the chip is unlikely to meet the design goals. This problem seriously hinders the further improvement of circuit integration and operating frequency, as well as the further reduction of feature width. Therefore, under the new technical development and process requirements, it is necessary to study the overall wiring method that eliminates crosstalk and optimizes time delay and wiring congestion .

在已报导和所能查阅到的国内外相关研究中,我们列举、分析、总结如下:Among the relevant domestic and foreign studies that have been reported and can be consulted, we list, analyze and summarize as follows:

关于代表性的时延优化方法,在文献[已申请的国家发明专利:洪先龙,经彤,许静宇,张凌,胡昱.发明名称:考虑耦合效应进行时延优化的标准单元总体布线方法。申请日期:2002/12/17.申请号为:02156622.4.]中进行了全面的分析、介绍。Regarding the representative time delay optimization method, in the literature [applied national invention patents: Hong Xianlong, Jing Tong, Xu Jingyu, Zhang Ling, Hu Yu. Invention name: Standard cell overall wiring method for time delay optimization considering coupling effect. Application date: 2002/12/17. Application number: 02156622.4.] has carried out a comprehensive analysis and introduction.

两篇文献[已申请的国家发明专利:洪先龙,经彤,鲍海云,蔡懿慈,许静宇.发明名称:基于关键网络技术优化时延的标准单元总体布线方法。申请日期:2002/01/15.申请号为:02100354.8.已于2002/07/24被公开。]和[已申请的国家发明专利:洪先龙,经彤,许静宇,张凌,胡昱.发明名称:考虑耦合效应进行时延优化的标准单元总体布线方法。申请日期:2002/12/17.申请号为:02156622.4.]是我们相继提出的新的时延优化方法。其中,我们先在前者中提出了 基于关键网络技术的时延优化总体布线方法。该方法的优化思想比以往其他方法具有突出的优点,能取得更好的时延优化效果。但由于当时条件的限制,还没有考虑到耦合效应进一步劣化电路时延的影响,使得该方法在新的工艺条件下存在不足。为了弥补不足,我们又在后者中提出了 考虑耦合效应进行时延优化的标准单元总体布线方法。该方法更准确地计算了延迟,与实际情况更加一致。Two documents [National invention patents that have been applied for: Hong Xianlong, Jing Tong, Bao Haiyun, Cai Yici, Xu Jingyu. Invention name: Standard cell overall wiring method based on key network technology to optimize delay. Application date: 2002/01/15. Application number: 02100354.8. It was published on 2002/07/24. ] and [National invention patents that have been applied for: Hong Xianlong, Jing Tong, Xu Jingyu, Zhang Ling, Hu Yu. Invention name: Overall wiring method of standard cells for delay optimization considering coupling effects. Application date: 2002/12/17. Application number: 02156622.4.] is a new time delay optimization method proposed by us successively. Among them, we first proposed a delay-optimized overall routing method based on key network technologies in the former. The optimization idea of this method has outstanding advantages over other previous methods, and can achieve better delay optimization results. However, due to the limitations of the conditions at that time, the influence of the coupling effect to further deteriorate the circuit delay has not been considered, which makes this method insufficient under the new process conditions. In order to make up for the deficiency, we propose a general layout method of standard cells in the latter which considers the coupling effect and optimizes the time delay . This approach calculates latency more accurately and is more consistent with reality.

但是,上述的工作都是围绕时延优化的目标,还尚未考虑串扰对电路性能的影响,没有进行相关的优化工作。However, the above-mentioned works are all focused on the goal of delay optimization, and the influence of crosstalk on circuit performance has not been considered yet, and related optimization work has not been carried out.

对于与串扰相关的研究工作,我们在2001年的综述性文献[经彤,洪先龙,蔡懿慈,鲍海云,许静宇.性能驱动总体布线的关键技术及研究进展.软件学报.2001,12(5):677-688.]中进行了比较详细的分析、介绍。下面除对该文献中的串扰分析内容进行简要的列举外,还将补充介绍后续的典型相关研究工作。For research work related to crosstalk, our review literature in 2001 [Jing Tong, Hong Xianlong, Cai Yici, Bao Haiyun, Xu Jingyu. Key technologies and research progress of performance-driven overall wiring. Journal of Software. 2001, 12(5): 677 -688.] carried out a more detailed analysis and introduction. In addition to briefly enumerating the content of crosstalk analysis in this literature, the following typical related research work will also be supplemented.

对于串扰的研究可追溯到多年前的文献[Catt,I.Crosstalk(Noi se)in DigitalSystems.IEEE Transactions on Electronic Computers,1967,16(6):743-763.]的工作,它比较清楚地介绍了串扰的形成及其基本概念,但它是基于 印刷线路板(PCB)而不是基于IC芯片的。多年后,随着IC技术的发展,基于IC布线中的串扰相关研究工作才逐步得到开展。这些工作可分为两大类: 对于串扰计算模型的研究在布线中进行串扰优化工作The research on crosstalk can be traced back to the work [Catt, I. Crosstalk (Noise) in Digital Systems. IEEE Transactions on Electronic Computers, 1967, 16 (6): 743-763.] many years ago, which clearly introduces The formation of crosstalk and its basic concepts are explained, but it is based on printed circuit boards (PCBs) rather than IC chips. Many years later, with the development of IC technology, research work based on crosstalk in IC wiring was gradually carried out. These works can be divided into two categories: research on crosstalk calculation models ; crosstalk optimization work in wiring .

在7篇文献[Vittal,A.,Marek-Sadowska,M.Crosstalk Reduction for VLSI.IEEETransactions on CAD,1997,16(3):290-298.]、[Yang,X.Crosstalk-Driven Layout[M.S.Thesis].Santa Barbara,California:University of California,1996.]、[Devgan,A.Efficient Coupled Noise Estimation for On-Chip Interconnects.In:IEEE,ACM eds.Proceedings of IEEE/ACM International Conference on Computer-Aided Design(ICCAD).Los Alamitos:IEEE Computer Society Press,1997.147-153.]、[Kawaguchi,H.,Sakurai,T.Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines.In:IEEE,ACM eds.Proceedings of Asia and South Pacific Design Automation Conference(ASP-DAC).Los Alamitos:IEEE Computer Society Press,1998.]、[Sakurai,T.Closed FormExpressions for interconnection Delay,Coupling and Crosstalk in VLSI’s.IEEETransactions on Electron Devices,1993,40(1):118-124.]、[Vittal,A.,Chen,L.H.,Marek-Sadowska,M.et al.Crosstalk in VLSI Interconnections.IEEE Transactions onCAD,1999,18(12):1817-1824.]、[Kuhlmann,M.,Sapatnekar,S.S.Exact and EfficientCrosstalk Estimation.IEEE Transactions on CAD,2001,20(7):858-865.]中,主要进行了关于串扰计算模型的研究工作。文献[Parakh,P.N.,Brown,R.B.CrosstalkConstrained Global Route Embedding.In:ACM ed.Proceedings of InternationalSymposium on Physical Design(ISPD).New York:ACM Press,1999.201-206.]进行的是串扰+时延综合计算模型的研究工作。文献[Jiang,H.R.,Jou J.Y.,Chang Y.W.Noise-Constrained Performance Optimization by Simultaneous Gate and Wire SizingBased on Lagrangian Relaxation.In:ACM,IEEE eds.Proceedings of Design AutomationConference(DAC).New York:ACM Press,1999.90-95.]的主要贡献在于提出了一个精确的串扰计算模型,辅助工作是通过改变电路部件设计尺寸的方法、基于所提出的计算模型来进行串扰的优化。虽然在这些研究中都可以看到“串扰”的字样,但其进行的具体研究工作与本专利的主要工作没有太多的联系,这里就不再逐一仔细分析说明了。In 7 papers [Vittal, A., Marek-Sadowska, M.Crosstalk Reduction for VLSI.IEEETransactions on CAD, 1997, 16(3): 290-298.], [Yang, X.Crosstalk-Driven Layout[M.S.Thesis ]. Santa Barbara, California: University of California, 1996.], [Devgan, A. Efficient Coupled Noise Estimation for On-Chip Interconnects. In: IEEE, ACM eds. Proceedings of IEEE/ACM International Conference on Computer-Aided Design( ICCAD). Los Alamitos: IEEE Computer Society Press, 1997.147-153.], [Kawaguchi, H., Sakurai, T. Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines. In: IEEE, ACM eds. Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC). Los Alamitos: IEEE Computer Society Press, 1998.], [Sakurai, T. Closed Form Expressions for interconnection Delay, Coupling and Crosstalk in VLSI's. IEEE Transactions on Electron Devices, 1993, 40(1) : 118-124.], [Vittal, A., Chen, L.H., Marek-Sadowska, M. et al. Crosstalk in VLSI Interconnections. IEEE Transactions on CAD, 1999, 18(12): 1817-1824.], [Kuhlmann , M., Sapatnekar, S.S. Exact and Efficient Crosstalk Estimation. IEEE Transactions on CAD, 2001, 20(7): 858-865.], mainly carried out the research work on the crosstalk calculation model. The literature [Parakh, P.N., Brown, R.B.Crosstalk Constrained Global Route Embedding.In: ACM ed.Proceedings of International Symposium on Physical Design (ISPD).New York: ACM Press, 1999.201-206.] is a comprehensive calculation model of crosstalk + delay research work. Literature [Jiang, H.R., Jou J.Y., Chang Y.W. Noise-Constrained Performance Optimization by Simultaneous Gate and Wire Sizing Based on Lagrangian Relaxation. In: ACM, IEEE eds. Proceedings of Design Automation Conference (DAC). New York: ACM Press 9, 0-95. .] The main contribution is to propose an accurate crosstalk calculation model, and the auxiliary work is to optimize the crosstalk based on the proposed calculation model by changing the design size of the circuit components. Although the word "crosstalk" can be seen in these studies, the specific research work carried out by it has not much connection with the main work of this patent, so it will not be carefully analyzed and explained one by one here.

