CN1438168A - Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points - Google Patents
Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points Download PDFInfo
- Publication number
- CN1438168A CN1438168A CN03113046.1A CN03113046A CN1438168A CN 1438168 A CN1438168 A CN 1438168A CN 03113046 A CN03113046 A CN 03113046A CN 1438168 A CN1438168 A CN 1438168A
- Authority
- CN
- China
- Prior art keywords
- laser
- size
- silicon
- layer
- crystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
Abstract
激光诱导制备尺寸可控高密度纳米硅量子点列阵的方法:先进行多层调制结构的制备:利用等离子体增强化学汽相淀积技术制备非晶硅或锗/非晶氮化硅或二氧化硅的单层或多层调制结构,其中a-Si:H子层厚度与激光晶化后希望获得的量子点尺寸基本相符;然后用激光诱导晶化:衬底温度:150-250℃。本发明实现限制性结晶能够有效地控制硅量子点的形成与大小分布,由于多层调制结构中a-Si:H子层的厚度可人工设计,精度可达0.5nm,可控性强,从而使得最后形成的nc-Si量子点尺寸也可人工设计并控制。介质层a-SiNX:H或a-SiO2子层厚度可薄至5nm,The method of laser-induced preparation of size-controllable high-density nano-silicon quantum dot arrays: first prepare the multi-layer modulation structure: use plasma-enhanced chemical vapor deposition technology to prepare amorphous silicon or germanium/amorphous silicon nitride or silicon dioxide Single-layer or multi-layer modulation structure of silicon oxide, in which the thickness of a-Si:H sublayer is basically consistent with the size of quantum dots to be obtained after laser crystallization; then laser-induced crystallization: substrate temperature: 150-250°C. The present invention realizes restricted crystallization and can effectively control the formation and size distribution of silicon quantum dots. Since the thickness of the a-Si:H sublayer in the multilayer modulation structure can be manually designed, the precision can reach 0.5nm, and the controllability is strong, thus The size of the finally formed nc-Si quantum dots can also be artificially designed and controlled. Dielectric layer a-SiN X : H or a-SiO 2 sub-layer thickness can be as thin as 5nm,
Description
一、技术领域:1. Technical field:
本发明是从技术原理和实施工艺两方面提出了一种制备尺寸可控高密度纳米硅量子点列阵的新方法,尤其是激光诱导限制性结晶原理制备尺寸可控高密度纳米硅量子点列阵的方法,即用等离子体增强化学汽相淀积技术制备非晶硅或锗/非晶氮化硅或二氧化硅的单层或多层调制结构,这是研究新一代纳米电子和纳米光电子器件等高科技领域中的关键技术。The present invention proposes a new method for preparing a size-controllable high-density nano-silicon quantum dot array from two aspects of technical principle and implementation process, especially the preparation of a size-controllable high-density nano-silicon quantum dot array based on the principle of laser-induced restricted crystallization The array method, that is, the single-layer or multi-layer modulation structure of amorphous silicon or germanium/amorphous silicon nitride or silicon dioxide is prepared by plasma-enhanced chemical vapor deposition technology, which is a new generation of nano-electronics and nano-optoelectronics Key technologies in high-tech fields such as devices.
二、背景技术:2. Background technology:
半导体单晶硅材料是当前微电子产业的主干材料,有着其他材料所不可替代的地位。然而,硅材料是否能在未来的纳米电子器件时代继续扮演重要角色,是否能实现硅单片光电集成?这是当前全世界各国科学家和材料学家们极为关注的重大课题。作为关键技术之一,如何获得可控的硅量子点列阵是一个急待解决的技术难题,特别是有着三维尺度限制的硅量子点的制备原理和方法尤为引人注目。目前,制备纳米尺度的硅量子点的技术方法主要有以下几种:1、“自上而下”的技术,即用当前成熟的微电子工艺技术,配以电子束曝光和超精细刻蚀设备,从硅单晶片出发以得到硅量子点结构。利用这种技术,可以精确控制量子点的尺寸大小,但其制备成本极其昂贵,目前最小尺度只能达到100纳米(nm)左右。2、利用不同材料之间异质生长时存在的应力,控制一定的生长温度与气压,可以在二氧化硅等衬底上获得纳米硅量子点,其平均尺寸可以达到几到几十个纳米。但利用这种方法无法控制量子点的尺寸,其生长过程是随机的,且一般需要经过高温过程。3、利用硅离子注入到二氧化硅膜中,再通过热退火等后续手段处理以获得镶嵌在二氧化硅中的纳米硅量子点。这种方法制备过程简单便利,但仍无法精确控制量子点尺寸大小,同时,长时间的高温处理也将使这种方法在器件应用中受到限制。因而,找到一条能有效控制量子点大小于尺寸分布的并可应用于未来的纳米电子学和光电子学器件的硅量子点制备新途径是本发明的出发点。我们提出的激光诱导限制性结晶原理制备尺寸可控高密度纳米硅量子点的方法,它是以非晶半导体/绝缘介质膜多层调制结构为基础,通过激光诱导结晶技术使半导体薄层发生从非晶态到晶态的结构相变形成量子点,利用介质层的限制作用使得所获得的半导体量子点的尺寸大小受到原来半导体层厚度的控制。Semiconductor monocrystalline silicon material is the backbone material of the current microelectronics industry, and has an irreplaceable position for other materials. However, can silicon materials continue to play an important role in the future era of nanoelectronic devices, and can silicon monolithic optoelectronic integration be realized? This is a major topic of great concern to scientists and material scientists from all over the world. As one of the key technologies, how to obtain a controllable silicon quantum dot array is an urgent technical problem to be solved, especially the preparation principle and method of silicon quantum dots with three-dimensional scale limitation are particularly attractive. At present, there are mainly the following technical methods for preparing nanoscale silicon quantum dots: 1. "Top-down" technology, that is, using the current mature microelectronics technology, coupled with electron beam exposure and ultra-fine etching equipment , starting from a silicon single wafer to obtain a silicon quantum dot structure. Using this technology, the size of quantum dots can be precisely controlled, but its preparation cost is extremely expensive, and the smallest scale can only reach about 100 nanometers (nm) at present. 2. Using the stress existing during heterogeneous growth between different materials and controlling a certain growth temperature and air pressure, nano-silicon quantum dots can be obtained on substrates such as silicon dioxide, and their average size can reach several to tens of nanometers. However, the size of quantum dots cannot be controlled by this method, and the growth process is random, and generally requires a high temperature process. 3. Implanting silicon ions into the silicon dioxide film, and then performing subsequent treatment such as thermal annealing to obtain nano-silicon quantum dots embedded in silicon dioxide. The preparation process of this method is simple and convenient, but it is still unable to precisely control the size of quantum dots. At the same time, the long-term high-temperature treatment will also limit the application of this method in device applications. Therefore, it is the starting point of the present invention to find a new way to prepare silicon quantum dots that can effectively control the size distribution of quantum dots and can be applied to future nanoelectronics and optoelectronic devices. The laser-induced confinement crystallization principle we proposed is a method for preparing high-density nano-silicon quantum dots with controllable size. It is based on the multilayer modulation structure of amorphous semiconductor/insulating dielectric film. The quantum dots are formed by the structural phase transition from the amorphous state to the crystalline state, and the size of the obtained semiconductor quantum dots is controlled by the thickness of the original semiconductor layer by using the confinement effect of the dielectric layer.
三、发明内容:3. Contents of the invention:
由国内外近几十年的研究结果表明:要使得纳米硅量子点走出实验室,真正能够被工业界采用,既要求能控制量子点的尺寸大小,又要求能对硅量子点的表面进行钝化,同时也要与当前的微电子工艺技术相兼容。The research results of recent decades at home and abroad show that: to make nano-silicon quantum dots go out of the laboratory and be truly adopted by the industry, it is required to be able to control the size of quantum dots and passivate the surface of silicon quantum dots. , while also being compatible with current microelectronics process technologies.
本发明的目的就是针对以上三方面的要求,提出制备尺寸可控纳米硅量子点的新技术原理,同时在实验上设计和提供一种新的技术方法,利用这种方法既与当前微电子工艺技术相兼容,又避免使用成本昂贵的超精细加工技术,在获得尺寸可控的高密度纳米硅量子点的同时,又可以对纳米晶粒表面进行有效钝化以降低缺陷态密度,因而能够显现出由于尺寸变化而引起的量子效应。基于这种技术制备出的量子器件将在未来的纳米电子和纳米光电子器件领域有极大的应用前景和价值。The purpose of the present invention is exactly to the requirement of above three respects, proposes the new technology principle of preparation size controllable nano-silicon quantum dot, designs and provides a kind of new technical method in experiment simultaneously, utilizes this method not only with current microelectronic technology Compatible with the technology and avoiding the use of expensive ultra-fine processing technology, while obtaining high-density nano-silicon quantum dots with controllable size, it can also effectively passivate the surface of the nano-crystal grains to reduce the density of defect states, so it can show Quantum effects due to size changes. Quantum devices prepared based on this technology will have great application prospects and value in the field of nanoelectronics and nano-optoelectronic devices in the future.
限制性结晶原理principle of restricted crystallization
本发明将非晶硅(a-Si∶H)、非晶氮化硅(a-SiNx∶H)(氧化硅(a-SiO2))多层调制结构与激光晶化技术相结合,基于限制性结晶原理实现尺寸可控高密度纳米硅(nc-Si)量子点列阵。限制性结晶原理是在激光诱导结晶过程中要求让非晶态硅吸收光子能量通过相变转变为晶态,同时又不破坏多层调制结构,使得纳米硅量子点在生长过程中受到层厚的限制来控制最后形成的纳米硅量子点的尺寸。其技术关键是选择激光的晶化能量密度,与多层调制结构中a-Si∶H子层的厚度。The present invention combines amorphous silicon (a-Si:H), amorphous silicon nitride (a-SiN x :H) (silicon oxide (a-SiO 2 )) multilayer modulation structures with laser crystallization technology, based on The principle of restricted crystallization realizes size-controllable high-density nano-silicon (nc-Si) quantum dot arrays. The principle of constrained crystallization is that in the process of laser-induced crystallization, it is required to allow amorphous silicon to absorb photon energy and transform into a crystalline state through phase transition without destroying the multi-layer modulation structure, so that nano-silicon quantum dots are affected by layer thickness during the growth process. Confinement to control the size of the resulting nano-Si quantum dots. The technical key is to select the crystallization energy density of the laser and the thickness of the a-Si:H sublayer in the multilayer modulation structure.
我们通过晶化过程中自由能的变化从理论上估计了限制性晶化a-Si∶H层的临界厚度。图1(a)是晶化时在多层膜中某一a-Si∶H层中的nc-Si量子点成核与长大过程的示意图。在吸收激光能量后,非晶硅成核然后长大,当激光晶化能量密度较低时,将得到球形量子点颗粒,当激光晶化能量密度较高时,虽然量子点在纵向仍然受到限制,但在横向将继续长大形成园盘状颗粒。在此过程中,由于晶化形成硅量子点后表体比的变化,使得界面自由能的影响增大,根据我们的理论计算,当a-Si∶H子层厚度d在12nm以下时,控制适当的工艺条件(激光能量密度),可以使得所获得的nc-Si量子点大小受到a-Si∶H子层厚度的限制,得到球形的nc-Si量子点,从而实现激光诱导的限制性晶化过程。当a-Si∶H子层厚度d大于12nm时,由于自由能变化(ΔG)为负值,表明多层调制结构的限制性作用将消失,nc-Si量子点的尺寸将不再可控(见图1(b))。We theoretically estimated the critical thickness of the confined crystallized a-Si:H layer by the change of free energy during the crystallization process. Figure 1(a) is a schematic diagram of the nucleation and growth process of nc-Si quantum dots in a certain a-Si:H layer in a multilayer film during crystallization. After absorbing laser energy, amorphous silicon nucleates and then grows up. When the laser crystallization energy density is low, spherical quantum dot particles will be obtained. When the laser crystallization energy density is high, although the quantum dots are still restricted in the longitudinal direction , but will continue to grow in the lateral direction to form disc-shaped particles. In this process, due to the change of surface-to-volume ratio after crystallization to form silicon quantum dots, the influence of interfacial free energy increases. According to our theoretical calculations, when the thickness d of the a-Si:H sublayer is below 12nm, the control Appropriate process conditions (laser energy density) can make the size of the obtained nc-Si quantum dots limited by the thickness of the a-Si:H sublayer, and obtain spherical nc-Si quantum dots, thereby realizing laser-induced confined crystallization. process. When the thickness d of the a-Si:H sublayer is greater than 12 nm, since the free energy change (ΔG) is negative, it indicates that the confinement effect of the multilayer modulation structure will disappear, and the size of nc-Si quantum dots will no longer be controllable ( See Figure 1(b)).
技术方案:Technical solutions:
激光诱导制备尺寸可控高密度纳米硅量子点列阵的方法:Laser-induced preparation of size-controllable high-density nano-silicon quantum dot arrays:
1、多层调制结构的制备:利用等离子体增强化学汽相淀积技术制备非晶硅或锗/非晶氮化硅或二氧化硅(a-Ge∶H/a-SiNx∶H、a-Si∶H/a-SiNx∶H、a-Si∶H/a-SiO2)的单层或多层调制结构,其中a-Si∶H子层厚度可以精确控制到1-10nm;其厚度与激光晶化后希望获得的量子点尺寸基本相符。同样地,我们也可以制备出三层夹心结构,非晶硅在中间,这种结构在纳米电子器件上有更广泛的应用。也可以是间隔的多层夹心结构。一般而言,其中非晶硅层在1-10nm,介质层非晶氮化硅或二氧化硅4-15nm。1. Preparation of multilayer modulation structure: Utilize plasma-enhanced chemical vapor deposition technology to prepare amorphous silicon or germanium/amorphous silicon nitride or silicon dioxide (a-Ge: H/a-SiN x : H, a -Si:H/a-SiN x :H, a-Si:H/a-SiO 2 ) single-layer or multi-layer modulation structure, wherein the thickness of a-Si:H sublayer can be precisely controlled to 1-10nm; its The thickness is basically consistent with the size of the quantum dots that are expected to be obtained after laser crystallization. Similarly, we can also prepare a three-layer sandwich structure with amorphous silicon in the middle, which has wider applications in nanoelectronic devices. It can also be a multi-layer sandwich structure with intervals. Generally speaking, the thickness of the amorphous silicon layer is 1-10 nm, and the thickness of the dielectric layer is 4-15 nm of amorphous silicon nitride or silicon dioxide.
2、激光诱导晶化:衬底温度:150-250℃;激光束功率一般在1-5W,尤其是1.0-2.0W以上,可以利用波长为514.5nm的Ar+激光器作激光光源,也可以使用激光波长是248nm的KrF准分子脉冲激光器作激光光源。通过选择适当的激光辐照条件对所制备的a-Si∶H/a-SiNx∶H多层调制结构进行激光诱导晶化。2. Laser-induced crystallization: substrate temperature: 150-250°C; laser beam power is generally 1-5W, especially above 1.0-2.0W, Ar + laser with a wavelength of 514.5nm can be used as the laser light source, or can be used The laser wavelength is 248nm KrF excimer pulse laser as the laser light source. Laser-induced crystallization was performed on the prepared a-Si:H/a-SiN x :H multilayer modulation structure by selecting appropriate laser irradiation conditions.
限制性结晶原理的实现:对于Ar+激光,a-SiNx∶H层基本不吸收激光能量,因而激光能量基本上被a-Si∶H层所吸收;对于KrF准分子脉冲激光,a-Si∶H和a-SiNx∶H薄膜的吸收系数也相差1-2个数量级,故而激光能量也主要被a-Si∶H层吸收,而a-SiNx∶H层基本不吸收。在a-Si∶H/a-SiNx∶H多层调制结构中,由于a-SiNx∶H膜是热稳定性非常好的绝缘材料,因而在对a-Si∶H层进行激光诱导晶化过程中,a-SiNx∶H膜基本上不受影响,能够起到限制作用,使得nc-Si量子点在成核与晶粒生长过程中,在纵向(多层结构生长方向)受到上下两层a-SiNx∶H绝缘膜的强烈限制,故其晶粒尺寸与原始淀积多层膜结构中a-Si∶H层厚度一致,实现了激光诱导限制性晶化。Realization of the principle of restricted crystallization: for Ar + laser, the a-SiN x : H layer basically does not absorb laser energy, so the laser energy is basically absorbed by the a-Si: H layer; for KrF excimer pulsed laser, a-Si :H and a-SiN x :H films have different absorption coefficients of 1-2 orders of magnitude, so the laser energy is mainly absorbed by the a-Si:H layer, while the a-SiN x :H layer is basically not absorbed. In the a-Si:H/a-SiN x :H multilayer modulation structure, since the a-SiN x :H film is an insulating material with very good thermal stability, laser-induced crystallization of the a-Si:H layer During the crystallization process, the a-SiN x : H film is basically unaffected, and can play a restrictive role, so that the nc-Si quantum dots are subjected to up and down in the vertical direction (the growth direction of the multilayer structure) during the nucleation and grain growth process. Due to the strong confinement of the two a-SiN x : H insulating films, the crystal grain size is consistent with the thickness of the a-Si: H layer in the original deposited multilayer film structure, and laser-induced confinement crystallization is realized.
本发明技术的优点:The advantage of the technology of the present invention:
本发明技术方案的优点是利用多层调制结构与激光晶化技术相结合实现限制性结晶能够有效地控制硅量子点的形成与大小分布,由于多层调制结构中a-Si∶H子层的厚度可人工设计,精度可达0.5nm,可控性强,从而使得最后形成的nc-Si量子点尺寸也可人工设计并控制。介质层a-SiNx∶H或a-SiO2子层厚度可薄至5nm,因此由本技术可获得高密度的nc-Si量子点(面密度>1012cm-2,体密度>1018cm-3)。另外,利用本技术方案获得的nc-Si量子点表面由于氢原子和a-SiNx∶H介质膜的存在可以得到有效的钝化保护,降低界面态密度,使其非常适用于构筑未来的纳米器件。最后,本技术方案利用激光结晶技术,避免了常规热退火技术中的高温处理过程,这一点特别有利于今后将该技术用于纳光电子与纳电子集成中。The advantage of the technical solution of the present invention is that the formation and size distribution of silicon quantum dots can be effectively controlled by combining the multilayer modulation structure with the laser crystallization technology to realize the restricted crystallization. The thickness can be manually designed, the precision can reach 0.5nm, and the controllability is strong, so that the size of the finally formed nc-Si quantum dots can also be manually designed and controlled. The thickness of the dielectric layer a-SiN x : H or a-SiO 2 sublayer can be as thin as 5nm, so high-density nc-Si quantum dots (area density > 10 12 cm -2 , bulk density > 10 18 cm -3 ). In addition, the surface of nc-Si quantum dots obtained by using this technical solution can be effectively protected by passivation due to the existence of hydrogen atoms and a-SiN x : H dielectric film, reducing the interface state density, making it very suitable for building future nano device. Finally, this technical solution uses laser crystallization technology to avoid the high-temperature treatment process in conventional thermal annealing technology, which is especially beneficial for the future use of this technology in the integration of nano-optoelectronics and nano-electronics.
本发明技术也适用于其它半导体量子点的制备。The technology of the invention is also applicable to the preparation of other semiconductor quantum dots.
四、附图说明:4. Description of drawings:
图1:限制性晶化方法的原理示意图。Figure 1: Schematic of the principle of the confinement crystallization method.
图1(a)、a-Si∶H/a-SiNx∶H多层结构中某一子层的纳米硅量子点成核与生长过程示意图;可以看到由于晶化形成硅量子点后表体比的变化,使得界面自由能的影响增大。选择不同的激光能量密度,所得到的量子点形状可以从球形变为园盘形,其纵向尺寸总是受到多层结构的限制。Figure 1(a), a schematic diagram of the nucleation and growth process of nano-silicon quantum dots in a sublayer of a-Si:H/a-SiN x :H multilayer structure; it can be seen that the silicon quantum dots are formed due to crystallization. The change of volume ratio increases the influence of interfacial free energy. By choosing different laser energy densities, the shape of the obtained quantum dots can change from spherical to disc-shaped, and its longitudinal size is always limited by the multilayer structure.
图1(b)、硅量子点的自由能改变随晶粒半径r的变化理论曲线,不同的曲线代表不同的a-Si∶H子层厚度d。在a-Si∶H子层厚度小于12nm时,自由能变化为正,表明在成核后长大的硅量子点尺寸能受到层状结构的限制,控制适当的激光能量密度可以得到尺寸可控的球形纳米硅量子点。当a-Si∶H子层厚度大于12nm时,由于自由能变化为负值,表明多层调制结构的限制性作用将消失,纳米硅量子点生长时的尺寸将不再可控。Figure 1(b), the theoretical curve of the change of free energy of silicon quantum dots with the change of grain radius r, different curves represent different a-Si:H sublayer thickness d. When the thickness of the a-Si:H sublayer is less than 12nm, the free energy change is positive, indicating that the size of the silicon quantum dots grown after nucleation can be limited by the layered structure, and the size can be controlled by controlling the appropriate laser energy density. spherical nano-silicon quantum dots. When the thickness of the a-Si:H sublayer is greater than 12nm, the free energy change is negative, indicating that the restrictive effect of the multilayer modulation structure will disappear, and the size of the nano-silicon quantum dots will no longer be controllable.
图2:激光晶化装置示意图。Figure 2: Schematic diagram of the laser crystallization setup.
1、激光器;2、激光光束;3、聚焦透镜;4、反射镜;1. Laser; 2. Laser beam; 3. Focusing lens; 4. Mirror;
5、样品;6、X-Y移动台;5. Sample; 6. X-Y mobile stage;
图3:KrF激光晶化后的a-Si∶H/a-SiNx∶H多层调制结构的剖面电子显微镜Figure 3: Cross-sectional electron microscopy of a-Si:H/a-SiN x :H multilayer modulation structure after KrF laser crystallization
相片。photo.
(a)、晶化后的a-Si∶H/a-SiNx∶H多层调制结构的剖面电子显微镜相片。其中a-Si∶H厚度是4nm,a-SiNx∶H层厚度为6nm。在原非晶硅子层中,可以清晰地看到晶化后形成的纳米硅量子点,且其尺寸受到上下a-SiNx∶H绝缘层的限制而与初始非晶硅子层厚度相当。并且在激光辐照后,多层调制结构也未受到破坏。(a), Sectional electron micrograph of the crystallized a-Si:H/a-SiN x :H multilayer modulation structure. Wherein the a-Si:H thickness is 4 nm, and the a-SiN x :H layer thickness is 6 nm. In the original amorphous silicon sub-layer, the nano-silicon quantum dots formed after crystallization can be clearly seen, and their size is limited by the upper and lower a-SiN x : H insulating layers, which is equivalent to the thickness of the initial amorphous silicon sub-layer. And after laser irradiation, the multilayer modulation structure was not damaged either.
(b)、多层结构中某一子层的剖面高分辨电子显微镜相片。在相片中可以清晰地看到晶化后形成的纳米硅量子点的原子晶格像,且量子点呈球形,其尺寸受到层状结构的限制。(b), A high-resolution electron microscope photograph of a section of a sublayer in a multilayer structure. In the photo, the atomic lattice image of nano-silicon quantum dots formed after crystallization can be clearly seen, and the quantum dots are spherical, and their size is limited by the layered structure.
五、具体实施方式:5. Specific implementation methods:
1、a-Si∶H/a-SiNx∶H多层调制结构的制备1. Preparation of a-Si:H/a-SiN x :H multilayer modulation structure
利用计算机控制的等离子体增强汽相淀积(PECVD)技术,采用硅烷(SiH4)、氨气(NH3)和氩气(Ar)作为反应气源;在单晶硅片以及石英或光学玻璃衬底上淀积a-Si∶H/a-SiNx∶H三层或多层调制结构。制备时的具体工艺条件如下:Using computer-controlled plasma-enhanced vapor deposition (PECVD) technology, using silane (SiH 4 ), ammonia (NH 3 ) and argon (Ar) as the reaction gas source; on single crystal silicon wafers and quartz or optical glass Deposit a-Si:H/a-SiN x :H three-layer or multi-layer modulation structure on the substrate. Concrete process conditions during preparation are as follows:
功率源频率:13.56MHzPower source frequency: 13.56MHz
淀积时功率密度:0.2-0.3W/cm2 Power density during deposition: 0.2-0.3W/cm 2
反应腔压力:33-40Pa Pressure in the reaction chamber: 33-40Pa
衬底温度:250℃Substrate temperature: 250°C
在淀积非晶硅(a-Si∶H)子层时,由SiH4+Ar通过辉光分解反应而成,其中SiH4流量为8sccm(每分钟标准立方厘米),其淀积速率为0.10nm/s;而非晶氮化硅(a-SiN∶H)子层是由SiH4+NH3+Ar混合气体反应而成,反应时NH3/SiH4气体流量比为5,这样获得的a-SiN∶H膜的光学带隙约为3.0eV,淀积速率为0.11nm/s。a-Si∶H和a-SiNx∶H子层厚度可根据要求设计。在我们的实例中,a-Si∶H子层厚度为4nm,a-SiNx∶H子层厚度是6nm,共有72个周期。淀积过程中最主要的是利用计算机控制气体阀门的开关使得反应腔中气体在淀积不同子层时能够快速交换。When depositing the amorphous silicon (a-Si:H) sublayer, it is formed by the glow decomposition reaction of SiH 4 +Ar, wherein the flow rate of SiH 4 is 8 sccm (standard cubic centimeter per minute), and the deposition rate is 0.10 nm/s; the amorphous silicon nitride (a-SiN:H) sublayer is formed by the reaction of SiH 4 +NH 3 +Ar mixed gas, and the gas flow ratio of NH 3 /SiH 4 is 5 during the reaction. The optical bandgap of the a-SiN:H film is about 3.0eV, and the deposition rate is 0.11nm/s. The thickness of the a-Si:H and a-SiN x :H sublayers can be designed according to requirements. In our example, the thickness of the a-Si:H sublayer is 4nm, the thickness of the a- SiNx :H sublayer is 6nm, and there are 72 periods in total. The most important thing in the deposition process is to use the computer to control the switch of the gas valve so that the gas in the reaction chamber can be exchanged rapidly when depositing different sub-layers.
2、a-Ge∶H/a-SiNx∶H多层调制结构的制备2. Preparation of a-Ge:H/a-SiN x :H multilayer modulation structure
同样的技术方法可以用来制备a-Ge∶H/a-SiNx∶H多层调制结构。其中a-SiNx∶H子层的制备同前面一样;在淀积非晶锗(a-Ge∶H)子层时,反应气体用锗烷(GeH4),其流量为2sccm,反应腔气压为33Pa,淀积速率为0.20nm/s。The same technical method can be used to prepare a-Ge:H/a-SiN x :H multilayer modulation structure. Wherein a- SiNx : the preparation of H sub-layer is the same as before; when depositing amorphous germanium (a-Ge: H) sub-layer, reaction gas uses germane (GeH 4 ), its flow rate is 2sccm, reaction chamber pressure It is 33Pa, and the deposition rate is 0.20nm/s.
3、Ar+激光晶化过程3. Ar + laser crystallization process
对于用上述技术方法所获得的a-Si∶H/a-SiNx∶H等多层调制结构样品,利用For the a-Si:H/a-SiN x :H and other multi-layer modulation structure samples obtained by the above technical method, use
图2所示的激光晶化装置进行激光辐照处理,其工艺条件如下:The laser crystallization device shown in Figure 2 performs laser irradiation treatment, and its process conditions are as follows:
激光束斑直径: 100μm Laser beam spot diameter: 100μm
激光束扫描速度: 4.5cm/s Laser beam scanning speed: 4.5cm/s
激光束扫描交叠: >50% Laser beam scanning overlap: >50%
激光束功率: 1.0-2.0W Laser beam power:
衬底温度: 160-180℃Substrate temperature: 160-180℃
通过激光扫描辐照后,a-Si∶H子层经过成核生长过程形成了纳米硅量子点,由剖面电子显微镜检验确实在原非晶硅子层中形成了硅的量子点,并且原有的多层调制结构没有被破坏。通过改变a-Si∶H子层厚度,利用本方法可以获得尺寸为1-10nm的硅量子点。After laser scanning irradiation, the a-Si:H sub-layer formed nano-silicon quantum dots through the nucleation and growth process, and the cross-sectional electron microscope inspection did form silicon quantum dots in the original amorphous silicon sub-layer, and the original multi-layer The layer modulation structure is not destroyed. By changing the thickness of the a-Si:H sublayer, silicon quantum dots with a size of 1-10 nm can be obtained by using the method.
4、KrF准分子脉冲激光晶化过程4. KrF excimer pulse laser crystallization process
利用图2所示的激光辐照装置,采用KrF准分子脉冲激光也可对a-Si∶H/a-SiNx∶H等多层调制结构样品进行晶化处理。所用KrF准分子脉冲激光的波长是248nm,脉冲宽度30ns。在我们的实际例子里,利用KrF准分子脉冲激光对a-Si∶H/a-SiNx∶H晶化可以形成大小约为4nm的硅量子点尺寸(见图3(a)和(b))。具体工艺条件为:Using the laser irradiation device shown in Figure 2, the KrF excimer pulse laser can also be used for crystallization of a-Si:H/a-SiN x :H and other multi-layer modulation structure samples. The wavelength of the KrF excimer pulse laser used is 248nm, and the pulse width is 30ns. In our practical example, the crystallization of a-Si:H/a-SiN x :H by KrF excimer pulse laser can form silicon quantum dots with a size of about 4nm (see Figure 3(a) and (b) ). The specific process conditions are:
激光辐照面积: 6×5mm2 Laser irradiation area: 6×5mm 2
激光辐照功率密度: 500-1000mJ/cm2 Laser irradiation power density: 500-1000mJ/cm 2
5、介质层为a-SiO2)的实施例。5. An embodiment where the dielectric layer is a-SiO 2 ).
a-Si∶H/a-SiO2多层调制结构的制备Preparation of a-Si∶H/a-SiO 2 Multilayer Modulated Structure
同样的技术方法可以用来制备a-Si∶H/a-SiO2多层调制结构。其中a-Si∶H子层的制备同前面一样;二氧化硅层则是利用等离子体氧化方法获得,制备时利用纯氧,反应腔气压为33Pa,功率50W,氧化温度250℃,氧化速率为5.4nm/s。The same technical method can be used to prepare a-Si:H/a-SiO 2 multilayer modulation structure. The preparation of the a-Si:H sub-layer is the same as before; the silicon dioxide layer is obtained by plasma oxidation, using pure oxygen during preparation, the pressure in the reaction chamber is 33Pa, the power is 50W, the oxidation temperature is 250°C, and the oxidation rate is 5.4nm/s.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN03113046.1A CN1438168A (en) | 2003-03-25 | 2003-03-25 | Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN03113046.1A CN1438168A (en) | 2003-03-25 | 2003-03-25 | Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1438168A true CN1438168A (en) | 2003-08-27 |
Family
ID=27674036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN03113046.1A Pending CN1438168A (en) | 2003-03-25 | 2003-03-25 | Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1438168A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100437353C (en) * | 2004-12-29 | 2008-11-26 | 南京大学 | Preparation method of nano mould in nano-seal technology |
CN101866836A (en) * | 2010-05-28 | 2010-10-20 | 常州大学 | A preparation method of nano-silicon quantum dots and its application in thin-film solar cells |
CN101378016B (en) * | 2007-08-29 | 2010-12-08 | 中国科学院半导体研究所 | Method for making SiGe or Ge quantum dots by excimer laser annealing |
CN101570312B (en) * | 2009-06-11 | 2011-04-20 | 南京大学 | Method for realizing controlled doping of nano silicon quantum dots |
CN102255016A (en) * | 2011-08-17 | 2011-11-23 | 南京大学 | Silicon-based near infrared light emitting material and preparation method |
CN109378269A (en) * | 2018-10-08 | 2019-02-22 | 南开大学 | A kind of preparation method of supersaturated doping on semiconductor surface and maintaining its lattice structure |
CN112376020A (en) * | 2020-10-28 | 2021-02-19 | 武汉大学 | Method for forming orientation, chirality and complex structure by laser-induced growth of nano unit |
RU2824336C1 (en) * | 2023-11-29 | 2024-08-07 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of producing quantum dots |
