[go: up one dir, main page]

CN1408349A - Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method - Google Patents

Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method Download PDF

Info

Publication number
CN1408349A
CN1408349A CN 02137011 CN02137011A CN1408349A CN 1408349 A CN1408349 A CN 1408349A CN 02137011 CN02137011 CN 02137011 CN 02137011 A CN02137011 A CN 02137011A CN 1408349 A CN1408349 A CN 1408349A
Authority
CN
China
Prior art keywords
foot
mouth disease
polypeptide
amino acid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 02137011
Other languages
Chinese (zh)
Other versions
CN1287858C (en
Inventor
郑兆鑫
严维耀
李光金
陈维灶
赵凯
刘明秋
张青
易建中
徐泉兴
盛祖恬
郭杰炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN 02137011 priority Critical patent/CN1287858C/en
Publication of CN1408349A publication Critical patent/CN1408349A/en
Application granted granted Critical
Publication of CN1287858C publication Critical patent/CN1287858C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明是一种口蹄疫基因工程多肽疫苗的设计、构建及其制备方法。本发明采用家畜IgG重链恒定区或β-半乳糖苷酶作为载体蛋白,将其与口蹄疫病毒抗原多肽相连,制备出新型口蹄疫基因工程多肽疫苗。用PCR方法扩增出家畜IgG重链恒定区基因,用化学合成法合成编码口蹄疫病毒VP1蛋白中具有抗原性的氨基酸肽段基因,并将这些基因以多拷贝的方式串联,再与IgG重链恒定区基因或β-半乳糖苷酶基因连接形成融合基因。将此融合基因插入表达载体,经发酵制备成疫苗。该疫苗安全性好,效果显著,对家畜有理想的保护效果。The invention relates to the design, construction and preparation method of a foot-and-mouth disease genetic engineering polypeptide vaccine. The invention adopts livestock IgG heavy chain constant region or beta-galactosidase as carrier protein, connects it with foot-and-mouth disease virus antigen polypeptide, and prepares novel foot-and-mouth disease genetic engineering polypeptide vaccine. The IgG heavy chain constant region gene of livestock was amplified by PCR method, and the antigenic amino acid peptide gene encoding the VP1 protein of foot-and-mouth disease virus was synthesized by chemical synthesis, and these genes were connected in multiple copies, and then combined with the IgG heavy chain The constant region gene or the β-galactosidase gene are connected to form a fusion gene. The fusion gene is inserted into an expression vector and fermented to prepare a vaccine. The vaccine has good safety, remarkable effect and ideal protective effect on livestock.

Description

一种口蹄疫基因工程多肽疫苗及其制备方法A kind of foot-and-mouth disease genetic engineering polypeptide vaccine and preparation method thereof

技术领域technical field

本发明属遗传工程领域,具体涉及一种以易感动物自体免疫球蛋白IgG重链恒定区或β-半乳糖苷酶为载体蛋白的口蹄疫基因工程多肽疫苗及其制备方法。The invention belongs to the field of genetic engineering, and specifically relates to a foot-and-mouth disease genetically engineered polypeptide vaccine with susceptible animal autoimmune globulin IgG heavy chain constant region or beta-galactosidase as carrier protein and a preparation method thereof.

背景技术Background technique

国际兽医局将口蹄疫列为A类传染病之首。口蹄疫是当今世界上最为严重的家畜传染病,主要危害猪、牛、羊等偶蹄类动物。多年来,口蹄疫在世界范围内大规模爆发和流行,给畜牧业造成巨大经济损失。预防接种是控制该病毒的主要手段。在各种预防口蹄疫的疫苗中,基因工程疫苗由于安全性好,易于保存,效果稳定等优点具有广阔的应用前景。The International Veterinary Bureau ranks foot-and-mouth disease as the first class A infectious disease. Foot-and-mouth disease is the most serious livestock infectious disease in the world today, mainly harming pigs, cattle, sheep and other cloven-hoofed animals. For many years, foot-and-mouth disease has broken out and become popular in a large scale all over the world, causing huge economic losses to animal husbandry. Vaccination is the main means of controlling the virus. Among various vaccines for preventing foot-and-mouth disease, genetically engineered vaccines have broad application prospects due to their advantages of good safety, easy preservation and stable effect.

与口蹄疫病毒(foot-and-mouth disease virus,FMDV)免疫原性密切相关的是其外壳蛋白VP1基因,该蛋白中含有口蹄疫病毒主要抗原表位。目前较为成熟的口蹄疫毒基因工程疫苗为重组多肽疫苗,即将口蹄疫病毒主要抗原表位与一大分子载体蛋白相连,构成一融合蛋白,进而有效地诱发动物产生免疫应答。Closely related to the immunogenicity of foot-and-mouth disease virus (FMDV) is its coat protein VP1 gene, which contains the main epitope of foot-and-mouth disease virus. At present, the relatively mature foot-and-mouth disease virus genetic engineering vaccine is a recombinant polypeptide vaccine, which links the main antigenic epitope of foot-and-mouth disease virus with a large molecule of carrier protein to form a fusion protein, which can effectively induce immune response in animals.

发明内容Contents of the invention

本发明的目的是提出以自体IgG或β-半乳糖苷酶作为载体、制备安全可靠的口蹄疫多肽疫苗及其制备方法。The object of the invention is to propose a safe and reliable foot-and-mouth disease polypeptide vaccine and a preparation method thereof using autologous IgG or beta-galactosidase as a carrier.

本发明提出的口蹄疫多肽疫苗,是以家畜自体免疫球蛋白IgG重链恒定区或β-半乳糖苷酶为载体蛋白,口蹄疫病毒抗原多肽连接在载体蛋白的适当位置(如N端、C端或在中间位置),构成融合蛋白。其中口蹄疫病毒抗原多肽采用口蹄疫病毒VP1蛋白中具有抗原性的氨基酸肽段,并将其组成多拷贝的串联结构,在肽段连接处加入氨基酸多肽作为接头。The foot-and-mouth disease polypeptide vaccine that the present invention proposes is to take domestic animal autologous immunoglobulin IgG heavy chain constant region or β-galactosidase as carrier protein, and foot-and-mouth disease virus antigen polypeptide is connected in the appropriate position of carrier protein (such as N terminal, C terminal or in the middle position), constituting the fusion protein. The foot-and-mouth disease virus antigen polypeptide adopts the antigenic amino acid peptide segment in the foot-and-mouth disease virus VP1 protein, and forms a multi-copy serial structure, and adds amino acid peptides as linkers at the peptide segment connections.

为了保证融合蛋白能够更好地被动物机体免疫系统识别和递呈,作为该融合蛋白的载体蛋白可以是家畜自体IgG重链恒定区或者β-半乳糖苷酶的部分区段或全长序列,并且可以是家畜IgG重链恒定区全长氨基酸序列的同源序列、IgG重链恒定区第30位至328位共299个氨基酸肽段的同源序列、或者是β-半乳糖苷酶从第1位至第583位共583个氨基酸肽段的同源序列。家畜自体IgG重链恒定区全长329个氨基酸,不同偶蹄类动物来源的IgG重链恒定区核苷酸同源性大于85%,氨基酸同源性大于90%;而β-半乳糖苷酶全长1024个氨基酸,不同大肠杆菌的β-半乳糖苷酶核苷酸同源性大于90%,氨基酸同源性大于95%。为了保证插入的抗原多肽的免疫原性,可选取不同的抗原插入位点,将具有串联结构的口蹄疫病毒抗原多肽插入其中。而抗原多肽可以连接在载体蛋白的适当位置,如N端、C端或者在中间位置插入。In order to ensure that the fusion protein can be better recognized and presented by the immune system of the animal body, the carrier protein of the fusion protein can be a partial or full-length sequence of the constant region of the heavy chain of the IgG heavy chain of the livestock itself or β-galactosidase, And it can be the homologous sequence of the full-length amino acid sequence of the constant region of the IgG heavy chain of livestock, the homologous sequence of a total of 299 amino acid peptides from the 30th to the 328th of the IgG heavy chain constant region, or the β-galactosidase from the The homologous sequence of 583 amino acid peptides from position 1 to position 583. The full length of the IgG heavy chain constant region of domestic animals is 329 amino acids. The nucleotide homology of the IgG heavy chain constant region from different artiodactyls is greater than 85%, and the amino acid homology is greater than 90%. The length is 1024 amino acids, the nucleotide homology of β-galactosidase of different Escherichia coli is greater than 90%, and the amino acid homology is greater than 95%. In order to ensure the immunogenicity of the inserted antigen polypeptide, different antigen insertion sites can be selected, and the foot-and-mouth disease virus antigen polypeptide with a tandem structure is inserted therein. The antigenic polypeptide can be connected to the appropriate position of the carrier protein, such as N-terminal, C-terminal or inserted in the middle.

本发明中,抗原多肽采用口蹄疫病毒VP1蛋白中具有抗原性的氨基酸肽段,同时采用多拷贝串联结构。对于具有抗原性的氨基酸肽段,如O型口蹄疫病毒VP1蛋白21ヘ40、141ヘ160、200ヘ213位氨基酸肽段,并且可以前后浮动适当个数的氨基酸残基,如可以采用35ヘ53、134ヘ1 58、141ヘ158、135ヘ144、188ヘ209位等氨基酸肽段;口蹄疫病毒抗原表位中的氨基酸序列部分具有保守性,如141ヘ160AA中的RGD位点,而非保守部分以流行毒株基因序列为依据;通常如21ヘ40AA中有1-4个氨基酸可被置换,141ヘ160AA中有1-5个氨基酸可被置换,200ヘ213AA中有1-2个氨基酸可被置换,其原则是这些氨基酸肽段均具有抗原性。而对于抗原多肽的串联结构,如141ヘ160AA-21ヘ40AA(或200ヘ213AA)-141ヘ160AA的三拷贝串联结构,也可以采用其他多拷贝(如二拷贝、四拷贝等)的串联结构;串联结构中,具有抗原性的某一氨基酸肽段可以重复使用,所处的位置可以各异。具有抗原性的氨基酸肽段连接形成串联结构时,在肽段连接处加入适当氨基酸多肽作为接头,接头中的氨基酸种类和数目可以根据需要进行改变,其原则是与IgG重链恒定区形成融合蛋白后能表现足够的抗原性。In the present invention, the antigenic polypeptide adopts the antigenic amino acid peptide segment in the foot-and-mouth disease virus VP1 protein, and simultaneously adopts a multi-copy serial structure. For amino acid peptides with antigenicity, such as 21ヘ40, 141160, 200ヘ213 amino acid peptides of O-type foot-and-mouth disease virus VP1 protein, and an appropriate number of amino acid residues can be floated back and forth, such as 35ヘ53 , 1341 58, 141ヘ158, 135ヘ144, 188ヘ209 and other amino acid peptides; the amino acid sequence part of the FMD virus epitope is conservative, such as the RGD site in 141ヘ160AA, not conservative Partly based on the gene sequence of popular strains; usually, 1-4 amino acids can be replaced in 21ヘ40AA, 1-5 amino acids can be replaced in 141ヘ160AA, and 1-2 amino acids can be replaced in 200ヘ213AA Can be replaced, the principle is that these amino acid peptides are all antigenic. For the tandem structure of the antigenic polypeptide, such as the three-copy tandem structure of 141ヘ160AA-21ヘ40AA (or 200ヘ213AA)-141ヘ160AA, other multi-copy (such as two-copy, four-copy, etc.) tandem structures can also be used ; In the tandem structure, a certain amino acid peptide segment with antigenicity can be used repeatedly, and the positions can be different. When the antigenic amino acid peptides are connected to form a tandem structure, an appropriate amino acid polypeptide is added as a linker at the link of the peptides. The type and number of amino acids in the linker can be changed as needed. The principle is to form a fusion protein with the IgG heavy chain constant region After that, it can show sufficient antigenicity.

实施例中将口蹄疫病毒抗原多肽连接在载体蛋白的C端,构成融合蛋白,其结构示意如下:

Figure A0213701100051
In the embodiment, the foot-and-mouth disease virus antigen polypeptide is connected to the C-terminus of the carrier protein to form a fusion protein, and its structure is shown as follows:
Figure A0213701100051

为了使抗原多肽表达成融合蛋白后能够更好地体现抗原性,我们适当选取了IgG重链恒定区和β-半乳糖苷酶中的某一区段作为载体蛋白,如后述实施例中分别采用猪IgG重链恒定区第30位至328位共299个氨基酸肽段和大肠杆菌β-半乳糖苷酶从第1位至第583位共583个氨基酸肽段作为载体蛋白;FMDV抗原多肽则采用O型口蹄疫病毒VP1蛋白中3个主要抗原表位,即21ヘ40、141ヘ160、200ヘ213三个氨基酸肽段,并将其组成141ヘ160AA-21ヘ40AA(或200ヘ213AA)-141ヘ160AA的串联结构,在肽段连接处加入适当氨基酸多肽作为接头,如后述实施例中采用141ヘ160AA(“Y”)-Pro-Gly(“M”)-21ヘ40AA(“X”)-Gln-Phe-Glu-Leu-Glu-Phe-Met-Val-Pro-Ser-Arg(“N”)-141ヘ160AA(“Y”)的抗原多肽结构,前后两个接头分别是2个和11个氨基酸。In order to better reflect the antigenicity after expressing the antigenic polypeptide into a fusion protein, we appropriately selected a certain segment of the constant region of the IgG heavy chain and β-galactosidase as the carrier protein, as described in the examples below. A total of 299 amino acid peptides from the 30th to 328th positions of the porcine IgG heavy chain constant region and a total of 583 amino acid peptides from the 1st to the 583rd positions of Escherichia coli β-galactosidase were used as carrier proteins; the FMDV antigen polypeptide was Three main antigenic epitopes in the VP1 protein of type O foot-and-mouth disease virus, namely 21ヘ40, 141160, and 200ヘ213 three amino acid peptides, were used to form 141ヘ160AA-21ヘ40AA (or 200ヘ213AA) The tandem structure of -141ヘ160AA, adding appropriate amino acid polypeptides as linkers at the connection of peptide segments, as in the following examples using 141ヘ160AA("Y")-Pro-Gly("M")-21ヘ40AA(" X")-Gln-Phe-Glu-Leu-Glu-Phe-Met-Val-Pro-Ser-Arg ("N")-141ヘ160AA ("Y") antigen polypeptide structure, the two linkers before and after are respectively 2 and 11 amino acids.

本发明在实施例中,采用具有串联结构的FMDV抗原基因序列是:SEQ ID NO.1,其编码的抗原多肽氨基酸序列为SEQ ID NO.2;SEQ ID NO.3,其编码的抗原多肽氨基酸序列为SEQ ID NO.4;SEQ ID NO.5,其编码的抗原多肽氨基酸序列为SEQID NO.6。其结构特征如下:In the embodiment of the present invention, the sequence of the FMDV antigen gene with a tandem structure is: SEQ ID NO.1, the amino acid sequence of the antigen polypeptide encoded by it is SEQ ID NO.2; SEQ ID NO.3, the amino acid sequence of the antigen polypeptide encoded by it The sequence is SEQ ID NO.4; SEQ ID NO.5, and the amino acid sequence of the encoded antigen polypeptide is SEQ ID NO.6. Its structural characteristics are as follows:

抗原基因的两端各有一个拷贝的编码141ヘ160位氨基酸的DNA序列,中间是一个拷贝的编码21ヘ40位或者200ヘ213位氨基酸的DNA序列;连接这些序列的两个接头分别是2个和11个氨基酸。At both ends of the antigen gene, there is a copy of the DNA sequence encoding 141160 amino acids, and in the middle is a copy of the DNA sequence encoding 21ヘ40 or 200ヘ213 amino acids; the two linkers connecting these sequences are 2 and 11 amino acids.

在基因水平上将SEQ ID NO.1连接在IgG重链恒定区的C末端,形成融合基因,表达获得融合蛋白。该融合蛋白具有下列特点:(1)在基因水平上,载体蛋白基因大小约为900bp,抗原肽基因大小约为240bp,整个融合基因大小约为1.2kb。(2)在蛋白水平上,载体蛋白只包含猪IgG重链恒定区第30位到第328位氨基酸肽段,即299个氨基酸;抗原多肽为上述的串联肽段,其中21ヘ40位氨基酸肽段是一T细胞表位,141ヘ160位氨基酸肽段一B细胞表位。整个融合蛋白分子量约为50kDa。At the gene level, SEQ ID NO.1 is connected to the C-terminal of the IgG heavy chain constant region to form a fusion gene, and the fusion protein is obtained by expression. The fusion protein has the following characteristics: (1) At the gene level, the size of the carrier protein gene is about 900bp, the size of the antigen peptide gene is about 240bp, and the size of the entire fusion gene is about 1.2kb. (2) At the protein level, the carrier protein only contains the 30th to 328th amino acid peptide of the porcine IgG heavy chain constant region, that is, 299 amino acids; the antigenic polypeptide is the above-mentioned tandem peptide, of which 21ヘ40 amino acid peptide The segment is a T cell epitope, and the 141160 amino acid peptide segment is a B cell epitope. The molecular weight of the whole fusion protein is about 50kDa.

在基因水平上将SEQ ID NO.3和SEQ ID NO.5连接在β-半乳糖苷酶的C末端,形成融合基因,表达获得融合蛋白。该融合蛋白具有下列特点:(1)在基因水平上,载体蛋白基因大小约为1.8kb,抗原肽基因大小约为200-240bp,整个融合基因大小约为2kb。(2)在蛋白水平上,载体蛋白只包含β-半乳糖苷酶从第1位至第583位共583个氨基酸肽段;抗原蛋白为上述的串联多肽,整个融合蛋白分子量约为72kDa。At the gene level, connect SEQ ID NO.3 and SEQ ID NO.5 to the C-terminus of β-galactosidase to form a fusion gene, and express to obtain a fusion protein. The fusion protein has the following characteristics: (1) At the gene level, the size of the carrier protein gene is about 1.8kb, the size of the antigen peptide gene is about 200-240bp, and the size of the entire fusion gene is about 2kb. (2) At the protein level, the carrier protein only contains 583 amino acid peptides from position 1 to position 583 of β-galactosidase; the antigenic protein is the above-mentioned tandem polypeptide, and the molecular weight of the entire fusion protein is about 72kDa.

本发明还提出了上述口蹄疫基因工程多肽疫苗的制备方法,包括基因制备、重组和融合蛋白的表达等,其步骤如下:用RT-PCR方法从动物脾脏中扩增出IgG重链恒定区基因,β-半乳糖苷酶基因采用表达载体中的自带基因。用化学合成方法合成编码VP1蛋白中具有抗原性的氨基酸肽段的DNA序列,在DNA水平上连接成完整抗原基因,将此基因与上述载体蛋白基因相连,构成融合基因;然后将上述融合基因插入表达质粒载体,并转入大肠杆菌菌株。将菌株置于细菌培养基中,培养温度在30℃到37℃之间,培养时间8到25小时,然后收集菌体;将菌体破碎,收集融合蛋白,将融合蛋白配成油乳剂,即可获得新型口蹄疫多肽疫苗。The present invention also proposes a preparation method of the above-mentioned foot-and-mouth disease genetically engineered polypeptide vaccine, including gene preparation, recombination and fusion protein expression, etc., the steps are as follows: amplify the IgG heavy chain constant region gene from the animal spleen by RT-PCR method, The β-galactosidase gene adopts its own gene in the expression vector. Synthesize the DNA sequence encoding the antigenic amino acid peptide segment in the VP1 protein by chemical synthesis, link it into a complete antigen gene at the DNA level, link this gene with the above-mentioned carrier protein gene to form a fusion gene; then insert the above-mentioned fusion gene Expression plasmid vectors were transformed into E. coli strains. Place the bacterial strain in a bacterial culture medium, cultivate the temperature between 30°C and 37°C, and cultivate for 8 to 25 hours, then collect the bacteria; break the bacteria, collect the fusion protein, and formulate the fusion protein into an oil emulsion, namely A new type of foot-and-mouth disease peptide vaccine is available.

本发明提出的新型疫苗用于免疫易感动物,预防口蹄疫的发生。考虑到使疫苗发挥最大的免疫效应以及保持最长的效应持久性,我们提出:以某种动物的IgG重链恒定区为载体蛋白的口蹄疫多肽疫苗最适用于预防该种动物口蹄疫。如以猪的IgG重链恒定区为载体蛋白的口蹄疫多肽疫苗最适用于预防猪口蹄疫;而以牛的IgG重链恒定区为载体蛋白的口蹄疫多肽疫苗最适用于预防牛口蹄疫。同时亦可交叉应用,即以一类动物的IgG重链恒定区为载体蛋白的口蹄疫多肽疫苗也适用于免疫他类动物预防口蹄疫。The novel vaccine proposed by the invention is used to immunize susceptible animals and prevent the occurrence of foot-and-mouth disease. In consideration of maximizing the immune effect of the vaccine and maintaining the longest duration of effect, we propose that the FMD polypeptide vaccine using the IgG heavy chain constant region of a certain animal as the carrier protein is most suitable for preventing FMD in this animal. For example, the foot-and-mouth disease polypeptide vaccine with the IgG heavy chain constant region of pigs as the carrier protein is most suitable for preventing porcine foot-and-mouth disease; while the foot-and-mouth disease polypeptide vaccine with the IgG heavy chain constant region of cattle as the carrier protein is most suitable for preventing bovine foot-and-mouth disease. At the same time, it can also be cross-applied, that is, the foot-and-mouth disease polypeptide vaccine using the IgG heavy chain constant region of one type of animal as the carrier protein is also suitable for immunizing other types of animals to prevent foot-and-mouth disease.

该新型疫苗根据构建的抗原基因(或多肽)序列不同用于预防不同类型的口蹄疫。同样考虑疫苗的免疫效应,我们提出:以O型FMDV基因序列为依据构建的疫苗最适用于预防O型口蹄疫;以A型FMDV基因序列为依据构建的疫苗最适用于预防A型口蹄疫;同理,以AsiaI等各型FMDV基因序列为依据构建的疫苗最适用于预防各自类型的口蹄疫。The novel vaccine is used to prevent different types of foot-and-mouth disease according to the sequence of the constructed antigen gene (or polypeptide). Also considering the immune effect of the vaccine, we propose that the vaccine constructed based on the O-type FMDV gene sequence is most suitable for preventing type O foot-and-mouth disease; the vaccine constructed based on the A-type FMDV gene sequence is most suitable for preventing type A foot-and-mouth disease; similarly , the vaccines constructed on the basis of the gene sequences of various types of FMDV such as AsiaI are most suitable for preventing respective types of foot-and-mouth disease.

该新型疫苗的又一特征是:具有交叉免疫力。即以某一型内某一毒株的FMDV基因序列为依据构建的疫苗广泛适用于在各种易感动物中预防同型口蹄疫病毒不同毒株的感染。Another feature of the novel vaccine is that it has cross-immunity. That is, the vaccine constructed on the basis of the FMDV gene sequence of a certain strain in a certain type is widely applicable to preventing the infection of different strains of the same type of foot-and-mouth disease virus in various susceptible animals.

本发明提出的疫苗在制备和检验过程中,采用了PCR、基因克隆与序列测定、序列分析、基因重组等基因工程技术与方法。并用SDS-PAGE蛋白检测方法,Western blotting、T细胞增殖实验、豚鼠及猪、牛抗病毒能力检测等免疫学方法检测了该疫苗的功效。During the preparation and inspection process of the vaccine proposed by the present invention, genetic engineering techniques and methods such as PCR, gene cloning and sequence determination, sequence analysis, and gene recombination are used. The efficacy of the vaccine was tested by immunological methods such as SDS-PAGE protein detection method, Western blotting, T cell proliferation experiment, guinea pig, pig and cattle anti-virus ability detection.

实施例(一)中,以IgG为载体蛋白构建猪口蹄疫O型多肽疫苗pXZ860。其结果如下:In the embodiment (1), the porcine foot-and-mouth disease O-type polypeptide vaccine pXZ860 was constructed with IgG as the carrier protein. The result is as follows:

SDS-PAGE电泳检测证明表达获得的融合蛋白分子量与预期一致(见图1)。图中“1”是蛋白质分子量marker;“2、3、4”分别是空白受体菌Top10、空白质粒pTrcHis转化Top10和重组质粒pXZ860转化Top10的蛋白表达条带。在条带“4”中可见分子量与预期一致的融合蛋白。SDS-PAGE electrophoresis detection proved that the molecular weight of the fusion protein obtained by expression was consistent with expectations (see Figure 1). "1" in the figure is the protein molecular weight marker; "2, 3, 4" are the protein expression bands of the blank recipient strain Top10, the blank plasmid pTrcHis transformed Top10 and the recombinant plasmid pXZ860 transformed Top10, respectively. A fusion protein with the expected molecular weight is seen in lane "4".

Westem blotting检测证明该融合蛋白具有很强的抗原性,能与标准抗体发生特异的抗原抗体反应(见图2)。图2中“1、2、3、4”是与“图1”中的“1、2、3、4”相对应。其中条带“4”中可见特异的免疫印迹。Western blotting test proves that the fusion protein has strong antigenicity and can react with the standard antibody for specific antigen-antibody reaction (see Figure 2). "1, 2, 3, 4" in Figure 2 corresponds to "1, 2, 3, 4" in "Figure 1". Specific immunoblotting can be seen in band "4".

用该疫苗免疫豚鼠,检测T细胞增殖。结果证明该疫苗能有效地诱导动物T细胞增殖,进而诱导细胞免疫和体液免疫(见图3)。图中的横坐标表示标准抗原稀释倍数X,纵坐标表示刺激指数SI(注:刺激指数以实验组的cpm值与不加抗原的阴性对照组cpm值的比值表示;cpm是用液闪计数仪测定的每分钟脉冲数)。可见将标准抗原稀释160倍就能刺激经疫苗免疫过的豚鼠T细胞增殖(SI>2表示阳性反应)。Guinea pigs were immunized with the vaccine, and T cell proliferation was detected. The results proved that the vaccine can effectively induce the proliferation of animal T cells, and then induce cellular immunity and humoral immunity (see Figure 3). The abscissa in the figure represents the standard antigen dilution factor X, and the ordinate represents the stimulation index SI (note: the stimulation index is represented by the ratio of the cpm value of the experimental group to the cpm value of the negative control group without antigen; Measured pulses per minute). It can be seen that diluting the standard antigen 160 times can stimulate the proliferation of T cells in guinea pigs immunized by the vaccine (SI > 2 indicates a positive reaction).