有20篇文献主要进行了在布线中优化串扰的研究工作。这里将通过分析介绍,指出它们与本专利工作的区别。其中,有15篇文献的串扰优化工作分别进行在 详细布线之后(6篇:[Chaudhary,K.,Oniozawa,A.,Kuh,E.S.A Spacing Algorithm for PerformanceEnhancement and Crosstalk Reduction.In:IEEE,ACM eds.Proceedings of IEEE/ACMInternational Conference on Computer-Aided Design(ICCAD).Los Alamitos:IEEEComputer Society Press,1993.697-702.]、[Gao,T.,Liu,C.L.Minimum CrosstalkSwitchbox Routing.In:IEEE,ACM eds.Proceedings of IEEE/ACM InternationalConference on Computer-Aided Design(ICCAD).Los Alamitos:IEEE Computer SocietyPress,1994.610-615.]、[Gao,T.,Liu,C.L.Minimum Crosstalk Channel Routing.IEEETransactions on CAD,1996,15(5):465-474.]、[Kirkpatrick,D.,Sangiovanni-Vincentelli,A.Techniques for Crosstalk Avoidance in the PhysicalDesign of High-performance Digital System.In:IEEE,ACM eds.Proceedings of IEEE/ACMInternational Conference on Computer-Aided Design(ICCAD).Los Alamitos:IEEEComputer Society Press,1994.616-619.]、[Thakur,S.,Zhao,K.Y.,Wong,D.F.AnOptimal Layer Assignment Algorithm for Minimizing Cros stalk for Three Layer VHVChannel Routing.In:IEEE ed.Proceedings of International Symposium on Circuit andSystems(ISCAS).Los Alamitos:IEEE Computer Society Press,1995.207-210.]、[张徐亮,赵梅,范明钰等.一种在VLSI电路物理设计中减小串扰的优化算法.计算机辅助设计与图形学学报.2001,13(4):289-293.])、 详细布线之中(6篇:[Zhou,H.,Wang,D.F.An Optimal Algorithm for River Routing with Crosstalk Constrains.In:IEEE,ACM eds.Proceedings of IEEE/ACM International Conference on Computer-Aided Design(ICCAD).Los Alamitos:IEEE Computer Society Press,1996.310-315.]、[Jhang,K.S.,Ha,S.,Jhon,C.S.COP:A Crosstalk Optimizer for Gridded Channel Routing.IEEE Transactionson CAD,1996,15(4):424-437.]、[Saxena,P.,Liu,C.L.Crosstalk Minimization UsingWire Perturbations.In:ACM,IEEE eds.Proceedings of Design Automation Conference(DAC)。New York:ACM Press,1999.100-103.]、[Morton,P.B.,Dai,W.An EfficientSequential Quadratic Programming Formulation of Optimal Wire Spacing for Cross-TalkNoise Avoidance Routing.In:ACM ed.Proceedings of International Symposium onPhysical Design(ISPD).New York:ACM Press,1999.22-28.]、[Sapatnekar,S.S.ATiming Model Incorporating the Effect of Crosstalk on Delay and its Application toOptimal Channel Routing.IEEE Transactions on CAD,2000,19(5):550-559.]、[Hsu,K.C.,Lin,Y.C.,Chiu,P.X.,and Hsieh,T.M.Minimum Crosstalk Channel Routingwith Dogleg.In:IEEE ed.Proceedings of International Symposium on Circuit andSystems(ISCAS).Los Alamitos:IEEE Computer Society Press,2000.73-76.])、 总体 布线之后(3篇:[Xue,T.X.,Kuh,E.S.,Wang,D.S.Post Global Routing CrosstalkRisk Estimation and Reduction.In:IEEE,ACM eds.Proceedings of IEEE/ACMInternational Conference on Computer-Aided Design(ICCAD).Los Alamitos:IEEEComputer Society Press,1996.302-309.]、[Xue,T.X.,Kuh,E.S.,Wang,D.S.PostGlobal Routing Crosstalk Synthesis.IEEE Transactions on CAD,1997,16(12):1418-1430.]、[Stohr,T.,Alt,M.,Hetzel,A.,et al.Analysis,Reduction and Avoidanceof Crosstalk on VLSI Chips.In:ACM ed.Proceedings of International Symposium onPhysical Design(ISPD).New York:ACM Press,1998.211-218.])等布图阶段。文献[Tseng,H.P.,Scheffer,L.,Sechen,C.Timing and Crosstalk Driven Area Routing.In:ACM,IEEE eds.Proceedings of Design Automation Conference(DAC).New York:ACM Press,1998.378-381.]的工作是面向 积木块(BBL)设计模式的而不是标准单元(SC)设计模式,其优化是进行在总体布线之后阶段。文献[Kastner,R.,Bozorgzadeh,E.,Sarrafzadeh,M.AnExact Algorithm for Coupling-Free Routing.In:ACM ed.Proceedings of InternationalSymposium on Physical Design(ISPD).New York:ACM Press,2001.10-15.]研究的是能够减小耦合效应的一般拓扑模型,它与具体的布线阶段没有密切的联系,没有涉及到其他的优化目标。而 本专利的串扰优化工作是在总体布线过程之中进行的。 There are 20 papers that mainly focus on optimizing crosstalk in wiring. Here, the introduction will be analyzed to point out the difference between them and the work of this patent. Among them, the crosstalk optimization work of 15 documents is carried out after the detailed wiring (6: [Chaudhary, K., Oniozawa, A., Kuh, ESA Spacing Algorithm for PerformanceEnhancement and Crosstalk Reduction.In:IEEE, ACM eds.Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Los Alamitos: IEEE Computer Society Press, 1993.697-702.], [Gao, T., Liu, CLMinimum Crosstalk Switchbox Routing. In: IEEE, ACM eds. Proceedings of IEEE/ ACM International Conference on Computer-Aided Design (ICCAD). Los Alamitos: IEEE Computer Society Press, 1994.610-615.], [Gao, T., Liu, CLMinimum Crosstalk Channel Routing. IEEE Transactions on CAD, 1996, 15(5): 465- 474.], [Kirkpatrick, D., Sangiovanni-Vincentelli, A. Techniques for Crosstalk Avoidance in the Physical Design of High-performance Digital System. In: IEEE, ACM eds. Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD ). Los Alamitos: IEEE Computer Society Press, 1994.616-619.], [Thakur, S., Zhao, KY, Wong, DF An Optimal Layer Assignment Algorithm for Minimizing Cross stalk for Three Layer VHV Channel Routing. In: IEEE ed. Proceedings of International Symposium on Circuit and Systems (ISCAS). Los Alamitos: IEEE Computer Society Press, 1995.207-210.], [Zhang Xuliang, Zhao Mei, Fan Mingyu, etc. An optimization algorithm for reducing crosstalk in the physical design of VLSI circuits. Computer-aided design and graphics Acta Sinica Sinica. 2001, 13(4): 289-293.]), in detailed routing (6 articles: [Zhou, H., Wang, DFAn Optimal Algorithm for River Routing with Crosstalk Constrains.In: IEEE, ACM eds. Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Los Alamitos: IEEE Computer Society Press, 1996.310-315.], [Jhang, KS, Ha, S., Jhon, CSCOP: A Crosstalk Optimizer for Gridded Channel Routing. IEEE Transactions on CAD, 1996, 15(4): 424-437.], [Saxena, P., Liu, CLC Crosstalk Minimization Using Wire Perturbations. In: ACM, IEEE eds. Proceedings of Design Automation Conference (DAC). New York: ACM Press, 1999.100-103.], [Morton, PB, Dai, W. An Efficient Sequential Quadratic Programming Formulation of Optimal Wire Spacing for Cross-Talk Noise Avoidance Routing. In: ACM ed. Proceedings of International Symposium on Physical Design (ISPD ). New York: ACM Press, 1999.22-28.], [Sapatnekar, SSATiming Model Incorporating the Effect of Crosstalk on Delay and its Application to Optimal Channel Routing. IEEE Transactions on CAD, 2000, 19(5): 550-559.] , [Hsu, KC, Lin, YC, Chiu, PX, and Hsieh, TMMinimum Crosstalk Channel Routing with Dogleg. In: IEEE ed. Proceedings of International Symposium on Circuit and Systems (ISCAS). Los Alamitos: IEEE Computer Society Press, 2000.73-76 .]), after overall routing (3 articles: [Xue, TX, Kuh, ES, Wang, DSPost Global Routing Crosstalk Risk Estimation and Reduction.In: IEEE, ACM eds. Proceedings of IEEE/ACMInternational Conference on Computer-Aided Design (ICCAD ). Los Alamitos: IEEE Computer Society Press, 1996.302-309.], [ Xue, TX, Kuh, ES, Wang, DSPostGlobal Routing Crosstalk Synthesis. IEEE Transactions on CAD, 1997, 16(12): 1418-1430.], [ Stohr, T., Alt, M., Hetzel, A., et al. Analysis, Reduction and Avoidance of Crosstalk on VLSI Chips. In: ACM ed. Proceedings of International Symposium on Physical Design (ISPD). New York: ACM Press, 1998.211 -218.]) and other layout stages. Literature [Tseng, HP, Scheffer, L., Sechen, C. Timing and Crosstalk Driven Area Routing. In: ACM, IEEE eds. Proceedings of Design Automation Conference (DAC). New York: ACM Press, 1998.378-381.] The work is oriented to the building block (BBL) design pattern rather than the standard cell (SC) design pattern, and its optimization is carried out in the stage after the general layout. Literature [Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M. AnExact Algorithm for Coupling-Free Routing. In: ACM ed. Proceedings of International Symposium on Physical Design (ISPD). New York: ACM Press, 2001.10-15.] What is studied is the general topology model that can reduce the coupling effect, which is not closely related to the specific routing stage, and does not involve other optimization goals. However, the crosstalk optimization work of this patent is carried out during the overall wiring process.

在总体布线过程之中进行串扰优化工作的有3篇文献。其中,2篇文献[Zhou,H.,Wang,D.F.Global Routing with Crosstalk Constrains.In:ACM,IEEE eds.Proceedings ofDesign Automation Conference(DAC).New York:ACM Press,1998.374-377.]和[Zhou,H.,Wong,D.F.Global Routing with Crosstalk Constraints.IEEE Transactions on CAD,1999,18(11):1683-1688.]采用两阶段的启发式方法来控制串扰:首先以最小化总串扰为目标采用一种新的Steiner树构造算法来为每个线网构造初始Steiner树,然后,估计每个线网的串扰风险,超标的线网将被拆线重布。在重布过程中采用的是拉格朗日松弛技术。在该算法中 没有同时考虑时延优化的问题。文献[庄昌文,范明钰,李春辉,虞厥邦.一种串扰和时延驱动的总体布线算法.电子科技大学学报.2000,29(3):233-238.]进行了串扰与时延的优化工作,它是面向积木块(BBL)设计模式的而不是标准单元(SC)设计模式,布线区域是模块间的通道而不是整个芯片平面。它的测试例子线网数量少、方法实施时间长。同时,该3篇文献在测试中采用的都是学术界的benchmark,没有采用工业界实例电路,没有采用工业界精确的查表性能参数计算模型。There are 3 documents on crosstalk optimization in the overall wiring process. Among them, 2 documents [Zhou, H., Wang, DFGlobal Routing with Crosstalk Constrains.In: ACM, IEEE eds.Proceedings of Design Automation Conference (DAC). New York: ACM Press, 1998.374-377.] and [Zhou, H ., Wong, DFGlobal Routing with Crosstalk Constraints. IEEE Transactions on CAD, 1999, 18(11): 1683-1688.] A two-stage heuristic approach is used to control crosstalk: first a new The Steiner tree construction algorithm is used to construct an initial Steiner tree for each net, and then estimate the crosstalk risk of each net, and the nets that exceed the standard will be dismantled and redistributed. The Lagrangian relaxation technique is used in the redistribution process. In this algorithm , the problem of delay optimization is not considered at the same time . Literature [Zhuang Changwen, Fan Mingyu, Li Chunhui, Yu Juebang. A general routing algorithm driven by crosstalk and delay. Journal of University of Electronic Science and Technology of China. 2000, 29(3): 233-238.] carried out crosstalk and delay optimization work, It is oriented to the building block (BBL) design mode rather than the standard cell (SC) design mode, and the routing area is the channel between the modules rather than the entire chip plane. It has a small number of test case nets and a long method implementation time. At the same time, the three documents used the benchmarks of the academic world in the test, did not use the industrial example circuit, and did not use the industrial accurate table lookup performance parameter calculation model.

本专利的工作是消除串扰并进行时延、布线拥挤等优化目标的共同优化。其测试采用的The work of this patent is to eliminate crosstalk and jointly optimize optimization objectives such as time delay and wiring congestion. Its test uses 是工业界实例电路以及精确的查表性能参数计算模型。所进行的优化工作比上述文献中的广It is an example circuit in the industry and a calculation model of precise look-up table performance parameters. The optimization work carried out is more extensive than that in the above literature 泛、全面,优化方法也与它们不同。Pan and comprehensive, the optimization method is also different from them.

已检索到1篇优化串扰的美国专利,参见文献[美国专利:United States Patent,PatentNo.:US6218631 B1,Date of Patent:Apr.17,2001.Hetzel et al.“Structure for ReducingCross-Talk in VLSI Circuits and Method of Making Same Using Filled Channels toMinimize Cross-Talk”.]。它是在详细布线阶段通过在未占用布线道中插满屏蔽线(voltageand/or GND metal lines)的技术来减小串扰,与本专利的工作不同。1 US patent for optimizing crosstalk has been retrieved, see [US Patent: United States Patent, Patent No.: US6218631 B1, Date of Patent: Apr.17, 2001. Hetzel et al. "Structure for Reducing Cross-Talk in VLSI Circuits and Method of Making Same Using Filled Channels to Minimize Cross-Talk".]. It reduces crosstalk by inserting shielded wires (voltage and/or GND metal lines) in unoccupied wiring channels in the detailed wiring stage, which is different from the work of this patent.

发明内容Contents of the invention

本发明的目的在于提出一种标准单元总体布线过程中用的减少串扰的方法。本发明所述的方法与本发明人已申请了两项中国发明专利的优化时延的方法相结合,形成了一种减少串扰并进行时延、布线拥挤优化的标准单元总体布线方法,该方法的总体思路是:首先利用现有技术(是我们以前申请的国家发明专利中的技术)在每条线网不受任何约束的条件下构造时延优化的Steiner树。然后,利用现有技术(是我们以前公开发表的学术论文中的技术) 优化 布线拥挤,消除拥挤边。再利用现有技术(是我们以前申请的国家发明专利中的技术)来 优化 时延。此后,根据本发明提出的 减少串扰的方法统计电路的串扰情况,并进行串扰的控制与 减少。最后再用用户给出的时延约束指标参数数组与其一一对应的从输入PI到输出PO的优化时延相比,如若不满足,则继续迭代时延优化和串扰控制程序,一直到得出一组满足优化目标的所有线网在GRG中的布线树为止。The object of the present invention is to propose a method for reducing crosstalk used in the overall wiring of standard cells. The method described in the present invention is combined with the time delay optimization method for which the inventor has applied for two Chinese invention patents to form a standard cell overall wiring method that reduces crosstalk and optimizes time delay and wiring congestion. The general idea is: first use the existing technology (the technology in the national invention patent we applied for before) to construct a delay-optimized Steiner tree under the condition that each line network is not subject to any constraints. Then, routing congestion is optimized using existing techniques (from our previously published academic papers) to eliminate crowded edges. Then use the existing technology (the technology in the national invention patent we applied for before) to optimize the delay . Thereafter, according to the method for reducing crosstalk proposed by the present invention, the crosstalk situation of the circuit is counted, and the crosstalk is controlled and reduced . Finally, compare the delay constraint index parameter array given by the user with its one-to-one corresponding optimized delay from input PI to output PO. If it is not satisfied, continue to iterate the delay optimization and crosstalk control program until the obtained A set of all nets satisfying the optimization goal ends in the routing tree in the GRG.

本发明的特征在于:它是在标准单元总体布线过程中位于优化布线拥挤、优化时延之后进行的。它先是在统计电路串扰情况的基础上进行信号线网之间的串扰的减少控制,然后再根据用户给出的时延约束指标参数数组一一对应地从输入节点PI到输出节点PO进行优化时延与其比较,若不满足,则继续迭代包括布线拥挤在内的时延优化和串扰减少控制程序,一直到得出一组满足优化目标的所有线网在总体布线图(GRG)中的布线树为止;它在执行完优化电路时延程序后根据以下四个假设通过控制相邻线网的平行走线长度和布线间隔来减少信号线网之间的串扰的:The present invention is characterized in that it is performed after optimizing wiring congestion and optimizing time delay in the overall wiring process of standard cells. It first performs crosstalk reduction control between signal lines and networks on the basis of statistical circuit crosstalk, and then performs optimization from the input node PI to the output node PO according to the time delay constraint index parameter array given by the user. If it is not satisfied, continue to iterate the delay optimization and crosstalk reduction control procedures including wiring congestion until a set of wiring trees in the general wiring diagram (GRG) of all nets that meet the optimization goal is obtained So far; it reduces the crosstalk between signal nets by controlling the parallel trace length and wiring spacing of adjacent nets according to the following four assumptions after executing the optimized circuit delay program:

假设1:在某一个GRG网格i内,相邻线网段产生串扰的平行走线长度是该GRG网格的长度li;Assumption 1: In a certain GRG grid i, the length of parallel traces that generate crosstalk between adjacent line segments is the length li of the GRG grid;

假设2:在某一个GRG网格i内,每段线网都只可能与位于其左、右(或者上、下)的线网产生串扰;Assumption 2: In a certain GRG grid i, each line network can only produce crosstalk with the line network located on its left and right (or above and below);

假设3:在某一个GRG网格i内,相邻线网段的布线间隔是该GRG网格内的所有线网段的平均布线间隔;Assumption 3: In a certain GRG grid i, the wiring interval of adjacent line segments is the average wiring interval of all line segments in the GRG grid;

假设4:由于GRG网格一般以单元行的整倍数进行划分,在不同GRG网格内的线网段不产生串扰;Hypothesis 4: Since GRG grids are generally divided by integer multiples of unit rows, there will be no crosstalk between line segments in different GRG grids;

根据上述假设,在进行串扰减少控制时,借助于计算机,它依次含有以下步骤:According to the above assumptions, when performing crosstalk reduction control, with the help of a computer, it contains the following steps in sequence:

(1)设定:Nn是线网总数,Sn是线网j所经过的GRG网格总数,Xj是用户所定义的线网j所能忍受的串扰量;(1) Setting: N n is the total number of nets, S n is the total number of GRG grids that net j passes through, and X j is the amount of crosstalk that net j defined by the user can tolerate;

(2)对每个线网计算串扰量Ctj(2) Calculate the amount of crosstalk Ct j for each wire net;

(3)计算当前布线解S的串扰总溢出量即所有线网的串扰溢出量之和 (3) Calculate the total crosstalk overflow of the current wiring solution S, that is, the sum of the crosstalk overflow of all wire nets

(3.1)计算线网j的串扰溢出量

Figure A0312409500091
即其所受到的串扰量Ctj和所能忍受的串扰量xj的差值: C ~ t j = C t j - x j ; (3.1) Calculating the crosstalk overflow of the line net j
Figure A0312409500091
That is, the difference between the amount of crosstalk Ct j it suffers and the amount of crosstalk x j it can tolerate: C ~ t j = C t j - x j ;

(3.2)计算当前布线解S的串扰总溢出量 C ~ t ( S ) = Σ j = 1 N n C ~ t j = Σ j = 1 N n ( C t j - x j ) ; (3.2) Calculate the total crosstalk overflow of the current wiring solution S C ~ t ( S ) = Σ j = 1 N no C ~ t j = Σ j = 1 N no ( C t j - x j ) ;

(4)找出所有串扰量超过阈值的线网,作为集合Vt;(4) Find out all the wire nets whose crosstalk exceeds the threshold, as the set Vt;

(5)生成Vt的随机子集Vs;(5) Generate a random subset Vs of Vt;

(6)对Vs中每个线网,根据串扰量对其所经过的边进行排序,找出前m段串扰量超过阈值的边;(6) For each net in Vs, sort the edges it passes through according to the amount of crosstalk, and find out the edge whose crosstalk amount exceeds the threshold in the first m segments;

(7)试重布该m段边,尽量使该m段边上的串扰变化量之和较小;(7) try to redistribute the m segment edges, and try to make the sum of the crosstalk variation on the m segment edges smaller;

(8)记录当前布线树,并和该线网曾经构造过的布线树比较“代价”

Figure A0312409500095
以确定“代价”最小的布线树;是线网j在重布前、后的串扰溢出量的变化量,即: Δ C ~ t j = Σ s i ∈ T j ′ Δ C ~ t j s i + Σ s i ∈ T j Δ C ~ t j s i ; (8) Record the current wiring tree, and compare the "cost" with the wiring tree that the line network has constructed
Figure A0312409500095
To determine the wiring tree with the smallest "cost"; is the variation of the crosstalk overflow of the net j before and after redistribution, that is: Δ C ~ t j = Σ the s i ∈ T j ′ Δ C ~ t j the s i + Σ the s i ∈ T j Δ C ~ t j the s i ;