US12226834B2 (en) | 2020-10-28 | 2025-02-18 | Wuhan University | Method for laser-induced growth of nano-units to form oriented, chiral, and complex structures |
-
2003
- 2003-03-25 CN CN03113046.1A patent/CN1438168A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100437353C (en) * | 2004-12-29 | 2008-11-26 | 南京大学 | Preparation method of nano mould in nano-seal technology |
CN101378016B (en) * | 2007-08-29 | 2010-12-08 | 中国科学院半导体研究所 | Method for making SiGe or Ge quantum dots by excimer laser annealing |
CN101570312B (en) * | 2009-06-11 | 2011-04-20 | 南京大学 | Method for realizing controlled doping of nano silicon quantum dots |
CN101866836A (en) * | 2010-05-28 | 2010-10-20 | 常州大学 | A preparation method of nano-silicon quantum dots and its application in thin-film solar cells |
CN102255016A (en) * | 2011-08-17 | 2011-11-23 | 南京大学 | Silicon-based near infrared light emitting material and preparation method |
CN109378269A (en) * | 2018-10-08 | 2019-02-22 | 南开大学 | A kind of preparation method of supersaturated doping on semiconductor surface and maintaining its lattice structure |
CN109378269B (en) * | 2018-10-08 | 2021-11-26 | 南开大学 | Preparation method for supersaturation doping and maintaining lattice structure of semiconductor surface |
CN112376020A (en) * | 2020-10-28 | 2021-02-19 | 武汉大学 | Method for forming orientation, chirality and complex structure by laser-induced growth of nano unit |
US12226834B2 (en) | 2020-10-28 | 2025-02-18 | Wuhan University | Method for laser-induced growth of nano-units to form oriented, chiral, and complex structures |
RU2824336C1 (en) * | 2023-11-29 | 2024-08-07 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of producing quantum dots |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6858079B2 (en) | Self-assembled photonic crystals and methods for manufacturing same | |
US10252914B2 (en) | Nanostructured graphene with atomically-smooth edges | |
US8962137B2 (en) | Branched nanowire and method for fabrication of the same | |
CN101643196B (en) | Nanowire, method for producing the same and electronic device | |
JP2007182370A (en) | Manufacturing method of zinc oxide nanowire and zinc oxide nanowire manufactured by the manufacturing method | |
CN1912194A (en) | Method for preparing high-quality ZnO single-crystal film on si (111) substrate | |
CN102037165A (en) | Method for producing nanostructures on metal oxide substrate, and thin film device | |
CN101570312B (en) | Method for realizing controlled doping of nano silicon quantum dots | |
CN102244196B (en) | Sequential controllable nanometer silicon quantum dot array resistive random access memory and preparation method thereof | |
CN107287578A (en) | A kind of chemical gas-phase deposition process for preparing of a wide range of uniform double-deck molybdenum disulfide film | |
CN1438168A (en) | Laser-inducing preparation of size-controllable high-density nano silicon quanta array of points | |
US20060014329A1 (en) | Nanodots formed on silicon oxide and method of manufacturing the same | |
JP4214250B2 (en) | Method and apparatus for producing silicon nanocrystal structure | |
CN1242454C (en) | Method for contruction of tow-dimension ordered distributing silicon quantum point figurated nano structure | |
CN100524579C (en) | High-performance semiconductor nanometer silicon field electronic emission material and its preparation method | |
CN101546703B (en) | Method for preparing silicon nanocrystalline superlattice structure | |
CN1740406A (en) | Silicon nanowire structure and its growth method | |
CN108394857A (en) | A kind of preparation method of nucleocapsid GaN nano wire array | |
KR20150024397A (en) | High density aligned silicon nanowire | |
CN1966397A (en) | Gas phase self-assembled growth silicon quantum torus nano structure preparation method | |
Yu et al. | Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing ofsilicon rich oxide deposited by low pressure chemical vapour deposition | |
CN108735866A (en) | It is grown in InN nano-pillar epitaxial wafers and preparation method thereof in Si/ graphene compound substrates | |
JP2000077710A (en) | Light emitting material and manufacture thereof as well as light emitting element using the same | |
CN1603870A (en) | Cubic MgZnO crystal thin film optical waveguide device and its preparation process | |
JPS6344720A (en) | Manufacture of crystalline deposited film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |