[go: up one dir, main page]

CN1441512A - 高频电路装置以及收发装置 - Google Patents

高频电路装置以及收发装置 Download PDF

Info

Publication number
CN1441512A
CN1441512A CN03107513A CN03107513A CN1441512A CN 1441512 A CN1441512 A CN 1441512A CN 03107513 A CN03107513 A CN 03107513A CN 03107513 A CN03107513 A CN 03107513A CN 1441512 A CN1441512 A CN 1441512A
Authority
CN
China
Prior art keywords
circuit
resonator
swirl shape
frequency
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03107513A
Other languages
English (en)
Other versions
CN1215597C (zh
Inventor
三上重幸
河内哲也
松崎宏泰
向山和孝
坂本孝一
石川容平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1441512A publication Critical patent/CN1441512A/zh
Application granted granted Critical
Publication of CN1215597C publication Critical patent/CN1215597C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/023Fin lines; Slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/005Helical resonators; Spiral resonators

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Filters And Equalizers (AREA)

Abstract

本发明提供一种抑制无用波的传输并且可以实现小型化的高频电路装置和收发装置。在电介质衬底1的两个面上设置平面导体2的同时,在表面1A上形成缝隙线。在电介质衬底1的表面1A上设置将缝隙线夹在其中并由多段频带抑制滤波器6组成的无用波传输抑制电路5。频带抑制滤波器6由2条导体线路7A、7B、和由以螺旋状设置在导体线路7A的途中部位的旋涡状线路8A、8B组成的谐振器8来构成。由此,能够以谐振器8的谐振频率为中心来抑制频带无用波的传输。

Description

高频电路装置以及收发装置
发明所属技术领域
本发明涉及具有两个平行平面导体的波导以及谐振器的高频电路装置以及使用该装置的收发装置。
现有技术
通常,作为使用微波、毫米波等的高频信号的高频电路装置,已经知道的有,例如在电介质板里面上形成接地电极的同时在表面上形成共面的接地共面线路、在电介质板的里面形成接地电极的同时在表面上形成缝隙的接地缝隙线路、在电介质板的两面上形成将电介质夹在其中并且相对的缝隙的平面电介质线路(下面,称其为PDTL)等各种传输线路。
这些传输线路都由于是具有2个平行的平面导体的结构,因此,例如在传输线路的输入输出端或在弯曲处等位置上产生电磁场紊乱时,在2个平行的平面导体之间会引起由所谓的平行板模式等的寄生模式组成的无用波。由此,无用波在平面导体间传输时,相邻的传输线路间会产生无用波的干涉,因此存在产生信号泄漏等问题的情况。
为了防止这样的无用波,现有技术中已知这种技术:在例如表面侧的平面导体中,使用由与在里面侧的平面导体之间产生静电电容的电极、以及与该电极相连来构成电感的多个线路所组成的导体图案,构成寄生模式传输抑制电路(例如,特开2000-101301号公报等)。
发明要解决的问题
但是,在上述现有技术,例如,在表面侧的平面导体上形成由电极和线路组成的导体图案,通过将电极的静电电容和电路的电感组合来构成低通滤波器,可以抑制无用波的传输。但是,对于这样的其它现有技术而言,例如,随着无用波频率降低,需要增加电极的静电电容或线路的电感。
此时,由于电极与里面侧的平面导体之间产生静电电容,因此在静电电容大的情况下,有必要增加电极的面积。另一方面,在增加电感的情况下,需要减小线路的宽度大小,或增加线路的长度尺寸。这里,由于线路的宽度尺寸在加工精度上存在限制,因此,在增加电感的情况下,需要增加线路的长度尺寸。
因此,现有技术中,由于存在增加导体图案面积的倾向,因此存在电介质板整个大型化,以及容易增加制造成本的问题。
鉴于现有技术中存在的上述问题,本发明的目的在于提供能抑制无用波的传输并且可以小型化的高频电路装置以及收发装置。
技术方案
为了解决上述问题,本发明适用于这样的高频电路装置,它由将平行的至少2个平面导体与在这2个平面导体之中的至少一个中设置、与在所述2个平面导体之间传输的无用波结合,从而抑制该无用波传输的无用波传输抑制电路组成。
本发明所采用结构其特征在于,无用波传输抑制电路由多段的频带抑制滤波器构成,该各段的频带抑制滤波器由在段间相互连接的2条导体线路和谐振器组成,其中该谐振器这样形成:该2条导体线路中的至少一个的中途部位由变为螺旋形状、并且彼此平行延伸的2条旋涡状线路所形成,并且这2条旋涡状线路的开始端彼此连接。
由这样的结构,通过连接2条螺旋状线路的开始端,可以构成发夹型的谐振器。此时,谐振器由于能够等价地构成将在2条旋涡状线路之间生成的静电电容和由各分支线路所产生的电感并联连接的并联谐振电路,因此,能够在谐振器的谐振频率附近的频带内截断无用波的传输。
由于将2条旋涡状线路形成为螺旋状从而构成谐振器,因此在减小谐振器面积的同时,可以将磁场集中在螺旋状的中心,从而不会受到其它电路的影响,截断无用波。
本发明将各旋涡状线路具有的线路宽度尺寸遍及全长设定为相同的值,将在所述2条旋涡状线路之间形成的间隔尺寸遍及全长设定为相同的值。
由此,通过将线路宽度尺寸和间隔尺寸设定为较小的值,可以减小谐振器所占的面积。
本发明将各旋涡状线路具有的宽度尺寸设定得在螺旋中心比在周围的要大。
由此,在磁场强度强的螺旋中心可以增加旋涡状线路的线路宽度尺寸,从而缓和电流的集中程度,提高谐振器的无负载Q。
本发明将在2条旋涡状线路之间形成的间隔尺寸设定得在螺旋中心比在周围的要大。
由此,在磁场强度强的螺旋中心可以增加2条旋涡状线路的间隔尺寸,从而缓和电流的集中程度,提高谐振器的无负载Q。
本发明在所述2条导体线路中的任何一条的导体线路中设置构成为各段频带抑制滤波器的所述各谐振器。
由此,在2条导体线路中传输无用波时,可以通过在各段中相同一侧的导体线路中设置的谐振器截断该无用波。
本发明在2条导体线路中相邻段中彼此不同的导体线路中设置构成各段频带抑制滤波器的所述各谐振器。
由此,可以对2条导体线路在每段配置彼此不同的谐振器。为此,在2条导体线路中传输无用波时,使用这些彼此配置得不同的谐振器可以截断该无用波的传输。
本发明在2条导体线路中分别设置构成为各段频带抑制滤波器的所述各谐振器。
由此,在2条导体线路中传输无用波时,可以通过在2条导体线路中分别设置的谐振器截断该无用波。尤其是,由于可以在各段频带抑制滤波器中分别连接2个谐振器,能够增加导体线路中连接的谐振器的数量,能够比较确实地截断无用波。
本发明将在2条旋涡状线路之间形成的间隔尺寸设定为在2个平面导体中形成的间隔尺寸的十分之一以下的值。
由此,由于与通过旋涡状线路在2个平面导体中生成的静电电容相比,能够增加2条旋涡状线路之间产生的静电电容,因此与使用在平面导体中生成的静电电容的情况相比,可以容易地降低谐振器的谐振频率从而减小谐振器的面积。
并且,最好使用根据本发明的高频电路装置来构成收发装置。
此外,本发明的高频电路装置,它由平行的至少2个平面导体、以及将在这2个平面导体之中的至少一个中设置的并在所述2个平面导体之间传输的无用波结合,从而抑制该无用波传输的无用波传输抑制电路组成,其特征在于,所述无用波抑制电路由多段的频带抑制滤波器构成,该各段的频带抑制滤波器由在各段间相互连接的2条导体线路和谐振器组成,所述谐振器由从这2条导体线路中的至少一个的导体线路开始延伸的第1旋涡状线路以及从第1旋涡状线路的端部开始延伸并且与第1旋涡状线路平行的旋涡状线路组成。
本发明中,其特征在于,包含所述2条导体线路和谐振器的所述各段频带抑制滤波器,彼此被排列在对角线上。
本发明中,其特征在于,所述各段频带抑制滤波器带有在各个所述2条导体线路中设置的谐振器,将各个谐振器交替配置在彼此不同的方向上。
本发明中,所述各段频带抑制滤波器带有在各个所述2条导体线路中设置的谐振器,将各个谐振器并列配置。
附图简述
图1是示出第1实施例的高频电路装置的斜视图。
图2是从图1的箭头所指II-II方向看过去的截面图。
图3是将图1中的无用波传输抑制电路放大示出的主要部分的放大平面图。
图4是将图3中单个无用波传输抑制电路放大示出的主要部分的放大平面图。