其中:

Figure A0312409500098
是线网j在重布前、后在GRG网格si上的串扰溢出量的变化量;in:
Figure A0312409500098
is the variation of the crosstalk overflow of the line net j on the GRG grid s i before and after redistribution;

Figure A0312409500099
是线网j由于新布布线树T’j,在T’j所经过的所有GRG网格边上的串扰溢出量的变化量之和;
Figure A0312409500099
Is the sum of the crosstalk overflow changes on all GRG grid edges that T' j passes due to the new layout of the wiring tree T' j in the line net j;

Figure A03124095000910
是线网j由于撤消布线树Tj,在Tj所经过的所有GRG网格边上的串扰溢出量的变化量之和;
Figure A03124095000910
is the sum of the crosstalk spillover changes on all GRG grid edges that T j passes due to the undoing of wiring tree T j in line net j;

Tj和T’j分别是线网j在重布前、后的布线树;T j and T' j are the wiring trees of net j before and after redistribution, respectively;

(9)对Vs中每个线网计算布线解的总“代价”

Figure A03124095000911
按“代价”最小重布布线树所在的线网:(9) Calculate the total "cost" of the routing solution for each net in Vs
Figure A03124095000911
Redistribute the wire net where the wiring tree is located according to the "cost" minimum:

总代价

Figure A03124095000912
包括重布对线网本身以及其他线网带来的串扰量的变化,它可表示如下: Δ C ~ t = k 1 Δ C ~ t j + k 2 Σ i = 1 , i ≠ j N n Δ C ~ t i = k 1 ( Σ s i ∈ T j ′ Δ C ~ t j s i + Σ s i ∈ T j Δ C ~ t j s i ) + k 2 Σ i = 1 , i ≠ j N n Σ s i ∈ T j ′ U T j Δ C ~ t i s i k 1 + k 2 = 1 ; total cost
Figure A03124095000912
Including the change of crosstalk caused by redistribution to the wire net itself and other wire nets, it can be expressed as follows: Δ C ~ t = k 1 Δ C ~ t j + k 2 Σ i = 1 , i ≠ j N no Δ C ~ t i , = k 1 ( Σ the s i ∈ T j ′ Δ C ~ t j the s i + Σ the s i ∈ T j Δ C ~ t j the s i ) + k 2 Σ i = 1 , i ≠ j N no Σ the s i ∈ T j ′ u T j Δ C ~ t i the s i k 1 + k 2 = 1 ;

其中:

Figure A03124095000916
表示除了线网j以外的其余所有线网在受重布影响的GRG网格上的串扰溢出量的变化量。in:
Figure A03124095000916
Indicates the variation of the crosstalk overflow of all other nets except net j on the GRG grid affected by the redistribution.

对于构成关键路径的GRG网格si,所述的线网j在重布前、后在si上的串扰溢出量的变化量在 C t j ′ s i - C t j s i > 0 时, Δ C ~ t j s i = β ( C t j ′ s i - C t j s i ) , β > 1 . For the GRG grid s i constituting the critical path, the change of the crosstalk spillover amount of the line net j on s i before and after redistribution is in C t j ′ the s i - C t j the s i > 0 hour, Δ C ~ t j the s i = β ( C t j ′ the s i - C t j the s i ) , β > 1 . .

所述的串扰按下式计算: V crosstalk = C couping C total , The crosstalk is calculated as follows: V cross talk = C couponing C total ,

其中:Ccoupling是耦合电容;Ctotal包括对地电容、耦合电容及负载电容。Among them: C coupling is the coupling capacitance; C total includes ground capacitance, coupling capacitance and load capacitance.

实验证明:把串扰减少后,布线解的串扰总溢出量得到明显减少,超过串扰阈值的线网数也得到控制。同时,线网的时延性能却没有明显变差。The experiment proves that after the crosstalk is reduced, the total crosstalk overflow of the wiring solution is significantly reduced, and the number of nets exceeding the crosstalk threshold is also controlled. At the same time, the delay performance of the line network has not deteriorated significantly.

附图说明Description of drawings

图1:总体布线的示意图。Figure 1: Schematic diagram of the general wiring.

图2:本发明结合时延优化后总的程序流程框图。Fig. 2: The overall program flow diagram of the present invention combined with delay optimization.

图3:在多层布线的芯片平面上生成的GRG。Figure 3: GRG generated on chip plane with multilayer wiring.

图4:减少串扰过程示例图。Figure 4: Illustration of an example of the crosstalk reduction process.

具体实施方式Detailed ways

(1)初始化:(1) Initialization:

设置:GRC(总体布线单元)的行数Nnr,列数NncSetting: number of rows N nr of GRC (Global Routing Cell), number of columns N nc ,

      GRG(总体布线图)中所有顶点即GRC中心点的坐标vnr,nc,(x,y),其中,nr,nc分别代表行和列,x,y是芯片平面的坐标;Coordinates v nr, nc , (x, y) of all vertices in the GRG (general wiring diagram), that is, the central point of the GRC, where nr and nc represent rows and columns respectively, and x and y are the coordinates of the chip plane;

      GRG中每条边ek的容量CkThe capacity C k of each edge e k in GRG,

      电路中线网的总数Nsum,每条线网的网表NetlistIndex,每条线网的源点s,漏点t,The total number of nets in the circuit Nsum, the netlist NetlistIndex of each net, the source point s and drain point t of each net,

      电路的所有电学性能参数,All electrical performance parameters of the circuit,

      用户给定的时延约束指标参数;The user-specified delay constraint index parameters;

(2)生成GRG:(2) Generate GRG:

读入在多层布线芯片上划分GRC所必需的Nnr,NncRead in N nr , N nc necessary to divide the GRC on a multilayer wiring chip,

读入在多层布线芯片上生成GRG所必需的各顶点的坐标值,Read in the coordinate values of each vertex necessary to generate the GRG on the multilayer wiring chip,

给顶点以及连接每两个相邻顶点的边ek编号;Number the vertices and the edges e k connecting every two adjacent vertices;

(3)读入电路详细连接关系即网表:(3) Read in the detailed connection relationship of the circuit, that is, the netlist:

读入电路中线网的总数目Nsum,Read the total number Nsum of nets in the circuit,

读入每条线网网表,Read in the netlist of each net,

按读入顺序,为每条线网编号;Number each line net in the order of reading;

(4)读入电路的所有电学性能参数与约束指标,赋到相应的变量和数组中;(4) read in all electrical performance parameters and constraint indexes of the circuit, and assign them to corresponding variables and arrays;

(5)构造初始布线树即Steiner树,即在每条线网不受任何约束条件下构造时延优化的Steiner树;(5) Construct the initial wiring tree, that is, the Steiner tree, that is, construct a time-delay-optimized Steiner tree under the condition that each line network is not subject to any constraints;

(6)统计总的可用布线资源,标记拥挤区域:(6) Count the total available routing resources and mark the crowded area:

根据步骤(5)执行后得到的初始解,统计每条GRG边的被使用量dk,比较Ck与dk,若Ck<dk,表示出现布线拥挤,得出拥挤区域,对布线拥挤的GRG边进行标记,有标记的线网即为拥挤线网;According to the initial solution obtained after the execution of step (5), count the used amount d k of each GRG edge, compare C k with d k , if C k <d k , it means that there is wiring congestion, and get the crowded area. The crowded GRG edge is marked, and the marked line net is the crowded line net;

(7)用SSTT.cpp程序优化布线拥挤,消除拥挤边;(7) Use the SSTT.cpp program to optimize wiring congestion and eliminate crowded edges;

(8)用Coll_Timing_Info.cpp程序统计电路时延信息,再根据步骤(7)执行后的布线结果进行时延计算,得到每条电信号传输路径从输入PI到输出PO的时延值。(8) Use the Coll_Timing_Info.cpp program to count the circuit delay information, and then calculate the delay according to the wiring results after the execution of step (7), and obtain the delay value of each electrical signal transmission path from input PI to output PO.

(9)用CC_Timing.cpp程序优化电路时延;(9) Optimize circuit time delay with CC_Timing.cpp program;

(10)用Redu_Crot.cpp程序 减少电路串扰:本方法主要考虑信号线网之间串扰的问题,控制相邻线网的平行走线长度与布线间隔。具体采用的方案是:在一次迭代之后统计所有串扰量超过阈值的线网信息。对于超过阈值的线网,采用一定的措施拆线重布,使其平行走线长度减小或者布线间隔增大。经过几次迭代,串扰量超过阈值的线网得到控制。同时, 有目 的地控制经过关键路径的线网的重布,使其时延不受影响(10) Use Redu_Crot.cpp program to reduce circuit crosstalk : This method mainly considers the problem of crosstalk between signal nets, and controls the parallel trace length and wiring interval of adjacent nets . The specific solution adopted is: after one iteration, the information of all the wire nets whose crosstalk exceeds the threshold is collected. For wire nets that exceed the threshold, take certain measures to remove the wires and redistribute them so that the length of parallel wires can be reduced or the wiring interval can be increased. After several iterations, the nets whose crosstalk amount exceeds the threshold are controlled. At the same time, the redistribution of the wire net passing through the critical path is purposely controlled so that the delay is not affected.

根据总体布线的特点,不失一般性,首先提出4个假设对问题进行一定程度的简化。这4个假设如下:According to the characteristics of the overall wiring, without loss of generality, four assumptions are put forward to simplify the problem to a certain extent. The 4 assumptions are as follows:

假设1:在某一个GRG网格i内,相邻线网段产生串扰的平行走线长度是该GRG网格的长度li。 Assumption 1: In a certain GRG grid i, the length of parallel traces that generate crosstalk in adjacent line segments is the length li of the GRG grid.

假设2:在某一个GRG网格i内,每段线网都只可能与位于其左、右(或者上、下)的线网产生串扰。 Hypothesis 2 : In a certain GRG grid i, each line network can only produce crosstalk with the line network located on its left and right (or above and below).

假设3:在某一个GRG网格i内,相邻线网段的布线间隔是该GRG网格内的所有线网段的平均布线间隔。 Hypothesis 3: In a certain GRG grid i, the wiring interval of adjacent line segments is the average wiring interval of all line segments in the GRG grid.

假设4:由于GRG网格一般以单元行的整倍数进行划分,在不同GRG网格内的线网段不产生串扰。 Hypothesis 4 : Since GRG grids are generally divided into integral multiples of unit rows, there will be no crosstalk between line segments in different GRG grids.

定义:Nn是线网总数,Sn是线网j所经过的GRG网格总数,Ctj是线网j所受到的串扰量,Xj是用户所定义的线网j所能忍受的串扰量(也就是线网j的正确逻辑功能不被破坏的最大串扰量)。线网j的串扰溢出量 是其所受到的串扰量和所能忍受的串扰量的差值,即: C ~ t j = C t j - x j Definition: N n is the total number of nets, S n is the total number of GRG grids that net j passes through, Ct j is the amount of crosstalk suffered by net j, X j is the crosstalk that net j defined by the user can tolerate amount (that is, the maximum crosstalk amount for which the correct logic function of net j is not destroyed). Crosstalk spillover of net j is the difference between the amount of crosstalk it receives and the amount of crosstalk it can tolerate, namely: C ~ t j = C t j - x j

则,当前布线解S的串扰总溢出量定义为所有线网的串扰溢出量之和,即: C ~ t ( S ) = &Sigma; j = 1 N n C ~ t j = &Sigma; j = 1 N n ( C t j - x j ) Then, the total crosstalk overflow of the current wiring solution S is defined as the sum of the crosstalk overflow of all wire nets, namely: C ~ t ( S ) = &Sigma; j = 1 N no C ~ t j = &Sigma; j = 1 N no ( C t j - x j )

给定当前布线解S,我们对串扰总溢出量以及在每个线网上的串扰溢出量都可以进行计算。如果有线网超过阈值,采用一定的措施拆线重布。重布后的线网会对本身以及其他线网都带来串扰量的变化。 我们用这两部分的组合来表示重布某个线网后的“代价”。由于线网j的重布而引起的串扰变化 可以定义如下: &Delta; C ~ t = k 1 &Delta; C ~ t j + k 2 &Sigma; i = 1 , i &NotEqual; j N n &Delta; C ~ t i = k 1 ( &Sigma; N i &Element; T j &prime; &Delta; C ~ t j s i + &Sigma; s i &Element; T j &Delta; C ~ t j s i ) + k 2 &Sigma; i = 1 , i &NotEqual; j N n &Sigma; s i &Element; T j &prime; U T j &Delta; C ~ t j s i ( k 1 + k 2 = 1 ) Given the current routing solution S, we can compute both the total crosstalk spillover and the crosstalk spillover on each net. If the wired network exceeds the threshold, take certain measures to remove the wires and rewire. The redistributed net will bring changes in the amount of crosstalk to itself and other nets. We use the combination of these two parts to represent the "cost" of rerouting a net . Crosstalk variation due to redistribution of net j can be defined as follows: &Delta; C ~ t = k 1 &Delta; C ~ t j + k 2 &Sigma; i = 1 , i &NotEqual; j N no &Delta; C ~ t i = k 1 ( &Sigma; N i &Element; T j &prime; &Delta; C ~ t j the s i + &Sigma; the s i &Element; T j &Delta; C ~ t j the s i ) + k 2 &Sigma; i = 1 , i &NotEqual; j N no &Sigma; the s i &Element; T j &prime; u T j &Delta; C ~ t j the s i ( k 1 + k 2 = 1 )

其中:Tj和T’j分别是线网j在重布前、后的布线树。 是线网j在重布前、后的串扰溢出量的变化量,

Figure A0312409500121
是线网j在重布前、后在GRG网格si上的串扰溢出量的变化量。
Figure A0312409500122
表示除了线网j以外的其余所有线网在受重布影响的GRG网格上的串扰溢出量的变化量。Where: T j and T' j are the wiring trees of net j before and after redistribution, respectively. is the variation of the crosstalk overflow of the net j before and after redistribution,
Figure A0312409500121
is the variation of the crosstalk overflow of the line net j on the GRG grid s i before and after the redistribution.
Figure A0312409500122
Indicates the variation of the crosstalk overflow of all other nets except net j on the GRG grid affected by the redistribution.

在串扰控制中,考虑到时延性能,我们希望关键路径的时延能受到保护。对于构成关键路径的GRG网格si,定义线网j在重布前、后在si上的串扰溢出量的变化量

Figure A0312409500123
为: &Delta; C ~ t j s i = &beta; ( C t j &prime; s i - C t j s i ) &beta; > 1 if ( C t j &prime; s i - C t j s i > 0 ) In crosstalk control, considering the delay performance, we hope that the delay of the critical path can be protected. For the GRG grid s i constituting the critical path, define the change of the crosstalk spillover amount of the line net j on s i before and after redistribution
Figure A0312409500123
for: &Delta; C ~ t j the s i = &beta; ( C t j &prime; the s i - C t j the s i ) &beta; > 1 if ( C t j &prime; the s i - C t j the s i > 0 )

其中:分别定义为线网j在重布前、后在si上的串扰值。这样,如果关键路径上的GRG网格在某线网重布后产生的串扰值增大,则不鼓励该重布操作,以避免由此造成的拥挤量增大、时延变差的后果。因而,可以有目的地控制时延性能不会恶化。in: and Respectively defined as the crosstalk value of net j on s i before and after redistribution. In this way, if the crosstalk value generated by the GRG grid on the critical path increases after a certain line network is redistributed, the redistribution operation is discouraged, so as to avoid the consequences of increased congestion and poor time delay caused thereby. Therefore, it is possible to purposefully control the delay performance without deterioration.

新构造的布线树将被记录,并和所有曾经构造的布线树比较“代价”。同时,我们随机变化重布线网的顺序,以扩展搜索空间。本方法可描述如下(包括S1-S8共计8个步骤):The newly constructed wiring tree will be recorded and compared "cost" with all previously constructed wiring trees. Meanwhile, we randomly vary the order of rewiring nets to expand the search space. This method can be described as follows (including a total of 8 steps of S1-S8):

S1:对每个线网计算串扰量;S1: Calculate the amount of crosstalk for each wire net;

S2:计算当前布线解的串扰总溢出量;S2: Calculate the total crosstalk overflow of the current wiring solution;

S3:找出所有串扰量超过阈值的线网,作为集合Vt;S3: find out all the nets whose crosstalk exceeds the threshold, as a set Vt;

S4:生成Vt的随机子集Vs;S4: Generate a random subset Vs of Vt;

S5:对Vs中每个线网,根据串扰量对其所经过的边进行排序,找出前m段串扰量超过阈值的边;S5: For each net in Vs, sort the edges it passes through according to the amount of crosstalk, and find out the edges whose crosstalk amount exceeds the threshold in the first m segments;

S6:试重布该m段边,尽量使该m段边上的串扰变化量之和较小;S6: Try to redistribute the m-segment edges, and try to make the sum of the crosstalk changes on the m-segment edges smaller;

S7:记录当前布线树,并和该线网曾经构造过的布线树比较“代价”

Figure A0312409500127
以确定“代价”最小的布线树;S7: Record the current wiring tree, and compare the "cost" with the wiring tree once constructed by the wire net
Figure A0312409500127
To determine the wiring tree with the smallest "cost";

S8:对Vs中每个线网计算布线解的总“代价” 重布“代价”最小的布线树所在的线网。S8: Calculate the total "cost" of the routing solution for each net in Vs Redistribute the wire net where the routing tree with the smallest "cost" is located.

采用的串扰计算公式如下: V crosstalk = C couping C total 其中:Ctotal包括对地电容、耦合电容及负载电容,Ccoupling是耦合电容。The crosstalk calculation formula used is as follows: V cross talk = C couponing C total Among them: C total includes ground capacitance, coupling capacitance and load capacitance, and C coupling is coupling capacitance.

(11)判断布线时延是否满足约束指标:(11) Judging whether the wiring delay meets the constraint index:

若:延迟优化结果>时延约束指标,则继续执行时延优化和串扰控制程序;If: delay optimization result > delay constraint index, continue to execute delay optimization and crosstalk control procedures;

若:延迟优化结果≤时延约束指标,则程序终止。If: delay optimization result ≤ delay constraint index, the program terminates.

以下结合实例,具体叙述如下:Below in conjunction with example, specifically describe as follows:

对于目前IC设计中的多层布线技术,可布线区域不再是单元间的一条条的布线通道,而是一个完整的芯片平面。可采用网格方式,把整个芯片平面按行和列划分为若干个称为总体布线单元GRC的区域,然后生成GRC的对偶图,即如图1所示的总体布线图GRG。GRG由Nnr×Nnc个节点和连接这些节点的边构成。与GRCnr,nc对应的节点vnr,nc的坐标为GRCnr,nc的中心点。连接两节点vnr1,nc1和vnr2,nc2的边称为ek;lk表示两节点vnr1,nc1和vnr2,nc2之间的距离,称为ek的长度;Ck表示两节点vnr1,nc1和vnr2,nc2对应的两个GRC相邻的边能够通过的线网的连线数,称为ek的容量。于是,线网中要连通的引脚点Pin就映射成为其所在的GRG中对应的一系列节点。这样,GRG中的一个线网就可以用节点的集合表示,而对一个线网的布线问题则对应于求解GRG中节点集{vnr,nc}的Steiner树问题。For the current multi-layer wiring technology in IC design, the routing area is no longer a wiring channel between units, but a complete chip plane. The grid method can be used to divide the entire chip plane into several regions called the general wiring unit GRC according to the rows and columns, and then generate the dual graph of the GRC, that is, the general wiring diagram GRG shown in Figure 1. GRG consists of N nr ×N nc nodes and edges connecting these nodes. The coordinates of node v nr , nc corresponding to GRC nr , nc are the central point of GRC nr, nc . The edge connecting two nodes v nr1, nc1 and v nr2, nc2 is called e k ; l k represents the distance between two nodes v nr1, nc1 and v nr2, nc2 , which is called the length of e k ; C k represents the length of two nodes v nr1, nc1 and v nr2, nc2 correspond to the number of lines that can pass through the adjacent sides of the two GRCs, which is called the capacity of e k . Therefore, the pin point Pin to be connected in the line network is mapped to a series of corresponding nodes in the GRG where it is located. In this way, a net in GRG can be represented by a set of nodes, and the routing problem for a net corresponds to solving the Steiner tree problem of node set {v nr, nc } in GRG.

本布线方法的流程框图如图2所示。The flowchart of this wiring method is shown in Fig. 2 .

