[go: up one dir, main page]

CN1436875A - Low-carbon free-cutting steel - Google Patents

Low-carbon free-cutting steel Download PDF

Info

Publication number
CN1436875A
CN1436875A CN03103453A CN03103453A CN1436875A CN 1436875 A CN1436875 A CN 1436875A CN 03103453 A CN03103453 A CN 03103453A CN 03103453 A CN03103453 A CN 03103453A CN 1436875 A CN1436875 A CN 1436875A
Authority
CN
China
Prior art keywords
steel
cutting
sulfide
machinability
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03103453A
Other languages
Chinese (zh)
Other versions
CN1210432C (en
Inventor
松井直树
冈田康孝
渡里宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of CN1436875A publication Critical patent/CN1436875A/en
Application granted granted Critical
Publication of CN1210432C publication Critical patent/CN1210432C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

提供一种不含有铅的低碳硫易切钢,含有以质量%计,C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,其余部分为Fe和杂质,Ti和S的含量满足下述(1)式,Mn/S的原子比满足下述(2)式,而且,钢中含有内部存在Ti硫化物和/或Ti碳硫化物的MnS,Ti(质量%)/S(质量%)<1 (1),Mn/S≥1 (2),除上述成分外,还可含有以下二组元素中的1种以上成分。Se、Te、Bi、Sn、Zr、Ca、Mg和稀土类元素组,和Cu、Ni、Cr、Mo、V、和Nb组。A low-carbon sulfur free-cutting steel that does not contain lead is provided, which contains, in mass %, C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, and Si: Below 1.0, P: 0.001-0.3%, Al: below 0.2%, O: 0.0010-0.050% and N: 0.0001-0.0200%, the rest is Fe and impurities, and the content of Ti and S satisfies the following formula (1), The atomic ratio of Mn/S satisfies the following formula (2), and the steel contains MnS in which Ti sulfide and/or Ti carbosulfide exists, Ti (mass %)/S (mass %)<1 (1) , Mn/S≥1 (2), in addition to the above-mentioned components, it may also contain more than one of the following two groups of elements. Se, Te, Bi, Sn, Zr, Ca, Mg, and rare earth element groups, and Cu, Ni, Cr, Mo, V, and Nb groups.

Description

低碳易切钢Low carbon free cutting steel

发明领域field of invention

本发明是关于不含有Pb,然而具有以前的并用铅易切钢及铅与其他易切元素的复合易切钢的优良被切性和热加工性的低碳易切钢。The present invention relates to a low-carbon free-cutting steel that does not contain Pb but has excellent cuttability and hot workability of conventional lead-combined free-cutting steels and composite free-cutting steels of lead and other free-cutting elements.

背景技术Background technique

以往对于不太需要强度的软质小物件,为提高生产效率,使用被切性优良的钢材,所谓易切钢。最知名的易切钢是添加大量S,由MnS改善了被切性的硫易切钢,添加了Pb的铅易切钢,及含有S和Pb二者的复合易切钢。特别是含Pb的易切钢,切削切割性优良,能延长工具寿命。还有为改善被切性,含有Te(碲)和Bi(铋)等的易切钢。以汽车部件、个人计算机周围的机械部件为主,这些大量用于电器设备部件和模具等各种机械部件。In the past, for small soft objects that do not require strength, in order to improve production efficiency, steel with excellent cutting properties, so-called easy-cut steel, was used. The most well-known free-cutting steels are sulfur free-cutting steels with a large amount of S added, the cutting properties improved by MnS, lead free-cutting steels with Pb added, and composite free-cutting steels containing both S and Pb. In particular, free-cutting steel containing Pb has excellent machinability and prolongs tool life. There are also free-cutting steels containing Te (tellurium) and Bi (bismuth) to improve cuttability. Mainly automotive parts and mechanical parts around personal computers, these are widely used in various mechanical parts such as electrical equipment parts and molds.

近年来,由于提高了切削机械的性能,所以能够使切削作业高速化。与此同时,也希望提高形成上述部件材料的钢材,高速切削加工时的被切削性。In recent years, since the performance of cutting machines has been improved, it has been possible to increase the speed of cutting operations. At the same time, it is also desired to improve the machinability of steel materials forming the above-mentioned component materials during high-speed cutting.

作为钢材的被切削性,视为重要的是为延长工具寿命的被切削性,及切屑的分割性,即切屑处理性。在加工流水线的自动化中,是不可忽视的,为了提高生产效率,必须重视切屑的处理性。As the machinability of steel materials, the machinability for prolonging the tool life and the splitting property of chips, that is, chip handling properties are regarded as important. In the automation of processing lines, it cannot be ignored. In order to improve production efficiency, it is necessary to pay attention to the handling of chips.

铅易切钢及并用铅和其他改善被切性元素的复合易切钢具有最优良的上述被切削性。然而,含Pb的钢材,在其制造过程中需要相当大的排气设备。为了保护环境,加强Pb使用的控制,强烈希望一种提高工作效率及不含有Pb的易切削钢。Lead free-cutting steel and composite free-cutting steel combined with lead and other machinability-improving elements have the best above-mentioned machinability. However, Pb-containing steel requires considerable exhaust equipment during its manufacturing process. In order to protect the environment and strengthen the control of Pb use, a free-cutting steel that improves work efficiency and does not contain Pb is strongly desired.

为了满足上述要求,提出一种改善被切削性的技术方案,作为取代铅易切钢,在低碳硫易切钢中增加含S量,增加钢中的MnS量。然而,硫含量的增加导致钢的热加工性恶化。即使是高S易切钢,在切削速度达到150m/min以上的高速切削时,缺乏工具寿命的延长效果,得不到与铅易切钢相匹敌的被切削性。In order to meet the above requirements, a technical solution to improve the machinability is proposed. As a substitute for lead free-cutting steel, the content of S is increased in low-carbon sulfur free-cutting steel, and the amount of MnS in the steel is increased. However, an increase in the sulfur content leads to deterioration of the hot workability of the steel. Even high-S free-cutting steel lacks the effect of prolonging tool life when the cutting speed reaches 150m/min or more in high-speed cutting, and cannot obtain the machinability comparable to lead free-cutting steel.

在特开2000-319753号公报中公开了一种含有超过0.4%的S,增加MnS量的,但不添加Pb的低碳硫系易切钢。认为这样的钢在某种程度上改善了工具寿命,但是,高速切削加工时,其效果很小。而且该钢,作为与工具寿命同时存在的被切削性的要素,视为重要的切屑处理性,却没有得到改善,以往的硫易切钢的性能也没有得到较大改变。JP-A-2000-319753 discloses a low-carbon sulfur-based free-cutting steel containing more than 0.4% of S and increasing the amount of MnS without adding Pb. It is considered that such steel improves the tool life to some extent, but the effect is small in high-speed cutting. In addition, this steel has not been improved in chip disposability, which is regarded as an important factor of machinability along with tool life, and the performance of conventional sulfur free-cutting steels has not been greatly changed.

在特开昭50-20917号公报中公开了一种含有0.5%以下的C,0.3-0.75%的S、0.1-0.5%的Ti的钢,Ti量没有超过了S量的硫易切钢。该钢主要活用了硫化铁,其中添加Ti,使硫化铁中固溶Ti和Mn以改善被切削性。然而,该钢的C含量如实施例所述的那样,在0.24%以上。在同一公报中,C在0.19%以下的低碳钢中,通过控制硫化物的组成形态获得更好的被切削性完全没有记载。虽然将固溶了适量Ti和Mn的硫化铁作为主体可改善被切削性,但与下述本申请发明钢的低碳易切钢和复合易切钢比较,还不具有充分的被切削性。进而,上述公报中公开的钢,由于难以控制硫化铁的组成,得不到充分的热加工性,所以很难用连续铸造设备进行制造,缺乏实用性。Japanese Unexamined Patent Publication No. 50-20917 discloses a steel containing 0.5% or less of C, 0.3-0.75% of S, and 0.1-0.5% of Ti, and a sulfur free-cutting steel in which the amount of Ti does not exceed the amount of S. This steel mainly utilizes iron sulfide, in which Ti is added to make solid solution of Ti and Mn in iron sulfide to improve machinability. However, the C content of this steel is 0.24% or more as described in Examples. In the same gazette, there is no description at all of achieving better machinability by controlling the composition of sulfides in low carbon steel having a C content of 0.19% or less. Iron sulfide in which an appropriate amount of Ti and Mn are solid-dissolved can improve machinability, but it does not have sufficient machinability compared with low-carbon free-cutting steel and composite free-cutting steel of the invention steel described below. Furthermore, the steel disclosed in the above-mentioned gazette is difficult to control the composition of iron sulfide, and sufficient hot workability cannot be obtained, so it is difficult to manufacture it by continuous casting equipment, and lacks practicality.

特开平09-53147号公报中公开了一种对超硬工具的被切削性优良的易切削钢,含有C:0.01-0.2%,Si:0.10-0.60%,Mn:0.5-1.75%,P:0.005-0.15%,S:0.15-0.40%,O:0.001-0.010%,Ti:0.0005-0.20%,N:0.003-0.03%。根据该组成范围,可获得工具寿命的某种程度的改善。但,由于Ti量的上限很少为0.02%,不仅得不到充分的工具寿命,而且也不能确保与工具寿命等重要的优良切屑处理性。Japanese Patent Application Publication No. 09-53147 discloses a free-cutting steel with excellent machinability for superhard tools, containing C: 0.01-0.2%, Si: 0.10-0.60%, Mn: 0.5-1.75%, P: 0.005-0.15%, S: 0.15-0.40%, O: 0.001-0.010%, Ti: 0.0005-0.20%, N: 0.003-0.03%. According to this composition range, a certain degree of improvement in tool life can be obtained. However, since the upper limit of the amount of Ti is seldom 0.02%, not only sufficient tool life cannot be obtained, but also excellent chip disposal properties important for tool life cannot be ensured.

特开2001-107182号公报,以及特开2001-152281号、因152282号和152283号各公报中,公开了一种钢,作为主要成分含有C:少于0.05%、Mn:0.1-4.0%、S:0.15-0.5%、Cr:少于0.5%、Ti:0.003-0.3%、B:0.0003-0.004%。该种钢,在硫化物的周围,由于偏析出B,所以提高了切屑处理性,同时是使C少于0.05%而改善了被切削性的易切钢。然而,由于C少于0.05%,在切削中引起切屑挤裂,精加工面恶化,得不到充分的被切削性。JP-A-2001-107182, JP-A-2001-152281, JP-152282, and JP-152283 each disclose a steel containing C: less than 0.05%, Mn: 0.1-4.0%, S: 0.15-0.5%, Cr: less than 0.5%, Ti: 0.003-0.3%, B: 0.0003-0.004%. In this steel, since B is segregated around the sulfide, the chip disposability is improved, and at the same time, the machinability is improved by making C less than 0.05%. However, if C is less than 0.05%, chip cracking occurs during cutting, the finished surface deteriorates, and sufficient machinability cannot be obtained.