用该疫苗免疫豚鼠,一定时间后以O型口蹄疫病毒进行攻击。结果证明该疫苗对豚鼠具有很好的保护效果,保护率达100%(见表1)。Guinea pigs were immunized with the vaccine and challenged with type O foot-and-mouth disease virus after a certain period of time. The results prove that the vaccine has a good protective effect on guinea pigs, and the protection rate reaches 100% (see Table 1).

用该疫苗免疫猪,一定时间后以O型口蹄疫病毒进行攻击。结果同样证明该疫苗对猪具有很好的保护效果,保护率达100%(见表2)。Pigs are immunized with this vaccine and challenged with O-type foot-and-mouth disease virus after a certain period of time. The results also proved that the vaccine has a good protective effect on pigs, and the protection rate reaches 100% (see Table 2).

                  表1 pXZ860苗对豚鼠的免疫保护效果疫苗    疫苗免疫剂量    病毒攻击剂量    实验豚鼠数    发病豚鼠数    保护率免疫组  400ug           50ID50/0.1ml    6             0            100%对照组  0               50ID50/0.1ml    6             6            0Table 1 The immune protection effect of pXZ860 vaccine on guinea pigs Vaccine immunization dose Virus challenge dose Experimental guinea pig number Diseased guinea pig number Protection rate Immune group 400ug 50ID 50 /0.1ml 6 0 100% control group 0 50ID 50 /0.1ml 6 6 0

                  表2 pXZ860苗对猪的免疫保护效果疫苗    疫苗免疫剂量    病毒攻击剂量    攻击猪头数    发病猪头数    保护率免疫组  7mg             100ID50/2ml     5             0            100%对照组  0               100ID50/2ml     5             5            0Table 2 The immune protection effect of pXZ860 vaccine on pigs Vaccine immunization dose Virus challenge dose Number of challenged pigs Number of diseased pigs Protection rate Immune group 7mg 100ID 50 /2ml 5 0 100% control group 0 100ID 50 /2ml 5 5 0

实施例(二)中,以β-半乳糖苷酶为载体蛋白构建牛口蹄疫0型多肽疫苗pXZ880。其结果如下:In Example (2), the bovine foot-and-mouth disease type 0 polypeptide vaccine pXZ880 was constructed with β-galactosidase as the carrier protein. The result is as follows:

SDS-PAGE电泳检测证明表达获得的融合蛋白分子量与预期一致(见图4)。图中“1、1’”是蛋白质分子量marker;“2、3、4”分别是重组质粒pXZ880和空白质粒pWR590转化大肠杆菌JM101,以及空白受体菌JM 101的蛋白表达条带,在条带“2”中箭头所示可见分子量与预期一致的融合蛋白。“2’”是包含体电泳条带;“3’”为融合蛋白纯化条带,该融合蛋白经纯化后纯度大于95%。SDS-PAGE electrophoresis detection proved that the molecular weight of the fusion protein obtained by expression was consistent with expectations (see Figure 4). "1, 1'" in the figure are protein molecular weight markers; "2, 3, 4" are the protein expression bands of Escherichia coli JM101 transformed with recombinant plasmid pXZ880 and blank plasmid pWR590, and the blank recipient strain JM 101, respectively. The fusion protein with the expected molecular weight can be seen indicated by the arrow in "2". "2'" is the inclusion body electrophoresis band; "3'" is the fusion protein purification band, and the purity of the fusion protein after purification is greater than 95%.

Western blotting检测证明该融合蛋白具有很强的抗原性,能与标准抗体发生特异的抗原抗体反应(见图4)。图中“5、6、7”是与“2、3、4”相对应的Western blotting反应条带;“4’、5’、6’”是与“3’、3、4”对应的Western blotting反应条带。其中条带“5”和“4’”中可见特异的免疫印迹。Western blotting test proves that the fusion protein has strong antigenicity and can react with the standard antibody specifically (see Figure 4). "5, 6, 7" in the figure are the Western blotting reaction bands corresponding to "2, 3, 4"; "4', 5', 6'" are the Western blotting reaction bands corresponding to "3', 3, 4" blotting reaction bands. Specific western blots can be seen in bands "5" and "4'".

用该疫苗免疫豚鼠,检测T细胞增殖。结果证明该疫苗能有效地诱导动物T细胞增殖,进而诱导细胞免疫和体液免疫(见图5)。图中的横坐标表示标准抗原稀释倍数X,纵坐标表示刺激指数SI(注:刺激指数以实验组的cpm值与不加抗原的阴性对照组cpm值的比值表示;cpm是用液闪计数仪测定的每分钟脉冲数)。可见将标准抗原稀释160倍就能刺激经疫苗免疫过的豚鼠T细胞增殖(SI>2表示阳性反应)。Guinea pigs were immunized with the vaccine, and T cell proliferation was detected. The results proved that the vaccine can effectively induce the proliferation of animal T cells, and then induce cellular immunity and humoral immunity (see Figure 5). The abscissa in the figure represents the standard antigen dilution factor X, and the ordinate represents the stimulation index SI (note: the stimulation index is represented by the ratio of the cpm value of the experimental group to the cpm value of the negative control group without antigen; Measured pulses per minute). It can be seen that diluting the standard antigen 160 times can stimulate the proliferation of T cells in guinea pigs immunized by the vaccine (SI > 2 indicates a positive reaction).

用纯化的融合蛋白配制疫苗,并用该疫苗免疫豚鼠,一定时间后以O型口蹄疫病毒进行攻击。结果证明含100ug融合蛋白剂量的疫苗对豚鼠的保护率就可达80%(见表3)。The purified fusion protein was used to prepare a vaccine, and the vaccine was used to immunize guinea pigs, and after a certain period of time, the guinea pigs were challenged with O-type foot-and-mouth disease virus. The result proves that the vaccine containing 100ug of fusion protein dose has a protection rate of 80% for guinea pigs (see Table 3).

用包含体直接配制疫苗,并用一定剂量该疫苗免疫牛,一定时间后以牛源O型口蹄疫病毒进行攻击。结果同样证明该疫苗对牛具有较好的保护效果,保护率达66.7%(见表4)。The vaccine is prepared directly with the inclusion body, and a certain dose of the vaccine is used to immunize cattle, and after a certain period of time, it is challenged with the cattle-derived O-type foot-and-mouth disease virus. The results also prove that the vaccine has a good protective effect on cattle, with a protection rate of 66.7% (see Table 4).

                  表3 pXZ880苗对豚鼠的免疫保护作用疫苗    疫苗免疫剂量    病毒攻击剂量    攻击豚鼠头数    发病豚鼠头数    保护率免疫组  100ug           50ID50/0.2ml   5               1               80%对照组  0               50ID50/0.2ml   5               5               0Table 3 The immune protection effect of pXZ880 vaccine on guinea pigs Vaccine immunization dose Virus challenge dose Number of guinea pigs attacked Number of guinea pigs with disease Protection rate Immune group 100ug 50ID 50 /0.2ml 5 1 80% control group 0 50ID 50 /0.2ml 5 5 0

                 表4 pXZ880苗对牛的免疫保护作用疫苗    疫苗免疫剂量    病毒攻击剂量    攻击牛头数    发病牛头数    保护率免疫组  10mg            100ID50/2ml    3             1             66.7%对照组  0               100ID50/2ml    2             2             0Table 4 The immune protection effect of pXZ880 vaccine on cattle Vaccine immunization dose Virus challenge dose Number of challenged cows Number of sick cows Protection rate Immune group 10mg 100ID 50 /2ml 3 1 66.7% Control group 0 100ID 50 /2ml 2 2 0

实施例(三)中,以β-半乳糖苷酶为载体蛋白构建猪口蹄疫O型多肽疫苗pXZ870。其结果如下:In Example (3), the porcine foot-and-mouth disease O-type polypeptide vaccine pXZ870 was constructed with β-galactosidase as the carrier protein. The result is as follows:

SDS-PAGE电泳检测证明表达获得的融合蛋白分子量与预期一致(见图6)。图中“1”是蛋白质分子量marker;“2、3、4”分别是重组质粒pXZ870和空白质粒pWR590转化大肠杆菌JM101,以及空白受体菌JM 101的蛋白表达条带,在条带“2”中箭头所示可见分子量与预期一致的融合蛋白。SDS-PAGE electrophoresis detection proved that the molecular weight of the fusion protein obtained by expression was consistent with expectations (see Figure 6). "1" in the figure is the protein molecular weight marker; "2, 3, 4" are the protein expression bands of the recombinant plasmid pXZ870 and the blank plasmid pWR590 transformed into Escherichia coli JM101, and the blank recipient strain JM 101, respectively. In the band "2" The fusion protein with the expected molecular weight can be seen as indicated by the middle arrow.

Westem blotting检测证明该融合蛋白具有较强的抗原性,能与标准抗体发生特异的抗原抗体反应(见图6)。图中“5、6、7”是与“2、3、4”相对应的Western blotting反应条带,其中条带“5”中可见特异的免疫印迹。Western blotting test proves that the fusion protein has strong antigenicity and can have specific antigen-antibody reaction with the standard antibody (see Figure 6). "5, 6, 7" in the figure are the Western blotting reaction bands corresponding to "2, 3, 4", and specific immunoblotting can be seen in band "5".

用包含体直接配制疫苗,并用一定剂量该疫苗免疫猪,一定时间后以猪源O型口蹄疫病毒进行攻击。结果显示,该疫苗对猪具有很好的保护效果,保护率达100%(见表5)。Vaccines are prepared directly with inclusion bodies, pigs are immunized with a certain dose of the vaccine, and after a certain period of time, they are challenged with porcine-origin O-type foot-and-mouth disease virus. The results showed that the vaccine had a good protective effect on pigs, with a protection rate of 100% (see Table 5).

                   表5 pXZ870苗对猪的免疫保护效果疫苗    疫苗免疫剂量    病毒攻击剂量    攻击猪头数    发病猪头数    保护率免疫组  7mg             100ID50/2ml    5             0             100%对照组  0               100ID50/2ml    5             5             0Table 5 The immune protection effect of pXZ870 vaccine on pigs Vaccine immunization dose Virus challenge dose Number of challenged pigs Number of diseased pigs Protection rate Immune group 7mg 100ID 50 /2ml 5 0 100% control group 0 100ID 50 /2ml 5 5 0

附图说明Description of drawings

图1为多肽疫苗pXZ860的SDS-PAGE电泳图示。Fig. 1 is a schematic diagram of SDS-PAGE electrophoresis of the polypeptide vaccine pXZ860.

图2为多肽疫苗pXZ860的Western blotting检测图示。Figure 2 is a schematic diagram of Western blotting detection of the polypeptide vaccine pXZ860.

图3为多肽疫苗pXZ860免疫豚鼠后检测T细胞图示。Fig. 3 is a diagram showing the detection of T cells after immunization of guinea pigs with polypeptide vaccine pXZ860.

图4中图4(a)为多肽疫苗pXZ860的SDS-PAGE电泳检测图示,图4(b)为该疫苗的Western blotting检测图示。Fig. 4(a) in Fig. 4 is an SDS-PAGE electrophoresis detection diagram of the polypeptide vaccine pXZ860, and Fig. 4(b) is a Western blotting detection diagram of the vaccine.

图5为多肽疫苗pXZ860免疫豚鼠后检测T细胞图示。Fig. 5 is a diagram showing the detection of T cells after immunization of guinea pigs with polypeptide vaccine pXZ860.

图6为多肽疫苗pX870的SDS-PAGE电泳和Western blotting检测图示。Figure 6 is a schematic diagram of SDS-PAGE electrophoresis and Western blotting detection of the polypeptide vaccine pX870.

具体实施方式Detailed ways

实施例(一):以抗猪口蹄疫O型多肽疫苗pXZ860为例具体描述本发明。Embodiment (1): The present invention is specifically described by taking the anti-foot-and-mouth disease O-type polypeptide vaccine pXZ860 as an example.

用RT-PCR一步法从猪脾脏中扩增IgG重链恒定区基因。IgG heavy chain constant region gene was amplified from pig spleen by RT-PCR in one step.

化学合成猪O型口蹄疫病毒VP1基因中编码21ヘ40、141ヘ160位氨基酸肽段的DNA序列以及接头氨基酸肽段的DNA序列,串联成为141ヘ160AA-21ヘ40AA-141ヘ160AA的一级结构(SEQ ID NO.1)。将质粒载体pTrcHis以限制性内切酶酶切,将该片段与上述IgG重链恒定区基因以及串联抗原基因混合,在T4 ligase等作用下发生连接反应。获得的重组DNA,转化大肠杆菌Top10菌株的感受态细胞,培养于氨苄青霉素平板中,37℃倒置过夜。随意挑取转化子,分别以酶切鉴定,DNA测序分析鉴定转化子,从而获得阳性克隆。序列分析证明插入的基因序列与设计相符。将此克隆命名为pXZ860。Chemically synthesize the DNA sequence encoding the 21ヘ40, 141ヘ160 amino acid peptides and the DNA sequence of the linker amino acid peptides in the VP1 gene of porcine O-type foot-and-mouth disease virus, and concatenate them into the first level of 141ヘ160AA-21ヘ40AA-141ヘ160AA Structure (SEQ ID NO.1). Digest the plasmid vector pTrcHis with restriction endonucleases, mix the fragment with the above-mentioned IgG heavy chain constant region gene and tandem antigen gene, and perform ligation reaction under the action of T4 ligase and the like. The obtained recombinant DNA was transformed into competent cells of the Escherichia coli Top10 strain, cultured on an ampicillin plate, and inverted overnight at 37°C. Randomly pick transformants, identify them by restriction enzyme digestion, and identify transformants by DNA sequencing analysis, so as to obtain positive clones. Sequence analysis proved that the inserted gene sequence was consistent with the design. This clone was named pXZ860.

将pXZ860以含50ug/ml氨苄青霉素的LB培养液为发酵液,37℃搅拌速度6000rpm通气培养2小时,加入IPTG诱导10小时后收集菌体。再将菌体悬浮于破壁液中,用95W功率的超声仪破壁5分钟。超声后5000rpm离心20分钟收集包涵体。并将包含体配成油乳剂,即可获得一种新型的猪口蹄疫O型基因工程多肽疫苗。The pXZ860 was fermented with LB broth containing 50ug/ml ampicillin, cultured at 37°C with agitation speed of 6000rpm for 2 hours, and induced by adding IPTG for 10 hours to collect the bacteria. Then the bacteria were suspended in the wall-breaking solution, and the wall was broken for 5 minutes with a 95W power ultrasonic instrument. After sonication, the inclusion bodies were collected by centrifugation at 5000 rpm for 20 minutes. And formulating the inclusion body into oil emulsion can obtain a novel O-type genetically engineered polypeptide vaccine for porcine foot-and-mouth disease.

该疫苗所涉及的融合蛋白SDS-PAGE电泳检测结果见附图1所示;Western blotting检测结果见附图2所示;该疫苗免疫豚鼠后检测T细胞增殖实验,结果见附图3所示;抗病毒能力检测结果见表1和表2。The fusion protein SDS-PAGE electrophoresis detection result involved in the vaccine is shown in Figure 1; the Western blotting test result is shown in Figure 2; the T cell proliferation experiment is detected after the vaccine is immunized with guinea pigs, and the results are shown in Figure 3; The test results of anti-virus ability are shown in Table 1 and Table 2.

实施例(二):以抗牛口蹄疫O型多肽疫苗pXZ880为例进一步描述本发明。Embodiment (2): The present invention is further described by taking the anti-bovine foot-and-mouth disease O-type polypeptide vaccine pXZ880 as an example.

用化学方法合成VP1基因中编码21ヘ40、141ヘ160位氨基酸片段的DNA序列以及接头DNA序列,串联成为141ヘ160AA-21ヘ40AA-141ヘ160AA的一级结构(SEQ IDNO.3),将其插入表达载体pWR590。取1ug pWR590用EcoR I和BamH I双酶切,于37℃反应两小时,电泳割胶回收大片段。将此大片段DNA与上述串联片段混合,在T4 ligase等作用下发生连接反应。获得的重组DNA转化大肠杆菌感受态细胞,培养于氨苄青霉素平板中,37℃倒置过夜。挑取白色转化子,以BstEII单酶切、EcoR I和BamH I双酶切、PCR扩增、DNA测序分析鉴定转化子,从而获得阳性克隆。序列分析证明插入的基因序列与设计序列相符。将此克隆命名为pXZ880。The DNA sequence encoding the 21ヘ40 and 141ヘ160 amino acid fragments in the VP1 gene and the linker DNA sequence were synthesized by chemical methods, and connected in series to form the primary structure of 141ヘ160AA-21ヘ40AA-141ヘ160AA (SEQ ID NO.3), Insert it into the expression vector pWR590. Take 1 ug of pWR590 and digest it with EcoR I and BamH I, react at 37°C for two hours, and recover large fragments by electrophoresis and slicing. This large fragment of DNA is mixed with the above-mentioned tandem fragments, and a ligation reaction occurs under the action of T4 ligase and the like. The obtained recombinant DNA was transformed into Escherichia coli competent cells, cultured on ampicillin plates, and inverted overnight at 37°C. Pick the white transformants, and identify the transformants by single digestion with BstEII, double digestion with EcoR I and BamH I, PCR amplification, and DNA sequencing analysis to obtain positive clones. Sequence analysis proved that the inserted gene sequence was consistent with the designed sequence. This clone was named pXZ880.

将pXZ880以含50ug/ml氨苄青霉素的LB培养液为发酵液,37℃搅拌速度6000rpm通气培养2小时,加入IPTG诱导10小时后收集菌体。再将菌体悬浮于破壁液中,用95W功率的超声仪破壁5分钟。超声后5000rpm离心20分钟收集包涵体。将包涵体裂解,经Sepharose层析柱进行纯化。最后将包含体或纯化的融合蛋白配成油乳剂即可获得新型的牛口蹄疫O型基因工程多肽疫苗。The pXZ880 was cultured with LB culture medium containing 50ug/ml ampicillin as the fermentation medium at 37°C with agitation speed of 6000rpm for 2 hours, and was induced by adding IPTG for 10 hours to collect the bacteria. Then the bacteria were suspended in the wall-breaking solution, and the wall was broken for 5 minutes with a 95W power ultrasonic instrument. After sonication, the inclusion bodies were collected by centrifugation at 5000 rpm for 20 minutes. The inclusion bodies were lysed and purified by Sepharose chromatography. Finally, the inclusion body or the purified fusion protein is formulated into an oil emulsion to obtain a novel bovine foot-and-mouth disease O-type genetically engineered polypeptide vaccine.

实施例(三):以抗猪口蹄疫O型多肽疫苗pXZ870为例进一步描述本发明。Embodiment (3): Taking the anti-foot-and-mouth disease O-type polypeptide vaccine pXZ870 as an example to further describe the present invention.

用化学方法合成VP1基因中编码200ヘ213、141ヘ160位氨基酸片段的DNA序列以及接头DNA序列,串联成为141ヘ160AA-200ヘ213AA-141ヘ160AA的一级结构(SEQID NO.5),将其插入表达载体pWR590。与实施例(二)类似的方法构建和筛选阳性克隆。序列分析证明插入的基因序列与设计序列相符。将此克隆命名为pXZ870。The DNA sequence encoding the 200ヘ213, 141ヘ160 amino acid fragments in the VP1 gene and the linker DNA sequence were synthesized by chemical methods, and connected in series to form a primary structure of 141ヘ160AA-200ヘ213AA-141ヘ160AA (SEQID NO.5), Insert it into the expression vector pWR590. Positive clones were constructed and screened in a similar manner to Example (2). Sequence analysis proved that the inserted gene sequence was consistent with the designed sequence. This clone was named pXZ870.

将pXZ870以含50ug/ml氨苄青霉素的LB培养液为发酵液,37℃搅拌速度6000rpm通气培养2小时,加入IPTG诱导10小时后收集菌体。再将菌体悬浮于破壁液中,用95W功率的超声仪破壁5分钟。超声后5000rpm离心20分钟收集包涵体。将包涵体配成油乳剂,即可获得一种新型的猪口蹄疫O型基因工程多肽疫苗。The pXZ870 was fermented with LB broth containing 50ug/ml ampicillin, cultured with aeration at 37°C at a stirring speed of 6000rpm for 2 hours, and induced by adding IPTG for 10 hours, and the cells were collected. Then the bacteria were suspended in the wall-breaking solution, and the wall was broken for 5 minutes with a 95W power ultrasonic instrument. After sonication, the inclusion bodies were collected by centrifugation at 5000 rpm for 20 minutes. A novel O-type genetically engineered polypeptide vaccine for porcine foot-and-mouth disease can be obtained by formulating the inclusion body into an oil emulsion.

本发明涉及的序列如下:The sequences involved in the present invention are as follows:

SEQ ID NO.1:SEQ ID NO.1:

GTG AGC AAC GTG AGG GGT GAC CTT CAA GTG TTG GCT CAG AAG GCA GAA AGA GTTGTG AGC AAC GTG AGG GGT GAC CTT CAA GTG TTG GCT CAG AAG GCA GAA AGA GTT

CAC TCG TTG CAC TCC CCA CTG GAA GTT CAC AAC CGA GTC TTC CGT CTT TCT CAACAC TCG TTG CAC TCC CCA CTG GAA GTT CAC AAC CGA GTC TTC CGT CTT TCT CAA

CTG CCC CCC GGT GAG ACA CAG GTC CAG AGA CGC CAG CAC ACG GAT ATC TCG TTTCTG CCC CCC GGT GAG ACA CAG GTC CAG AGA CGC CAG CAC ACG GAT ATC TCG TTT

GAC GGG GGG CCA CTC TGT GTC CAG GTC TCT GCG GTC GTG TGC CTA TAG AGC AAAGAC GGG GGG CCA CTC TGT GTC CAG GTC TCT GCG GTC GTG TGC CTA TAG AGC AAA

ATA CTA GAC AGA TTT GTG CAG TTT GAG CTG GAG TTT ATG GTG CCC AGC AGG GTGATA CTA GAC AGA TTT GTG CAG TTT GAG CTG GAG TTT ATG GTG CCC AGC AGG GTG

TAT GAT CTG TCT AAA CAC GTC AAA CTC GAC CTC AAA TAC CAC GGG TCG TCC CACTAT GAT CTG TCT AAA CAC GTC AAA CTC GAC CTC AAA TAC CAC GGG TCG TCC CAC

AGC AAC GTG AGG GGT GAC CTT CAA GTG TTG GCT CAG AAG GCA GAA AGA GTT CTGAGC AAC GTG AGG GGT GAC CTT CAA GTG TTG GCT CAG AAG GCA GAA AGA GTT CTG

TCG TTG CAC TCC CCA CTG GAA GTT CAC AAC CGA GTC TTC CGT CTT TCT CAA GACTCG TTG CAC TCC CCA CTG GAA GTT CAC AAC CGA GTC TTC CGT CTT TCT CAA GAC

CCCCCC

GGGGGG

SEQ ID NO.2:SEQ ID NO.2:

VSNVRGDLQVLAQKAERVLPPGETQVQRRQHTDISFILDRFVQFELEFMVPSRVSNVRGDLQVLAQKAERVLPSEQ ID NO.3:GTT ACC AAC GTT CGT GGT GAC CTG CAG GTT CTG GCT CAG AAA GCT GCTCAA TGG TTG CAA GCA CCA CTG GAC GTC CAA GAC CGA GTC TTT CGA CGACGT ACC CTG CCG CCG GGT GAA ACC CAG GTT CAG CGT CGT CAG CAC ACCGCA TGG GAC GGC GGC CCA CTT TGG GTC CAA GTC GCA GCA GTC GTG TGGGAC GTT TCT TTC ATC CTG GAC CGT TTC GTT CAG TTC GAA CTG GAG TTCCTG CAA AGA AAG TAG GAC CTG GCA AAG CAA GTC AAG CTT GAC CTC AAGATG GTT CCG TCT CGT GTT ACC AAC GTT CGT GGT GAC CTG CAG GTT CTGTAC CAA GGC AGA GCA CAA TGG TTG CAA GCA CCA CTG GAC GTC CAA GACGCT CAG AAA GCT GCT CGT ACC CTG CCGCGA GTC TTT CGA CGA GCA TGG TAC GGCSEQ ID NO.4:VTNVRGDLQVLAQKAARTLPPGETQVQRRQHTDVSFILDRFVQFELEFMVPSRVTNVRGDLQVLAQKAARTLPSEQ ID NO.5:GTA TCT AAC AAA CGT GGT GAC CTG CAG GTA CTT GCT CAG AAA GCT GAA CGT GCTCAT AGA TTG TTT GCA CCA CTG GAC GTC CAT GAA CGA GTC TTT CGA CTT GCA CGACTG CCG CCC GGT CGT CAC AAA CAG AAA ATC GTA GCT CCG GCT AAA CAG CTG CTGGAC GGC GGG CCA GCA GTG TTT GTC TTT TAG CAT CGA GGC CGA TTT GTC GAC GACCAA TTC GAG CTG GAA TTC ATG GTA CCC TCT CGT GTA TCT AAC AAA CGT GGT GACGTT AAG CTC GAC CTT AAG TAC CAT GGG AGA GCA CAT AGA TTG TTT GCA CCA CTGCTG CAG GTA CTT GCT CAG AAA GCT GAA CGT GCT CTG CCGGAC GTC CAT GAA CGA GTC TTT CGA CTT GCA CGA GAC GGCSEQ ID NO.6:VSNKRGDLQVLAQKAERALPPGRHKQKIVAPAKQLLQFELEFMVPSRVSNKRGDLQVLAQKAERALPVSNVRGDLQVLAQKAERVLPPGETQVQRRQHTDISFILDRFVQFELEFMVPSRVSNVRGDLQVLAQKAERVLPSEQ ID NO.3:GTT ACC AAC GTT CGT GGT GAC CTG CAG GTT CTG GCT CAG AAA GCT GCTCAA TGG TTG CAA GCA CCA CTG GAC GTC CAA GAC CGA GTC TTT CGA CGACGT ACC CTG CCG CCG GGT GAA ACC CAG GTT CAG CGT CGT CAG CAC ACCGCA TGG GAC GGC GGC CCA CTT TGG GTC CAA GTC GCA GCA GTC GTG TGGGAC GTT TCT TTC ATC CTG GAC CGT TTC GTT CAG TTC GAA CTG GAG TTCCTG CAA AGA AAG TAG GAC CTG GCA AAG CAA GTC AAG CTT GAC CTC AAGATG GTT CCG TCT CGT GTT ACC AAC GTT CGT GGT GAC CTG CAG GTT CTGTAC CAA GGC AGA GCA CAA TGG TTG CAA GCA CCA CTG GAC GTC CAA GACGCT CAG AAA GCT GCT CGT ACC CTG CCGCGA GTC TTT CGA CGA GCA TGG TAC GGCSEQ ID NO.4:VTNVRGDLQVLAQKAARTLPPGETQVQRRQHTDVSFILDRFVQFELEFMVPSRVTNVRGDLQVLAQKAARTLPSEQ ID NO.5: GTA TCT AAC AAA CGT GGT GAC CTG CAG GTA CTT GCT CAG AAA GCT GAA CGT GCTCAT AGA TTG TTT GCA CCA CTG GAC GTC CAT GAA CGA GTC TTT CGA CTT GCA CGACTG CCG CCC AT AA CT GGT ACGT C CCG GCT AAA CAG CTG CTGGAC GGC GGG CCA GCA GTG TTT GTC TTT TAG CAT CGA GGC CGA TTT GTC GAC GACCAA TTC GAG CTG GAA TTC ATG GTA CCC TCT CGT GTA TCT AAC AAA CGT GGT GACGTT AAG CTC GAC CTT AAG TAC CAT GGG AGA GCA CAT AGA TTG TTT GCA CCA CTGCTG CAG GTA CTT GCT CAG AAA GCT GAA CGT GCT CTG CCGGAC GTC CAT GAA CGA GTC TTT CGA CTT GCA CGA GAC GGCSEQ ID NO.6:VSNKRGDLQVLAQKAERALPPGRHKQKIVAPAKQLLQFELEFMVPSRVSNKRGDLQVLAQKAERALP

Claims (12)

1、新型口蹄疫基因工程多肽疫苗,其特征在于以家畜自体IgG或细菌的β-半乳糖苷酶为载体蛋白,口蹄疫病毒抗原多肽连接在载体蛋白的末端,构成一融合蛋白,其中抗原多肽采用口蹄疫病毒VP1蛋白中具有抗原性的氨基酸肽段,并将其组成多拷贝的串联结构,在肽段连接处加入氨基酸多肽作为接头。1. The novel foot-and-mouth disease genetically engineered polypeptide vaccine is characterized in that the autologous IgG of domestic animals or the β-galactosidase of bacteria are used as the carrier protein, and the foot-and-mouth disease virus antigen polypeptide is connected to the end of the carrier protein to form a fusion protein, wherein the antigen polypeptide adopts foot-and-mouth disease There are antigenic amino acid peptides in the virus VP1 protein, and they are formed into a multi-copy tandem structure, and amino acid polypeptides are added as linkers at the junctions of the peptides. 2、根据权利要求1所述的多肽疫苗,其特征在于融合蛋白的载体蛋白是家畜IgG重链恒定区329个氨基酸全长序列,或第30位至328位共299个氨基酸肽段。2. The polypeptide vaccine according to claim 1, characterized in that the carrier protein of the fusion protein is the full-length sequence of 329 amino acids of the heavy chain constant region of livestock IgG, or a total of 299 amino acid peptides from position 30 to position 328. 3、根据权利要求1所述的多肽疫苗,其特征在于融合蛋白的载体蛋白是β-半乳糖苷酶从第1位至第583位共583个氨基酸肽段。3. The polypeptide vaccine according to claim 1, characterized in that the carrier protein of the fusion protein is a peptide segment of 583 amino acids from the 1st to the 583rd position of β-galactosidase. 4、根据权利要求2和3所述的多肽疫苗,其特征在于融合蛋白的载体蛋白可以是家畜IgG重链恒定区全长氨基酸序列的同源序列、IgG重链恒定区第30位至328位共299个氨基酸肽段的同源序列,或者是β-半乳糖苷酶从第1位至第583位共583个氨基酸肽段的同源序列。4. The polypeptide vaccine according to claims 2 and 3, characterized in that the carrier protein of the fusion protein can be the homologous sequence of the full-length amino acid sequence of the constant region of the heavy chain of livestock IgG, the 30th to 328th position of the constant region of the IgG heavy chain A homologous sequence of a total of 299 amino acid peptides, or a homologous sequence of a total of 583 amino acid peptides from position 1 to position 583 of β-galactosidase. 5、根据权利要求1所述的多肽疫苗,其特征在于抗原多肽采用如下串联结构:Y-M-X-N-Y或者Y-M-Z-N-Y,其中,同一个串联结构的“X”、“Y”、“Z”肽段来源于同一型口蹄疫病毒VP1蛋白序列,并且“X”、“Y”、“Z”肽段分别代表口蹄疫O型病毒VP1蛋白21ヘ40、141ヘ160、200ヘ213位氨基酸肽段,或者口蹄疫A、AsiaI型病毒表面蛋白的相应氨基酸肽段,“M”是“Pro-Gly”二肽接头,“N”是“Gln-Phe-Glu-Leu-Glu-Phe-Met-Val-Pro-Ser-Arg”十一肽接头。5. The polypeptide vaccine according to claim 1, characterized in that the antigen polypeptide adopts the following tandem structure: Y-M-X-N-Y or Y-M-Z-N-Y, wherein the "X", "Y" and "Z" peptides of the same tandem structure are derived from the same type Foot-and-mouth disease virus VP1 protein sequence, and "X", "Y", and "Z" peptides represent the 21ヘ40, 141ヘ160, 200ヘ213 amino acid peptides of foot-and-mouth disease type O virus VP1 protein, or foot-and-mouth disease A, AsiaI Corresponding amino acid peptides of viral surface proteins, "M" is "Pro-Gly" dipeptide linker, "N" is "Gln-Phe-Glu-Leu-Glu-Phe-Met-Val-Pro-Ser-Arg" ten A peptide linker. 6、根据权利要求5所述的多肽疫苗,其特征在于“X”、“Y”、“Z”肽段可以前后浮动适当个数的氨基酸残基:采用35ヘ53、134ヘ158、141ヘ158、135ヘ144、188ヘ209位氨基酸肽段。6. The polypeptide vaccine according to claim 5, characterized in that the "X", "Y", and "Z" peptide segments can float an appropriate number of amino acid residues: 35ヘ53, 134ヘ158, 141ヘ158, 135ヘ144, 188ヘ209 amino acid peptides. 7、根据权利要求5或6所述的多肽疫苗,其特征在于“X”、“Y”、“Z”肽段中的氨基酸可因预防不同的口蹄疫变异毒株的需要进行调整:“X”肽段中有1-4个氨基酸可被置换,“Y”肽段中有1-5个氨基酸可被置换,“Z”肽段中有1-2个氨基酸可被置换。7. The polypeptide vaccine according to claim 5 or 6, characterized in that the amino acids in the "X", "Y" and "Z" peptide segments can be adjusted according to the needs of preventing different mutant strains of foot-and-mouth disease: "X" 1-4 amino acids in the peptide can be substituted, 1-5 amino acids in the "Y" peptide can be substituted, and 1-2 amino acids in the "Z" peptide can be substituted. 8、根据权利要求1-3之一所述的多肽疫苗,其特征在于抗原多肽连接在载体蛋白的C端。8. The polypeptide vaccine according to any one of claims 1-3, characterized in that the antigenic polypeptide is linked to the C-terminus of the carrier protein. 9、根据权利要求1所述的多肽疫苗,其特征在于抗原多肽基因序列为:SEQ IDNO.1,其编码的抗原多肽氨基酸序列为SEQ ID NO.2,SEQ ID NO.3,其编码的抗原多肽氨基酸序列为SEQ ID NO.4,SEQ ID NO.5,其编码的抗原多肽氨基酸序列为SEQ ID NO.6。9. The polypeptide vaccine according to claim 1, characterized in that the antigen polypeptide gene sequence is: SEQ ID NO.1, the amino acid sequence of the encoded antigen polypeptide is SEQ ID NO.2, SEQ ID NO.3, the encoded antigen The amino acid sequence of the polypeptide is SEQ ID NO.4, SEQ ID NO.5, and the amino acid sequence of the encoded antigen polypeptide is SEQ ID NO.6. 10、如权利要求1所述的多肽疫苗的应用,其特征在于以某种易感动物的IgG重链恒定区为载体蛋白的口蹄疫病毒多肽疫苗适用于预防该种动物口蹄疫;亦可交叉应用:以一类易感动物的IgG重链恒定区为载体蛋白的口蹄疫病毒多肽疫苗也适用于免疫他类易感动物预防口蹄疫。10. The application of the polypeptide vaccine as claimed in claim 1, characterized in that the foot-and-mouth disease virus polypeptide vaccine using the IgG heavy chain constant region of a certain susceptible animal as the carrier protein is suitable for preventing the foot-and-mouth disease of this animal; it can also be cross-applied: The foot-and-mouth disease virus polypeptide vaccine using the IgG heavy chain constant region of one type of susceptible animal as a carrier protein is also suitable for immunizing other types of susceptible animals to prevent foot-and-mouth disease. 11、如权利要求1所述的多肽疫苗的应用,其特征在于以某一型口蹄疫病毒基因序列为依据构建的疫苗最适用于预防该型口蹄疫;而且具有交叉保护作用:以某一型某一毒株的口蹄疫病毒基因序列为依据构建的疫苗广泛适用于各种易感动物预防同型口蹄疫病毒不同毒株的感染。11. The application of the polypeptide vaccine as claimed in claim 1, characterized in that the vaccine constructed on the basis of a certain type of foot-and-mouth disease virus gene sequence is most suitable for preventing this type of foot-and-mouth disease; and has cross-protection: a certain type of a certain The vaccine constructed on the basis of the foot-and-mouth disease virus gene sequence of the strain is widely applicable to various susceptible animals to prevent the infection of different strains of the same type of foot-and-mouth disease virus. 12、如权利要求1所述的口蹄疫基因工程多肽疫苗的制备方法,包括基因制备、重组及融合蛋白的表达,其特征在于具体步骤如下:12. The preparation method of the foot-and-mouth disease genetically engineered polypeptide vaccine as claimed in claim 1, comprising gene preparation, recombination and expression of fusion protein, characterized in that the specific steps are as follows: (1)用RT-PCR方法从动物脾脏中扩增出IgG重链恒定区基因。用化学合成方法合成编码VP1蛋白具有抗原性的氨基酸肽段的DNA序列,在DNA水平上连接成完整抗原基因,将此基因与上述IgG重链恒定区基因或者β-半乳糖苷酶基因相连,构成融合基因;(1) IgG heavy chain constant region gene was amplified from animal spleen by RT-PCR method. The DNA sequence encoding the antigenic amino acid peptide segment of the VP1 protein is synthesized by chemical synthesis, connected to a complete antigen gene at the DNA level, and this gene is connected to the above-mentioned IgG heavy chain constant region gene or β-galactosidase gene, constitute a fusion gene; (2)将上述融合基因插入表达质粒载体,并转入大肠杆菌菌株;(2) inserting the above-mentioned fusion gene into an expression plasmid vector, and transforming it into an E. coli strain; (3)将阳性菌株在30℃到37℃之间培养8到25小时,然后收集菌体;(3) Cultivate the positive strain at 30°C to 37°C for 8 to 25 hours, and then collect the bacteria; (4)将菌体破碎收集表达的融合蛋白;(4) The fusion protein expressed is collected by crushing the bacterium; (5)将融合蛋白纯化,并乳化配制成本发明有关的多肽疫苗。(5) Purify the fusion protein and emulsify it to prepare the polypeptide vaccine related to the present invention.
CN 02137011 2002-09-16 2002-09-16 Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method Expired - Fee Related CN1287858C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02137011 CN1287858C (en) 2002-09-16 2002-09-16 Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02137011 CN1287858C (en) 2002-09-16 2002-09-16 Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method

Publications (2)

Publication Number Publication Date
CN1408349A true CN1408349A (en) 2003-04-09
CN1287858C CN1287858C (en) 2006-12-06

Family

ID=4748849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02137011 Expired - Fee Related CN1287858C (en) 2002-09-16 2002-09-16 Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method

Country Status (1)

Country Link
CN (1) CN1287858C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021035A1 (en) * 2003-09-03 2005-03-10 Shanghai Huayi Bio-Tech Lab A bivalent vaccine against fmd, its preparation methods and applications
CN1318592C (en) * 2003-11-11 2007-05-30 中国农业科学院兰州兽医研究所 O type foot and mouth disease virus DNA vaccine and its preparing method
CN100342911C (en) * 2004-01-13 2007-10-17 厦门大学 Bivalent DNA vaccine of type A and type O foot-and-mouth disease virus and its preparing process
WO2010045881A1 (en) * 2008-10-24 2010-04-29 瑞联农牧有限公司 A vaccine composition against foot-and-mouth disease and the preparation method thereof
CN101643500B (en) * 2009-05-19 2012-06-06 中牧实业股份有限公司 Asia I synthetic peptide vaccine of foot and mouth disease
CN101659695B (en) * 2008-08-27 2012-08-29 中牧实业股份有限公司 O-type aftosa synthetic peptide vaccine
CN101659696B (en) * 2008-08-27 2013-03-13 中牧实业股份有限公司 Asia I-type aftosa synthetic peptide vaccine
CN118304393A (en) * 2024-01-19 2024-07-09 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) O-type foot-and-mouth disease virus composite epitope protein vaccine for current epidemic strains and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021035A1 (en) * 2003-09-03 2005-03-10 Shanghai Huayi Bio-Tech Lab A bivalent vaccine against fmd, its preparation methods and applications
CN1318592C (en) * 2003-11-11 2007-05-30 中国农业科学院兰州兽医研究所 O type foot and mouth disease virus DNA vaccine and its preparing method
CN100342911C (en) * 2004-01-13 2007-10-17 厦门大学 Bivalent DNA vaccine of type A and type O foot-and-mouth disease virus and its preparing process
CN101659695B (en) * 2008-08-27 2012-08-29 中牧实业股份有限公司 O-type aftosa synthetic peptide vaccine
CN101659696B (en) * 2008-08-27 2013-03-13 中牧实业股份有限公司 Asia I-type aftosa synthetic peptide vaccine
WO2010045881A1 (en) * 2008-10-24 2010-04-29 瑞联农牧有限公司 A vaccine composition against foot-and-mouth disease and the preparation method thereof
US8551495B2 (en) 2008-10-24 2013-10-08 Pharos Vaccine Inc. Anti-FMD vaccine composition and preparation and use thereof
CN101643500B (en) * 2009-05-19 2012-06-06 中牧实业股份有限公司 Asia I synthetic peptide vaccine of foot and mouth disease
CN118304393A (en) * 2024-01-19 2024-07-09 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) O-type foot-and-mouth disease virus composite epitope protein vaccine for current epidemic strains and application

Also Published As

Publication number Publication date
CN1287858C (en) 2006-12-06

Similar Documents

Publication Publication Date Title
CN109867727B (en) Flagellin-fiber2 fusion protein, and preparation method and application thereof
CN110408637B (en) Grass carp bleeding yeast oral vaccine and application
CN108904788A (en) GnRH-Defensin Recombinant Castration Vaccine and Its Preparation
CN111548395A (en) Bivalent multi-epitope recombinant virus-like particle of foot-and-mouth disease virus and application thereof
CN116514999B (en) Chimeric expression foot-and-mouth disease virus antigen epitope fusion protein, self-assembled nanoparticle preparation and application thereof
JP5506792B2 (en) Chloramphenicol acetyltransferase (CAT) incomplete somatostatin fusion protein and use thereof
CN1408349A (en) Foot-and-mouth disease gene engineering polypeptide vaccine and its preparing method
CN102796200B (en) Hybrid peptide bursin adjuvant and preparation method and application thereof
CN110606875A (en) A kind of intramolecular adjuvant for preparing foot-and-mouth disease vaccine and its application and foot-and-mouth disease vaccine
CN1275649C (en) Bivalence polypeptide vaccine for resisting A type and O type foot-and-mouth disease virus and its preparation
CN107625960B (en) A kind of universal swine colibacillosis vaccine and preparation method thereof
AU2020103776A4 (en) Koi herpesvirus (khv) orf-149-based carbon nanotube supported nucleic acid vaccine and application thereof
CN104119442A (en) Bovine A-type foot-and-mouth disease multi-epitope vaccine, and preparation method and application thereof
CN1470285A (en) A kind of polypeptide vaccine against Asian type 1 foot-and-mouth disease virus and its preparation method
CN102416174A (en) Pig type O foot-and-mouth disease recombinant phage vaccine and its construction method
CN1357047A (en) Recombinant fusion protein (vaccine) compsn. contg. same and method for prodn. thereof
CN111569056A (en) Porcine rotavirus vaccine, antigen for preparing vaccine and coding sequence thereof
CN116496362A (en) Antigen combination of porcine rotavirus and application thereof
CN111138553B (en) A fusion protein and a Toxoplasma gondii subunit vaccine and vaccine composition thereof
CN117462665A (en) Preparation method and application of porcine parvovirus and epidemic encephalitis B bigeminal subunit vaccine
CN110066827B (en) Recombinant baculovirus transfer vector containing porcine pseudorabies virus gB protein gene, recombinant baculovirus and preparation method and application
CN1100881C (en) Nucleic acid vaccine for cysticercosis co-contracted by human and pig
CN107502616B (en) A kind of soluble recombinant protein CTA-CD154 and its preparation method and application
Ya et al. Immunization of male mice with a new recombinant GnRH fusion protein reduces the testicular function
CN1408434A (en) Polypeptide and DNA combined vaccine for resisting animal's foot-and-mouth disease and its preparing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061206

Termination date: 20091016