图5是示出了第1实施例的无用波传输抑制电路的等价电路的电路图。
图6是将第1实施例的谐振器放大示出的放大平面图。
图7是将图6中的旋涡状线路从箭头所指VII-VII方向看过去的放大截面图。
图8是示出了与图6中的谐振器等价的发夹型谐振器的平面图。
图9是从图8的箭头所指IX-IX方向看过去的放大截面图。
图10是示出了第1实施例的谐振器一边长度尺寸与谐振频率、无负载Q之间的关系的特性图。
图11是示出了第1实施例的无用波传输抑制电路的传输特性的特性线图。
图12是示出了第2实施例的谐振器、与图6相同的放大平面图。
图13是示出了变形例中的谐振器、与图6相同的放大平面图。
图14是将第3实施例的无用波传输抑制电路放大示出的主要部分的放大平面图。
图15是将图14中单个无用波传输抑制电路放大示出的主要部分的放大平面图。
图16是示出了第3实施例的无用波传输抑制电路的等价电路的电路图。
图17是将第4实施例的无用波传输抑制电路放大示出的主要部分的放大平面图。
图18是将图17中的单个无用波传输抑制电路放大示出的主要部分的放大平面图。
图19是示出了第4实施例的无用波传输抑制电路的等价电路的电路图。
图20是示出了第4实施例的无用波传输抑制电路的传输特性的特性线图。
图21是将第5实施例的通信装置分解示出的分解斜视图。
图22是示出了第5实施例的通信装置全部结构的框图。
实施例
下面,参照附图详细说明本发明实施例的高频电路装置。
首先,图1到图11示出了第1实施例,图中,1是由树脂材料、陶瓷材料或将它们混合后烧结而成的复合材料组成的电介质衬底,用例如24左右的介电常数εr在带有0.6mm厚度大小T的平板上形成电介质衬底1。
2表示在电介质衬底1的表面1A上形成的平面导体,3表示中电介质衬底1的里面1B上形成的作为接地电极的平面导体。平面导体2、3由带有例如1-3μm厚度的导电性金属薄膜组成,并且基本全面地覆盖电介质衬底1的表面1A、里面1B。
4是作为激励例如微波、毫米波等高频电磁波(高频信号)的电路的缝隙线,该缝隙线4由形成在平面导体2上的向前后方向上延伸的沟状开口组成,通过与作为接地电极的平面导体3相对来构成接地缝隙线。
5是设置在平面导体2上的无用波抑制电路,将该无用波抑制电路5将例如缝隙线4夹在其中而配置在其左右两侧。另外,通过连接后述的多段频带抑制滤波器6来构成该无用波抑制电路5,如图4所示变为大致带状。在电介质衬底1的表面上,相互相邻、接触来配置多个频带抑制滤波器6,并且整体上变为大致为矩形的平面。
6是构成无用波抑制电路5的频带抑制滤波器,通过在各段之间彼此连接的2条导体线路7A、7B、以及设置在该2条导体线路7A、7B中一侧的导体线路7A的途中部位的谐振器8来构成该频带抑制滤波器6。在电介质衬底1的表面1A上将频带抑制滤波器6配置成网状的同时,相对与缝隙线4平行的前后方向倾斜错位、并朝着左右方向上连接频带抑制滤波器。
将2条导体线路7A、7B由和平面导体2相同的导电性金属材料组成的细线状构成。导体线路7A、7B其底部一侧与平面导体2相连的同时,在电介质衬底1的前后方向或左右方向的任何一个中开口,将在其间传输的带有电场E的无用波导入配置成网状的任何一个谐振器8中。
这里,谐振器8被设置在导体线路7A的途中部位上,通过变为矩形螺旋状的彼此平行延伸的2条旋涡状线路8A、8B来构成谐振器8,通过与导体线路7A具有同样导电性的金属材料的细线来形成该旋涡状线路8A、8B。另外,旋涡状线路8A、8B带有的线路宽度W被设定得遍及全长为相同的值时,在2条旋涡状线路8A、8B之间形成的间隔尺寸S也被设定得遍及全长为相同的值。另外,线路宽度尺寸W、间隔尺寸S分别被设定为例如1-10微米左右的值。由此,与形成2个平面导体2、3之间的间隔尺寸的电介质衬底1的厚度T相比,间隔尺寸S被设定为是其的十分之一(S≤T/10)以下的值。
另外,旋涡状线路8A、8B构造其底端在导体线路7A、7B之间开口,开始端变为连接部8C彼此相连的作为整体的发夹型谐振器(参照图8)。由此,在平面导体2、3之间产生的平行平板模式(无用波)与导体线路7A、7B结合,该无用波在导体线路7A、7B之间传输时,无用波的一部分被导入旋涡状线路8A、8B之间。谐振器8由于带有通过从底端到开始端的长度尺寸L0等设定的谐振频率f0,因此可以反射该谐振频率f0的高频信号。借此,谐振器8能抑制无用波传输。
导体线路7A、7B中相邻的2个谐振器8之间的长度大小设定为相对于抑制传输的无用波(对应于谐振器8的谐振频率)电子角θ为90°的长度,即,对无用波的电介质衬底1内的波长,将其设定为例如1/4左右的值。由此,可以形成在2个谐振器8之间电子角θ为90°(θ=90°)的相位器9,相位器9重合了多个谐振器8所产生的无用波的抑制特性。
本实施例的高频电路装置具有如上所述的结构,其次说明其操作。
首先,将高频信号输入缝隙线4中时,高频信号沿着缝隙线4向电介质衬底1的前后方向传输。这里,在电介质衬底1的表面1A上靠近缝隙线4设置例如矩形谐振器(图中没有示出)的情况中,从缝隙线4和矩形谐振器之间不连续的部位开始产生平行平板模式等的无用波,在平面导体2、3之间传输。
此时,在电介质衬底1的表面1A上,由于设置了由多段频带抑制滤波器6组成的无用波传输抑制电路5,因此无用波被输入到无用波传输抑制电路5的频带抑制滤波器6上。此时,频带抑制滤波器6反射将谐振器8的谐振频率f0中作为中心频带的无用波,从而可以抑制无用波的传输。
其次,参照图5到图10说明谐振器8的作用。这里,如图6所示,假定谐振器8整体形成大致正方形。
谐振器8是由于通过开始端被连接的螺旋状的旋涡状线路8A、8B而构成的,则谐振器8可以获得与如图8所示使旋涡状线路8A、8B呈直线状延伸的发夹型谐振器8相同的作用,并如图5所示的等价电路那样构成由电容C和电感L并联连接的并联谐振电路组成的频带抑制滤波器6。为此,谐振器8反射以下式1所示的将谐振频率f0作为中心的周边频带的无用波。
(式1) f 0 = 1 2 π LC
此时,由于将旋涡状线路8A、8B之间的间隔尺寸S设定为电介质衬底1的厚度T的十分之一以下的值,因此在旋涡状线路8A、8B之间产生的静电电容Cs为比在旋涡状线路8A、8B和平面导体3之间产生的静电电容Cg大很多的值(参照图9)。
其结果,基本上通过旋涡状线路8A、8B之间产生的静电电容Cs来确定谐振器8的电容C。这里,随着旋涡状线路8A、8B之间的间隔尺寸S变小,旋涡状线路8A、8B之间的静电电容Cs变为大的值。由此,在使谐振器8小型化的同时可以降低谐振频率f0。
随着旋涡状线路8A、8B的长度尺寸L0变大,除电感L变大之外,静电电容Cs也变大了。为此,如同现有技术那样,与电容C和电感L独立增加的情况相比,能抑制谐振器8的面积增加的同时,还可以增加电容C(静电电容Cs)和电感L。因此,在截断同一频率的无用波的情况中,与构成现有技术的低通滤波器的导体图案的面积相比,带有谐振器8的频带抑制滤波器6的面积可以减小到例如60-80%左右。
其次,探讨谐振器8以及无用波传输抑制电路5的频带抑制特性。
首先,在图6的谐振器8中,使各旋涡状线路8A、8B的线路宽度W为2μm,旋涡状线路8A、8B的间隔大小为2μm,旋涡状线路8A、8B的螺旋的卷数为3匝,来进行电磁场模拟,如图10所示,求出使谐振器8的一边长度尺寸L1变化到80-110μm左右时的谐振频率f0和无负载Q(Q0)。
由此,谐振器8的一边长度尺寸L1小时,谐振频率f0变高,长度尺寸L1大时,谐振频率f0变低。此外,谐振器8的无负载Q有随着谐振器8的一边长度尺寸L1变大而降低的倾向,变为5左右的值。
因此,使用图5的等价电路,使谐振器8的谐振频率f0为例如21GHz,无负载Q为5,以将频带抑制滤波器6进行4段连接的状态,进行无用波传输抑制电路5的电路分析的结果,可以获得如图11所示的传输特性。
由此,由于与以谐振频率f0为中心的反射系数S11相比能够大大降低透射系数S21,因此,无用波传输抑制电路5可以抑制以谐振频率f0为中心的频带无用波的传输。
这样,对于本实施例而言,由于通过由2条导体线路7A、7B和设置导体线路7A途中部位的2条旋涡状线路8A、8B组成的谐振器8来构成无用波传输抑制电路5的频带抑制滤波器6,因此可以通过连接2条旋涡状线路8A、8B的开始端来构成发夹型谐振器8,通过谐振器8可以抑制以谐振频率f0为中心的频带无用波的传输。
此外,由于将2条旋涡状线路8A、8B形成为螺旋状来构成谐振器8,因此可以将谐振器8容纳在大致呈矩形的小面积内。尤其是,发夹型谐振器8由于连接旋涡状线路8A、8B的开始端的磁场强度比其它部位的磁场强度强,因此可以使磁场集中在螺旋状的谐振器8的中心处。其结果,由于在其它电路和谐振器8之间不会产生磁场耦合,所以不会受到其它电路的影响,从而能截断无用波。
将旋涡状线路8A、8B的线路宽度W在全长设定为相同值时,由于将旋涡状线路8A、8B的间隔尺寸在全长设定为相同值,因此通过将旋涡状线路8A、8B的线路宽度尺寸W、间隔尺寸S设定为小的值,可以加大谐振器8的电容C、电感L,在抑制谐振器8的面积增加的同时能降低可截断的无用波的频带范围。
此外,由于将各段谐振器8设置在2条导体线路7A、7B中一侧的导体线路7A上,因此在2条导体线路7A、7B之间传输无用波时,可以将该无用波导入设置在导体线路7A上的谐振器8,从而通过谐振器8来截断该无用波。
由于与将作为2个平面导体2、3之间的间隔尺寸的电介质衬底1的厚度尺寸T相比,将2条旋涡状线路8A、8B之间的间隔尺寸设定为十分之一以下的值,因此,由于与旋涡状线路8A、8B和平面导体3之间生成的静电电容Cg相比,能够增加2条旋涡状线路8A、8B之间产生的静电电容Cs。为此,通过减小旋涡状线路8A、8B之间的间隔大小S,可以降低谐振器8的谐振频率f0,通过缩短旋涡状线路8A、8B的长度大小L0,可以升高谐振器8的谐振频率f0。因此,在截断相同频率的无用波的情况中,与构成现有技术的低通滤波器的导体图案的面积相比,能够减小包含谐振器8的频带抑制滤波器6的面积,从而可以使无用波传输抑制电路5小型化。其结果,由于能够减小电介质衬底1,因此可以降低制造成本。
其次,图12示出了本发明的第2实施例,该实施例的特征在于,使构成谐振器的旋涡状线路的线路宽度尺寸设定得螺旋中心外侧比周围要大。此外,本实施例对与第1实施例相同的结构组成部份附加了相同的符号,并省去对其的说明。
11是本实施例的谐振器,该谐振器11被设置在导体线路7A的途中部位,通过变为矩形螺旋状的彼此平行延伸的2条旋涡状线路11A、11B来构成谐振器11。旋涡状线路11A、11B与第1实施例中的谐振器8基本相同,其开始端变为彼此相连的连接部11C的同时,其底端变为在导体线路7A、7B之间开口的开口部11D,从而全体构成发夹型谐振器。
这里,各旋涡状线路11A、11B带有的线路宽度W1被设定得螺旋状谐振器11的中心部分(连接部11C的周边)比其外围(开口部11D)要大的值。另外,在2条旋涡状线路11A、11B之间形成的间隔尺寸S1也被设定得遍及全长为相同的值。
因而,本实施例可以获得与第1实施例相同的效果。但是,由于本实施例将各旋涡状线路11A、11B的线路宽度W1设定得螺旋状的中心部分比其外围要大,因此在磁场强度强的螺旋状的中心部分,旋涡状线路11A、11B的线路宽度W1变大,从而拓宽电流的流路,缓和电流集中程度,从而提高谐振器11的无负载Q(减小损失)。
第2实施例构成为将谐振器11的旋涡状线路11A、11B的线路宽度W1被设定得螺旋状中心部分比其外围要大。但是,本发明不局限于此,例如图13所示的变形例子那样,即使构成为将谐振器11的2条旋涡状线路11A、11B之间的间隔大小S1设定得螺旋状中心部分比其外围要大,也可以获得与第2实施例线相同的效果。
其次,图14到图16示出了本发明第3实施例的结构,本实施例的特征在于,将构成各段频带抑制滤波器22的各谐振器设置在2条导体线路中的相邻段中的彼此不同的导体线路中。本实施例对与第1实施例相同的结构组成部份附加了相同的符号,并省去对其的说明。
21是设置在平面导体2上的无用波传输抑制电路,该无用波传输抑制电路21是由后述的多段频带抑制滤波器22组成的。
22是构成无用波传输抑制电路21的频带抑制滤波器,该频带抑制滤波器22是由在各段之间相互连接的2条导体线路23A、23B,以及被设置在位于2条导体线路23A、23B中的相邻段中彼此不同的导体线路中的谐振器24所组成。与第1实施例中的频带抑制滤波器6相同,频带抑制滤波器22被网状地设置在电介质衬底1的表面1A上的同时,相对电介质衬底1的前后方向倾斜错位,并朝着左右方向上连接该频带抑制滤波器22。
这里,该谐振器24被设置在导体线路23A、23B中任何一个的途中部位,通过变为矩形螺旋状的彼此平行延伸的2条旋涡状线路24A、24B来构成谐振器24。旋涡状线路24A、24B,其开始端在导体线路23A、23B之间开口,开始端变为连接部24C并彼此相连,从而全体构成发夹型谐振器。
将导体线路23A、23B中相邻的2个谐振器24之间的长度大小设定为相对于抑制输出的无用波其电子角θ为90°的长度大小。由此,可以形成在2个谐振器24之间电子角θ为90°(θ=90°)的相位器25,相位器25重合了多个谐振器24所产生的抑制无用波的特性。
因而,本实施例可以获得与第1实施例相同的作用效果。但是,由于本实施例将构成各段频带抑制滤波器22的谐振器24设置在2条导体线路23A、23B中相邻段上彼此不同的导体线路中,因此,对于2条导体线路23A、23B,可以将谐振器24配置得各段彼此不同。为此,无用波在2条导体线路23A、23B之间传输时,可以使用这些彼此不同配置的谐振器24来抑制无用波的传输。
图17到图20示出了本发明第4实施例的结构,本实施例的特征在于,将构成各段频带抑制滤波器32的各谐振器分别设置在2条导体线路中。本实施例对与第1实施例相同的结构组成部份附加了相同的符号,并省去对其的说明。
31是设置在平面2导体上的无用波传输抑制电路,该无用波传输抑制电路31是由后述的多段频带抑制滤波器32组成的。
32是构成无用波传输抑制电路31的频带抑制滤波器,该频带抑制滤波器32是由在各段之间相互连接的2条导体线路33A、33B,以及分别被设置在位于2条导体线路33A、33B中的谐振器34所组成。与第1实施例中的频带抑制滤波器6相同,频带抑制滤波器32被网状设置在电介质衬底1的表面1A上的同时,相对与电介质衬底1的前后方向倾斜错位,并朝着左右方向上连接该频带抑制滤波器32。
这里,该谐振器34被分别设置在导体线路33A、33B中任何一个的途中部位,通过变为矩形螺旋状的彼此平行延伸的2条旋涡状线路34A、34B来构成谐振器34。旋涡状线路34A、34B,其开始端在导体线路33A、33B之间开口,开始端变为连接部34C并彼此相连,从而全体构成发夹型谐振器。将构成各段频带抑制滤波器32的2个谐振器34配置在将导体线路33A、33B夹在其中彼此大致对称的位置上。
将导体线路33A、33B中相邻的2个谐振器34之间的长度大小设定为相对于抑制输出的无用波其电子角θ为90°的长度大小。由此,可以形成在2个谐振器34之间电子角θ为90°(θ=90°)的相位器35,相位器35重合了多个谐振器34所产生的抑制无用波的特性。
因而,本实施例可以获得与第1实施例相同的作用效果。但是,由于本实施例将构成各段频带抑制滤波器32的谐振器34分别设置在2条导体线路33A、33B,因此,无用波在2条导体线路33A、33B之间传输时,可以通过分别设置在2条导体线路33A、33B中的谐振器34来截断无用波。尤其是,由于分别在各段频带抑制滤波器32中设置2个谐振器34,因此可以增加与导体线路33A、33B相连的谐振器34的个数。
为此,在图19的等效电路中,例如使谐振器34的谐振频率f0为21GHz,无负载Q为5,则通过将频带抑制滤波器32连接4段的状态来执行无用波传输抑制电路31的电路解析的结果,可以获得如图20所示的传输特性。
由此,由于以谐振频率f0为中心,与反射系数S11相比,大大降低了透射系数S21,无用波传输抑制电路31能够抑制以谐振频率f0为中心的频带无用波的传输的同时,与第1实施例相比,可以拓宽截断无用波的频带。
图21到图22示出了本发明的第5实施例,该实施例其特征在于,在作为收发通信装置的通信装置中采用无用波传输抑制电路。本实施例对与第1实施例相同的结构组成部份附加了相同的符号,并省去对其的说明。
41是作为通信装置外形的树脂封装,该树脂封装41由上面开口的箱形外壳42、作为盖在该外壳42开口处的大致为方形板状的盖子43来构成。盖子43的中央处设置大致为方形的开口部43A的同时,在该开口部43A的内部还设置了电磁波能透射的闭合板44。
45是容纳在外壳42中的电介质衬底,该电介质衬底45由例如5个分割衬底45A-45E组成,这些分割衬底45A-45E的两面分别由平面导体46、47来覆盖。在各分割衬底45A-45E中,作为功能块,分别设置后述的天线块48、共用器块49、发送块50、接收块51、振荡器块52。
48是发送发送电波并接收接收电波的天线块,将该天线块48设置在位于电介质衬底45的中央部分的分割衬底45A上,通过作为平面导体46中形成的方形开口的发射槽48A构成。通过后述的传输线路53将该发射槽48A连接到共用器块上。
49是变为天线共用器的共用器块,该共用器块49通过由在分割衬底45B的平面导体46上形成的方形开口组成的谐振器49A等构成。将谐振器49A通过后述的传输线路53分别连接到天线块48、发送块50、接收块51上。
50是向天线块48输出发送信号的发送块,该发送块50由这些部分构成:使用安装在分割衬底45C上的场效应晶体管等电子元件形成,在从振荡器块52输出的载波中混合中频信号IF从而上变频为发送信号的混频器50A、从该混频器50A的发送信号中去除噪声的带通滤波器50B,使用通过偏置电压Vd进行操作的电子元件而形成、放大发送信号功率的功率放大器50C。
使用后述的传输线路53连接这些混频器50A、带通滤波器50B、功率放大器50C的同时,通过传输线路53将混频器50A连接到振荡器块52上,通过传输线路53将功率放大器50C连接到共用器块49上。
51是设置在分割衬底45D上,输入由天线块48接收到的接收信号,将该接收信号与从振荡器块52输出的传送波混合从而下变频为中频信号IF的接收块,该接收块51由这些部分组成:将使用通过偏置电压Vd进行操作的电子元件形成的接收信号以低噪声放大的低噪声放大器51A;从由该低噪声放大器51A所产生的接收信号中去掉噪声的带通滤波器51B;将从振荡器52输出的载波与从该带通滤波器51B输出的接收信号混合,从而下变频为中频信号IF的混频器51C。
使用后述的传输线路53相互连接这些低噪声放大器51A、带通滤波器51B、混频器51C的同时,通过传输线路53将低噪声放大器51A连接到共用器块49上,通过传输线路53将混频器51C连接到振荡器块52上。
52是设置在分割衬底45E上,被连接在发送块50和接收块51之间,使变为载波的预定频率的信号(例如,微波、毫米波等高频信号)振荡的振荡器块,该振荡器块52由使用通过偏置电压Vd操作的电子元件形成、并且使对应于控制信号Vc的频率信号振荡的电压控制振荡器52A、以及用来将该电压控制振荡器52A所产生的信号提供给发送块50和接收块51的分支电路52B构成。
使用后述的传输线路53来相互连接电压控制振荡器52A、分支电路52B的同时,通过传输线路53来将分支电路52B连接在发送块50和接收块51。
53是由设置在各分割衬底45A、45E上的例如接地的缝隙线等组成的传输线路,该传输线路53由在平面导体46上形成的带状切开而构成,为在朝着其长度方向上传输高频信号的传输线路。
54是设置在各分割衬底45A-45E的表面上的无用波抑制电路,该无用波抑制电路54由例如第1至第4实施例所的无用波抑制电路5、21、31中的任何一个所构成,如图21中的双点划线所示,将该无用波抑制电路54设置在发射槽48A、谐振器49A、带通滤波器50B、带通滤波器51B、电压控制振荡器52A、传输线路53等的周围。
本实施例的通信装置为如上所述的结构,下面说明其操作。
首先,使用通信装置进行发送时,使用振荡器52对发送块50输入作为载波的预定频率的信号的同时,输入中频信号IF。由此,发送块50混合由振荡器块52所产生的载波和中频信号IF并进行上变频,通过共用器块49将该上变频后的发送信号输出到天线块48。其结果,天线块48通过发射槽48A发射高频发送信号,通过盖子43的开口部43A向外部发送。
另一方面,使用通信装置进行接收时,从天线块48接收到的接收信号通过共用器49输入到接收块51。此时,使用振荡器块52对接收块51输入作为载波的预定频率的信号。由此,接收块51混合由振荡器块52产生的载波和接收信号从而下变频为中频信号IF。
然而,由于本实施例在各分割衬底45A-45E中设置了无用波传输抑制电路54,因此可以截断电介质衬底45的平面导体46、47之间传输的无用波。为此,例如可以防止平行平板模式等的无用波各分割衬底45A-45E之间结合的情况,从而提高绝缘性,在抑制由无用波带来的功率损失并能够高效率化的同时,可以减少由无用波带来的噪声。
所述第1至第4实施例中,虽然使谐振器8、11、11、24、34形成为大致矩形的螺旋状,但是本发明不局限于此,还可以将谐振器构造成例如圆形、椭圆形的螺旋状。
所述第1、第3、第4实施例中为使用谐振频率相同的多个谐振器8、24、34来构成无用波传输抑制电路5、21、31的情况。但是本发明不局限于此,还可以使用谐振频率各不相同的多个谐振器来构成无用波传输抑制电路。由此,能扩大无用波传输抑制电路的抑制频带。
所述实施例中采用接地缝隙线4、传输线路53来作为在平面导体之间激励电磁波的电路。但是,本发明不局限于此,还可以是例如PDTL、共面线路等的传输线路、FET等半导体元件、谐振器、滤波器等。
所述各实施例中在电介质衬底1、45的表面上设置无用波传输抑制电路5、21、31、54,但是还可以将无用波传输抑制电路设置在电介质衬底的里面,还可以将无用波传输抑制电路设置在电介质衬底的表面和里面两个面上。
所述实施例中,虽然适用于带有2个平面导体2、3、46、47的高频电路装置但是,还可以适用于带有例如3个以上平面导体的高频电路装置中。
所述第5实施例是以通信装置作为收发装置为例进行说明的,但是本发明不局限于此,还可以广泛地适用于例如雷达装置等收发装置中。
发明效果
如上详细所述,根据权利要求1的发明,由于通过由2条导体线路和在该2条导体线路中的一个或两个上设置的2条旋涡状线路组成的谐振器来构成无用波传输电路的频带抑制滤波器,能够通过将2条旋涡状线路的开始端连接来构成发夹型谐振器,从而在谐振器的谐振频率附近的频带内截断无用波。由于将2条旋涡状线路形成为螺旋状来构成谐振器,因此在减小谐振器面积的同时,可以将磁场集中在螺旋状的中心,从而不会受到其它电路的影响,截断无用波。
根据权利要求2的发明,由于将各旋涡状线路具有的线路宽度尺寸遍及全长设定为相同的值的同时,将在所述2条旋涡状线路之间形成的间隔尺寸遍及全长设定为相同的值,因此,通过将线路宽度尺寸和间隔尺寸设定为较小的值,可以增大谐振器的电容、电感,可以减小谐振器所占的面积,从而减小可被截断的无用波的频率范围。
根据权利要求3的发明,由于将具有各旋涡状线路的线路宽度尺寸设定得在螺旋中心比在周围的要大,因此,可以在磁场强度强的螺旋中心处缓和电流的集中程度,降低谐振器的损失。
根据权利要求4的发明,由于将具有各旋涡状线路间的间隔大小设定得在螺旋中心比在周围的要大,因此,可以在磁场强度强的螺旋中心处缓和电流的集中程度,降低谐振器的损失。
根据权利要求5的发明,由于将构成各段频带抑制滤波器的谐振器设置在2条导体线路中相邻段上的彼此相同的任一个导体线路上,因此,在2条导体线路中传输无用波时,通过连接到一个导体线路上的谐振器可以截断该无用波。
根据权利要求6的发明,由于将构成各段频带抑制滤波器的各谐振器设置在2条导体线路中相邻段上的彼此不同的导体线路上,因此,在2条导体线路中传输无用波时,通过使用相对2条导体线路彼此不同配置的谐振器可以截断该无用波的传输。
根据权利要求7的发明,由于分别在2条导体线路中设置构成各段频带抑制滤波器的各谐振器,因此,在2条导体线路中传输无用波时,通过分别设置在2条导体线路中的谐振器可以截断该无用波。特别是,由于在各段频带抑制滤波器中分别设置2个谐振器,可以增加谐振器的数量,从而扩大可截断的无用波的频带。
根据权利要求8的发明,由于将在2条旋涡状线路之间形成的间隔尺寸设定得与在2个平面导体中形成的间隔尺寸相比为其十分之一以下的值,因此,与通过旋涡状线路在2个平面导体中生成的静电电容相比,能够增加在2条旋涡状线路之间产生的静电电容。为此,通过减小2个旋涡状线路之间的间隔尺寸,可以降低谐振器的谐振频率,通过缩短旋涡状线路的长度尺寸,可以升高谐振器的谐振频率。因此,在截断相同频率的无用波的情况中,与构成现有技术的低通滤波器的导体图案的面积相比,可以减小包含谐振器的频带抑制滤波器的面积,从而使无用波传输抑制电路小型化。
根据权利要求9的发明,由于使用本发明的高频电路装置来构成收发装置,因此可以在收发装置的电介质衬底上设置无用波传输抑制电路,从而能够截断在电介质衬底上传输的无用波。为此,在抑制由于无用波带来的电压损失提高效率的同时,可以降低由于无用波带来的噪声。

Claims (13)

1.一种高频电路装置,它由将平行的至少2个平面导体、和在这2个平面导体之中的至少一个中设置、与在所述2个平面导体之间传输的无用波结合,从而抑制该无用波传输的无用波传输抑制电路组成,其特征在于,
所述无用波传输抑制电路由多段的频带抑制滤波器构成,
该各段的频带抑制滤波器由在各段间相互连接的2条导体线路和谐振器组成,其中该谐振器这样形成:该2条导体线路中的至少一个的中途部位由变为螺旋形状并且彼此平行延伸的2条旋涡状线路所形成,并且这2条旋涡状线路的开始端彼此连接。
2.如权利要求1所述的高频电路装置,其中,将上述各旋涡状线路具有的线路宽度尺寸遍及全长设定为相同的值,将在所述2条旋涡状线路之间形成的间隔尺寸遍及全长设定为相同的值。
3.如权利要求1所述的高频电路装置,其中将所述各旋涡状线路具有的线路宽度尺寸设定得在螺旋中心比在周围的要大。
4.如权利要求1所述的高频电路装置,其中,将在所述2条旋涡状线路之间形成的间隔尺寸设定得在螺旋中心比在周围的要大。
5.如权利要求1所述的高频电路装置,其中,在所述2条导体线路中的任何一条的导体线路中设置构成上述各段频带抑制滤波器的所述各谐振器。
6.如权利要求1所述的高频电路装置,其中,在所述2条导体线路中相邻段中彼此不同的导体线路中设置构成所述各段频带抑制滤波器的所述各谐振器。
7.如权利要求1所述的高频电路装置,其中,在所述2条导体线路中分别设置构成所述各段频带抑制滤波器的所述各谐振器。
8.如权利要求1所述的高频电路装置,其中,与在所述2个平面导体中形成的间隔尺寸相比,将在所述2条旋涡状线路之间形成的间隔尺寸设定为其十分之一以下的值。
9.一种使用如权利要求1所述高频电路装置的收发装置。
10.一种高频电路装置,它由平行的至少2个平面导体、以及将在这2个平面导体之中的至少一个中设置的并在所述2个平面导体之间传输的无用波结合,从而抑制该无用波传输的无用波传输抑制电路组成,
其特征在于,所述无用波抑制电路由多段的频带抑制滤波器构成,
该各段的频带抑制滤波器由在各段间相互连接的2条导体线路和谐振器组成,所述谐振器由从这2条导体线路中的至少一个的导体线路开始延伸的第1旋涡状线路以及从第1旋涡状线路的端部开始延伸并且与第1旋涡状线路平行的第2旋涡状线路组成。
11.如权利要求10所述的高频电路装置,其中,包含所述2条导体线路和谐振器的所述各段频带抑制滤波器彼此被排列在对角线上。
12.如权利要求10所述的高频电路装置,其中,所述各段频带抑制滤波器带有在各个所述2条导体线路中设置的谐振器,将各个谐振器交替配置在彼此不同的方向上。
13.如权利要求10所述的高频电路装置,其中,所述各段频带抑制滤波器带有在各个所述2条导体线路中设置的谐振器,将各个谐振器并列配置。
CNB031075134A 2002-02-26 2003-02-26 高频电路装置以及收发装置 Expired - Fee Related CN1215597C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002050082A JP3786031B2 (ja) 2002-02-26 2002-02-26 高周波回路装置および送受信装置
JP2002050082 2002-02-26

Publications (2)

Publication Number Publication Date
CN1441512A true CN1441512A (zh) 2003-09-10
CN1215597C CN1215597C (zh) 2005-08-17

Family

ID=27655491

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031075134A Expired - Fee Related CN1215597C (zh) 2002-02-26 2003-02-26 高频电路装置以及收发装置

Country Status (5)

Country Link
US (1) US6891452B2 (zh)
EP (1) EP1339130A3 (zh)
JP (1) JP3786031B2 (zh)
KR (1) KR100540933B1 (zh)
CN (1) CN1215597C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988568B2 (ja) * 2002-07-31 2007-10-10 松下電器産業株式会社 高周波モジュールおよびそれを用いた無線装置
US20040140861A1 (en) * 2002-11-15 2004-07-22 Alvarez Robby L. High temperature superconducting mini-filter resonator configuration with low sensitivity to variations in substrate thickness and resonator patterning
JP4062135B2 (ja) * 2003-03-14 2008-03-19 株式会社村田製作所 高周波発振装置、無線装置およびレーダ
US7408430B2 (en) 2004-06-30 2008-08-05 Murata Manufacturing Co., Ltd. High-frequency circuit device and transmitting and receiving apparatus
US7418251B2 (en) * 2004-12-23 2008-08-26 Freescale Semiconductor, Inc. Compact radio frequency harmonic filter using integrated passive device technology
JP4525750B2 (ja) * 2005-04-11 2010-08-18 株式会社村田製作所 平面回路、高周波回路装置および送受信装置
KR100723531B1 (ko) * 2006-06-13 2007-05-30 삼성전자주식회사 반도체 패키지 기판
KR100735160B1 (ko) * 2006-07-20 2007-07-06 홍의석 낮은 삽입손실을 갖는 인터디지털 커플드 라인을 이용한대역통과 여파기
EP2258021A1 (en) * 2008-03-25 2010-12-08 Superconductor Technologies, Inc. Micro-miniature monolithic electromagnetic resonators
US20100073107A1 (en) * 2008-03-25 2010-03-25 Superconductor Technologies Inc. Micro-miniature monolithic electromagnetic resonators
JP5417450B2 (ja) * 2009-09-18 2014-02-12 株式会社東芝 高周波フィルタ
CN102300395A (zh) * 2010-06-23 2011-12-28 鸿富锦精密工业(深圳)有限公司 印刷电路板
JP7095582B2 (ja) * 2018-12-11 2022-07-05 日本電信電話株式会社 高周波モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470695A (en) * 1973-06-16 1977-04-21 Sony Corp Electric band-pass wave filters including printed circuits
US5521568A (en) * 1995-04-04 1996-05-28 Industrial Technology Research Institute Electrical delay line
US5974335A (en) * 1995-06-07 1999-10-26 Northrop Grumman Corporation High-temperature superconducting microwave delay line of spiral configuration
US5892668A (en) * 1996-06-10 1999-04-06 Fuji Electric Company, Ltd. Noise-cut filter for power converter
TW404154B (en) * 1998-04-13 2000-09-01 Jau Fang Lin Adjustable spiral delay line
WO1999056338A1 (en) * 1998-04-24 1999-11-04 Endwave Corporation Coplanar microwave circuit having suppression of undesired modes
JP3289694B2 (ja) 1998-07-24 2002-06-10 株式会社村田製作所 高周波回路装置および通信装置
JP3334680B2 (ja) * 1999-06-03 2002-10-15 株式会社村田製作所 高周波回路装置および通信装置
US6384705B1 (en) * 1999-12-30 2002-05-07 Industrial Technology Research Institute Multilayer-type chip common mode filter
JP3482958B2 (ja) * 2000-02-16 2004-01-06 株式会社村田製作所 高周波回路装置および通信装置
KR100401124B1 (ko) * 2001-03-14 2003-10-10 주식회사 텔웨이브 광대역 고조파 제거용 고온초전도 저역통과 여파기
US6700459B2 (en) * 2002-05-29 2004-03-02 Superconductor Technologies, Inc. Dual-mode bandpass filter with direct capacitive couplings and far-field suppression structures

Also Published As

Publication number Publication date
KR20030070858A (ko) 2003-09-02
EP1339130A3 (en) 2004-12-15
CN1215597C (zh) 2005-08-17
US20040041668A1 (en) 2004-03-04
EP1339130A2 (en) 2003-08-27
JP3786031B2 (ja) 2006-06-14
JP2003258504A (ja) 2003-09-12
US6891452B2 (en) 2005-05-10
KR100540933B1 (ko) 2006-01-11

Similar Documents

Publication Publication Date Title
CN1197241C (zh) 弹性表面波分波器及通信装置
TWI628846B (zh) 天線結構及具有該天線結構的無線通訊裝置
CN1441512A (zh) 高频电路装置以及收发装置
CN1147968C (zh) 表面装贴天线和包含这种天线的通信装置
CN1383268A (zh) 弹性表面波装置及通信装置
CN1082281C (zh) 携带式无线电收发机
CN1265667C (zh) 多谐振天线、天线模块及使用多谐振天线的无线电装置
CN1223048C (zh) 两波段传输系统及其天线
CN1165109C (zh) 高频滤波装置和发送接收天线共用滤波装置
CN1121657A (zh) 振荡器和频率合成器以及采用该振荡器的通信设备
CN1319950A (zh) 声表面波装置
CN1855613A (zh) 带通滤波器及使用其的无线通信设备
CN1578132A (zh) 声表面波器件和通信设备
TW201517378A (zh) 天線結構及具有該天線結構的無線通訊裝置
CN1221136C (zh) 低噪声变频器和应用低噪声变频器的接收装置
CN101064994A (zh) 可抑制电路板振荡的电路单元、电源偏置电路、lnb和发射机
US7443810B2 (en) Wireless terminals
CN1217443C (zh) 微带线滤波器及使用该微带线滤波器的高频发送器
CN1185751C (zh) 介质滤波器、双工器和包含它们的通信设备
CN1250985A (zh) 无线通信装置以及该装置中使用的集成电路
CN1170341C (zh) 介质谐振器、介质滤波器、共用器件和通信装置
CN1577857A (zh) 微分电容器、差动天线元件和差动谐振器
CN1910784A (zh) 传输线路连接结构及发送/接收装置
CN1215728C (zh) 带通滤波器
CN1527479A (zh) 弹性表面波装置、通信装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050817

Termination date: 20190226