特开2001-294976号公报中公开了一种易切钢,含有C:0.02-0.15%、Mn:0.3-1.8%、S:0.2-0.5%,进而含有Ti:0.1-0.6%和Zr:0.1-0.6%中的至少1种,而且,Ti+Zr为0.3-0.6%,(Ti+Zr)/S为1.1-1.5。这种钢,通过上述组成,生成热加工时抗变形力高的Ti和Zr硫化物,改善了机械的异向性和被削性。然而,抗变形力高的硫化物,在切削时很难获得由硫化物形成的近似润滑的效果,抗切削力增高,改善被切削性的效果受到限制。JP-A-2001-294976 discloses a free-cutting steel containing C: 0.02-0.15%, Mn: 0.3-1.8%, S: 0.2-0.5%, and further contains Ti: 0.1-0.6% and Zr: 0.1 At least one of -0.6%, and Ti+Zr is 0.3-0.6%, (Ti+Zr)/S is 1.1-1.5. This steel, with the above composition, produces Ti and Zr sulfides with high deformation resistance during hot working, and improves mechanical anisotropy and machinability. However, for sulfides with high deformation resistance, it is difficult to obtain the approximate lubrication effect formed by sulfides during cutting, the cutting resistance increases, and the effect of improving machinability is limited.

发明内容Contents of the invention

作为本发明的课题是提供一种代碳易切钢,不含有铅,具有高于目前的铅易切钢及含铅和改善被切削性元素的复合添加易切钢的被切削性,而且热加工性也很优良。The subject of the present invention is to provide a carbon-substituting free-cutting steel that does not contain lead and has a machinability higher than that of the current leaded free-cutting steel and the composite added free-cutting steel containing lead and improving machinability elements, and the thermal Processability is also excellent.

本发明者们对实际不含Pb的低碳硫易切钢,为改善被切削性,详细研究了添加Ti引起存在物的形态与被切削性的关系,结果得到如下新见解。In order to improve the machinability of low-carbon sulfur free-cutting steel that does not actually contain Pb, the present inventors studied in detail the relationship between the form of the existing substance due to the addition of Ti and the machinability, and obtained the following new insights.

(1)C含量为0.05-0.19%为理想。(1) The ideal C content is 0.05-0.19%.

(2)上述C含量的钢中所含Mn和S的原子比,满足Mn/S≥1的条件,而且,在不超过S含量(质量%)的范围内,含有Ti时,大部分的硫化物,既不是Ti的硫化物也不是硫化铁,而是形成MnS。(2) The atomic ratio of Mn and S contained in the steel with the above-mentioned C content satisfies the condition of Mn/S ≥ 1, and, within the range not exceeding the S content (mass %), when Ti is contained, most of the sulfidation compounds, which are neither Ti sulfides nor iron sulfides, but form MnS.

(3)在上述(2)限定的组成中,Ti在MnS中几乎不会固溶,Mn·Ti硫化物,即不会形成(Mn,Ti)S。这样,作为Ti硫化物和Ti碳化物,和MnS以另外的相存在。这种Ti系内在物(硫化物、碳化物)多数以内在于MnS中的形态存在。(3) In the composition defined in (2) above, Ti hardly dissolves in MnS, and Mn·Ti sulfide, that is, (Mn,Ti)S does not form. Thus, Ti sulfide and Ti carbide exist as separate phases with MnS. Most of such Ti-based inclusions (sulfides, carbides) exist in the form of inclusions in MnS.

(4)以上述(3)的形态,存在MnS和Ti系内在物的钢材,在高速切削中显示出优良的被切削性。即,例如,以100m/min以上的高速度进行旋转切削时,工具表面上附着MnS,同时形成呈现硬质层状的TiN。通过这种TiN保护工具,与到目前为止被切削性最优秀的JIS SUM 22L-24L的复合易切钢进行比较,可获得极其优良的工具寿命。另外,通过按上述规定范围添加Ti,生成细微的硫化物,增大了个数。这些硫化物在切削中形成应力集中源,由于助长了龟裂传播,所以与目前的硫易切钢及与Pb的复合易切钢相比,同时获得了优良的切屑处理性。进而这种钢在热加工性方面完全没有问题,所以利用连续铸造设备等制造时,不会带来任何障碍,实用性好。(4) In the form of (3) above, a steel material containing MnS and Ti-based inclusions exhibits excellent machinability in high-speed cutting. That is, for example, when rotary cutting is performed at a high speed of 100 m/min or more, MnS adheres to the tool surface and simultaneously forms TiN in the form of a hard layer. Compared with JIS SUM 22L-24L composite free-cutting steel, which has the best machinability so far, this TiN-protected tool can obtain extremely excellent tool life. In addition, by adding Ti within the above-mentioned predetermined range, fine sulfides are generated and the number of them increases. These sulfides form a source of stress concentration during cutting and promote the propagation of cracks. Therefore, compared with current sulfur free-cutting steels and composite free-cutting steels with Pb, excellent chip handling properties are obtained at the same time. Furthermore, since this steel has no problem in terms of hot workability at all, it does not cause any trouble when it is produced by continuous casting equipment and the like, and it is practical.

本发明根据上述见解,对上述合金成分之外的成分,其作用效果也作了详细的研究,其要点是下述(1)-(4)的易切钢。Based on the above knowledge, the present invention has studied in detail the action and effect of components other than the above alloy components, and the gist is the following (1)-(4) free-cutting steel.

(1)一种低碳硫易切钢,其特征是以质量%计,含有C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,其余为Fe和杂质,所形成,Ti和S的含量满足下述(1)式,Mn和S的原子比满足下述(2)式,而且,钢中含有内部存在Ti硫化物和/或Ti碳硫化物的MnS。(1) A low-carbon sulfur free-cutting steel, characterized by mass %, containing C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, Si : less than 1.0, P: 0.001-0.3%, Al: less than 0.2%, O: 0.0010-0.050% and N: 0.0001-0.0200%, the rest is Fe and impurities, formed, the content of Ti and S satisfies the following (1 ) formula, the atomic ratio of Mn and S satisfies the following formula (2), and the steel contains MnS in which Ti sulfide and/or Ti carbosulfide exist.

       Ti(质量%)/S(质量%)<1………………(1) Ti(mass%)/S(mass%)<1……………(1)

       Mn/S≥1………………(2)Mn/S≥1……………(2)

(2)一种低碳硫易切钢,其特征是除了上述(1)中记载的成分外,还含有选自以下中的1种或2种以上,即,Se:0.001-0.01%、Te:0.001-0.01%、Bi:0.005-0.3%、Sn:0.005-0.3%、Ca:0.0005-0.01%、Mg:0.0005-0.01%和稀土类元素:0.0005-0.01%,并满足上述(1)式和(2)式。(2) A low-carbon sulfur free-cutting steel characterized by containing, in addition to the ingredients described in (1) above, one or more kinds selected from the group consisting of Se: 0.001-0.01%, Te : 0.001-0.01%, Bi: 0.005-0.3%, Sn: 0.005-0.3%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01%, and rare earth elements: 0.0005-0.01%, and satisfy the above formula (1) And (2) type.

(3)一种低碳硫易切钢,其特征是除了上述(1)中记载的成分外,还含有以下中的1种或2种以上,即,Cu:0.01-1.0%、Ni:0.01-2.0%、Cr:0.01-2.5%、Mo:0.01-1.0%、V:0.005-0.5%、和Nb:0.005-0.1%,并满足上述(1)式和(2)式。(3) A low-carbon sulfur free-cutting steel characterized by containing, in addition to the components described in (1) above, one or more of the following, namely, Cu: 0.01-1.0%, Ni: 0.01 -2.0%, Cr: 0.01-2.5%, Mo: 0.01-1.0%, V: 0.005-0.5%, and Nb: 0.005-0.1%, and satisfy the above formulas (1) and (2).

(4)一种低碳硫易切钢,其特征是除了上述(1)中记载的成分外,还含有选自以下中的1种或2种以上,即,Se:0.001-0.01%、Te:0.001-0.01%、Bi:0.005-0.3%、Sn:0.005-0.3%、Ca:0.0005-0.01%、Mg:0.0005-0.01%和稀土类元素:0.0005-0.01%,进而含有选自以下中的1种或2种以上,即,Cu:0.01-1.0%、Ni:0.01-2.0%、Cr:0.01-2.5%、Mo:0.01-1.0%、V:0.005-0.5%和Nb:0.005-0.1%,并满足上述(1)式和(2)式。(4) A low-carbon sulfur free-cutting steel characterized by containing, in addition to the ingredients described in (1) above, one or more kinds selected from the following, namely, Se: 0.001-0.01%, Te : 0.001-0.01%, Bi: 0.005-0.3%, Sn: 0.005-0.3%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01%, and rare earth elements: 0.0005-0.01%, further containing selected from the following 1 or more, namely, Cu: 0.01-1.0%, Ni: 0.01-2.0%, Cr: 0.01-2.5%, Mo: 0.01-1.0%, V: 0.005-0.5%, and Nb: 0.005-0.1% , and satisfy the above formulas (1) and (2).

上述(1)-(4)的易切钢,其Si的含量最好小于0.1质量%。In the free-cutting steels (1)-(4) above, the Si content is preferably less than 0.1% by mass.

附图说明Description of drawings

图1是观察本发明钢中内部存在Ti硫化物和/或Ti碳硫化物的MnS的EPMA分析结果示意图。Fig. 1 is a schematic diagram of EPMA analysis results for observing MnS with Ti sulfide and/or Ti carbosulfide inside the steel of the present invention.

图2是本发明钢(钢No.1-29)和比较钢(钢No.30-47)的切屑处理性和工具寿命的关系示意图。Fig. 2 is a schematic diagram showing the relationship between chip disposal and tool life of steels of the present invention (steel Nos. 1-29) and comparative steels (steel Nos. 30-47).

图3是本发明钢(钢No.1-29)和比较钢(钢No.30-47)的热拉伸性试验中断面收缩率和工具寿命的关系示意图。Fig. 3 is a schematic diagram showing the relationship between the reduction of area and the tool life in the thermal tensile test of steels of the present invention (steel No. 1-29) and comparative steels (steel No. 30-47).

具体实施方式Detailed ways

1.关于内部存在Ti硫化物和/或Ti碳硫化物的MnS1. Regarding MnS with Ti sulfide and/or Ti carbosulfide inside

本发明的易切钢最大特征之一是含有“内部存在Ti硫化物和/或Ti碳硫化物的MnS”。One of the greatest features of the free-cutting steel of the present invention is that it contains "MnS with Ti sulfide and/or Ti carbosulfide inside".

Ti在MnS中可微量固熔,以(Mn,Si)S存在,但因为在该MnS中固熔的Ti量极微,所以该硫化物实际上是MnS。而,很明显其组成与这样的MnS不同,存在以下TiS或Ti4C2S2的比学式表示的Ti硫化物或Ti碳硫化物。这些中的大多数在MnS中的存在是与MnS形成的明确的相分离。Ti can be dissolved in a small amount in MnS and exists as (Mn, Si)S, but since the amount of Ti dissolved in MnS is extremely small, this sulfide is actually MnS. However, it is clear that its composition is different from such MnS, and Ti sulfide or Ti carbosulfide represented by the following specific formula of TiS or Ti 4 C 2 S 2 exists. The presence of most of these in MnS is a clear phase separation from MnS formation.

对于从钢材上切割的微量试验片,利用EPMA(电子线微量测定仪)和EDX(能量分散型X射线分析装置)等,进行表面分析和定量分析,会更有把握地确定存在上述形态的硫化物。Surface analysis and quantitative analysis of micro test pieces cut from steel materials using EPMA (Electron Micrometer) and EDX (Energy Dispersive X-ray Analyzer) will confirm the presence of vulcanization in the above form with greater certainty. things.

图1是利用EPAM对下述表1中No.3钢中硫化物进行表面分析的结果。(a)中示出的是1个内在物,(b)-(d)表示该内在物中存在Ti、Mn和S。Fig. 1 is the result of surface analysis of sulfides in No. 3 steel in Table 1 below by EPAM. (a) shows one internal substance, and (b)-(d) show that Ti, Mn, and S exist in the internal substance.

如这些图中所明确的,Ti硫化物或Ti碳硫化物,存在于1个硫化物的周边附近,以围绕MnS的形式存在等,其存在形态是多样的。与这样1个MnS同时存在的Ti硫化物和/或Ti碳硫化物形成相分离,而且1个硫化物中的MnS占据的面积率在50%以上,将这样的硫化物,在本发明中定义为“内部存在Ti硫化物和/或Ti碳硫化物的MnS”。As is clear from these figures, Ti sulfide or Ti carbon sulfide exists in the vicinity of the periphery of one sulfide, exists in a form surrounding MnS, and exists in various forms. The Ti sulfide and/or Ti carbon sulfide that exists simultaneously with such a MnS form a phase separation, and the area ratio occupied by MnS in one sulfide is more than 50%, such a sulfide is defined in the present invention It is "MnS with Ti sulfide and/or Ti carbosulfide inside".

内在于1个MnS中的Ti硫化物和Ti碳硫化物的组成和面积率,可利用上述的EPMA或EDX确认,钢中的“内部存在Ti硫化物和/或Ti碳硫化物的MnS”也可以同样的方法确认,也可测定其个数。将在多个可见区内测定的个数换算成每1mm2的个数,其平均值,若在10个以上/1mm2,则获得优良的被切削性。The composition and area ratio of Ti sulfide and Ti carbosulfide contained in one piece of MnS can be confirmed by the above-mentioned EPMA or EDX, and "MnS containing Ti sulfide and/or Ti carbosulfide inside" in steel is also It can be confirmed by the same method, and its number can also be measured. When the number measured in multiple visible regions is converted into the number per 1 mm 2 , if the average value is 10 or more per 1 mm 2 , excellent machinability is obtained.

当切削含有内部存在Ti硫化物和/或Ti碳硫化物的MnS的钢时,软质的MnS在被切削材料和工具的接触面间形成近似润滑的作用,在工具表面上形成TiN,而保护工具。即认为在切削中,在与被切削材料接触的工具表面上附着有MnS,及Ti硫化物或Ti碳硫化物,进而,切削中由于磨擦引起温度上升,这些Ti系硫化物与环境中的N氮进行反应,形成呈现厚度从数μm到数十μm层状的硬质TiN。在切削结束后,对用Ar气喷射等除去碳系污染(油分等)的工具表面,通过利用AES(俄歇电子分光分析)和EPMA进行面分析和点分析,可以确认TiN的存在。When cutting steel containing MnS with Ti sulfide and/or Ti carbon sulfide inside, the soft MnS forms a similar lubrication effect between the contact surface of the cut material and the tool, and forms TiN on the tool surface, while protecting tool. That is to say, during cutting, MnS, and Ti sulfide or Ti carbon sulfide are attached to the surface of the tool in contact with the material to be cut. Furthermore, the temperature rises due to friction during cutting, and these Ti-based sulfides interact with N in the environment. Nitrogen reacts to form hard TiN in layers ranging in thickness from several μm to tens of μm. After cutting, the presence of TiN can be confirmed by surface analysis and point analysis using AES (Auger Electron Spectroscopy) and EPMA on the tool surface from which carbon-based contamination (oil, etc.) has been removed by Ar gas jet or the like.

在用上述方法研究时,存在的层状TiN膜的表面积大致是被切削材料与工具接触面积的10-80%,其余部分上附着有MnS和Fe,或者是没有附着物的原工具面。这样,在工作表面上形成的硬质TiN膜,对保护工具带来很大的效果,提高了工具的耐磨损性,延长了其使用寿命。这种工具寿命的改善效果,比硫易切钢和含Pb复合易切钢带来效果大的多。When researched by the above method, the surface area of the existing layered TiN film is roughly 10-80% of the contact area between the material to be cut and the tool, and the rest is attached to MnS and Fe, or the original tool surface without attachments. In this way, the hard TiN film formed on the working surface has a great effect on protecting the tool, improving the wear resistance of the tool and prolonging its service life. The effect of improving tool life is much greater than that of sulfur free-cutting steel and Pb-containing composite free-cutting steel.

本发明的钢中,除了“内部存在Ti硫化物和/或Ti碳硫化物的MnS”外,还以细微的内在物存在MnS、Ti硫化物和Ti碳硫化物。即,全部内在物的个数相当多,这些在切削时生成的切屑中以应力集中点发挥作用,由于助长了龟裂的传播,所以也提高了切屑的分割性。In the steel of the present invention, in addition to "MnS in which Ti sulfide and/or Ti carbosulfide exists inside", MnS, Ti sulfide, and Ti carbosulfide exist as fine internal substances. That is, the number of all the inclusions is quite large, and these function as stress concentration points in the chips generated during cutting, and promote the propagation of cracks, so the splittability of chips is also improved.

如上述通过调整钢的组成,钢中可存在“内部存在Ti硫化物和/或Ti碳硫化物的MnS”。为了这种MnS的稳定存在,最好是铸造后,加热到1000℃以上相当高的温度,并充分保持进行锻造,或者在同样的温度下付与所谓的正火热处理。By adjusting the composition of the steel as described above, "MnS in which Ti sulfide and/or Ti carbosulfide exists" can exist in the steel. For the stable existence of such MnS, it is preferable to heat to a relatively high temperature of 1000° C. or higher after casting, and to forge with sufficient maintenance, or to apply so-called normalizing heat treatment at the same temperature.

2.限定化学组成的理由2. Reasons for limiting chemical composition

以下对本发明中限定化学组成的理由进行说明。关于成分含量的%是指质量%。The reasons for limiting the chemical composition in the present invention will be described below. % with respect to component content means mass %.

C:0.05-0.19%C: 0.05-0.19%

C是对钢的被切削性影响大的重要元素。在重视被切削性的钢材用途时,C含量超过0.19%时,钢材的强度增高,被切削性劣化。然而,C含量低0.05%时,钢材过度变软,切削中产生挤裂,反而加速了工具磨损,造成切屑处理性劣化。因此,将C限定在0.05-0.19%的范围。进而为获得良好的被切削性,C量更适宜的范围为0.05-0.17%。C is an important element that greatly affects the machinability of steel. In steel applications where machinability is important, if the C content exceeds 0.19%, the strength of the steel increases and the machinability deteriorates. However, when the C content is lower than 0.05%, the steel material becomes excessively soft and cracks occur during cutting, which accelerates tool wear on the contrary and deteriorates chip handling properties. Therefore, C is limited to the range of 0.05-0.19%. Furthermore, in order to obtain good machinability, the more suitable range of C content is 0.05-0.17%.

Mn:0.40-2.0%Mn: 0.40-2.0%

Mn和S形成硫化物系内在物,是对被切削性影响大的重要元素。低于0.40%时,作为硫化物的绝对量不足,得不到满意的被切削性。而超过2.0%时,由于钢材的强度升高,切削阻抗会增高,此外,工具寿命会降低。进而,为了降低切削阻抗,提高工具寿命、提高切屑处理性、和改善热加工性,重要的也是与S量的关系。即,该量以原子比,必须保持Mn/S≥1的关系。为了能确实获得这些性能,Mn含量最好为0.6-1.8%。Mn and S form sulfide-based inclusions and are important elements that greatly affect machinability. When it is less than 0.40%, the absolute amount of sulfide is insufficient, and satisfactory machinability cannot be obtained. On the other hand, when it exceeds 2.0%, the cutting resistance increases due to the increase in the strength of the steel material, and the tool life decreases. Furthermore, in order to reduce cutting resistance, improve tool life, improve chip disposability, and improve hot workability, the relationship with the amount of S is also important. That is, the amount must maintain the relationship of Mn/S≧1 in atomic ratio. In order to securely obtain these properties, the Mn content is preferably 0.6-1.8%.

S:0.21-1.0%S: 0.21-1.0%

S和Mn或Ti形成硫化物或碳硫化物,是改善被切削性必须添加的有效元素。特别是由MnS提高被切削性的效果,随其生成量而提高。然而,低于0.21%时,得不到充分量的硫化物系内在物,不可能获得满意的被切削性。通常,S含量超过0.35%时,钢的热加工性劣化,在钢块中心部产生S偏析,锻造时诱发断裂。然而,若保持本发明确定的组成,为了消除这样的危害,S含量的上限可高达1.0%。若考虑到制造时的合格率,S含量的最佳上限为0.70%。S and Mn or Ti form sulfide or carbon sulfide, which is an effective element that must be added to improve machinability. In particular, the effect of improving the machinability by MnS increases with the amount of its generation. However, if it is less than 0.21%, a sufficient amount of sulfide-based inclusions cannot be obtained, and satisfactory machinability cannot be obtained. Generally, when the S content exceeds 0.35%, the hot workability of the steel deteriorates, S segregation occurs at the center of the steel block, and fracture is induced during forging. However, if the composition defined in the present invention is maintained, the upper limit of the S content may be as high as 1.0% in order to eliminate such hazards. Considering the pass rate at the time of manufacture, the optimum upper limit of the S content is 0.70%.

Ti:0.03-0.30%Ti: 0.03-0.30%

Ti和S或C形成Ti硫化物或Ti碳硫化物,这些以内在形态存在于MnS中,可改善钢的被切削性和热加工性。因此,是本发明钢中所必需的重要元素。Ti与Mn比较,也是生成硫化物的强有力元素,含量若在0.03%以上,形成Ti硫化物或Ti碳硫化物,由于以内在形态存在于MnS中,所以能充分获得改善被切削性的效果。低于0.03%,该效果不充分。而,Ti超过0.30%时,形成硫化物,形成大量的硬质Ti硫化物或Ti碳硫化物,切削阻抗高,被切削性劣化。Ti含量的最佳上限为0.10%。Ti and S or C form Ti sulfide or Ti carbosulfide, which exist in MnS in an intrinsic form, which can improve the machinability and hot workability of steel. Therefore, it is an important element required in the steel of the present invention. Compared with Mn, Ti is also a powerful element for forming sulfide. If the content is more than 0.03%, Ti sulfide or Ti carbosulfide is formed. Since it exists in MnS in an internal form, the effect of improving machinability can be fully obtained. . If it is less than 0.03%, the effect is insufficient. On the other hand, when Ti exceeds 0.30%, sulfides are formed, a large amount of hard Ti sulfides or Ti carbosulfides are formed, the cutting resistance becomes high, and the machinability deteriorates. The optimum upper limit of the Ti content is 0.10%.

Si:1.0%以下Si: 1.0% or less

Si作为脱氧元素,用于调整钢中的氧量。然而,其含量超过1.0%时,钢的热加工性劣化,因为固熔强化了钢氧体,切削阻抗增高,损害了被切削性。因此,Si含量的上限取为1.0%,但更好是控制在低于0.1%。为了脱氧,Si含量最好在0.001%以上,实际上是0(零)%,用下述的添加Al等,将钢中的氧量调整在适当范围内,被切削性不会发生劣化。Si is used as a deoxidizing element to adjust the amount of oxygen in steel. However, when its content exceeds 1.0%, the hot workability of the steel deteriorates because the solid solution strengthens the steel oxide body, the cutting resistance increases, and the machinability is impaired. Therefore, the upper limit of the Si content is taken as 1.0%, but it is more preferably controlled to be less than 0.1%. For deoxidation, the Si content is preferably 0.001% or more, actually 0 (zero)%. With the following addition of Al, etc., the oxygen content in the steel is adjusted within an appropriate range, and the machinability will not deteriorate.

P:0.001-0.3%P: 0.001-0.3%

P超过0.3%时,会助长钢块的偏析,而且热加工性劣化。因此,上限含量为0.3%。另一方面,P是具有改善被切削性效果的元素,为了得到这种效果,下限取为0.001%。P的最佳含量为0.01-0.15%。When P exceeds 0.3%, the segregation of the steel block will be promoted, and the hot workability will be deteriorated. Therefore, the upper limit content is 0.3%. On the other hand, P is an element having an effect of improving machinability, and in order to obtain this effect, the lower limit is made 0.001%. The optimal content of P is 0.01-0.15%.

Al:0.2%以下Al: less than 0.2%

Al用作脱氧元素,最多含到0.2%,然而,通过脱氧生成的氧化物是硬质的,当Al含量超过0.2%时,会大量生成硬质氧化物,导致被切削性劣化。更好是在0.1%以下。另外,利用上述的Si能充分脱氧时,可不必添加Al,其含量实际为0%。Al is used as a deoxidizing element and is contained up to 0.2%. However, oxides formed by deoxidation are hard. When the Al content exceeds 0.2%, a large amount of hard oxides are formed, resulting in deterioration of machinability. More preferably, it is less than 0.1%. In addition, when sufficient deoxidation can be achieved by the aforementioned Si, it is not necessary to add Al, and its content is actually 0%.

O(氧):0.0010-0.05%O (oxygen): 0.0010-0.05%

钢中含有适当量的氧时,该氧固溶在MnS中,可防止因压延引起MnS延伸,机械性质的异向性很小。进而也可改善被切削性和热加工性,有效防止了S的偏折。因此,氧的含量可在0.0010%以上。然而,超过0.05%时,熔制时会带来耐火物受损等弊端。因此上限为0.05%,为了获得上述效果,最佳范围为0.005-0.02%。When the steel contains an appropriate amount of oxygen, the oxygen is dissolved in MnS, which can prevent the extension of MnS caused by rolling, and the anisotropy of mechanical properties is very small. Furthermore, the machinability and hot workability can be improved, and deflection of S can be effectively prevented. Therefore, the oxygen content can be above 0.0010%. However, if it exceeds 0.05%, there will be disadvantages such as damage to the refractory during melting. Therefore, the upper limit is 0.05%, and in order to obtain the above effects, the optimum range is 0.005-0.02%.

N:0.0001-0.0200%N: 0.0001-0.0200%

N与Al或Ti形成硬质的氮化物,这些氮化物具有使结晶粒细微化的效果。N含量在0.0001%以上时可产生该效果。这些氮化物大量存在时,导致被切削性恶化,并增大了切削工具有磨损,本发明的钢,在切削时,由于在工具表面上形成TiN,可保护工具,即使钢中存在一定量的氮化物,其被切削性也不会降低。然而,N量超过0.0200%时,其效果淡化。为了获得更长的工具寿命,最好在0.0150%以下。希望进一步延长工具寿命时,最好在0.0100%以下。N forms hard nitrides with Al or Ti, and these nitrides have the effect of making crystal grains finer. This effect can be produced when the N content is 0.0001% or more. When these nitrides exist in a large amount, the machinability is deteriorated, and the wear of the cutting tool is increased. The steel of the present invention can protect the tool due to the formation of TiN on the surface of the tool during cutting, even if there is a certain amount of TiN in the steel. Nitride does not lower the machinability. However, when the amount of N exceeds 0.0200%, the effect becomes weak. In order to obtain longer tool life, it is better to be below 0.0150%. When it is desired to further extend the tool life, it is preferably 0.0100% or less.

本发明钢之一是由除上述成分外,还有余量Fe和杂质形成的。One of the steels of the present invention is formed by, in addition to the above-mentioned components, a balance of Fe and impurities.

本发明的一又一种钢是除上述成分外,还含有下述第1组元素和/或第2组元素中的一种以上。Still another steel of the present invention contains, in addition to the above components, one or more of the following group 1 elements and/or group 2 elements.

第1组元素包括Se、Te、Bi、Sn、Ca、Mg和稀土类元素,这些元素可进一步改进钢的被切削性。第2种元素包括Cu、Ni、Cr、Mo、V和Nb,这些元素可改进钢的机械性质。Group 1 elements include Se, Te, Bi, Sn, Ca, Mg and rare earth elements, which can further improve the machinability of steel. The second element includes Cu, Ni, Cr, Mo, V and Nb, which can improve the mechanical properties of steel.

Se:0.001-0.01%、Te:0.001-0.01%Se: 0.001-0.01%, Te: 0.001-0.01%

Se和Te与Mn(S,Se)或Mn(S,Te),是改进被切削性的有效元素。这些分别低于0.001%时,效果不显。而Se、Te都超过0.01%时,其效果不仅达到饱和,经济上也不合算,而且导致热加工性恶化。Se and Te, together with Mn(S, Se) or Mn(S, Te), are effective elements for improving machinability. When these are less than 0.001%, respectively, the effect will not show. On the other hand, when both Se and Te exceed 0.01%, the effect becomes saturated, and it is economically uneconomical, and the hot workability is deteriorated.

Bi:0.005-0.03%、Sn:0.005-0.3%Bi: 0.005-0.03%, Sn: 0.005-0.3%

Bi和Sn作为低溶点的金属内在物,切削时,可发挥出润滑效果,并改进被切削性。分别在0.005%以上,其效果显著。但是,其含量分别超过0.3%时,不仅效果达到饱和,而且热加工性也会恶化。Bi and Sn, as metal inclusions with a low melting point, exhibit a lubricating effect during cutting and improve machinability. Respectively above 0.005%, the effect is remarkable. However, when the content exceeds 0.3%, not only the effect becomes saturated, but also the hot workability deteriorates.

Ca:0.0005-0.01%、Mg:0.0005-0.01%Ca: 0.0005-0.01%, Mg: 0.0005-0.01%

Ca和Mg对钢中的S和氧具有很大的亲合力,与这些形成硫化物或氧化物,同时固溶在MnS中,以(Mn,Mg)S存在。这些氧化物作为生成核,而析出MnS结晶,所以具有抑制MnS延伸的效果。这样,Ca和Mg抑制了硫化物的形态,改善了被切削性,因此根据需要也可添加。在确实想要获得此效果时,Ca、Mg也可以分别含有0.0005%以上。但是,超过0.01%,即使再多,效果已达到饱和。添加Ca或Mg也会降低合格率,所以为使含量增多,可大量添加,但从制造成分方面看,并不理想,因此,含量上限分别为0.01%。Ca and Mg have great affinity for S and oxygen in steel, form sulfides or oxides with these, and at the same time solid dissolve in MnS, existing as (Mn, Mg)S. These oxides serve as formation nuclei to precipitate MnS crystals, so they have an effect of suppressing the extension of MnS. In this way, Ca and Mg suppress the form of sulfide and improve the machinability, so they may be added as needed. When it is really desired to obtain this effect, Ca and Mg may each be contained in an amount of 0.0005% or more. However, beyond 0.01%, even more, the effect is saturated. Addition of Ca or Mg will also reduce the pass rate, so in order to increase the content, a large amount can be added, but from the perspective of manufacturing components, it is not ideal, so the upper limit of the content is 0.01%.

稀土类元素:0.0005-0.01%Rare earth elements: 0.0005-0.01%

稀土类元素是以镧系分类的元素组。添加这些元素时,通常使用以它们为主要成分的混合稀土等。本发明中,稀土类元素的含量,以稀土类元素中1种或2种以上元素的合计含量表示。稀土类元素与S和氧共同形成硫化物或氧化物,同时,可控制硫化物的形态,提高被切削性。为了确实获得此效果,最好含有0.0005%以上。然而,含量超过0.01%时,效果不仅达到饱和,而且与Ca和Mg一样,即使大量添加,也会降低合格率,而且也不经济。Rare earth elements are a group of elements classified as lanthanides. When these elements are added, mixed rare earths or the like mainly composed of them are usually used. In the present invention, the content of rare earth elements is represented by the total content of one or more elements in the rare earth elements. Rare earth elements form sulfides or oxides together with S and oxygen, and at the same time, can control the form of sulfides and improve machinability. In order to securely obtain this effect, it is preferable to contain 0.0005% or more. However, if the content exceeds 0.01%, not only the effect becomes saturated, but also like Ca and Mg, even if a large amount is added, the yield decreases and it is not economical.

Cu:0.01-1.0%Cu: 0.01-1.0%

Cu可提高钢的淬火性。想要获得该效果时,可含有0.01%以上。然而,含量超过1.0%时,钢的热加工性会恶化,也导致被切削性降低。Cu can improve the hardenability of steel. When this effect is desired, 0.01% or more may be contained. However, when the content exceeds 1.0%, the hot workability of the steel deteriorates and the machinability also decreases.

Ni:0.01-2.0%Ni: 0.01-2.0%

对于Ni,通过固溶强化,具有提高钢强度的效果,还具有提高淬火性和提高韧性的效果。为了确实获得此效果,其含量最好在0.01%以上。然而,超过2.0%时,导致被切削性恶化,同时热加工性也会恶化。Ni has the effect of increasing the strength of steel through solid solution strengthening, and also has the effect of improving hardenability and toughness. In order to surely obtain this effect, its content is preferably 0.01% or more. However, when it exceeds 2.0%, machinability will deteriorate, and hot workability will also deteriorate.

Cr:0.01-2.5%Cr: 0.01-2.5%

对于Cr,具有改进钢的淬火性效果,为获得此效果,最好含有0.01%以上,超过2.5%时被切削性会恶化。Cr has the effect of improving the hardenability of steel, and to obtain this effect, it is preferable to contain 0.01% or more, and if it exceeds 2.5%, the machinability will deteriorate.

Mo:0.01-1.0%Mo: 0.01-1.0%

对于Mo,可使钢组织细微化,具有改进韧性的效果。为了确实获得此效果,含量最好在0.01%以上。但是,超过1.0%时,效果达到饱和,钢的制造成本增加。Mo has the effect of making the steel structure finer and improving the toughness. In order to surely obtain this effect, the content is preferably 0.01% or more. However, when it exceeds 1.0%, the effect will be saturated, and the manufacturing cost of steel will increase.

V:0.005-0.5%、Nb:0.005-0.1%V: 0.005-0.5%, Nb: 0.005-0.1%

V和Nb以细微的氮化物和碳氧化物析出,可提高钢的强度。为确实获得此效果,各自含量最好在0.005%以上。然而,V超过0.5%、Nb超过0.1%时,上述效果不仅达到饱和,而且会生成过多的氮化物和碳化物,导致被削性恶化。V and Nb are precipitated as fine nitrides and carbon oxides, which can increase the strength of steel. In order to surely obtain this effect, the respective contents are preferably above 0.005%. However, when V exceeds 0.5% and Nb exceeds 0.1%, the above-mentioned effects are not only saturated, but also excessive nitrides and carbides are formed, resulting in deterioration of machinability.

3.关于(1)式和(2)式3. Regarding (1) and (2) formulas

Ti含量和S含量必须满足(1)式的理由如下。The reason why the Ti content and the S content must satisfy the formula (1) is as follows.

如上述,Ti与C或S形成Ti硫化物或Ti碳硫化物。其倾向,可大大趋向Mn硫化物的生成。Ti的效果,如上述,通过Ti系内在物,切削时,在工具表面上形成TiN,而提高了工具寿命。因此,Ti硫化物和Ti碳硫化物,与MnS比较,是抗拒变形硬度很大的内在物。因此,在Ti含量达到S含量以上的组成中,MnS的生成量很少,Ti硫化物和Ti碳硫化物成为主体,切削时,在工具和被切削材料间,得不到硫化物形成的近似润滑的效果,切削阻抗急剧上升,当切削阻抗上升时,不仅缩短了工具寿命,而且在切削细径材料时,会发生被切削材料引发振动等不良现象。As mentioned above, Ti forms Ti sulfide or Ti carbosulfide with C or S. Its tendency can greatly tend to the formation of Mn sulfide. The effect of Ti, as mentioned above, is that TiN is formed on the surface of the tool during cutting by the Ti-based inclusions, thereby improving the tool life. Therefore, Ti sulfide and Ti carbosulfide are internal substances having a large hardness against deformation compared with MnS. Therefore, in a composition where the Ti content is higher than the S content, the amount of MnS produced is small, and Ti sulfide and Ti carbosulfide become the main components. During cutting, no approximation of sulfide formation can be obtained between the tool and the workpiece. Due to the effect of lubrication, the cutting resistance rises sharply. When the cutting resistance rises, not only the tool life is shortened, but also adverse phenomena such as vibration caused by the material to be cut will occur when cutting small-diameter materials.

象满足了上述(1)式那样,即,通过将“Ti(质量%)/S(质量%)”调整到小于1,不会形成以Ti硫化物和Ti碳硫化物为主要的硫化物,形成的硫化物会以MnS为主体。这时,如上述,在形成Ti硫化物和Ti碳硫化物为主要硫化物时,不会再产生切削阻抗升高等不良现象,从而可提高工具寿命和切屑处理性。As above-mentioned formula (1) is satisfied, that is, by adjusting "Ti (mass %)/S (mass %)" to less than 1, Ti sulfide and Ti carbosulfide will not be formed as main sulfides, The formed sulfides will be dominated by MnS. In this case, as mentioned above, when Ti sulfide and Ti carbosulfide are formed as main sulfides, there will be no problems such as an increase in cutting resistance, and the tool life and chip treatability can be improved.

Mn和S的原子比必须满足(2)式的理由如下。The reason why the atomic ratio of Mn and S must satisfy the formula (2) is as follows.

S是热煅造时诱发裂痕的元素,以原子比,保持Mn/S≥1的组成,S会以Mn硫化物结晶析出,对热加工性不会造成恶烈影响。S is an element that induces cracks during hot forging. In terms of atomic ratio, the composition of Mn/S≥1 is maintained. S will be crystallized as Mn sulfide and will not have a bad influence on hot workability.

即使Mn/S小于1,若将Ti和S的含量调整到不满足上述(1)式,仍能生成Ti系硫化物,以改善热加工性。然而,此时,如上述,会产生增大切削阻抗、缩短工具寿命等不良现象。进而,Mn/S小于1,在没有超过S含量的范围下含有Ti时,即,形成满足上述(1)式,不满足(2)式的组成时,内在物的主体是在MnS和TiS中固溶了大量FeS的硫化物。这些硫化物由于固溶了大量的FeS,所以导致钢的热加工性恶化,利用连续铸造法等制造时,很难控制操作条件。Even if Mn/S is less than 1, if the content of Ti and S is adjusted so that the above formula (1) is not satisfied, Ti-based sulfides can still be formed to improve hot workability. However, in this case, as described above, problems such as increased cutting resistance and shortened tool life may occur. Furthermore, Mn/S is less than 1, and when Ti is contained within the range not exceeding the S content, that is, when the composition satisfies the above formula (1) and does not satisfy the formula (2), the main content of the content is MnS and TiS A large amount of sulfides of FeS are solid-dissolved. Since a large amount of FeS is dissolved in these sulfides, the hot workability of steel deteriorates, and it is difficult to control the operating conditions when manufacturing by continuous casting or the like.

实施例Example

使用高频感应炉,熔制表1和表2所示组成的供试验钢,制作成直径220mm,150kg的钢块。为了稳定生成“内部存在Ti硫化物和/或Ti碳硫化物的MnS”,将这些铸块加热到1200℃高温,保持2小时以上后,再1000℃以上进行精制煅造,空冷(AC)后得到直径65mm的圆棒。对该圆棒,在950℃下保持1小时,实施空冷(AC)的正火。表1     钢No.                                                          化学组成(质量%)                                              余部Fe和杂质     Mn/S(原子比)     Ti/S(质量%比)     C     Si     Mn     P     S     Al     Ti     N     O     其他     1     0.08     -     0.96     0.017     0.33     -     0.13     0.0035     0.0060     -     1.70     0.39     2     0.06     0.01     0.92     0.017     0.49     0.001     0.07     0.0050     0.0210     -     1.10     0.15     3     0.07     -     0.91     0.017     0.47     -     0.12     0.0065     0.0100     -     1.13     0.26     4     0.06     0.06     0.86     0.020     0.49     0.001     0.25     0.0066     0.0170     -     1.02     0.51     5     0.07     0.02     0.86     0.075     0.46     0.001     0.26     0.0054     0.0110     -     1.09     0.57     6     0.06     0.02     0.87     0.018     0.50     0.001     0.13     0.0064     0.0190     -     1.02     0.26     7     0.07     0.17     0.98     0.018     0.50     0.001     0.14     0.0104     0.0150     -     1.14     0.28     8     0.06     0.05     0.92     0.019     0.50     0.014     0.14     0.0097     0.0160     -     1.07     0.28     9     0.19     0.29     0.40     0.016     0.22     0.003     0.10     0.0024     0.0020     -     1.06     0.45     10     0.10     0.01     1.02     0.022     0.34     0.003     0.05     0.0043     0.0110     -     1.75     0.15     11     0.09     0.02     1.17     0.023     0.49     0.005     0.05     0.0054     0.0180     -     1.39     0.11     12     0.05     -     0.93     0.018     0.33     -     0.08     0.0087     0.0091     -     1.62     0.25     13     0.15     0.01     1.00     0.024     0.39     0.001     0.13     0.0063     0.0158     -     1.49     0.34     14     0.10     -     0.58     0.017     0.25     -     0.06     0.0088     0.0179     -     1.35     0.24     15     0.07     -     1.55     0.018     0.69     -     0.25     0.0074     0.0166     -     1.31     0.51     16     0.08     -     0.95     0.020     0.35     -     0.10     0.0048     0.0135     Te:0.0038     1.58     0.29     17     0.08     -     0.98     0.018     0.45     -     0.09     0.0055     0.0140     Se:0.0020     1.27     0.20     18     0.06     0.01     0.88     0.017     0.49     0.001     0.11     0.0062     0.0210     Ca:0.0031     1.05     0.22     19     0.07     -     0.91     0.015     0.48     -     0.15     0.0111     0.0148     Ca:0.0025,Mg:0.0021     1.11     0.31     20     0.07     -     0.91     0.016     0.46     0.001     0.13     0.0042     0.0145     REM:0.0035     1.16     0.27     21     0.06     -     0.95     0.018     0.50     0.001     0.13     0.0078     0.0190     Bi:0.07     1.11     0.26     22     0.07     0.17     0.89     0.018     0.47     0.001     0.11     0.0056     0.0158     Sn:0.18     1.10     0.24     23     0.08     -     0.86     0.016     0.36     -     0.08     0.0063     0.0139     Cu:0.38     1.41     0.24     24     0.09     0.01     0.90     0.017     0.38     0.002     0.13     0.0087     0.0188     Ni:0.15     1.40     0.34     25     0.05     -     0.89     0.015     0.46     -     0.09     0.0054     0.0096     Cr:0.55     1.11     0.20     26     0.09     0.15     0.94     0.019     0.50     0.001     0.10     0.0047     0.0075     Mo:0.20     1.10     0.20     27     0.05     -     0.83     0.018     0.47     -     0.06     0.0085     0.0112     V:0.10     1.03     0.13     28     0.08     -     0.94     0.015     0.45     0.001     0.20     0.0075     0.0148     Nb:0.03     1.22     0.44     29     0.07     -     0.89     0.019     0.49     0.003     0.19     0.0026     0.0088     Cr:0.50,Mo:0.18     1.05     0.39 Use a high-frequency induction furnace to melt the test steel with the composition shown in Table 1 and Table 2, and make a steel block with a diameter of 220 mm and a weight of 150 kg. In order to stably generate "MnS with Ti sulfide and/or Ti carbon sulfide inside", these ingots are heated to a high temperature of 1200°C and kept for more than 2 hours, and then refined and forged at a temperature above 1000°C, after air cooling (AC) A round bar with a diameter of 65 mm was obtained. This round bar was held at 950° C. for 1 hour, and normalized by air cooling (AC). Table 1 Steel No. Chemical Composition (Mass%) Remaining Fe and Impurities Mn/S (atomic ratio) Ti/S (mass% ratio) C Si mn P S Al Ti N o other 1 0.08 - 0.96 0.017 0.33 - 0.13 0.0035 0.0060 - 1.70 0.39 2 0.06 0.01 0.92 0.017 0.49 0.001 0.07 0.0050 0.0210 - 1.10 0.15 3 0.07 - 0.91 0.017 0.47 - 0.12 0.0065 0.0100 - 1.13 0.26 4 0.06 0.06 0.86 0.020 0.49 0.001 0.25 0.0066 0.0170 - 1.02 0.51 5 0.07 0.02 0.86 0.075 0.46 0.001 0.26 0.0054 0.0110 - 1.09 0.57 6 0.06 0.02 0.87 0.018 0.50 0.001 0.13 0.0064 0.0190 - 1.02 0.26 7 0.07 0.17 0.98 0.018 0.50 0.001 0.14 0.0104 0.0150 - 1.14 0.28 8 0.06 0.05 0.92 0.019 0.50 0.014 0.14 0.0097 0.0160 - 1.07 0.28 9 0.19 0.29 0.40 0.016 0.22 0.003 0.10 0.0024 0.0020 - 1.06 0.45 10 0.10 0.01 1.02 0.022 0.34 0.003 0.05 0.0043 0.0110 - 1.75 0.15 11 0.09 0.02 1.17 0.023 0.49 0.005 0.05 0.0054 0.0180 - 1.39 0.11 12 0.05 - 0.93 0.018 0.33 - 0.08 0.0087 0.0091 - 1.62 0.25 13 0.15 0.01 1.00 0.024 0.39 0.001 0.13 0.0063 0.0158 - 1.49 0.34 14 0.10 - 0.58 0.017 0.25 - 0.06 0.0088 0.0179 - 1.35 0.24 15 0.07 - 1.55 0.018 0.69 - 0.25 0.0074 0.0166 - 1.31 0.51 16 0.08 - 0.95 0.020 0.35 - 0.10 0.0048 0.0135 Te: 0.0038 1.58 0.29 17 0.08 - 0.98 0.018 0.45 - 0.09 0.0055 0.0140 Se: 0.0020 1.27 0.20 18 0.06 0.01 0.88 0.017 0.49 0.001 0.11 0.0062 0.0210 Ca: 0.0031 1.05 0.22 19 0.07 - 0.91 0.015 0.48 - 0.15 0.0111 0.0148 Ca: 0.0025, Mg: 0.0021 1.11 0.31 20 0.07 - 0.91 0.016 0.46 0.001 0.13 0.0042 0.0145 REM: 0.0035 1.16 0.27 twenty one 0.06 - 0.95 0.018 0.50 0.001 0.13 0.0078 0.0190 Bi: 0.07 1.11 0.26 twenty two 0.07 0.17 0.89 0.018 0.47 0.001 0.11 0.0056 0.0158 Sn: 0.18 1.10 0.24 twenty three 0.08 - 0.86 0.016 0.36 - 0.08 0.0063 0.0139 Cu: 0.38 1.41 0.24 twenty four 0.09 0.01 0.90 0.017 0.38 0.002 0.13 0.0087 0.0188 Ni: 0.15 1.40 0.34 25 0.05 - 0.89 0.015 0.46 - 0.09 0.0054 0.0096 Cr: 0.55 1.11 0.20 26 0.09 0.15 0.94 0.019 0.50 0.001 0.10 0.0047 0.0075 Mo: 0.20 1.10 0.20 27 0.05 - 0.83 0.018 0.47 - 0.06 0.0085 0.0112 V: 0.10 1.03 0.13 28 0.08 - 0.94 0.015 0.45 0.001 0.20 0.0075 0.0148 Nb: 0.03 1.22 0.44 29 0.07 - 0.89 0.019 0.49 0.003 0.19 0.0026 0.0088 Cr: 0.50, Mo: 0.18 1.05 0.39

表2   钢No.                                                        化学组成(质量%)                                                      余部Fe和杂质     Mn/S(原子比)     Ti/S(质量%比)    C   Si     Mn     P     S     Al     Ti     N     O     其他   30   0.08   -     0.95     0.055     0.33     0.002    -**     0.0048    0.0185     Pb:0.31**     1.68     -   31   0.07   0.01     1.10     0.060     0.32     0.002    -**     0.0090    0.0150     Pb:0.27**     2.01     -   32   0.08   -     1.02     0.067     0.33     0.002    -**     0.0066    0.0150     -     1.80     -   33   0.06   0.01     0.84     0.018     0.47     0.001    -**     0.0083    0.0210     -     1.04     -   34   0.07   0.01     1.26     0.018     0.62     0.001    -**     0.0059    0.0140     -     1.19     -   35   0.08   -     1.00     0.020     0.35     -    0.01**     0.0076    0.0175     -     1.67     0.03   36   0.19   0.29     0.4     0.016     0.25     0.003    0.35**     0.0061    0.0020     -     1.14     1.40**   37   0.52**   0.17     0.54     0.016     0.21     -    0.05     0.0079    0.0180     -     1.50     0.24   38   0.35**   -     0.50     0.019     0.23     0.002    0.08     0.0046    0.0058     -     1.27     0.35   39   0.01**   -     0.89     0.013     0.33     0.002    0.06     0.0047    0.0148     -     1.57     0.18   40   0.06   -     0.49     0.014     0.15**     -    0.05     0.0095    0.0193     -     1.91     0.33   41   0.07   0.01     1.53     0.018     1.05**     0.001    0.10     0.0072    0.0210     -     0.85**     0.09   42   0.06   -     0.18     0.018     0.34     0.001    0.14     0.0074    0.0090     -     0.31**     0.4   43   0.08   0.01     2.53**     0.018     0.65     0.001    0.15     0.0066    0.0210     -     2.27     0.23   44   0.07   -     0.88     0.4**     0.20     -    0.09     0.0079    0.0176     -     2.57     0.44   45   0.09   0.19     0.82     0.015     0.47     -    0.12     0.0098    0.0064     Cr:4.0**     1.01     0.24   46   0.06   -     0.93     0.019     0.45     0.004    0.14     0.0085    0.0116     V:2.5**     1.19     0.31   47   0.08   -     0.91     0.013     0.46     0.002    0.08     0.0076    0.0063     Cr:2.8**,Mo:1.5**     1.14     0.18 Table 2 Steel No. Chemical Composition (Mass%) Remaining Fe and Impurities Mn/S (atomic ratio) Ti/S (mass% ratio) C Si mn P S Al Ti N o other 30 0.08 - 0.95 0.055 0.33 0.002 - ** 0.0048 0.0185 Pb: 0.31 ** 1.68 - 31 0.07 0.01 1.10 0.060 0.32 0.002 - ** 0.0090 0.0150 Pb: 0.27 ** 2.01 - 32 0.08 - 1.02 0.067 0.33 0.002 - ** 0.0066 0.0150 - 1.80 - 33 0.06 0.01 0.84 0.018 0.47 0.001 - ** 0.0083 0.0210 - 1.04 - 34 0.07 0.01 1.26 0.018 0.62 0.001 - ** 0.0059 0.0140 - 1.19 - 35 0.08 - 1.00 0.020 0.35 - 0.01 ** 0.0076 0.0175 - 1.67 0.03 36 0.19 0.29 0.4 0.016 0.25 0.003 0.35 ** 0.0061 0.0020 - 1.14 1.40 ** 37 0.52 ** 0.17 0.54 0.016 0.21 - 0.05 0.0079 0.0180 - 1.50 0.24 38 0.35 ** - 0.50 0.019 0.23 0.002 0.08 0.0046 0.0058 - 1.27 0.35 39 0.01 ** - 0.89 0.013 0.33 0.002 0.06 0.0047 0.0148 - 1.57 0.18 40 0.06 - 0.49 0.014 0.15 ** - 0.05 0.0095 0.0193 - 1.91 0.33 41 0.07 0.01 1.53 0.018 1.05 ** 0.001 0.10 0.0072 0.0210 - 0.85 ** 0.09 42 0.06 - 0.18 0.018 0.34 0.001 0.14 0.0074 0.0090 - 0.31 ** 0.4 43 0.08 0.01 2.53 ** 0.018 0.65 0.001 0.15 0.0066 0.0210 - 2.27 0.23 44 0.07 - 0.88 0.4 ** 0.20 - 0.09 0.0079 0.0176 - 2.57 0.44 45 0.09 0.19 0.82 0.015 0.47 - 0.12 0.0098 0.0064 Cr: 4.0 ** 1.01 0.24 46 0.06 - 0.93 0.019 0.45 0.004 0.14 0.0085 0.0116 V: 2.5 ** 1.19 0.31 47 0.08 - 0.91 0.013 0.46 0.002 0.08 0.0076 0.0063 Cr: 2.8 ** , Mo: 1.5 ** 1.14 0.18

**表示超出本发明中规定范围的条件 ** represents conditions beyond the range specified in the present invention

(1)内在物的组成形态研究(1) Research on the composition and morphology of internal substances

从上述煅造延伸材料的Df/4(Df为煅造延伸材料的直径)相应的部分纵向断面切割出微观观察用试验片,研磨后,利用EPMA和EDX进行表面分析和定量分析。其结果,对从No.1到No.29的钢,确认存在平均10个以上/mm2内部存在Ti硫化物和/或Ti碳硫化物的MnS。A test piece for microscopic observation was cut out from the longitudinal section corresponding to Df/4 (Df is the diameter of the forged elongated material) of the above-mentioned forged elongated material, and after grinding, surface analysis and quantitative analysis were carried out by EPMA and EDX. As a result, in the steels No. 1 to No. 29, the presence of MnS in which Ti sulfide and/or Ti carbosulfide were present on average was confirmed to be 10 or more per mm 2 .

(2)被切削性的研究(2) Machinability research

将利用煅造得到的圆棒从外切削到Φ60mm后,供切削试验用。因为热加工性很差,因煅造而产生裂痕的,在产生裂痕时刻,原状在950℃下保持1小时,进行正火,空冷(AC)后,利用外切削达到Φ60mm,作供试材料用。The round bar obtained by forging was cut from the outside to Φ60mm, and used for cutting test. Because the hot workability is very poor, if cracks occur due to forging, when the cracks occur, keep the original shape at 950°C for 1 hour, carry out normalizing, and after air cooling (AC), use external cutting to reach Φ60mm, and use it as a test material .

被切削性试验,使用未实施TiN涂敷处理的JIS P种超硬工具进行。切削以干式(无润滑油)旋转切削,其条件,切削速度:150m/min,送进量:0.10mm/rev,切削量:2.0mm。The machinability test was carried out using JIS P type superhard tools not subjected to TiN coating treatment. Cutting is dry (no lubricating oil) rotary cutting. The conditions are: cutting speed: 150m/min, feeding amount: 0.10mm/rev, cutting amount: 2.0mm.

在上述条件下,旋转切削30分钟后,测定切削工具的平均空刀面磨损量(VB)。对30分钟内平均空刀面磨损量达到200μm以上的供试材料,测定其达到时间和此时的平均空刀面磨损量(VB)。另外,将平均空刀面磨损量(VB)达到100μm的时间,作为工具寿命的标准,进行评价。对于试验过程中耐磨损性优良的,因为磨损速度极小,供试材料不足,从旋转切削时间—工具磨损量的曲线上,利用回归法,计算出平均空刀面磨损量(VB)达到100μm的时间。评价切屑处理性,从排出的切屑中采取200个以上的代表性样品,测定其重量,计算出每单位重量的个数。Under the above conditions, after 30 minutes of rotary cutting, the average void wear (VB) of the cutting tool was measured. For the test materials whose average void wear amount reaches 200 μm or more within 30 minutes, measure the reaching time and the average void wear amount (VB) at this time. In addition, the time taken for the average void wear amount (VB) to reach 100 μm was evaluated as a standard of tool life. For those with excellent wear resistance during the test, because the wear rate is extremely small and the test materials are insufficient, from the curve of rotary cutting time-tool wear, using the regression method, the average wear of the empty cutter face (VB) is calculated to reach 100µm time. To evaluate chip handling properties, 200 or more representative samples were collected from the discharged chips, their weight was measured, and the number of chips per unit weight was calculated.

(3)热加工性的评价(3) Evaluation of hot workability

按如下进行热加工性评价。即,为了模拟利用连续铸造设备的制造条件,和上述一样到作150kg的钢块,将靠近表面部分的Di/8(Di为钢块直径)的位置作为中心,从钢块高度方向上采取直径10mm,长度130mm的高温拉伸试验棒。将固定间距取为110mm,对其直接通电加热到1250℃,保持5分钟后,以10℃/秒的冷却速度冷却到1100℃,再保持10秒钟后,以10-3/秒的应变速度进行拉伸试验。测定此时断裂部分的断面收缩率,评价热加工性。The hot workability evaluation was performed as follows. That is, in order to simulate the manufacturing conditions using continuous casting equipment, a steel block of 150 kg is made as above, and the position of Di/8 (Di is the diameter of the steel block) near the surface part is taken as the center, and the diameter is taken from the height direction of the steel block. 10mm, high temperature tensile test bar with a length of 130mm. Take the fixed distance as 110mm, heat it directly to 1250°C, keep it for 5 minutes, then cool it to 1100°C at a cooling rate of 10°C/s, and keep it for 10 seconds, then use a strain rate of 10 -3 /s Do a tensile test. The reduction of area of the fractured portion at this time was measured to evaluate hot workability.

以上的试验结果示于表3和表4。图2示出了切屑处理性和工具寿命的关系,图3示出了热拉伸试验的断面收缩值和工具寿命的关系。The above test results are shown in Table 3 and Table 4. Fig. 2 shows the relationship between chip handling and tool life, and Fig. 3 shows the relationship between the shrinkage of area value of the hot tensile test and the tool life.

表3     钢No.   断面收缩率(%)   30分钟后工具磨损量(μm) 达到VB=100μm的时间(分) 切屑处理性(个数/g) 备注     1     65.8     21     179*     15     2     55.2     35     110     12     3     54.8     32     181*     16     4     56.9     35     117     17     5     58.8     29     119     21     6     52.7     38     109     15     7     56.7     35     116     14     8     55.8     41     101     18     9     57.7     44     94     13     10     61.0     42     108     12     11     57.8     38     111     11     12     63.2     34     121     15     13     61.5     39     96     14     14     60.6     39     94     13     15     52.1     27     128     23     16     56.9     25     156     11     17     52.0     26     135     13     18     59.7     29     139     19     19     53.4     24     155     16     20     55.9     28     130     17     21     52.1     42     102     15     22     50.4     35     113     15     23     63.6     44     91     14     24     65.8     38     97     13     25     54.9     45     90     18     26     58.8     40     93     17     27     53.8     39     95     14     28     57.6     36     102     14     29     54.3     39     90     18 table 3 Steel No. rate of reduction in area(%) Tool wear after 30 minutes (μm) Time to reach VB=100μm (minutes) Chip disposal (number/g) Remark 1 65.8 twenty one 179 * 15 2 55.2 35 110 12 3 54.8 32 181 * 16 4 56.9 35 117 17 5 58.8 29 119 twenty one 6 52.7 38 109 15 7 56.7 35 116 14 8 55.8 41 101 18 9 57.7 44 94 13 10 61.0 42 108 12 11 57.8 38 111 11 12 63.2 34 121 15 13 61.5 39 96 14 14 60.6 39 94 13 15 52.1 27 128 twenty three 16 56.9 25 156 11 17 52.0 26 135 13 18 59.7 29 139 19 19 53.4 twenty four 155 16 20 55.9 28 130 17 twenty one 52.1 42 102 15 twenty two 50.4 35 113 15 twenty three 63.6 44 91 14 twenty four 65.8 38 97 13 25 54.9 45 90 18 26 58.8 40 93 17 27 53.8 39 95 14 28 57.6 36 102 14 29 54.3 39 90 18

*因供试料不足,从工具磨损曲线上用回归法计算出的 * Calculated by regression method from the tool wear curve due to insufficient samples

表4     钢No.   断面收缩率(%)   30分钟后工具磨损量(μm) 达到VB=100μm的时间(分) 切屑处理性(个数/g) 备注     30     47.8     97     36     9     31     49.6     99     30     8     32     55.4     165     17     1     33     51.8     210(20min)     9     6     34     45.4     68     72     10     35     54.4     90     39     2     36     64.2     72     69     15     37     52.8     93     36     12     38     67.9     89     38     14     39     57.5     104     29     7     40     65.3     138     20     5     41     5.1     39     102     5   锻造裂痕     42     4.3     48     61     9   锻造裂痕     43     65.7     205(20min)     8     10     44     13.6     103     28     18   锻造裂痕     45     52.0     245(15min)     7     13     46     55.3     205(20min)     9     17     47     54.7     275(15min)     6     10 Table 4 Steel No. rate of reduction in area(%) Tool wear after 30 minutes (μm) Time to reach VB=100μm (minutes) Chip disposal (number/g) Remark 30 47.8 97 36 9 31 49.6 99 30 8 32 55.4 165 17 1 33 51.8 210(20min) 9 6 34 45.4 68 72 10 35 54.4 90 39 2 36 64.2 72 69 15 37 52.8 93 36 12 38 67.9 89 38 14 39 57.5 104 29 7 40 65.3 138 20 5 41 5.1 39 102 5 forging crack 42 4.3 48 61 9 forging crack 43 65.7 205(20min) 8 10 44 13.6 103 28 18 forging crack 45 52.0 245(15min) 7 13 46 55.3 205(20min) 9 17 47 54.7 275(15min) 6 10

表2中钢No.30和31是复合易切钢、No.32是硫易切钢,是目前被切削性最优良的钢(相当于JIS SUM23L或SUM23的材料)。从表3、表4和图2可知,即使与这些比较,本发明的钢具有更优良的抑制工具磨损的效果。进而,钢No.1-29的本发明钢,煅造时完全不会引起裂痕,模拟和用连续铸造设备等的实用制造,由高温拉伸试验形成的断面收缩率,如表3所示,与复合易切钢和硫易切钢相同,实用上无任何问题。Steel Nos.30 and 31 in Table 2 are composite free-cutting steels, and No.32 is sulfur free-cutting steel, which is currently the steel with the best machinability (equivalent to JIS SUM23L or SUM23 materials). As can be seen from Table 3, Table 4 and FIG. 2 , even compared with these, the steel of the present invention has a superior effect of suppressing tool wear. Furthermore, Steel No. 1-29 of the present invention steel does not cause cracks at all during forging, and the reduction of area formed by high-temperature tensile test in simulation and practical production with continuous casting equipment is shown in Table 3. Same as composite free-cutting steel and sulfur free-cutting steel, practically no problem.

而,钢No.30-47,即使是本发明中规定的条件之一,但只要超出之外的,其热压延性、工具寿命一切屑处理性中的至少一个特性,都劣于本发明钢。钢No.4和42,由于Mn和S不满足上述(2)式,热加工性变得恶化。On the other hand, Steel No. 30-47, even if it is one of the conditions specified in the present invention, as long as it exceeds the conditions, at least one of the characteristics of hot rolling, tool life, and chip disposal is inferior to the steel of the present invention. . In Steel Nos. 4 and 42, since Mn and S did not satisfy the above formula (2), hot workability deteriorated.

本发明的易切钢,尽管不含有Pb,但具有胜过以往的铅易切钢和复合易切钢任何一种钢的被切削性。这种钢,热加工性优良,可利用连续铸造法廉价制造,因此,最适宜用作各种机械部件的材料。Although the free-cutting steel of the present invention does not contain Pb, it has machinability superior to any of conventional lead free-cutting steels and composite free-cutting steels. Such steel is excellent in hot workability and can be produced at low cost by continuous casting, so it is most suitable as a material for various machine parts.

Claims (5)

1.一种低碳硫易切钢,其特征是以质量%计,含有C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,其余为Fe和杂质,Ti和S的含量满足下述(1)式,Mn/S的原子比满足下述(2)式,而且,钢中含有内部存在Ti硫化物和/或Ti碳硫化物的MnS,1. A low-carbon sulfur free-cutting steel, characterized by mass %, containing C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, Si: Below 1.0, P: 0.001-0.3%, Al: below 0.2%, O: 0.0010-0.050% and N: 0.0001-0.0200%, the rest are Fe and impurities, and the content of Ti and S satisfies the following formula (1), Mn The atomic ratio of /S satisfies the following formula (2), and the steel contains MnS with Ti sulfide and/or Ti carbosulfide inside,         Ti(质量%)/S(质量%)<1………………(1) Ti(mass%)/S(mass%)<1……………(1)         Mn/S≥1………………(2)。Mn/S≥1………………(2). 2.一种低碳硫易切钢,其特征是以质量%计,含有C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,及Se:0.001-0.01%、Te:0.001-0.01%、Bi:0.005-0.3%、Sn:0.005-0.3%、Ca:0.0005-0.01%、Mg:0.0005-0.01%和稀土类元素:0.0005-0.01%中的1种或2种以上,其余部分为Fe和杂质,Ti和S的含量满足下述(1)式,Mn和S的原子比满足下述(2)式,而且,含有内部存在Ti硫化物和/或Ti碳硫化物的MnS,2. A low-carbon sulfur free-cutting steel, characterized by mass %, containing C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, Si: Below 1.0, P: 0.001-0.3%, Al: below 0.2%, O: 0.0010-0.050%, N: 0.0001-0.0200%, and Se: 0.001-0.01%, Te: 0.001-0.01%, Bi: 0.005-0.3 %, Sn: 0.005-0.3%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01%, and rare earth elements: 0.0005-0.01%, one or more of them, and the rest are Fe and impurities, Ti and S The content satisfies the following (1) formula, the atomic ratio of Mn and S satisfies the following (2) formula, and contains MnS with Ti sulfide and/or Ti carbon sulfide inside,        Ti(质量%)/S(质量%)<1………………(1) Ti(mass%)/S(mass%)<1……………(1)        Mn/S≥1………………(2)。Mn/S≥1……………(2). 3.一种低碳硫易切钢,其特征是以质量%计,含有C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,以及Cu:0.01-1.0%、Ni:0.01-2.0%、Cr:0.01-2.5%、Mo:0.01-1.0%、V:0.005-0.5%、和Nb:0.005-0.1%中的1种或2种以上,其余为Fe和杂质,Ti和S的含量满足下述(1)式,Mn和S的原子比满足下述(2)式,而且含有内部存在Ti硫化物和/或Ti碳硫化物的MnS,3. A low-carbon sulfur free-cutting steel, characterized by mass %, containing C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, Si: 1.0 or less, P: 0.001-0.3%, Al: 0.2% or less, O: 0.0010-0.050% and N: 0.0001-0.0200%, and Cu: 0.01-1.0%, Ni: 0.01-2.0%, Cr: 0.01-2.5 %, Mo: 0.01-1.0%, V: 0.005-0.5%, and Nb: 0.005-0.1%, one or two or more, the rest are Fe and impurities, and the content of Ti and S satisfies the following formula (1) , the atomic ratio of Mn and S satisfies the following (2) formula, and contains MnS with Ti sulfide and/or Ti carbon sulfide inside,        Ti(质量%)/S(质量%)<1………………(1) Ti(mass%)/S(mass%)<1……………(1)        Mn/S≥1………………(2)。Mn/S≥1……………(2). 4.一种低碳硫易切钢,其特征是以质量%计,含有C:0.05-0.19%、Mn:0.4-2.0%、S:0.21-1.0%、Ti:0.03-0.30%、Si:1.0以下、P:0.001-0.3%、Al:0.2%以下、O:0.0010-0.050%和N:0.0001-0.0200%,及Se:0.001-0.01%、Te:0.001-0.01%、Bi:0.005-0.3%、Sn:0.005-0.3%、Ca:0.0005-0.01%、Mg:0.0005-0.01%和稀土类元素:0.0005-0.01%,中的1种或2种以上,和Cu:0.01-1.0%、Ni:0.01-2.0%、Cr:0.01-2.5%、Mo:0.01-1.0%、V:0.005-0.5%和Nb:0.005-0.1%中的1种或2种以上,其余部分为Fe和杂质,Ti和S的含量满足下述(1)式,Mn和S的原子比满足下述(2)式,而且含有内部存在Ti硫化物和/或Ti碳硫化物的MnS,4. A low-carbon sulfur free-cutting steel, characterized by mass %, containing C: 0.05-0.19%, Mn: 0.4-2.0%, S: 0.21-1.0%, Ti: 0.03-0.30%, Si: Below 1.0, P: 0.001-0.3%, Al: below 0.2%, O: 0.0010-0.050%, N: 0.0001-0.0200%, and Se: 0.001-0.01%, Te: 0.001-0.01%, Bi: 0.005-0.3 %, Sn: 0.005-0.3%, Ca: 0.0005-0.01%, Mg: 0.0005-0.01%, and rare earth elements: 0.0005-0.01%, one or more of them, and Cu: 0.01-1.0%, Ni : 0.01-2.0%, Cr: 0.01-2.5%, Mo: 0.01-1.0%, V: 0.005-0.5%, and Nb: 0.005-0.1%, one or more, the rest is Fe and impurities, Ti and the content of S satisfies the following (1) formula, the atomic ratio of Mn and S satisfies the following (2) formula, and contains MnS with Ti sulfide and/or Ti carbon sulfide inside,       Ti(质量%)/S(质量%)<1………………(1)Ti(mass%)/S(mass%)<1……………(1)       Mn/S≥1………………(2)。Mn/S≥1……………(2). 5.根据权利要求1-4中任一项中记载的低碳硫易切钢,其中Si含量小于0.1质量%。5. The low-carbon sulfur free-cutting steel according to any one of claims 1-4, wherein the Si content is less than 0.1% by mass.
CNB031034535A 2002-02-04 2003-01-30 Low-carbon free-cutting steel Expired - Fee Related CN1210432C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002026368A JP3758581B2 (en) 2002-02-04 2002-02-04 Low carbon free cutting steel
JP200226368 2002-02-04

Publications (2)

Publication Number Publication Date
CN1436875A true CN1436875A (en) 2003-08-20
CN1210432C CN1210432C (en) 2005-07-13

Family

ID=27606471

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031034535A Expired - Fee Related CN1210432C (en) 2002-02-04 2003-01-30 Low-carbon free-cutting steel

Country Status (7)

Country Link
US (1) US20030152476A1 (en)
EP (1) EP1335035B1 (en)
JP (1) JP3758581B2 (en)
KR (1) KR100513992B1 (en)
CN (1) CN1210432C (en)
DE (1) DE60300506T2 (en)
TW (1) TWI228149B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404717C (en) * 2003-10-28 2008-07-23 株式会社电装 Free-cutting steel and fuel injection system component using the same
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN101688275B (en) * 2007-06-28 2011-09-14 株式会社神户制钢所 Steel for mechanical structure excelling in machinability and process for producing the same
CN103361563A (en) * 2013-08-01 2013-10-23 上海材料研究所 Free-cutting high-hardness austenite nonmagnetic die steel and manufacturing method thereof
CN104480409A (en) * 2014-12-10 2015-04-01 无锡鑫常钢管有限责任公司 06Cr17Ni12Mo2Ti austenitic stainless steel pipe and production process thereof
CN104947006A (en) * 2015-07-01 2015-09-30 黄峰 Catalyzing wire for fuel economizer and preparation method thereof
CN106834916A (en) * 2016-12-09 2017-06-13 安徽宏翔自动化科技有限公司 A kind of alloy of high-strength corrosion-resisting
CN109023101A (en) * 2018-09-21 2018-12-18 江西樟树市兴隆特殊钢有限公司 A kind of nonmagnetic mould steel and preparation method thereof
CN109496239A (en) * 2016-07-27 2019-03-19 新日铁住金株式会社 Steel for mechanical structures
CN109778073A (en) * 2019-02-20 2019-05-21 宝钢特钢长材有限公司 A kind of Cutting free automobile synchronizer steel and preparation method thereof
CN112795848A (en) * 2021-03-22 2021-05-14 北京科技大学 A kind of free-cutting corrosion-resistant steel and preparation method thereof
CN114645217A (en) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918787B2 (en) * 2003-08-01 2007-05-23 住友金属工業株式会社 Low carbon free cutting steel
JP4516832B2 (en) * 2004-11-26 2010-08-04 清仁 石田 Free-cutting soft magnetic iron
CN100430510C (en) * 2006-01-24 2008-11-05 江苏华久特钢工具有限公司 High-performance low-cost high speed steel
JP2007289979A (en) * 2006-04-23 2007-11-08 Sanyo Special Steel Co Ltd Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
TWI391500B (en) * 2008-08-06 2013-04-01 Posco Eco-friendly pb-free free-cutting steel and manufacturing method thereof
RU2503737C1 (en) * 2012-08-06 2014-01-10 Закрытое акционерное общество "Омутнинский металлургический завод" Free-machining bismuth-containing steels
KR101536469B1 (en) * 2013-12-24 2015-07-13 주식회사 포스코 High manganese steel having excellent vibration damping ability and machinability
US10400320B2 (en) 2015-05-15 2019-09-03 Nucor Corporation Lead free steel and method of manufacturing
KR101889189B1 (en) * 2016-12-22 2018-08-16 주식회사 포스코 Ts 450mpa grade heavy guage steel sheet having excellent resistance to hydrogen induced cracking and method of manufacturing the same
KR102306264B1 (en) 2017-02-28 2021-09-29 제이에프이 스틸 가부시키가이샤 Wire rod for cutting work
CN111075114A (en) * 2019-12-27 2020-04-28 广西南宁三正工程材料有限公司 Reinforcing mesh and preparation method thereof
CN111876689B (en) * 2020-09-08 2022-05-13 鞍钢股份有限公司 Low-carbon selenium-containing free-cutting steel for instruments and manufacturing method thereof
CN113073266A (en) * 2021-03-26 2021-07-06 成都先进金属材料产业技术研究院股份有限公司 1150 MPa-grade high-strength free-cutting stainless steel and preparation method thereof
CN114480963A (en) * 2021-12-24 2022-05-13 鞍钢集团北京研究院有限公司 Environment-friendly low-carbon low-sulfur bismuth-containing free-cutting steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020917A (en) * 1973-06-26 1975-03-05
JPH11310848A (en) * 1998-04-27 1999-11-09 Sumitomo Metal Ind Ltd Continuous cast slab for high-strength free-cutting non-heat treated steel and method for producing steel
JP2003049240A (en) * 2001-06-01 2003-02-21 Daido Steel Co Ltd Free-cutting steel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404717C (en) * 2003-10-28 2008-07-23 株式会社电装 Free-cutting steel and fuel injection system component using the same
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN101688275B (en) * 2007-06-28 2011-09-14 株式会社神户制钢所 Steel for mechanical structure excelling in machinability and process for producing the same
CN103361563B (en) * 2013-08-01 2016-01-20 上海材料研究所 A kind of Cutting free high rigidity austenite nonmagnetic die steel and manufacture method thereof
CN103361563A (en) * 2013-08-01 2013-10-23 上海材料研究所 Free-cutting high-hardness austenite nonmagnetic die steel and manufacturing method thereof
CN104480409A (en) * 2014-12-10 2015-04-01 无锡鑫常钢管有限责任公司 06Cr17Ni12Mo2Ti austenitic stainless steel pipe and production process thereof
CN104947006A (en) * 2015-07-01 2015-09-30 黄峰 Catalyzing wire for fuel economizer and preparation method thereof
CN109496239A (en) * 2016-07-27 2019-03-19 新日铁住金株式会社 Steel for mechanical structures
CN106834916A (en) * 2016-12-09 2017-06-13 安徽宏翔自动化科技有限公司 A kind of alloy of high-strength corrosion-resisting
CN109023101A (en) * 2018-09-21 2018-12-18 江西樟树市兴隆特殊钢有限公司 A kind of nonmagnetic mould steel and preparation method thereof
CN109778073A (en) * 2019-02-20 2019-05-21 宝钢特钢长材有限公司 A kind of Cutting free automobile synchronizer steel and preparation method thereof
CN112795848A (en) * 2021-03-22 2021-05-14 北京科技大学 A kind of free-cutting corrosion-resistant steel and preparation method thereof
CN112795848B (en) * 2021-03-22 2021-06-25 北京科技大学 Free-cutting corrosion-resistant steel and preparation method thereof
CN114645217A (en) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof
CN114645217B (en) * 2022-03-25 2023-02-28 宝武杰富意特殊钢有限公司 Free-cutting steel and preparation method thereof

Also Published As

Publication number Publication date
CN1210432C (en) 2005-07-13
EP1335035A1 (en) 2003-08-13
TWI228149B (en) 2005-02-21
KR20030066448A (en) 2003-08-09
DE60300506D1 (en) 2005-05-25
KR100513992B1 (en) 2005-09-09
TW200302872A (en) 2003-08-16
DE60300506T2 (en) 2006-02-23
US20030152476A1 (en) 2003-08-14
EP1335035B1 (en) 2005-04-20
JP2003226933A (en) 2003-08-15
JP3758581B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
CN1210432C (en) Low-carbon free-cutting steel
CN1169992C (en) Mechanical structural steel
KR101162743B1 (en) Steel for machine structure excelling in machinability and strength property
JP4267260B2 (en) Steel with excellent machinability
JP4473928B2 (en) Hot-worked steel with excellent machinability and impact value
CN1806061A (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
CN1078912C (en) High strength and high tenacity non-heat-treated steel having excellent machinability
CN1711367A (en) Steel excellent in machinability and manufacturing method thereof
CN1950532A (en) Seamless steel pipe and method for production thereof
JP2005054227A (en) Low carbon free cutting steel
JP5181619B2 (en) Hardened steel with excellent machinability and hardenability
CN1745188A (en) Steel pipe for bearing parts, manufacturing method and cutting method thereof
CN1761769A (en) Non-quenched/tempered connecting rod and method of producing the same
JP2005325407A (en) Cold working tool steel
CN1846010A (en) Non-quenched and tempered steel for nitrocarburizing
CN1468971A (en) Non-modified crankshaft
JP5370073B2 (en) Alloy steel for machine structural use
JP5472063B2 (en) Free-cutting steel for cold forging
JP5556778B2 (en) Free-cutting steel for cold forging
JP2007107020A (en) Bn free-cutting steel excellent in tool life
JP2005054216A (en) Steel material superior in machinability and fatigue characteristics, and manufacturing method therefor
JP4281501B2 (en) Steel material excellent in machinability and fatigue characteristics and method for producing the same
JP4487749B2 (en) Constant velocity joint inner ring and manufacturing method thereof
JP4213948B2 (en) Steel with excellent machinability
JP4348164B2 (en) Steel with excellent machinability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NIPPON STEEL + SUMITOMO METAL CORPORATION

Free format text: FORMER OWNER: CHUGAI SEIYAKU KABUSHIKI KAISHA

Effective date: 20130328

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130328

Address after: Tokyo, Japan

Patentee after: Nippon Steel Corporation

Address before: Osaka Japan

Patentee before: Sumitomo Metal Industries Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Nippon Steel Corporation

Address before: Tokyo, Japan

Patentee before: Nippon Steel Corporation

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Nippon Iron & Steel Corporation

Address before: Tokyo, Japan

Patentee before: Nippon Steel Corporation

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050713

Termination date: 20210130