现在采用工业界的一个电路实例biu作为本发明的一个实施例,结合图2的程序流程用本发明的总体布线方法进行布线。它依次有如下步骤:Now a circuit example biu in the industry is used as an embodiment of the present invention, and the overall wiring method of the present invention is used for wiring in combination with the program flow of FIG. 2 . It has the following steps in order:

(1)初始化:(1) Initialization:

设:行数Nnr=66,列数Nnc=26,如图3所示。此时,GRG图中共有1716个顶点,每个顶点都有一个对应的位置坐标(x,y),例如:在图3中,v1,1顶点的位置坐标是(-3900,-3900),v1,2顶点的位置坐标是(-1700,-3900),即可用vnr,nc(x,y)表示,nr表示GRG上第几行,nc表示GRG上第几列,坐标(x,y)是相对芯片平面的坐标原点而言的;共有3340条边,每条边都有一个用户给定的容量,从14~19,例如:连接v1,1与v1,2的边的容量为14,连接v1,2与v1,3的边的容量为14。Assume: the number of rows N nr =66, the number of columns N nc =26, as shown in FIG. 3 . At this time, there are a total of 1716 vertices in the GRG graph, and each vertex has a corresponding position coordinate (x, y). For example: in Figure 3, the position coordinates of v 1, 1 vertex are (-3900, -3900) , the position coordinates of v 1, 2 vertices are (-1700, -3900), which can be expressed by v nr, nc (x, y), nr indicates the row on the GRG, nc indicates the column on the GRG, and the coordinates (x , y) is relative to the coordinate origin of the chip plane; there are 3340 sides in total, and each side has a capacity given by the user, from 14 to 19, for example: the side connecting v 1,1 and v 1,2 has a capacity of 14, and the edge connecting v 1,2 to v 1,3 has a capacity of 14.

设:线网的总数Nsum为943条,Suppose: the total number Nsum of the line network is 943,

用户给出的时延约束指标,如其中一个时延值为10.000000ns。The delay constraint index given by the user, for example, one of the delay values is 10.000000ns.

(2)生成GRG:(2) Generate GRG:

读入Nnr=66,Nnc=26;按照先行后列的顺序,给1716个顶点全部编号,分别为1~1716号;再按照先行后列的顺序,从1号顶点开始,把3340条GRG边全部编号,分别为1~3340号。Read in N nr = 66, N nc = 26; according to the order of the first row and then the column, all the 1716 vertices are numbered, which are respectively 1 to 1716; and then according to the order of the first row and the second column, starting from the vertex No. 1, the 3340 vertices All GRG edges are numbered from 1 to 3340.

(3)读入电路详细连接关系即网表:(3) Read in the detailed connection relationship of the circuit, that is, the netlist:

读入电路中线网总数Nsum=943。按照网表读入的顺序,给943条线网全部编号,分别为net 1~net 943。于是得到每条线网包含源点、漏点信息在内的网表,其具体形式描述如下:Read in the total number of nets in the circuit Nsum=943. According to the order in which the netlist is read, all the 943 nets are numbered, net 1~net 943 respectively. Then get a netlist including source point and leak point information for each line net, and its specific form is described as follows:

8号线网的网表表示是:(net8(vertexList 710 2 736 2 762 2 788 2 686 2 6602 634 2 608 1)),The netlist representation of line 8 is: (net8(vertexList 710 2 736 2 762 2 788 2 686 2 6602 634 2 608 1)),

943号线网的网表表示是:(net 943(vertexList 310 2  309 2 308 1))。The netlist representation of line 943 is: (net 943(vertexList 310 2 309 2 308 1)).

以net 943为例它表示的是:第310号顶点是漏点,第309号顶点是漏点,第308号顶点是源点。它们的通式可表示为:Taking net 943 as an example, it means: the 310th vertex is the leak point, the 309th vertex is the leak point, and the 308th vertex is the source point. Their general formula can be expressed as:

(net号(VertexList 顶点号 源点/漏点 ……)),(net number(VertexList vertex number source point/leakage point...)),

其中:数字1表示源点,数字2表示漏点。Among them: the number 1 indicates the source point, and the number 2 indicates the leakage point.

(4)读入电路的所有电学性能参数与约束指标,赋到相应的变量和数组之中:(4) Read in all the electrical performance parameters and constraint indexes of the circuit, and assign them to corresponding variables and arrays:

读入:用户给出的时延约束指标参数赋到数组中,其中一个时延约束指标(从PI到PO)=2.900000ns。Read in: assign the time delay constraint index parameters given by the user to the array, and one of the time delay constraint index (from PI to PO)=2.900000ns.

(5)构造初始时延优化的布线树:(5) Construct an initial delay-optimized routing tree:

采用ITDT_Tree.cpp程序完成。其中采用了“已申请的国家发明专利:洪先龙,经彤,许静宇,张凌,胡昱.发明名称:考虑耦合效应进行时延优化的标准单元总体布线方法。申请日期:2002/12/17.申请号为:02156622.4.”来实现这一步骤。用该算法求出的初始布线树其形式如下:Use ITDT_Tree.cpp program to complete. Among them, the "national invention patents that have been applied for: Hong Xianlong, Jing Tong, Xu Jingyu, Zhang Ling, Hu Yu. Invention name: Standard cell overall wiring method for delay optimization considering coupling effect. Application date: 2002/12/17. The application number is: 02156622.4." to realize this step. The form of the initial wiring tree obtained by this algorithm is as follows:

#Init_Steiner_Tree 8#Init_Steiner_Tree 8

  ((

    (connect 710 711)(connect 710 711)

    (connect 711 712)(connect 711 712)

    (connect 736 762)(connect 736 762)

    (connect 762 788)(connect 762 788)

    (connect 710 736)(connect 710 736)

  ))

…………………………………………

#Init_Steiner_Tree 943#Init_Steiner_Tree 943

  ((

    (connect 308 309)(connect 308 309)

    (connect 309  310)(connect 309 310)

  ))

其通用表达式为:Its general expression is:

#Init_Steiner_Tree XXX#Init_Steiner_Tree XXX

  ((

    (connect顶点号顶点号)(connect vertex number vertex number)

    ……………………

    (connect顶点号顶点号)(connect vertex number vertex number)

  ))

(6)统计总的可用布线资源,标记拥挤区域:(6) Count the total available routing resources and mark the crowded area:

采用Update_Resources.cpp程序完成。统计每条GRG边的被使用量(即有多少线网通过了该边)dk,再把它与允许容量Ck比较,若Ck<dk,则表明出现布线拥挤,把它在结构EdgeIndex中标记为1;把所有经过标记为1的GRG边的线网确定为拥挤线网。Use the Update_Resources.cpp program to complete. Count the used amount of each GRG side (that is, how many lines have passed the side) d k , and then compare it with the allowable capacity C k , if C k <d k , it indicates that there is wiring congestion, put it in the structure Marked as 1 in EdgeIndex; all line nets passing through the GRG edge marked as 1 are determined as crowded nets.

本实施例中,共标记出124条布线拥挤的GRG边,228个拥挤线网。In this embodiment, a total of 124 GRG edges and 228 crowded nets are marked.

(7)优化布线拥挤,消除拥挤边:(7) Optimize wiring congestion and eliminate crowded edges:

采用SSTT.cpp程序完成。其中采用了“基于搜索空间遍历技术(SSTT)的布线拥挤优化算法”,它已公开发表于2001年的国际学术会议:“Tong Jing,Xian-Long Hong,Hai-Yun Bao,et al.‘An Efficient Congestion Optimization Algorithm for Global Routing Based onSearch Space Travers ing Technology’.In Proceedings of IEEE ASICON,2001,114~117”。Use SSTT.cpp program to complete. Among them, the "Wiring Congestion Optimization Algorithm Based on Search Space Traversal Technology (SSTT)" was used, which was published in the international academic conference in 2001: "Tong Jing, Xian-Long Hong, Hai-Yun Bao, et al.'An Efficient Congestion Optimization Algorithm for Global Routing Based on Search Space Traversing Technology'. In Proceedings of IEEE ASICON, 2001, 114~117".

在本实施例中,进行布线拥挤的优化后,消除了全部拥挤边。In this embodiment, after the routing congestion optimization is performed, all the crowded edges are eliminated.

(8)用Coll_Timing_Info.cpp程序统计电路时延信息,再根据步骤(7)执行后的布线结果进行时延计算,得到每条电信号传输路径从输入PI到输出PO的时延值。其中采用了“已申请的国家发明专利:洪先龙,经彤,许静宇,张凌,胡昱.发明名称:考虑耦合效应进行时延优化的标准单元总体布线方法.申请日期:2002/12/17.申请号为:02156622.4.”来实现这一步骤。(8) Use the Coll_Timing_Info.cpp program to count the circuit delay information, and then calculate the delay according to the wiring results after the execution of step (7), and obtain the delay value of each electrical signal transmission path from input PI to output PO. Among them, the "national invention patents that have been applied for: Hong Xianlong, Jing Tong, Xu Jingyu, Zhang Ling, Hu Yu. Invention name: Standard cell overall wiring method for delay optimization considering coupling effect. Application date: 2002/12/17. The application number is: 02156622.4." to realize this step.

然后,把用户时延约束指标与上述计算出的每条电信号传输路径的延迟值进行比较,分析得到此时时延不满足用户要求的关键路径。Then, compare the user delay constraint index with the delay value of each electrical signal transmission path calculated above, and analyze and obtain the critical path whose delay does not meet the user's requirement at this time.

(9)优化电路时延:(9) Optimize circuit delay:

用CC_Timing.cpp程序完成。其中采用了“已申请的国家发明专利:洪先龙,经彤,许静宇,张凌,胡昱.发明名称:考虑耦合效应进行时延优化的标准单元总体布线方法.申请日期:2002/12/17.申请号为:02156622.4.”来实现这一步骤。Complete with the CC_Timing.cpp program. Among them, the "national invention patents that have been applied for: Hong Xianlong, Jing Tong, Xu Jingyu, Zhang Ling, Hu Yu. Invention name: Standard cell overall wiring method for delay optimization considering coupling effect. Application date: 2002/12/17. The application number is: 02156622.4." to realize this step.

在本实施例中,进行时延优化后,完成了电路的时延优化任务。In this embodiment, after the delay optimization is performed, the delay optimization task of the circuit is completed.

(10)优化电路串扰:(10) Optimizing circuit crosstalk:

用Redu_Crot.cpp程序优化电路串扰。The circuit crosstalk was optimized with the program Redu_Crot.cpp.

电路局部串扰的优化过程可由图4所示。其中n1到n5表示第1到5个线网,step1到step4分别指示从第1步到第4步的操作。虚线部分表示线网有串扰的区域。经过计算,n1到n5的串扰量超过阈值。而在这些线网可供选择的布线树中,通过计算串扰变化量,线网n1按图4(b)中所示的布线树被重布所引起的朝串扰减小的方向的串扰变化最大。因此在step1,线网n1被重布,串扰情况得到一定程度的改善,表现为虚线部分减少。在step2,线网n3被重布(如图4(c)所示)。在step3,线网n5被重布(如图4(d)所示)。在step4,线网n2被重布(如图4(d)所示)。最后虚线部分消失,表示串扰得到减少。The optimization process of the local crosstalk of the circuit can be shown in Figure 4. Among them, n1 to n5 represent the 1st to 5th nets, and step1 to step4 indicate the operations from step 1 to step 4 respectively. The dotted line part indicates the area where the net has crosstalk. After calculation, the amount of crosstalk from n1 to n5 exceeds the threshold. In the wiring trees available for these nets, by calculating the amount of crosstalk change, the crosstalk change in the direction of crosstalk reduction caused by net n1 being redistributed according to the wiring tree shown in Figure 4(b) is the largest . Therefore, in step1, the line network n1 is redistributed, and the crosstalk situation is improved to a certain extent, which is shown by the reduction of the dotted line. In step2, the net n3 is redistributed (as shown in Figure 4(c)). In step3, the net n5 is redistributed (as shown in Figure 4(d)). In step4, the net n2 is redistributed (as shown in Figure 4(d)). Finally, the dotted line part disappears, indicating that the crosstalk is reduced.

下面给出本实施例在经过减少电路串扰之前的布线解的串扰情况。 测试例子 线网数        串扰优化之前 串扰总溢出量 超过阈值线网数 电路延迟 BIU 943 2.49 46 7.43 The crosstalk situation of the wiring solution in this embodiment before reducing the circuit crosstalk is given below. test example Number of lines Before crosstalk optimization Crosstalk Total Spillover Exceeded the threshold number of nets circuit delay BIU 943 2.49 46 7.43

经过串扰优化,本实施例的布线解的串扰情况如下表所示: 测试例子 线网数        经过串扰优化 串扰总溢出量 超过阈值线网数 电路延迟 BIU 943 0.38 9 7.60 After crosstalk optimization, the crosstalk situation of the wiring solution in this embodiment is shown in the following table: test example Number of lines Crosstalk optimized Crosstalk Total Spillover Exceeded the threshold number of nets circuit delay BIU 943 0.38 9 7.60

通过比较可以看出,经过串扰优化后,布线解的串扰总溢出量得到明显减少,超过串扰阈值的线网数也得到控制。而同时,线网的时延性能没有明显变化。It can be seen from the comparison that after crosstalk optimization, the total crosstalk overflow of the routing solution is significantly reduced, and the number of nets exceeding the crosstalk threshold is also controlled. At the same time, the delay performance of the line network does not change significantly.

(11)判断各条从PI到PO的电信号传输路径上的时延是否满足给定的所有时延约束指标,若:延迟优化结果>时延约束指标,则继续执行时延优化和串扰控制程序,当全部满足时,输出电路中943条线网的布线结果。(11) Determine whether the delay on each electrical signal transmission path from PI to PO satisfies all the given delay constraint indicators, if: delay optimization result > delay constraint indicator, then continue to perform delay optimization and crosstalk control The program, when all are satisfied, outputs the wiring results of 943 nets in the circuit.

本发明使用的硬件是一台Sun公司的Enterprise 450型工作站;使用Unix操作系统。The hardware that the present invention uses is the Enterprise 450 type workstation of a Sun Company; Use Unix operating system.

由此可见,本发明所述消除串扰并进行时延、布线拥挤优化技术有以下优点:It can be seen that the technology of eliminating crosstalk and performing time delay and wiring congestion optimization described in the present invention has the following advantages:

(1)在总体布线过程中进行串扰的分析、消除,与后续阶段相比可以有更大的优化空间,并为后续详细布线工作在提高布线性能方面创造了更有利的条件;(1) The analysis and elimination of crosstalk in the overall wiring process can have a larger optimization space compared with the subsequent stage, and create more favorable conditions for the subsequent detailed wiring work in improving wiring performance;

(2)考虑了影响串扰的主要因素,采用对布线解的串扰情况进行统计,并进行拆线重布,减小串扰。同时兼顾到时延性能,对经过关键路径的GRG网格进行控制,使得在减小串扰的同时保证电路的时延性能不会变差。(2) Taking into account the main factors affecting the crosstalk, the statistics of the crosstalk of the wiring solution are used, and the wiring is removed and redistributed to reduce the crosstalk. At the same time, taking into account the delay performance, the GRG grid passing through the critical path is controlled, so as to reduce the crosstalk and ensure that the delay performance of the circuit will not deteriorate.

Claims (3)

1.标准单元总体布线过程中用的减少串扰的方法,其特征在于:它是在标准单元总体布线过程中位于优化布线拥挤、优化时延之后进行的。它先是在统计电路串扰情况的基础上进行信号线网之间的串扰的减少控制,然后再根据用户给出的时延约束指标参数数组一一对应地从输入节点PI到输出节点PO进行优化时延与其比较,若不满足,则继续迭代包括布线拥挤在内的时延优化和串扰减少控制程序,一直到得出一组满足优化目标的所有线网在总体布线图(GRG)中的布线树为止;它在执行完优化电路时延程序后根据以下四个假设通过控制相邻线网的平行走线长度和布线间隔来减少信号线网之间的串扰的:1. The method for reducing crosstalk used in the general wiring process of standard cells is characterized in that it is carried out after optimizing wiring congestion and optimizing time delay in the general wiring process of standard cells. It first performs crosstalk reduction control between signal lines and networks on the basis of statistical circuit crosstalk, and then performs optimization from the input node PI to the output node PO according to the time delay constraint index parameter array given by the user. If it is not satisfied, continue to iterate the delay optimization and crosstalk reduction control procedures including wiring congestion until a set of wiring trees in the general wiring diagram (GRG) of all nets that meet the optimization goal is obtained So far; it reduces the crosstalk between signal nets by controlling the parallel trace length and wiring spacing of adjacent nets according to the following four assumptions after executing the optimized circuit delay program: 假设1:在某一个GRG网格i内,相邻线网段产生串扰的平行走线长度是该GRG网格的长度li;Assumption 1: In a certain GRG grid i, the length of parallel traces that generate crosstalk between adjacent line segments is the length li of the GRG grid; 假设2:在某一个GRG网格i内,每段线网都只可能与位于其左、右(或者上、下)的线网产生串扰;Assumption 2: In a certain GRG grid i, each line network can only produce crosstalk with the line network located on its left and right (or above and below); 假设3:在某一个GRG网格i内,相邻线网段的布线间隔是该GRG网格内的所有线网段的平均布线间隔;Assumption 3: In a certain GRG grid i, the wiring interval of adjacent line segments is the average wiring interval of all line segments in the GRG grid; 假设4:由于GRG网格一般以单元行的整倍数进行划分,在不同GRG网格内的线网段不产生串扰;Hypothesis 4: Since GRG grids are generally divided by integer multiples of unit rows, there will be no crosstalk between line segments in different GRG grids; 根据上述假设,在进行串扰减少控制时,借助于计算机,它依次含有以下步骤:According to the above assumptions, when performing crosstalk reduction control, with the help of a computer, it contains the following steps in sequence: (1)设定:Nn是线网总数,Sn是线网j所经过的GRG网格总数,Xj是用户所定义的线网j所能忍受的串扰量;(1) Setting: N n is the total number of nets, S n is the total number of GRG grids that net j passes through, and X j is the amount of crosstalk that net j defined by the user can tolerate; (2)对每个线网计算串扰量Ctj(2) Calculate the amount of crosstalk Ct j for each wire net; (3)计算当前布线解S的串扰总溢出量即所有线网的串扰溢出量之和
Figure A0312409500021
(3) Calculate the total crosstalk overflow of the current wiring solution S, that is, the sum of the crosstalk overflow of all wire nets
Figure A0312409500021
(3.1)计算线网j的串扰溢出量 即其所受到的串扰量Ctj和所能忍受的串扰量xj的差值: C ~ t j = C t j - x j ; (3.1) Calculating the crosstalk overflow of the line net j That is, the difference between the amount of crosstalk Ct j it suffers and the amount of crosstalk x j it can tolerate: C ~ t j = C t j - x j ; (3.2)计算当前布线解S的串扰总溢出量 C ~ t ( S ) &Sigma; j = 1 N n C ~ t j = &Sigma; j = 1 N n ( C t j - x j ) ; (3.2) Calculate the total crosstalk overflow of the current wiring solution S C ~ t ( S ) &Sigma; j = 1 N no C ~ t j = &Sigma; j = 1 N no ( C t j - x j ) ; (4)找出所有串扰量超过阈值的线网,作为集合Vt;(4) Find out all the wire nets whose crosstalk exceeds the threshold, as the set Vt; (5)生成Vt的随机子集Vs;(5) Generate a random subset Vs of Vt; (6)对Vs中每个线网,根据串扰量对其所经过的边进行排序,找出前m段串扰量超过阈值的边;(6) For each net in Vs, sort the edges it passes through according to the amount of crosstalk, and find out the edge whose crosstalk amount exceeds the threshold in the first m segments; (7)试重布该m段边,尽量使该m段边上的串扰变化量之和较小;(7) try to redistribute the m segment edges, and try to make the sum of the crosstalk variation on the m segment edges smaller; (8)记录当前布线树,并和该线网曾经构造过的布线树比较“代价” 以确定“代价”最小的布线树;是线网j在重布前、后的串扰溢出量的变化量,即: &Delta; C ~ t j = &Sigma; s i &Element; T j &prime; &Delta; C ~ t j s i + &Sigma; s i &Element; T j &Delta; C ~ t j s i ; (8) Record the current wiring tree, and compare the "cost" with the wiring tree that the line network has constructed To determine the wiring tree with the smallest "cost"; is the variation of the crosstalk overflow of the net j before and after redistribution, that is: &Delta; C ~ t j = &Sigma; the s i &Element; T j &prime; &Delta; C ~ t j the s i + &Sigma; the s i &Element; T j &Delta; C ~ t j the s i ; 其中:
Figure A0312409500033
是线网j在重布前、后在GRG网格si上的串扰溢出量的变化量;
Figure A0312409500034
是线网j由于新布布线树T’j,在T’j所经过的所有GRG网格边上的串扰溢出量的变化量之和;
Figure A0312409500035
是线网j由于撤消布线树Tj,在Tj所经过的所有GRG网格边上的串扰溢出量的变化量之和;
in:
Figure A0312409500033
is the variation of the crosstalk overflow of the line net j on the GRG grid s i before and after redistribution;
Figure A0312409500034
Is the sum of the crosstalk overflow changes on all GRG grid edges that T' j passes due to the new layout of the wiring tree T' j in the line net j;
Figure A0312409500035
is the sum of the crosstalk spillover changes on all GRG grid edges that T j passes due to the undoing of wiring tree T j in line net j;
Tj和T’j分别是线网j在重布前、后的布线树;T j and T' j are the wiring trees of net j before and after redistribution, respectively; (9)对Vs中每个线网计算布线解的总“代价” 按“代价”最小重布布线树所在的线网:(9) Calculate the total "cost" of the routing solution for each net in Vs Redistribute the wire net where the wiring tree is located according to the "cost" minimum: 总代价 包括重布对线网本身以及其他线网带来的串扰量的变化,它可表示如下: &Delta; C ~ t = k 1 &Delta; C ~ t j + k 2 &Sigma; i = 1 , i &NotEqual; j N n &Delta; C ~ t i = k 1 ( &Sigma; s i &Element; T j &prime; &Delta; C ~ t j s i + &Sigma; s i &Element; T j &Delta; C ~ t j s i ) + k 2 &Sigma; i = 1 , i &NotEqual; j N n &Sigma; s i &Element; T j &prime; U T j &Delta; C ~ t i s i k 1 + k 2 = 1 ; total cost Including the change of crosstalk caused by redistribution to the wire net itself and other wire nets, it can be expressed as follows: &Delta; C ~ t = k 1 &Delta; C ~ t j + k 2 &Sigma; i = 1 , i &NotEqual; j N no &Delta; C ~ t i , = k 1 ( &Sigma; the s i &Element; T j &prime; &Delta; C ~ t j the s i + &Sigma; the s i &Element; T j &Delta; C ~ t j the s i ) + k 2 &Sigma; i = 1 , i &NotEqual; j N no &Sigma; the s i &Element; T j &prime; u T j &Delta; C ~ t i the s i k 1 + k 2 = 1 ; 其中: 表示除了线网j以外的其余所有线网在受重布影响的GRG网格上的串扰溢出量的变化量。in: Indicates the variation of the crosstalk overflow of all other nets except net j on the GRG grid affected by the redistribution.
2.根据权利要求1所述的标准单元总体布线过程中用的减少串扰的方法,其特征在于:对于构成关键路径的GRG网格Si,所述的线网j在重布前、后在si上的串扰溢出量的变化量在 C t j &prime; s i - C t j s i > 0 时, &Delta; C ~ t j s i = &beta; ( C t j &prime; s i - C t j s i ) , &beta; > 1 . 2. The method for reducing crosstalk used in the general wiring process of standard cells according to claim 1, characterized in that: for the GRG grid S i that constitutes the critical path, the described line net j is redistributed before and after The amount of crosstalk spillover on s i changes in C t j &prime; the s i - C t j the s i > 0 hour, &Delta; C ~ t j the s i = &beta; ( C t j &prime; the s i - C t j the s i ) , &beta; > 1 . . 3.根据权利要求1所述的标准单元总体布线过程中用的减少串扰的方法,其特征在于:所述的串扰按下式计算: V crosstalk = C couping C total , 3. the method for reducing crosstalk used in the standard unit overall wiring process according to claim 1, is characterized in that: described crosstalk is calculated as follows: V cross talk = C couponing C total , 其中:Ccoupling是耦合电容;Ctotal包括对地电容、耦合电容及负载电容。Among them: C coupling is the coupling capacitance; C total includes ground capacitance, coupling capacitance and load capacitance.
CN 03124095 2003-05-01 2003-05-01 Method for reducing serial interfere on wire distribution procedure of standard apartment Expired - Fee Related CN1219269C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03124095 CN1219269C (en) 2003-05-01 2003-05-01 Method for reducing serial interfere on wire distribution procedure of standard apartment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03124095 CN1219269C (en) 2003-05-01 2003-05-01 Method for reducing serial interfere on wire distribution procedure of standard apartment

Publications (2)

Publication Number Publication Date
CN1472680A true CN1472680A (en) 2004-02-04
CN1219269C CN1219269C (en) 2005-09-14

Family

ID=34152852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03124095 Expired - Fee Related CN1219269C (en) 2003-05-01 2003-05-01 Method for reducing serial interfere on wire distribution procedure of standard apartment

Country Status (1)

Country Link
CN (1) CN1219269C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295775C (en) * 2004-03-25 2007-01-17 杭州电子工业学院 Fast analysis of superlarge integrated circit P/G distributing net
CN100347710C (en) * 2005-05-13 2007-11-07 清华大学 Standard unit overall wiring method of multi-terminal network plug-in buffer optimizing delay
US8006208B2 (en) 2006-11-15 2011-08-23 International Business Machines Corporation Reducing coupling between wires of an electronic circuit
CN101410840B (en) * 2006-03-27 2011-11-16 国际商业机器公司 Method of reducing correlated coupling between nets
CN102346787A (en) * 2010-07-29 2012-02-08 鸿富锦精密工业(深圳)有限公司 System and method for inspecting crosstalk information of signal lines
WO2011100927A3 (en) * 2011-04-14 2012-03-15 华为技术有限公司 Method, device and system for grouping line pairs
CN101183401B (en) * 2006-11-15 2012-05-09 国际商业机器公司 Wiring method and apparatus for reducing line-to-line coupling of electronic circuits
CN101393640B (en) * 2004-08-31 2012-05-16 英赛特半导体有限公司 Method of design analysis of existing integrated circuits
CN104636307A (en) * 2015-01-08 2015-05-20 中国航空无线电电子研究所 Method for manufacturing serial data channels supporting FC protocol 16G communication speed
CN108627845A (en) * 2017-03-15 2018-10-09 信泰光学(深圳)有限公司 The circuit layout of laser driving circuit
CN113011124A (en) * 2021-04-12 2021-06-22 上海伴芯科技有限公司 Crosstalk optimization method and device for layout wiring and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490719B (en) * 2010-08-03 2015-07-01 Hon Hai Prec Ind Co Ltd Signal transmission line crosstalk information check system and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295775C (en) * 2004-03-25 2007-01-17 杭州电子工业学院 Fast analysis of superlarge integrated circit P/G distributing net
CN101393640B (en) * 2004-08-31 2012-05-16 英赛特半导体有限公司 Method of design analysis of existing integrated circuits
CN100347710C (en) * 2005-05-13 2007-11-07 清华大学 Standard unit overall wiring method of multi-terminal network plug-in buffer optimizing delay
CN101410840B (en) * 2006-03-27 2011-11-16 国际商业机器公司 Method of reducing correlated coupling between nets
CN101183401B (en) * 2006-11-15 2012-05-09 国际商业机器公司 Wiring method and apparatus for reducing line-to-line coupling of electronic circuits
US8006208B2 (en) 2006-11-15 2011-08-23 International Business Machines Corporation Reducing coupling between wires of an electronic circuit
US8032851B2 (en) 2006-11-15 2011-10-04 International Business Machines Corporation Structure for an integrated circuit design for reducing coupling between wires of an electronic circuit
CN102346787B (en) * 2010-07-29 2015-04-08 中山市云创知识产权服务有限公司 System and method for inspecting crosstalk information of signal lines
CN102346787A (en) * 2010-07-29 2012-02-08 鸿富锦精密工业(深圳)有限公司 System and method for inspecting crosstalk information of signal lines
WO2011100927A3 (en) * 2011-04-14 2012-03-15 华为技术有限公司 Method, device and system for grouping line pairs
CN104636307A (en) * 2015-01-08 2015-05-20 中国航空无线电电子研究所 Method for manufacturing serial data channels supporting FC protocol 16G communication speed
CN108627845A (en) * 2017-03-15 2018-10-09 信泰光学(深圳)有限公司 The circuit layout of laser driving circuit
CN113011124A (en) * 2021-04-12 2021-06-22 上海伴芯科技有限公司 Crosstalk optimization method and device for layout wiring and readable storage medium
CN113011124B (en) * 2021-04-12 2024-01-26 上海伴芯科技有限公司 Crosstalk optimization method and device for layout wiring and readable storage medium

Also Published As

Publication number Publication date
CN1219269C (en) 2005-09-14

Similar Documents

Publication Publication Date Title
TWI775000B (en) Method for generating a layout of integrated circuit and method for processing layout of integrated circuit
CN1279480C (en) An overall routing method for standard cells with time delay optimization considering coupling effects
US7480878B2 (en) Method and system for layout versus schematic validation of integrated circuit designs
CN1472680A (en) Crosstalk reduction method used in standard cell overall wiring process
CN1521830A (en) A technical method for the integration of integrated circuit design, verification and testing
CN1503347A (en) Methods of Correcting Crosstalk
US20120136633A1 (en) Optimization-based simulated annealing for integrated circuit placement
CN1862546A (en) Fast method for analyzing IC wiring possibility
CN1779686A (en) Techniqes for making sure of buffer insertion
CN1539113A (en) Representing design of sub-module in hierarchical integrated circuit design and analysis system
CN1523662A (en) A Fast Method for Noise Optimization of IC Power Supply Network Using Decoupling Capacitors
CN1606012A (en) Semiconductor device, semiconductor device wiring method and manufacturing method thereof
CN1540745A (en) Method for designing low-power semiconductor integrated circuits
CN1495649A (en) System for estimating the performance of integrated circuits at the register transfer level
US7966597B2 (en) Method and system for routing of integrated circuit design
CN1300731C (en) Semiconductor integrated circuit design method having accurate capacity axtracting
CN1619549A (en) Layout device and method for semiconductor integrated circuit
Dong et al. Lithography-aware analog layout retargeting
CN1783095A (en) Method and apparatus for enhancing a power distribution system in a ceramic integrated circuit package
CN111177996A (en) Special pattern avoiding method and device for optimizing manufacturability of integrated circuit
CN116663486A (en) Chip power supply planning method and related device based on PI analysis
CN1564164A (en) Generally distributing method of standant unit for eliminating crosstalk caused by coupling inductance
US9293450B2 (en) Synthesis of complex cells
CN1240015C (en) Time delay driving method of right angle Steiner tree under obstruction when making loose routing for standard units
Meister et al. Novel pin assignment algorithms for components with very high pin counts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050914