CN1402028A - Rare earth element doped glass double-clad optical fiber and preparation method thereof - Google Patents
Rare earth element doped glass double-clad optical fiber and preparation method thereof Download PDFInfo
- Publication number
- CN1402028A CN1402028A CN 02136859 CN02136859A CN1402028A CN 1402028 A CN1402028 A CN 1402028A CN 02136859 CN02136859 CN 02136859 CN 02136859 A CN02136859 A CN 02136859A CN 1402028 A CN1402028 A CN 1402028A
- Authority
- CN
- China
- Prior art keywords
- inner cladding
- core
- glass
- fibre core
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 62
- 239000013307 optical fiber Substances 0.000 title claims abstract description 46
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000005253 cladding Methods 0.000 claims abstract description 115
- 239000000835 fiber Substances 0.000 claims abstract description 61
- 239000000463 material Substances 0.000 claims abstract description 41
- 239000005365 phosphate glass Substances 0.000 claims abstract description 21
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 239000005368 silicate glass Substances 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000005491 wire drawing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 238000005352 clarification Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims 3
- 230000004927 fusion Effects 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 2
- 229910052746 lanthanum Inorganic materials 0.000 claims 2
- 150000002910 rare earth metals Chemical class 0.000 claims 2
- OENIXTHWZWFYIV-UHFFFAOYSA-N 2-[4-[2-[5-(cyclopentylmethyl)-1h-imidazol-2-yl]ethyl]phenyl]benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(C=C1)=CC=C1CCC(N1)=NC=C1CC1CCCC1 OENIXTHWZWFYIV-UHFFFAOYSA-N 0.000 claims 1
- 238000003723 Smelting Methods 0.000 claims 1
- 210000003050 axon Anatomy 0.000 claims 1
- 235000019628 coolness Nutrition 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 239000011162 core material Substances 0.000 abstract description 102
- 238000002844 melting Methods 0.000 abstract description 11
- 230000008018 melting Effects 0.000 abstract description 11
- -1 rare earth ions Chemical class 0.000 abstract description 10
- 230000008901 benefit Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000012681 fiber drawing Methods 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 8
- 238000000137 annealing Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Glass Compositions (AREA)
Abstract
Description
技术领域:Technical field:
本发明是关于一种稀土元素掺杂的玻璃双包层光纤及其制备方法,特别涉及光纤芯料材料(简称芯料)和内包层为非石英基质的多组分玻璃材料,外包层为塑料的双包层光纤及其制备方法。The invention relates to a glass double-clad optical fiber doped with rare earth elements and a preparation method thereof, in particular to an optical fiber core material (abbreviated as core material) and a multi-component glass material whose inner cladding is a non-quartz matrix, and the outer cladding is plastic Double-clad optical fiber and its preparation method.
背景技术:Background technique:
光纤激光器是由掺杂某些稀土元素的光纤和光学反馈元件构成激光谐振腔,在泵浦光的作用下,掺杂光纤介质中产生受激发射,并形成一定波长范围的激光。具有低阈值、高效率、窄线宽、可调谐性等优点。光纤激光器的特点决定了它比半导体激光器和其它大型激光器拥有更多的优势。但是最初的光纤激光器是将泵浦光直接耦合进直径小于10μm的纤芯,导致耦合效率低,光纤激光器的输出功率低,限制了它的应用范围。为了克服上述困难,近年来,国际上发展了一种双包层光纤,由于它具有较大截面和数值孔径的内包层,可以有效的吸收发散角大的泵浦光,利用包层泵浦,克服了上述单包层的缺点,使输出功率获得极大提高,大大推动了高功率光纤激光器的发展。双包层泵浦的优势在于不再要求泵浦光是单模激光,从而可以应用高功率多模半导体激光泵浦,泵浦能量不需要直接耦合进入纤芯中,而是耦合进入内包层中,并不断激发纤芯中的掺杂离子,这样对泵浦光具有较高的吸收率,导致光-光转换效率高,从而实现高功率输出。美国光炬(SDL)公司(参见在先技术[1]V.Dominc,S.MacCormack,R.Waarts.et al.110W fiber Laser.Electronics letters,1999,Vol35:1158~1160)于1999年报道了输出功率为110W的包层泵浦激光器。目前包层泵浦激光器正广泛应用于通讯、军事、工业加工、医疗、印刷等方面。A fiber laser is a laser resonator composed of an optical fiber doped with certain rare earth elements and an optical feedback element. Under the action of pump light, stimulated emission occurs in the doped fiber medium and forms laser light in a certain wavelength range. It has the advantages of low threshold, high efficiency, narrow linewidth, and tunability. The characteristics of fiber laser determine that it has more advantages than semiconductor lasers and other large lasers. However, the original fiber laser directly coupled the pump light into the fiber core with a diameter of less than 10 μm, resulting in low coupling efficiency and low output power of the fiber laser, which limited its application range. In order to overcome the above difficulties, in recent years, a double-clad fiber has been developed internationally. Because it has an inner cladding with a large cross-section and numerical aperture, it can effectively absorb pump light with a large divergence angle. The above-mentioned shortcoming of single cladding is overcome, the output power is greatly improved, and the development of high-power fiber lasers is greatly promoted. The advantage of double-clad pumping is that the pump light is no longer required to be a single-mode laser, so that high-power multi-mode semiconductor laser pumping can be applied. The pump energy does not need to be directly coupled into the fiber core, but coupled into the inner cladding. , and continuously excite the dopant ions in the fiber core, which has a high absorption rate for the pump light, resulting in high light-to-light conversion efficiency, thereby achieving high power output. American Torch (SDL) company (see prior art [1] V.Dominc, S.MacCormack, R.Waarts.et al.110W fiber Laser.Electronics letters, 1999, Vol35:1158~1160) reported in 1999 Cladding pumped laser with output power of 110W. At present, cladding pumped lasers are widely used in communication, military, industrial processing, medical treatment, printing and so on.
目前用于包层泵浦的光纤放大器或光纤激光器上的双包层光纤纤芯和内包层的材料基本上都是石英基质的。对于石英基质的双包层光纤存在以下几个不足之处:The core and inner cladding of double-clad fibers used in cladding-pumped fiber amplifiers or fiber lasers are basically silica-based. There are several deficiencies in the double-clad optical fiber of silica matrix:
(1)稀土离子在石英基质中掺杂浓度较低(<2wt%)。由于稀土离子在石英基质中易发生团簇现象,引起荧光寿命急剧降低,故只能在石英中掺杂稀土离子浓度较低的情况下运作,这样会导致双包层光纤对泵浦光吸收率较低,以至于光纤必须很长才能吸收充分,但长度越长,其损耗也越大,而且也不利于器件的小型化。美国宝丽莱(Polaroid)公司M.Muendel等人(参见在先技术[2]M.Muendel,B.Engstrom,D.Kea,et al.35-Watt CW singlemode Ytterbium FiberLaser.CLEO’97,CPD30-2/649)报道了输出功率为35W的双包层激光器,所采用的掺Yb3+的石英基质双包层光纤,其纤芯和内包层材料采用改进的化学气相沉积法(MCVD)制备,Yb3+离子掺杂浓度仅为1.5wt%,纤芯直径为8μm,横截面为矩形的内包层尺寸为170×330μm2,内包层与芯料构成的数值孔径(NA)为0.07,外包层为有机聚合物,外包层直径为500μm,外包层与内包层构成的数值孔径(NA)为0.48,为使泵浦光充分吸收,光纤长度竟达50米。(1) The doping concentration of rare earth ions in the quartz matrix is low (<2wt%). Since rare earth ions are prone to clusters in the quartz matrix, causing a sharp decrease in the fluorescence lifetime, it can only be operated when the concentration of rare earth ions doped in the quartz is low, which will lead to a double-clad optical fiber absorption rate So low that the optical fiber must be very long to absorb fully, but the longer the length, the greater the loss, and it is not conducive to the miniaturization of the device. U.S. Polaroid (Polaroid) company M.Muendel et al. (see prior art [2] M.Muendel, B.Engstrom, D.Kea, et al.35-Watt CW singlemode Ytterbium FiberLaser.CLEO'97, CPD30- 2/649) reported a double-clad laser with an output power of 35W. The Yb3+ -doped quartz matrix double-clad fiber used was prepared by improved chemical vapor deposition (MCVD) for the core and inner cladding materials. The doping concentration of Yb 3+ ions is only 1.5wt%, the core diameter is 8 μm, the inner cladding with a rectangular cross section measures 170×330 μm 2 , the numerical aperture (NA) formed by the inner cladding and the core material is 0.07, and the outer cladding It is an organic polymer, the diameter of the outer cladding is 500 μm, and the numerical aperture (NA) formed by the outer cladding and the inner cladding is 0.48. In order to fully absorb the pump light, the fiber length reaches 50 meters.
(2)稀土离子在石英基质中的增益较小。这主要是因为稀土离子在石英基质中的受激发射截面较小。(2) The gain of rare earth ions in the quartz matrix is small. This is mainly because the stimulated emission cross section of rare earth ions in the quartz matrix is small.
(3)石英基质的双包层光纤成分可调范围小。它主要在纯石英基质上外加少量其他元素(例如:P,Ge等)来改变折射率,成分变化范围较窄。(3) The adjustable range of the double-clad optical fiber composition of the quartz matrix is small. It mainly adds a small amount of other elements (such as: P, Ge, etc.) on the pure quartz substrate to change the refractive index, and the composition range is narrow.
(4)石英基质的双包层光纤制备工艺复杂,成本较高。这主要是因为石英基质的双包层光纤的预制棒是采用内部沉积法(例如:MCVD(改进的化学气相沉积法)和PCVD(等离子激活的化学气相沉积法)等)制备的,沉积过程复杂,设备要求昂贵,拉丝温度较高。如,美国专利US 6345141(参见在先技术[3]US6345141;公布日期为:Feb.5.2002;名称:Double-clad optical fiber with improvedinner cladding geometry)提出了多种不同内包层形状的石英基质的双包层光纤。(4) The preparation process of the double-clad optical fiber of the quartz matrix is complicated and the cost is high. This is mainly because the preform of the double-clad optical fiber of the quartz matrix is prepared by an internal deposition method (such as: MCVD (modified chemical vapor deposition) and PCVD (plasma-activated chemical vapor deposition), etc.), and the deposition process is complicated. , the equipment requirements are expensive, and the drawing temperature is high. For example, U.S. Patent US 6345141 (see prior art [3] US6345141; date of publication: Feb.5.2002; name: Double-clad optical fiber with improved inner cladding geometry) proposes a double-clad optical fiber with improved inner cladding geometry for a variety of quartz substrates with different inner cladding shapes. layers of fiber optics.
综上所述,石英基质的双包层光纤存在着稀土离子掺杂浓度低、增益小、成分变化范围窄、制备成本高、制备工艺复杂等几个方面的不足。To sum up, the silica-based double-clad optical fiber has several disadvantages, such as low doping concentration of rare earth ions, small gain, narrow composition range, high manufacturing cost, and complicated manufacturing process.
发明内容:Invention content:
本发明的目的在于提供一种用非石英基质的多组分玻璃制备双包层光纤,可有效克服类似于在先技术中石英基质的双包层光纤所存在的稀土离子掺杂浓度低,增益小,成分变化范围窄,制备成本高,制备工艺复杂等方面的不足。The purpose of the present invention is to provide a kind of non-quartz matrix multi-component glass to prepare double-clad optical fiber, which can effectively overcome the low doping concentration of rare earth ions and the gain Small, narrow composition range, high preparation cost, complex preparation process and other deficiencies.
本发明的双包层光纤截面形状如图1和图2所示,包括纤芯1、包围纤芯1的内包层2以及包围内包层2的外包层3三部分,三者中心轴线重合,其中纤芯1材料选取磷酸盐玻璃系统,其玻璃配方范围如表1所示,纤芯横截面为圆形,纤芯1的直径通常为φ5~60μm,其中纤芯直径为φ5~12μm的可以作为光纤激光器输出单模激光束,通常称为单模光纤,其它较大直径的纤芯称为多模光纤。内包层的材料选取磷酸盐玻璃系统或硅酸盐玻璃系统,其玻璃配方范围如表2所示,内包层具有较纤芯低的折射率,即,n内<n芯,其横截面形状为正方形(如图1)或矩形(如图2),或其它多边形。外包层由聚合物材料如塑料构成,外包层横截面形状为圆形,其折射率n外低于内包层折射率,n内,即,n外<n内。The cross-sectional shape of the double-clad optical fiber of the present invention is shown in Figure 1 and Figure 2, and includes three parts: core 1,
本发明双包层光纤最主要的特征在于纤芯1内稀土离子不但在磷酸盐玻璃中掺杂浓度高(较石英基质至少高一个数量级),而且受激发射截面也较石英基质的大,所制备出的光纤单位长度增益大(较石英基质的双包层光纤至少高一个数量级),另外本发明的优越性还在于:(a)内包层2的玻璃组分与纤芯的玻璃组分是相匹配的。(b)可选择玻璃组分范围大。(c)制备工艺中,预制棒制备和拉丝工艺简单,制备成本低。The most important feature of the double-clad optical fiber of the present invention is that the rare earth ions in the core 1 not only have a high doping concentration in the phosphate glass (at least one order of magnitude higher than that of the quartz matrix), but also have a larger stimulated emission cross section than that of the quartz matrix, so The prepared optical fiber has a large gain per unit length (at least one order of magnitude higher than the double-clad optical fiber of the silica matrix), and the present invention has the advantages of: (a) the glass composition of the
表1纤芯所用的玻璃配方 表2内包层所用的多组分玻璃配方
本发明玻璃双包层光纤的制备过程的具体步骤是:The concrete steps of the preparation process of the glass double-clad optical fiber of the present invention are:
①第一步、纤芯1材料(以下简称为芯料)和内包层2材料的配方(按摩尔百分比)选取。① In the first step, the formula (by mole percentage) of the material of the core 1 (hereinafter referred to as the core material) and the material of the
芯料的配方与内包层的配方应该是相互匹配的,在选择配方时,首先确定芯料具体配方后,根据芯料与内包层材料在折射率、膨胀系数、软化温度三个方面存在的匹配关系来确定内包层材料的组分。首先确定芯料玻璃选取磷酸盐玻璃系统,具体组分范围见表1。按摩尔百分比是55~70%P2O5,4~10%Al2O3,4~14%BaO,3~8%Na2O,3.5~15%K2O,0.4~3.4%Nb2O5,0.3~3%La2O3,0.2~6%Y2O3,0~0.2%Sb2O3,0.2~6%Yb2O3、或Er2O3、或Nd2O3、或Ho2O3、或Tm2O3、或Dy2O3。选择内包层所用的玻璃配方有两种玻璃系统:(a)对于磷酸盐玻璃系统配方是(按mol%):54.5~71%P2O5,4~8%Al2O3,4~16.5%BaO,3~8%Na2O,5~15.5%K2O,0.4~2%Nb2O5,0.3~2.8%La2O3,0.5~5.3%Y2O3,0~0.2%Sb2O3,(b)对于硅酸盐玻璃系统配方是(按mol%):61.8~74%SiO2,2~15%B2O3,0~8.2%Na2O,3.7~8.8%K2O,0~4.5%CaO,0~6.6%ZnO,0~0.6%PbO,0~19.5%KHF2,0~0.2%Sb2O3。上述本发明的芯料和内包层玻璃在折射率、膨胀系数、软化温度三个方面是满足以下的条件:The formula of the core material and the formula of the inner cladding should be matched with each other. When selecting the formula, first determine the specific formula of the core material, according to the matching of the core material and the inner cladding material in terms of refractive index, expansion coefficient and softening temperature. relationship to determine the composition of the inner cladding material. Firstly, it is determined that the core material glass is selected from the phosphate glass system, and the specific composition range is shown in Table 1. The molar percentage is 55-70% P 2 O 5 , 4-10% Al 2 O 3 , 4-14% BaO, 3-8% Na 2 O, 3.5-15% K 2 O, 0.4-3.4% Nb 2 O 5 , 0.3-3% La 2 O 3 , 0.2-6% Y 2 O 3 , 0-0.2% Sb 2 O 3 , 0.2-6% Yb 2 O 3 , or Er 2 O 3 , or Nd 2 O 3 , or Ho 2 O 3 , or Tm 2 O 3 , or Dy 2 O 3 . There are two glass systems for selecting the glass formula used in the inner cladding: (a) The formula for the phosphate glass system is (by mol%): 54.5-71% P 2 O 5 , 4-8% Al 2 O 3 , 4-16.5 %BaO, 3-8% Na 2 O, 5-15.5% K 2 O, 0.4-2% Nb 2 O 5 , 0.3-2.8% La 2 O 3 , 0.5-5.3% Y 2 O 3 , 0-0.2% Sb 2 O 3 , (b) for the silicate glass system formula is (by mol%): 61.8~74% SiO 2 , 2~15% B 2 O 3 , 0~8.2% Na 2 O, 3.7~8.8% K 2 O, 0-4.5% CaO, 0-6.6% ZnO, 0-0.6% PbO, 0-19.5% KHF 2 , 0-0.2% Sb 2 O 3 . Above-mentioned core material of the present invention and inner cladding glass meet following conditions in three respects of refractive index, coefficient of expansion, softening temperature:
(a)芯料折射率n芯与内包层玻璃折射率n内之间关系为:n芯大于n内,即n芯>n包,上述所选择的配方两者折射率相差n芯-n内为0.15%~3%;(a) The relationship between the refractive index ncore of the core material and the refractive index nnei of the inner cladding glass is: n core is greater than nnei , that is, n core >n clad , and the refractive index difference between the two selected formulas is n core - nnei 0.15% to 3%;
(b)芯料玻璃膨胀系数与内包层玻璃的膨胀系数之间的匹配以成丝后两者不产生内部压应力为准,一般情况下相差±20×10-7/℃。(b) The matching between the expansion coefficient of the core material glass and the expansion coefficient of the inner cladding glass is based on the fact that the two do not generate internal compressive stress after filament formation, and generally the difference is ±20×10 -7 /°C.
(c)芯料与内包层材料之间的转变温度相差30℃以内,软化温度可相差50℃以内。(c) The transition temperature difference between the core material and the inner cladding material is within 30°C, and the softening temperature difference can be within 50°C.
上述本发明的芯料和内包层玻璃的配方的选择不仅达到了上述相互之间的匹配关系,而且选择能够达到的总体要求:玻璃的机械性能好、化学稳定性好,最重要的是在拉丝温度下不易产生析晶现象。The selection of the formula of the core material and the inner cladding glass of the present invention not only achieves the above-mentioned mutual matching relationship, but also selects the overall requirements that can be achieved: the glass has good mechanical properties and good chemical stability. Crystallization is not easy to occur at high temperature.
②第二步、芯料和内包层的玻璃熔制。② In the second step, the glass of the core material and the inner cladding is melted.
(a)芯料玻璃熔制:按上述第一步中确定的配方将原料混合均匀后,首先放在石英坩埚中熔化,熔化温度为1200~1300℃,原料完全熔化后,通氧气除水,直到荧光寿命达到饱和,然后将其熟料倒入铂金坩埚中,温度仍然保持在1200~1300℃,依次进行搅拌,澄清的操作(整个过程大于5小时),最后浇注在铁模上,移入到预热到温度为材料转变温度(Tg)的马弗炉中进行退火,先保温2小时,然后以2℃/小时的速率降温50~100℃,然后再以5℃/小时的速率降温至室温,完全冷却后再取出。(a) Core material glass melting: After mixing the raw materials evenly according to the formula determined in the first step above, first put them in a quartz crucible and melt them at a melting temperature of 1200-1300 ° C. After the raw materials are completely melted, pass oxygen to remove water. Until the fluorescence lifetime reaches saturation, then pour the clinker into a platinum crucible, keep the temperature at 1200-1300°C, perform stirring and clarification operations in sequence (the whole process is more than 5 hours), and finally pour it on the iron mold and move it into the Preheat to a muffle furnace at the material transition temperature (Tg) for annealing, first keep warm for 2 hours, then cool down at a rate of 2°C/hour to 50-100°C, and then cool down to room temperature at a rate of 5°C/hour , and then take it out after cooling completely.
(b)内包层2玻璃熔制:按照上述第一步中确定的内包层玻璃配方,当选用磷酸盐玻璃系统时,其熔制过程与上述芯料玻璃熔制过程、条件完全相同。当选用硅酸盐玻璃系统,按上述第一步配方的原料混合均匀后直接放在铂金坩埚中熔化,依次进行搅拌,澄清的操作过程(整个过程需5小时以上),熔化温度一直保持在1300~1450℃,最后浇注在铁模上,移入到预热温度为材料转变温度(Tg)的马弗炉中进行退火,先保温2小时,然后以2℃/小时的速率降温50~100℃后,再以5℃/小时的速率降温至室温,完全冷却后再取出。(b)
③第三步、制备预制棒。③ The third step is to prepare the preform.
根据所要拉制的光纤纤芯1的直径和内包层的横截面的大小以及它们的长度确定所制备预制棒的直径及长度,例如:可以采用两者之间的比例d芯棒=200~500d芯,d包棒=(200~500〕×(200~500)〕d包,其中d芯棒为纤芯预制棒的直径,d芯为纤芯直径,d包棒为内包层预制棒的横截面积,d包为内包层横截面积。Determine the diameter and length of the prepared preform according to the diameter of the optical fiber core 1 to be drawn and the size of the cross-section of the inner cladding and their length, for example: the ratio d core rod=200~500d between the two can be used Core , d clad rod = (200~500〕×(200~500)]d pack , wherein d core rod is the diameter of the core preform rod, d core is the core diameter, and d clad rod is the transverse diameter of the inner cladding preform rod Cross-sectional area, d package is the cross-sectional area of the inner cladding.
将上述制得的芯料玻璃进行切割,要求均割出光学均匀性好的一部分,打磨成圆棒形,然后依次经过磨砂、抛光等步骤,加工成所需要尺寸的纤芯1的预制棒(以下简称为芯棒),芯棒表面抛光光洁度要求为2级以上。Cutting the core material glass prepared above requires cutting out a part with good optical uniformity, grinding it into a round rod shape, and then going through steps such as grinding and polishing successively to process it into a preform of the fiber core 1 of the required size ( Hereinafter referred to as the mandrel), the surface finish of the mandrel must be
将上述制得的内包层玻璃材料进行切割,要求切割出光学均匀性好的部分,打磨成圆棒形,然后依次经过磨砂、抛光等步骤,再在加工成内包层玻璃圆棒的轴向中心进行钻孔。制成内包层的预制棒是一个套棒,对套棒内孔表面进行抛光,最后将钻好孔的内包层套棒加工成横截面的外形为所要求的形状,如正方形或矩形或其它多边形的棒状。再用超声波或氢氟酸对加工好的芯棒和内包层套棒的表面杂质或污染物进行清洗。将加工处理好的芯棒插入内包层套棒的中心圆孔中,并保证两者的紧密接触以及两者中心轴线的重合,制得芯棒和内包层的组合体,简称芯包组合体。The inner cladding glass material prepared above is cut, and it is required to cut out the part with good optical uniformity, and grind it into a round rod shape, and then go through steps such as grinding and polishing in turn, and then process it into the axial center of the inner cladding glass round rod. Drill the hole. The prefabricated rod made of the inner cladding is a sleeve rod, the surface of the inner hole of the sleeve rod is polished, and finally the drilled inner cladding sleeve rod is processed into a cross-sectional shape as required, such as square or rectangle or other polygons of rod shape. Then use ultrasonic wave or hydrofluoric acid to clean the surface impurities or pollutants of the processed core rod and inner cladding rod. Insert the processed mandrel into the central circular hole of the inner cladding rod, and ensure the close contact between the two and the coincidence of the central axes of the two to obtain the combination of the mandrel and the inner cladding, referred to as the core cladding combination.
④第四步、光纤拉制。④ The fourth step, fiber drawing.
将上述的芯包组合体固定在拉丝机上,在650~700℃的温度下,将芯包组合体拉制成光纤后,即刻使光纤穿过装有作为外包层3的熔融液体塑料的装置形成外包层3,再将该双包层光纤穿过紫外固化材料进行涂覆后,用氙灯照射固化,最终拉制成满足要求的双包层光纤。用此生产工艺生产合格的光纤长度至少可达1km。Fix the above-mentioned core-clad assembly on a wire drawing machine, draw the core-clad assembly into an optical fiber at a temperature of 650-700°C, and immediately pass the optical fiber through a device equipped with molten liquid plastic as the
本发明所产生的有益效果是:提供高功率光纤激光器和光纤放大器所使用的双包层光纤,满足当前光通信发展的要求,以Nd3+离子掺杂为例,按照上述本发明的双包层光纤所获得在硅酸盐玻璃系统中的受激发射截面约为2.0×10-20cm2,在磷酸盐玻璃系统中的受激发射截面3.9×10-20cm2,都比在先技术中所用掺杂的石英基质的受激发射截面大。与在先技术中石英基质掺杂稀土离子的石英光纤相比,本发明的玻璃双包层光纤掺杂浓度较高,可调谐范围比较大,增益比较大,制备方法比较简单,生产成本也比较低。The beneficial effects produced by the present invention are: providing high-power fiber lasers and double-clad optical fibers used in fiber amplifiers, meeting the requirements of current optical communication development, taking Nd 3+ ion doping as an example, according to the above-mentioned double-clad optical fiber of the present invention The stimulated emission cross section obtained by the multi-layer optical fiber in the silicate glass system is about 2.0×10 -20 cm 2 , and the stimulated emission cross section in the phosphate glass system is 3.9×10 -20 cm 2 , both of which are better than those of the prior art The stimulated emission cross-section of the doped quartz matrix used in the method is large. Compared with the quartz optical fiber in which the quartz matrix is doped with rare earth ions in the prior art, the glass double-clad optical fiber of the present invention has a higher doping concentration, a larger tunable range, a larger gain, a simpler preparation method, and a lower production cost. Low.
附图说明:Description of drawings:
图1为本发明的内包层为正方形的多组分玻璃双包层光纤截面示意图Fig. 1 is the multi-component glass double-clad optical fiber sectional schematic diagram that the inner cladding of the present invention is a square
图2为本发明的内包层为矩方形的多组分玻璃双包层光纤截面示意图Fig. 2 is the multi-component glass double-clad optical fiber sectional schematic view that inner cladding of the present invention is a rectangle
具体实施方式:Detailed ways:
以下结合具体实施方式对本发明作进一步的描述。The present invention will be further described below in combination with specific embodiments.
首选确定芯料和内包层玻璃配方。表3和表4给出了6组芯料和内包层玻璃配方,其中表3中的3组组合的芯料和内包层玻璃都为磷酸盐玻璃系统,表4三组组合中芯料为磷酸盐玻璃系统,内包层为硅酸盐玻璃系统。The first choice is to determine the core and inner cladding glass formulations. Table 3 and Table 4 give 6 groups of core material and inner cladding glass formulations, in which the core material and inner cladding glass of the 3 combinations in Table 3 are all phosphate glass systems, and the core material of the three combinations in Table 4 is phosphoric acid Salt glass system, inner cladding is silicate glass system.
具体实施例1-第1组材料Specific embodiment 1-the 1st group material
表3
按上述具体做法。第一步:选取玻璃配方,按表3。首先选取表3中的第1组配方是满足上述条件要求的芯料折射率n芯大于内包层玻璃折射率n内,两者之差(n芯-n内)介于0.15%~3%之间。Follow the steps above. The first step: select the glass formula, according to Table 3. First select the first group of formulations in Table 3. The refractive index n core of the core material that meets the above conditions is greater than the refractive index n inner of the inner cladding glass, and the difference between the two (n core - n inner ) is between 0.15% and 3%. between.
第二步,熔制芯料和内包层玻璃熔炼规则相同,即:芯料称取上述配方的混合原料约2500克,称取内包层玻璃混合原料约5000克。首先在1.5立升石英坩埚中熔化生料,熔化温度为1250℃,原料完全熔化后,通氧除水,直到荧光寿命达到饱和。然后将熟料倒入1.2立升的铂金坩埚中,依次进行搅拌,澄清等操作,整个过程约需5小时。最后浇注在尺寸为150mm×70mm×60mm的铁模上,移入预热到材料转变温度Tg为430℃的马弗炉中进行退火,保温2小时,然后以2℃/hr速率降温至380℃,再以5℃/hr降至室温,完全冷却后取出。In the second step, the melting rules of the core material and the inner cladding glass are the same, that is, about 2,500 grams of the mixed raw materials of the above formula are weighed for the core material, and about 5,000 grams of the inner cladding glass mixed raw materials are weighed. First, melt the raw material in a 1.5 liter quartz crucible at a melting temperature of 1250°C. After the raw material is completely melted, pass oxygen to remove water until the fluorescence lifetime reaches saturation. Then pour the clinker into a 1.2-liter platinum crucible, and perform operations such as stirring and clarification in sequence. The whole process takes about 5 hours. Finally, pour it on an iron mold with a size of 150mm×70mm×60mm, move it into a muffle furnace preheated to a material transition temperature Tg of 430°C for annealing, keep it warm for 2 hours, and then cool it down to 380°C at a rate of 2°C/hr. Then lower it to room temperature at 5°C/hr, and take it out after complete cooling.
测试结果表明:所制备的芯料玻璃的折射率为1.530,Yb3+离子在芯料玻璃中受激发射截面为1.6×10-20cm2。The test results show that the refractive index of the prepared core glass is 1.530, and the stimulated emission cross section of Yb 3+ ions in the core glass is 1.6×10 -20 cm 2 .
第三步:制备预制棒,首先考虑要做单模光纤,纤芯直径d芯<12μm,单模光纤必须满足以下条件:其中a为纤芯的半径,λ为光纤内传输光的波长,n芯为芯纤1的折射率,n内为内包层的折射率。所以选择芯料预制棒纤芯加工成直径为2mm(d芯棒=200d芯),长度为60mm,并且玻璃表面抛光成3级光洁度。内包层的预制棒加工尺寸为25mm×25mm×80mm(d包棒=(200×200)d包),上下端面正中心处钻直径为2mm的内孔,深度为60mm,内孔表面要抛光。用超声波对芯棒和外包层套棒表面进行去污清洗处理。将芯棒插入内包层套棒中心孔中,构成两者的芯包组合体。Step 3: Prepare the preform. First, consider making a single-mode optical fiber. The core diameter d core is less than 12 μm. The single-mode optical fiber must meet the following conditions: Where a is the radius of the fiber core, λ is the wavelength of light transmitted in the fiber, n core is the refractive index of the core fiber 1, and n is the refractive index of the inner cladding. Therefore, the core material prefabricated rod core is selected to be processed into a diameter of 2 mm (d core rod = 200d core ), a length of 60 mm, and the glass surface is polished to a
第四步、光纤拉制。将上述芯包组合体放入拉丝机加热炉中。使温度缓慢上升至650℃(从常温升至650℃至少需要1.5hr,在室温到250℃以下范围,升温速率要较慢),预制棒料头掉下,用拉丝机将其拉成光纤,拉丝速率为10m/min,成纤后,即刻穿过装有溶融液体塑料的装置后形成外包层。然后将该双包层光纤再穿过紫外固化材料涂覆后用氙灯照射固化,最终拉制成纤芯数值孔径为NA=0.100,纤芯直径为10μm,内包层截面外形为正方形边长为125μm,外包层直径为φ170μm的掺镱玻璃双包层光纤,用上述制备方法生产出合格的光纤长度至少可达1km。The fourth step is fiber drawing. Put the above-mentioned core package assembly into the heating furnace of the wire drawing machine. Slowly raise the temperature to 650°C (it takes at least 1.5 hours to rise from normal temperature to 650°C, and the temperature rise rate should be slower in the range from room temperature to below 250°C), the prefabricated bar head is dropped, and it is drawn into an optical fiber with a wire drawing machine. The drawing speed is 10m/min. After fiber formation, the outer cladding is formed after passing through a device equipped with molten liquid plastic. Then the double-clad fiber is coated with UV-curable material and cured by xenon lamp irradiation, and finally drawn into a fiber core with a numerical aperture of NA=0.100, a core diameter of 10 μm, and a cross-sectional shape of the inner cladding of a square with a side length of 125 μm , ytterbium-doped glass double-clad optical fiber with an outer cladding diameter of φ170 μm, the qualified optical fiber length can be at least 1 km produced by the above preparation method.
具体实施例2-第2、3组材料Specific embodiment 2-the 2nd, 3 groups of materials
第2、3组玻璃配方见表3,芯料和内包层玻璃的熔制工艺与上述实施例1相同。The glass formulations of
对第2组而言,芯棒玻璃加工成直径为3mm(d芯棒=500d芯),长度为60mm的预制棒,内包层预制棒加工成加工尺寸为50mm×50mm×80mm(d包棒=(400×400)d包),上下端面正中心处钻直径为2mm的内孔,深度为60mm的内包层套棒。其后续步骤及拉丝工艺与实施例1相同。由第2组芯料和内包层材料构成的双包层光纤最终数值孔径为0.08,纤芯直径为6μm,内包层边长为125μm,外径为φ170μm。对第3组而言,芯棒玻璃加工成直径为6mm(d芯棒=200d芯),长度为60mm预制棒,内包层预制棒加工成加工尺寸为25mm×25mm×80mm(d包棒=(200×200)d包),上下端面正中心处钻直径为2mm的内孔,深度为60mm的内包层套棒。其后续步骤及拉丝工艺与实施例1相同。由第3组芯料和内包层材料构成的双包层光纤最终数值孔径为0.12,芯直径为30μm,内包层截面外形成正方形边长为125μm,整个光纤外径为φ170μm。For the second group, the core rod glass is processed into a preform rod with a diameter of 3mm (d core rod = 500d core ) and a length of 60mm, and the inner cladding preform rod is processed into a processing size of 50mm × 50mm × 80mm (d package rod = (400×400)d package ), drill an inner hole with a diameter of 2mm at the center of the upper and lower end faces, and an inner cladding rod with a depth of 60mm. Its follow-up steps and drawing process are identical with embodiment 1. The final numerical aperture of the double-clad fiber composed of the second group of core materials and inner cladding materials is 0.08, the core diameter is 6 μm, the side length of the inner cladding is 125 μm, and the outer diameter is φ170 μm. For the third group, the core rod glass is processed into a diameter of 6mm (d core rod = 200d core ), and the length is 60mm preform rod, and the inner cladding preform rod is processed into a processing size of 25mm × 25mm × 80mm (d package rod = ( 200×200)d package ), drill an inner hole with a diameter of 2mm at the center of the upper and lower end faces, and an inner cladding rod with a depth of 60mm. Its follow-up steps and drawing process are identical with embodiment 1. The final numerical aperture of the double-clad fiber composed of the third group of core materials and inner cladding materials is 0.12, the core diameter is 30 μm, the inner cladding cross-section forms a square with a side length of 125 μm, and the outer diameter of the entire fiber is φ170 μm.
具体实施例3-第4,5,6组材料Specific embodiment 3-the 4th, 5, 6 groups of materials
表4中的第4、5、6三组都是芯料为磷酸盐玻璃系统,内包层为硅酸盐玻璃系统。Groups 4, 5, and 6 in Table 4 all have a phosphate glass system as the core material and a silicate glass system as the inner cladding.
对第四、第五、第六组而言,芯料玻璃的熔制与具体实施例1中相同,内包层玻璃熔制是按照上述硅酸盐玻璃系统选取的内包层配方合成的生料称取3000克,混合均匀后可直接在2.0立升的铂金坩埚中熔化,熔化温度为1350℃,依次进行搅拌,澄清等过程,整个过程需5小时以上。最后浇注在尺寸为120mm×70mm×50mm的铁模上,移入预热到材料转变温度Tg为460℃的马弗炉中退火,先保温2小时,然后以2℃/hr速率降温至380℃,再以5℃/hr降至室温,完全冷却后取出。后面的芯棒和内包层的预制棒加工以及拉丝工艺也都与实施例1相同。For the fourth, fifth, and sixth groups, the melting of the core material glass is the same as in the specific example 1, and the melting of the inner cladding glass is a raw material synthesized according to the inner cladding formula selected from the above-mentioned silicate glass system. Take 3,000 grams, mix them evenly, and melt them directly in a 2.0-liter platinum crucible at a melting temperature of 1350°C. Stirring and clarification are carried out successively. The whole process takes more than 5 hours. Finally, pour it on an iron mold with a size of 120mm×70mm×50mm, move it into a muffle furnace preheated to a material transition temperature Tg of 460°C for annealing, first keep it warm for 2 hours, and then cool it down to 380°C at a rate of 2°C/hr. Then lower it to room temperature at 5°C/hr, and take it out after complete cooling. The preform processing and wire drawing process of the following core rod and inner cladding are also the same as in Embodiment 1.
表4
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02136859 CN1402028A (en) | 2002-09-06 | 2002-09-06 | Rare earth element doped glass double-clad optical fiber and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02136859 CN1402028A (en) | 2002-09-06 | 2002-09-06 | Rare earth element doped glass double-clad optical fiber and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1402028A true CN1402028A (en) | 2003-03-12 |
Family
ID=4748795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02136859 Pending CN1402028A (en) | 2002-09-06 | 2002-09-06 | Rare earth element doped glass double-clad optical fiber and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1402028A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1332901C (en) * | 2003-08-29 | 2007-08-22 | Hoya株式会社 | Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element |
CN100357204C (en) * | 2005-10-27 | 2007-12-26 | 上海大学 | Semiconductor film inner packing layer enlarging optical fiber and its premade rod manufacturing method |
CN102515512A (en) * | 2010-08-06 | 2012-06-27 | 肖特公司 | Broadening of rare earth ion emission bandwidth in phosphate based laser glasses |
CN101400617B (en) * | 2006-03-14 | 2013-04-24 | 肖特股份有限公司 | Fiber-optic cable |
CN104058596A (en) * | 2014-06-25 | 2014-09-24 | 中国科学院上海光学精密机械研究所 | Ytterbium fluorine phosphorus-phosphate doped heterogeneous optical fiber preform rod glass and preparation method thereof |
CN104092087A (en) * | 2014-06-18 | 2014-10-08 | 华南理工大学 | A High Energy Short Pulse Fiber Laser Amplifier |
CN104402236A (en) * | 2014-10-28 | 2015-03-11 | 中国科学院上海光学精密机械研究所 | Lead silicate glass used in double-clad optical fiber, and double-clad optical fiber preparation method |
CN104570198A (en) * | 2014-12-31 | 2015-04-29 | 华南理工大学 | Composite optical fiber with multi-component phosphate glass cladding/selenium and tellurium compound semiconductor fiber core |
CN104556678A (en) * | 2015-01-19 | 2015-04-29 | 华南理工大学 | Preparation method of quantum dot doped microcrystalline glass optical fiber |
CN104570199A (en) * | 2014-12-31 | 2015-04-29 | 华南理工大学 | Selentellurium single crystal compound optical fiber and manufacturing method thereof |
CN105924001A (en) * | 2016-04-28 | 2016-09-07 | 华南理工大学 | A kind of Er3+/Yb3+ co-doped multi-component phosphate glass material with uniform distribution of silver nanoparticles and its preparation method |
CN106316138A (en) * | 2016-08-24 | 2017-01-11 | 华南理工大学 | Near-infrared emitting tellurium quantum dot doped fiber and preparing method thereof |
CN106371168A (en) * | 2016-08-30 | 2017-02-01 | 武汉睿芯特种光纤有限责任公司 | Method for preparing double-cladding active fiber |
CN107065066A (en) * | 2017-05-19 | 2017-08-18 | 中国科学院上海光学精密机械研究所 | A kind of structure of many clad silica fibers |
CN103964696B (en) * | 2014-05-26 | 2017-09-15 | 山东海富光子科技股份有限公司 | The full glass of phosphate silicate for high-capacity optical fiber laser mixes optical fiber |
CN109164535A (en) * | 2018-09-29 | 2019-01-08 | 镇江微芯光子科技有限公司 | A kind of high-power glass optical fiber |
CN113087388A (en) * | 2021-03-31 | 2021-07-09 | 华南理工大学 | Dy3+ doped phosphate glass for outputting yellow laser, optical fiber and preparation method thereof |
CN113105119A (en) * | 2021-03-31 | 2021-07-13 | 华南理工大学 | Lanthanum antimonate glass optical fiber and preparation method and application thereof |
CN113213768A (en) * | 2021-04-07 | 2021-08-06 | 华南理工大学 | Glass for fiber core and application |
CN115117719A (en) * | 2022-06-22 | 2022-09-27 | 中国科学院上海光学精密机械研究所 | Rare earth-doped phosphate glass double-clad optical fiber with emission wavelength in the 1.3 μm band, preparation method and application thereof |
CN115151514A (en) * | 2020-02-25 | 2022-10-04 | 拜欧利泰克投资二代公司 | Structured silica-clad silica optical fiber |
CN116375346A (en) * | 2023-01-09 | 2023-07-04 | 中国科学院上海光学精密机械研究所 | Extended L-band Er-doped phosphate optical fiber, preparation method thereof and application thereof in optical fiber laser |
-
2002
- 2002-09-06 CN CN 02136859 patent/CN1402028A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1332901C (en) * | 2003-08-29 | 2007-08-22 | Hoya株式会社 | Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element |
CN100357204C (en) * | 2005-10-27 | 2007-12-26 | 上海大学 | Semiconductor film inner packing layer enlarging optical fiber and its premade rod manufacturing method |
CN101400617B (en) * | 2006-03-14 | 2013-04-24 | 肖特股份有限公司 | Fiber-optic cable |
CN102515512B (en) * | 2010-08-06 | 2016-05-04 | 肖特公司 | The broadening of the rare earth ion transmitted bandwidth based in phosphatic laser glass |
CN102515512A (en) * | 2010-08-06 | 2012-06-27 | 肖特公司 | Broadening of rare earth ion emission bandwidth in phosphate based laser glasses |
CN103964696B (en) * | 2014-05-26 | 2017-09-15 | 山东海富光子科技股份有限公司 | The full glass of phosphate silicate for high-capacity optical fiber laser mixes optical fiber |
CN104092087A (en) * | 2014-06-18 | 2014-10-08 | 华南理工大学 | A High Energy Short Pulse Fiber Laser Amplifier |
CN104058596A (en) * | 2014-06-25 | 2014-09-24 | 中国科学院上海光学精密机械研究所 | Ytterbium fluorine phosphorus-phosphate doped heterogeneous optical fiber preform rod glass and preparation method thereof |
CN104402236A (en) * | 2014-10-28 | 2015-03-11 | 中国科学院上海光学精密机械研究所 | Lead silicate glass used in double-clad optical fiber, and double-clad optical fiber preparation method |
CN104570199A (en) * | 2014-12-31 | 2015-04-29 | 华南理工大学 | Selentellurium single crystal compound optical fiber and manufacturing method thereof |
CN104570198A (en) * | 2014-12-31 | 2015-04-29 | 华南理工大学 | Composite optical fiber with multi-component phosphate glass cladding/selenium and tellurium compound semiconductor fiber core |
CN104570199B (en) * | 2014-12-31 | 2017-12-01 | 华南理工大学 | A kind of selen-tellurjum monocrystalline composite fiber and preparation method thereof |
CN104556678A (en) * | 2015-01-19 | 2015-04-29 | 华南理工大学 | Preparation method of quantum dot doped microcrystalline glass optical fiber |
CN105924001A (en) * | 2016-04-28 | 2016-09-07 | 华南理工大学 | A kind of Er3+/Yb3+ co-doped multi-component phosphate glass material with uniform distribution of silver nanoparticles and its preparation method |
CN106316138A (en) * | 2016-08-24 | 2017-01-11 | 华南理工大学 | Near-infrared emitting tellurium quantum dot doped fiber and preparing method thereof |
CN106371168A (en) * | 2016-08-30 | 2017-02-01 | 武汉睿芯特种光纤有限责任公司 | Method for preparing double-cladding active fiber |
CN107065066A (en) * | 2017-05-19 | 2017-08-18 | 中国科学院上海光学精密机械研究所 | A kind of structure of many clad silica fibers |
CN109164535A (en) * | 2018-09-29 | 2019-01-08 | 镇江微芯光子科技有限公司 | A kind of high-power glass optical fiber |
CN115151514A (en) * | 2020-02-25 | 2022-10-04 | 拜欧利泰克投资二代公司 | Structured silica-clad silica optical fiber |
CN113087388A (en) * | 2021-03-31 | 2021-07-09 | 华南理工大学 | Dy3+ doped phosphate glass for outputting yellow laser, optical fiber and preparation method thereof |
CN113105119A (en) * | 2021-03-31 | 2021-07-13 | 华南理工大学 | Lanthanum antimonate glass optical fiber and preparation method and application thereof |
CN113105119B (en) * | 2021-03-31 | 2022-01-18 | 华南理工大学 | Lanthanum antimonate glass optical fiber and preparation method and application thereof |
CN113213768A (en) * | 2021-04-07 | 2021-08-06 | 华南理工大学 | Glass for fiber core and application |
CN115117719A (en) * | 2022-06-22 | 2022-09-27 | 中国科学院上海光学精密机械研究所 | Rare earth-doped phosphate glass double-clad optical fiber with emission wavelength in the 1.3 μm band, preparation method and application thereof |
CN116375346A (en) * | 2023-01-09 | 2023-07-04 | 中国科学院上海光学精密机械研究所 | Extended L-band Er-doped phosphate optical fiber, preparation method thereof and application thereof in optical fiber laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1402028A (en) | Rare earth element doped glass double-clad optical fiber and preparation method thereof | |
US6687445B2 (en) | Double-clad optical fiber for lasers and amplifiers | |
CN101492248B (en) | 2 mu m laser output thulium-doped tellurate glass and optical fiber and preparation method thereof | |
CN101351934B (en) | Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser | |
JP4979960B2 (en) | Method for producing optically rare earth metal element-containing silica glass | |
US11780768B2 (en) | Photodarkening-resistant ytterbium-doped quartz optical fiber and preparation method therefor | |
CN1261332A (en) | Composition for optical waveguide article and method for making continuous clad filament | |
WO2005082801A2 (en) | Optical fiber and method for making such fiber | |
Kang et al. | Novel Er3+/Ho3+‐codoped glass‐ceramic fibers for broadband tunable mid‐infrared fiber lasers | |
CN106082684A (en) | A kind of highly doped Tb3+ phosphate glass core composite optical fiber and its preparation method | |
CN101486530A (en) | 2μm luminescent rare earth ion-doped germanate laser glass and its preparation method | |
US8121154B2 (en) | Thulium and/or holmium doped silicated glasses for two micron lasers | |
CN102023318B (en) | Composition of silicate optical fiber with super large mode area and preparation method thereof | |
CN114409263A (en) | Bismuth-doped multi-component glass optical fiber used as gain medium and preparation method thereof | |
CN102033249B (en) | Composition of super large mode area metaphosphate optical fiber and its preparation method | |
WO2012037003A1 (en) | Photodarkening resistant optical fibers and fiber lasers incorporating the same made by outside vapor deposition | |
CN112028468A (en) | Active and passive alternate optical fiber, preparation method thereof and optical fiber laser | |
CN1634784A (en) | Erbium ytterbium codoped multi-component oxide glass single-mode optical fiber core glass and method for preparing single-mode optical fiber | |
CN104591535B (en) | The method that rear-earth-doped quartz glass microstructured optical fibers are prepared using laser melting technology | |
Ebendorff-Heidepriem et al. | Oxide glass and optical fiber fabrication | |
CN1603871A (en) | Yb3+Doped tellurate glass double-clad optical fiber and preparation method thereof | |
CN101995587A (en) | Composition of super large mode area fluorophosphate optical fiber and preparation method thereof | |
CN109180010B (en) | A high-gain Tm3+/Ho3+ co-doped multi-component germanate glass single-mode fiber and its preparation method | |
Ballato | Optical fibers | |
CN113087388A (en) | Dy3+ doped phosphate glass for outputting yellow laser, optical fiber and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |