[go: up one dir, main page]

CN1314216C - Quasi maximum posterior probability detection method for layer space hour code system - Google Patents

Quasi maximum posterior probability detection method for layer space hour code system Download PDF

Info

Publication number
CN1314216C
CN1314216C CNB2005100679066A CN200510067906A CN1314216C CN 1314216 C CN1314216 C CN 1314216C CN B2005100679066 A CNB2005100679066 A CN B2005100679066A CN 200510067906 A CN200510067906 A CN 200510067906A CN 1314216 C CN1314216 C CN 1314216C
Authority
CN
China
Prior art keywords
vector
partial
layer
vectors
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100679066A
Other languages
Chinese (zh)
Other versions
CN1674487A (en
Inventor
梁鹏
牛凯
贺志强
吴伟陵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CNB2005100679066A priority Critical patent/CN1314216C/en
Publication of CN1674487A publication Critical patent/CN1674487A/en
Application granted granted Critical
Publication of CN1314216C publication Critical patent/CN1314216C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

一种用于分层空时码系统的准最大后验概率检测方法及其系统,该检测方法利用分层空时码系统的QR分解-干扰删除结构,从最底层发送天线到最顶层发送天线依次计算部分矢量后验概率,在符号矢量树图中进行宽度优先搜索时,仅保留部分矢量后验概率中最大的一个或一组部分矢量,删除其余的部分矢量;且在宽度优先搜索过程中所选择的每层发送天线的部分矢量数是不同的;搜索结束后得到的一个或一组具有最大矢量后验概率的矢量,其中一个具有最大后验概率的矢量就作为发送信号矢量的估计值,即硬判决结果;或者根据该一组矢量后验概率得到发送符号后验概率的软信息。该检测方法大大降低了检测的复杂度,同时保持较高的性能。

A quasi-maximum a posteriori probability detection method and system for a layered space-time code system, the detection method uses the QR decomposition-interference deletion structure of the layered space-time code system, from the bottommost transmitting antenna to the topmost transmitting antenna Calculate the posterior probability of partial vectors in turn, when performing breadth-first search in the symbolic vector tree diagram, only keep one or a group of partial vectors with the largest posterior probability of partial vectors, and delete the remaining partial vectors; and in the process of breadth-first search The number of partial vectors for each layer of the selected transmit antenna is different; one or a group of vectors with the largest posterior probability of the vector obtained after the search is completed, and one of the vectors with the largest posterior probability is used as the estimated value of the transmitted signal vector , that is, the hard decision result; or obtain the soft information of the posterior probability of the transmitted symbol according to the set of vector posterior probability. The detection method greatly reduces the complexity of detection while maintaining high performance.

Description

用于分层空时码系统的准最大后验概率检测方法及其系统Quasi-Maximum A Posteriori Detection Method and System for Hierarchical Space-Time Code System

技术领域technical field

本发明涉及用于分层空时码系统的准最大后验概率检测方法及其系统,属于无线通信系统的信号检测与估计技术领域。The invention relates to a quasi-maximum a posteriori probability detection method and system for a layered space-time code system, and belongs to the technical field of signal detection and estimation of a wireless communication system.

背景技术Background technique

现在,无线信道的频谱资源已经非常有限,但是却要求无线通信系统能够进行更高速率的数据传输。由于多输入多输出(MIMO)信道容量与收发天线数的最小值成线性关系,学术界普遍认为多天线技术是未来宽带无线通信系统的主要的解决方案。其中的分层空时码结构因其可以获得最高的复用增益而受到更多关注。Now, the spectrum resource of the wireless channel is already very limited, but the wireless communication system is required to be able to transmit data at a higher rate. Since the channel capacity of multiple-input multiple-output (MIMO) is linearly related to the minimum number of transmitting and receiving antennas, the academic community generally believes that the multi-antenna technology is the main solution for future broadband wireless communication systems. Among them, the hierarchical space-time code structure has received more attention because it can obtain the highest multiplexing gain.

现有的分层空时码的检测方法主要有线性检测算法、次优检测算法和最优检测算法。下面分别简要说明之:The existing detection methods of layered space-time codes mainly include linear detection algorithm, suboptimal detection algorithm and optimal detection algorithm. The following are brief descriptions of each:

线性检测算法包括QR分解-干扰删除算法、迫零ZF算法和最小均方误差MMSE算法等,其检测的复杂度与发送天线数成线性关系,但是性能明显恶化。Linear detection algorithms include QR decomposition-interference deletion algorithm, zero-forcing ZF algorithm, and minimum mean square error MMSE algorithm. The complexity of the detection is linear with the number of transmitting antennas, but the performance deteriorates significantly.

例如QR分解-干扰删除算法。对于发送天线数为nT、接收天线数为nR的多入多出MIMO系统,信道为nR×nT维衰落信道H,系统噪声为nR维高斯白噪声矢量v,即v中的每个分量都是均值为0、平方差为1的高斯白噪声。nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 与nR维接收信号矢量 y = [ y 1 , y 2 , · · · , y n R ] T 之间存在的收发For example QR decomposition-interference removal algorithm. For a multiple-input multiple-output MIMO system with n T transmit antennas and n R receive antennas, the channel is an n R ×n T -dimensional fading channel H, and the system noise is an n R- dimensional Gaussian white noise vector v, that is, in v Each component is white Gaussian noise with mean 0 and squared deviation 1. n T- dimensional transmit signal vector the s = [ the s 1 , the s 2 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T with n R- dimensional received signal vector the y = [ the y 1 , the y 2 , · &Center Dot; · , the y no R ] T send and receive between

信号关系模型为: y = ρ n T Hs + v ; 其中,ρ为nT根发送天线上发送信号的总能量。The signal relationship model is: the y = ρ no T Hs + v ; Among them, ρ is the total energy of the transmitted signal on the n T transmitting antennas.

QR分解-干扰删除算法是先将收发信号关系模型转换为QR分解-干扰删除结构:对于收发信号间的关系模型中的衰落信道矩阵H进行QR分解,即H=QR,其中,Q是单位酉阵,R是上三角阵。将该式代入上述收发信号关系模型后,得到的公式为: y = ρ n T QRs + v . The QR decomposition-interference deletion algorithm is to convert the relationship model of the sending and receiving signals into a QR decomposition-interference deletion structure: perform QR decomposition on the fading channel matrix H in the relationship model between the sending and receiving signals, that is, H=QR, where Q is unitary matrix, and R is an upper triangular matrix. After substituting this formula into the above-mentioned transceiver signal relationship model, the obtained formula is: the y = ρ no T QRs + v .

在该式两边都左乘以QH,得到正交变换后的收发信号关系模型:Multiply both sides of this formula by Q H to the left to obtain the relationship model of sending and receiving signals after orthogonal transformation:

zz == ρρ nno TT QQ Hh QRsQRs ++ QQ Hh vv == ρρ nno TT RsRs. ++ ωω ;;

式中,矢量z=QHy是接收信号矢量y正交变换后的信号矢量,矢量 z = [ z 1 , z 2 , · · · , z n T ] T 的维数是nT。由于Q是单位酉阵,QHQ等于单位阵。ω=QHv, ω = [ ω 1 , ω 2 , · · · , ω n T ] T 是nT维高斯白噪声矢量。In the formula, the vector z=Q H y is the signal vector after the orthogonal transformation of the received signal vector y, and the vector z = [ z 1 , z 2 , &Center Dot; · &Center Dot; , z no T ] T The dimensionality of is n T . Since Q is a unitary matrix, Q H Q is equal to a unitary matrix. ω=Q H v, ω = [ ω 1 , ω 2 , · &Center Dot; &Center Dot; , ω no T ] T is an nT- dimensional Gaussian white noise vector.

因为发送信号矢量s的nT个分量分别为s1,s2,…,snT,信号矢量z的nT个分别分量为z1,z2,…,znT,高斯白噪声矢量ω的nT个分量分别为ω1,ω2,…,ωnT,上三角阵R的元素为rij,i和j是区间为[1,nT]内的自然数。所以,可以将上面的正交变换后的收发信号关系模型由矢量形式写为矩阵形式: 该等式就是QR分解-干扰删除结构。Because the n T components of the transmitted signal vector s are s 1 , s 2 , ..., s nT respectively, the n T components of the signal vector z are z 1 , z 2 , ..., z nT , and the Gaussian white noise vector ω The n T components are respectively ω 1 , ω 2 ,..., ω nT , the element of the upper triangular matrix R is r ij , and i and j are natural numbers within the interval [1, n T ]. Therefore, the above orthogonally transformed transceiver signal relationship model can be written from vector form to matrix form: This equation is the QR decomposition-interference removal structure.

得到QR分解-干扰删除结构后,利用矩阵R的上三角结构,发送信号s1,s2,..snT的估计值(即硬判决结果)

Figure C20051006790600106
可以由下面的QR分解-干扰删除检测算法得到。After obtaining the QR decomposition-interference deletion structure, use the upper triangular structure of the matrix R to send the estimated values of the signals s 1 , s 2 , ..s nT (that is, the hard decision result)
Figure C20051006790600106
It can be obtained by the following QR decomposition-interference deletion detection algorithm.

sthe s ^^ nno TT == LL (( nno TT ρρ zz nno TT rr nno TT ,, nno TT ))

sthe s ^^ nno TT -- 11 == LL (( 11 rr nno TT -- 11 ,, nno TT -- 11 (( nno TT ρρ zz nno TT -- 11 -- rr nno TT -- 11 ,, nno TT sthe s ^^ nno TT )) ))

……...

sthe s ^^ 11 == LL (( 11 rr 1,11,1 (( nno TT ρρ zz 11 -- ΣΣ kk == 22 nno TT rr 11 ,, kk sthe s ^^ kk )) ))

式中,L(x)表示发送符号集中的一个符号,在所有发送符号中该符号与x距离最小。In the formula, L(x) represents a symbol in the transmitted symbol set, and the distance between this symbol and x is the smallest among all transmitted symbols.

尽管上述的QR分解-干扰删除算法有较低的复杂度,但其性能比其他算法恶化很多。Although the above-mentioned QR decomposition-interference removal algorithm has lower complexity, its performance is much worse than other algorithms.

最优检测算法包括最大后验概率MAP检测和最大似然ML检测,在信源发送符号先验概率等概率的条件下,这两种检测方法都可以获得最优性能。但是,这两种检测方法复杂度均与发送天线数呈指数次方关系。因此,最优算法通常只是提供一个检测性能所能达到的理论极限,实际通信系统中一般不会采用。例如最大后验概率MAP检测方法,在符号矢量树图中采用贪婪的搜索算法,保留树形结构中所有可能的路径,其复杂度是发送天线数的指数次方。例如发送天线数是4、进行QPSK调制(发送符号个数为4)时,第4层发送天线上有4个节点,第3层发送天线上有4×4=16个节点,第2层发送天线上有16×4=64个节点,第1层发送天线上有64×4=256个节点。总共需要搜索44=256条路径,然后需要计算所有可能的256条路径的矢量后验概率:P(sj|y),j分别取区间[1,256]内的自然数。然后从该256个矢量后验概率中选出最大值,对应的矢量即为发送符号矢量的估计值(硬判决)。而当发送天线数是4、采用16QAM调制(发送符号个数为16)时,第4层发送天线上有16个节点,第3层发送天线上有16×16=256个节点,第2层发送天线上有256×16=4096个节点,第1层发送天线上有4096×4=65536个节点。16QAM调制需要搜索65536条路径,然后需要计算所有可能的65536条路径的矢量后验概率:P(sj|y),j分别取区间[1,65536]内的自然数。然后从该65536个矢量后验概率中选出最大值,对应的矢量即为发送符号矢量的估计值(硬判决)。这样的计算复杂度太高,通信系统无法容忍。因此,在实际通信系统中通常采用次优算法。The optimal detection algorithm includes maximum a posteriori probability MAP detection and maximum likelihood ML detection. Under the condition of equal probability of the prior probability of the signal source sending symbols, these two detection methods can obtain the optimal performance. However, the complexity of these two detection methods is exponentially related to the number of transmitting antennas. Therefore, the optimal algorithm usually only provides a theoretical limit that the detection performance can achieve, and it is generally not used in the actual communication system. For example, the maximum a posteriori probability MAP detection method uses a greedy search algorithm in the symbol vector tree diagram to retain all possible paths in the tree structure, and its complexity is the exponential power of the number of transmitting antennas. For example, when the number of transmit antennas is 4 and QPSK modulation is performed (the number of transmit symbols is 4), there are 4 nodes on the transmit antennas of the fourth layer, 4×4=16 nodes on the transmit antennas of the third layer, and the transmit antennas of the second layer There are 16×4=64 nodes on the antenna, and there are 64×4=256 nodes on the first-layer transmitting antenna. A total of 4 4 =256 paths need to be searched, and then the vector posterior probabilities of all possible 256 paths need to be calculated: P(s j |y), where j is a natural number in the interval [1, 256]. Then select the maximum value from the 256 vector posterior probabilities, and the corresponding vector is the estimated value of the transmitted symbol vector (hard decision). And when the number of transmit antennas is 4 and 16QAM modulation is adopted (the number of transmit symbols is 16), there are 16 nodes on the transmit antennas of the fourth layer, 16×16=256 nodes on the transmit antennas of the third layer, and the second layer There are 256×16=4096 nodes on the transmitting antenna, and 4096×4=65536 nodes on the first layer transmitting antenna. 16QAM modulation needs to search for 65536 paths, and then needs to calculate the vector posterior probability of all possible 65536 paths: P(s j |y), j is a natural number in the interval [1, 65536]. Then select the maximum value from the 65536 vector posterior probabilities, and the corresponding vector is the estimated value of the transmitted symbol vector (hard decision). Such computational complexity is too high for the communication system to tolerate. Therefore, suboptimal algorithms are usually used in practical communication systems.

次优算法的性能非常接近最优算法的性能,但是,复杂度大大降低。目前已知最好的次优检测算法是球译码(SD,Sphere Decoding,)算法。球译码算法是一种准最大似然算法,它采用深度优先搜索的方式在符号矢量树图中进行搜索,它的性能接近最优算法。但是,球译码算法仍然存在不足:(1)球译码的复杂度与发送天线数呈立方关系,仍然比较高;(2)球译码算法在符号矢量树图中采用深度优先搜索,由于深度优先搜索存在回溯过程,所以树图中的节点可能多次访问,造成搜索过程比较繁琐;(3)球译码算法在搜索前需要选取搜索半径,如果搜索半径选择不合适会造成复杂度不可控制。例如,如果选择的搜索半径太大,则几乎要访问符号矢量树图中的所有节点,复杂度太高;如果选择的搜索半径太小,则有可能搜索结束后没有一条路经在搜索半径内,造成算法不收敛,需要将搜索半径提高后再重新搜索,这样就会造成多次重复搜索,复杂度更高。The performance of the suboptimal algorithm is very close to that of the optimal algorithm, however, the complexity is greatly reduced. The best suboptimal detection algorithm known so far is the Sphere Decoding (SD, Sphere Decoding,) algorithm. The sphere decoding algorithm is a quasi-maximum likelihood algorithm, which uses the depth-first search method to search in the symbol vector tree graph, and its performance is close to the optimal algorithm. However, there are still deficiencies in the sphere decoding algorithm: (1) the complexity of the sphere decoding has a cubic relationship with the number of transmitting antennas, which is still relatively high; (2) the sphere decoding algorithm uses depth-first search in the symbol vector tree diagram, because There is a backtracking process in the depth-first search, so the nodes in the tree diagram may be visited multiple times, which makes the search process more cumbersome; (3) the sphere decoding algorithm needs to select the search radius before searching. If the search radius is not selected properly, the complexity will be unacceptable. control. For example, if the selected search radius is too large, it is necessary to visit almost all nodes in the symbolic vector tree diagram, and the complexity is too high; if the selected search radius is too small, there may not be a path within the search radius after the search ends , causing the algorithm not to converge, and it is necessary to increase the search radius before re-searching, which will result in multiple repeated searches and higher complexity.

因此,如何寻求一种高性能、低复杂度的分层空时码检测算法至今仍然是业内人士正在探求的问题。Therefore, how to find a high-performance, low-complexity layered space-time code detection algorithm is still a problem that people in the industry are exploring.

发明内容Contents of the invention

本发明的目的是提供一种用于分层空时码系统的准最大后验概率检测方法,该检测方法大大降低了信号检测时的搜索、计算的复杂度,同时保持较高的性能,具有较好的应用前景。The purpose of the present invention is to provide a kind of quasi maximum a posteriori probability detection method for layered space-time code system, this detection method greatly reduces the complexity of searching and calculation when signal detection, while maintaining higher performance, has Good application prospects.

本发明的另一目的是提供两种利用准最大后验概率检测方法分别输出硬判决结果和软信息作为接收机中的检测器的分层空时码系统,用作该检测方法的实现装置。Another object of the present invention is to provide two kinds of layered space-time code systems that use the quasi-maximum a posteriori probability detection method to output hard decision results and soft information respectively as detectors in the receiver, as implementation devices for the detection method.

本发明的再一目的是提供一种利用准最大后验概率检测方法输出软信息作为迭代接收机中的检测器的分层空时码系统的工作方法。Yet another object of the present invention is to provide a working method of a layered space-time code system using a quasi-maximum a posteriori probability detection method to output soft information as a detector in an iterative receiver.

为了达到上述目的,本发明提供了一种用于分层空时码系统的准最大后验概率检测方法,该方法是根据接收信号矢量和多入多出MIMO信道矩阵得到发送信号矢量的估计值作为硬判决结果,或者得到发送符号后验概率的软信息;其特征在于:所述检测方法是一种准最大后验概率检测方法;该方法利用分层空时码系统的QR分解-干扰删除结构,从最底层发送天线到最顶层发送天线依次计算部分矢量后验概率,在符号矢量树图中进行宽度优先搜索时,仅保留部分矢量后验概率中最大的一个或一组部分矢量,删除其余的部分矢量;且在宽度优先搜索过程中所选择的每层发送天线的部分矢量数是不同的;搜索结束后得到的一个或一组具有最大矢量后验概率的矢量;其中一个具有最大后验概率的矢量就作为发送信号矢量的估计值,即硬判决结果;或者根据该一组矢量后验概率得到发送符号后验概率的软信息。In order to achieve the above object, the present invention provides a quasi-maximum a posteriori probability detection method for layered space-time code systems, which is to obtain the estimated value of the transmitted signal vector according to the received signal vector and the MIMO channel matrix As a hard decision result, or obtain the soft information of the posterior probability of the transmitted symbol; it is characterized in that: the detection method is a quasi-maximum posterior probability detection method; the method utilizes the QR decomposition-interference deletion of the layered space-time code system structure, calculate the partial vector posterior probability sequentially from the bottom transmit antenna to the top transmit antenna, when performing breadth-first search in the symbol vector tree diagram, only keep the largest one or a group of partial vectors in the partial vector posterior probability, delete The remaining partial vectors; and the number of partial vectors of each layer of transmit antennas selected in the breadth-first search process is different; one or a group of vectors with the largest vector posterior probability obtained after the search; one of them has the largest posterior probability The vector of the posterior probability is used as the estimated value of the transmitted signal vector, that is, the result of the hard decision; or the soft information of the posterior probability of the transmitted symbol is obtained according to the set of vector posterior probabilities.

该方法包括下述步骤:The method comprises the steps of:

(1)系统启动后,初始化系统参数:将每层发送天线上的各个发送符号先验概率初始化设置为等概率,并设置每层发送天线选择的部分矢量的个数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmit symbol on each layer of transmit antennas to equal probability, and set the number m k of partial vectors selected by each layer of transmit antennas, where k is The serial number of the transmitting antenna layer, which is a natural number with an interval of [1, n T ], where n T is the number of layers of the transmitting antenna, that is, the serial number of the bottom antenna;

(2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构(QR Decomposition and Cancellation Structure),其中QR分解为正交-三角化分解(orthogonal-triangular decomposition);(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure (QR Decomposition and Cancellation Structure) through an orthogonal transformation, where the QR decomposition is an orthogonal-triangular decomposition (orthogonal-triangular decomposition);

对于发送天线个数为nT、接收天线个数为nR的多入多出MIMO系统,其信道为nR×nT维衰落信道H,系统噪声为每个分量都是均值为0和方差为1的nR维高斯白噪声矢量v;假设发送符号集为A={a1,...,ai,...,aL},其中L为发送符号集中的符号的个数,ai为发送符号集中的一个发送符号,i为发送符号的序号;则nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 与nR维接收信号矢量 y [ y 1 , y 2 , · · · , y n R ] T 之间存在的收发信号关系模型为: y = ρ n T Hs + v , 式中,ρ为nT个发送天线上发送信号的总能量;For a multiple-input multiple-output MIMO system with n T transmit antennas and n R receive antennas, its channel is n R × n T dimensional fading channel H, and the system noise is that each component has a mean value of 0 and a variance of Be the nR- dimensional Gaussian white noise vector v of 1; assume that the sending symbol set is A={a 1 ,..., a i ,..., a L }, where L is the number of symbols in the sending symbol set, a i is a transmission symbol in the transmission symbol set, and i is the serial number of the transmission symbol; then n T- dimensional transmission signal vector the s = [ the s 1 , the s 2 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T with n R- dimensional received signal vector the y [ the y 1 , the y 2 , &Center Dot; &Center Dot; &Center Dot; , the y no R ] T The relationship model between sending and receiving signals is: the y = ρ no T Hs + v , In the formula, ρ is the total energy of the transmitted signal on the n T transmitting antennas;

将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,相应地,将衰落信道矩阵H转换为上三角阵R;nR维接收信号矢量y经正交变换转换为由nT个分量z1,z2,…,znT组成的nT维信号矢量z;The relationship model between the receiving and sending signals is transformed into a QR decomposition-interference deletion structure through orthogonal transformation. Correspondingly, the fading channel matrix H is transformed into an upper triangular matrix R; n R- dimensional received signal vector y is transformed into n T -dimensional signal vector z composed of n T components z 1 , z 2 ,..., z nT ;

对于nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s k , s k + 1 , · · · , s n T ] T , 其中后nT-k+1个分量组成矢量s的部分矢量 S ~ k = [ s k , s k + 1 , · · · , s n T ] T ; 同样地,对于nT维信号矢量 z = [ z 1 , z 2 , · · · , z k , z k + 1 , · · · , z n T ] T , 其中后nT-k+1个分量组成矢量z的部分矢量 Z ~ k ′ = [ z k , z k + 1 ′ , · · · , z n T ] T , 上述两式中,k为发送天线层的序号;For n T- dimensional transmitted signal vector the s = [ the s 1 , the s 2 , &Center Dot; &Center Dot; &Center Dot; , the s k , the s k + 1 , &Center Dot; · · , the s no T ] T , Among them, the last n T -k+1 components form part of the vector s S ~ k = [ the s k , the s k + 1 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T ; Similarly, for n T- dimensional signal vector z = [ z 1 , z 2 , · · · , z k , z k + 1 , · · · , z no T ] T , Among them, the last n T -k+1 components form a part vector of vector z Z ~ k ′ = [ z k , z k + 1 ′ , &Center Dot; &Center Dot; &Center Dot; , z no T ] T , In the above two formulas, k is the serial number of the transmitting antenna layer;

(3)开始进行宽度优先搜索:先令发送天线层的序号k=nT,计算第nT层,即最底层发送天线上L个备选的部分矢量

Figure C20051006790600142
以及通过最底层发送天线上的部分矢量后验概率的计算方法得到其部分矢量的后验概率 其中j是第nT层发送天线上备选的部分矢量的序号,分别取区间[1,L]内的自然数,L是发送天线上备选的部分矢量个数;从第nT层发送天线上的L个备选的部分矢量后验概率中选择最大的mnT个数值作为第nT层发送天线上的一组部分矢量的后验概率,记为 其对应的部分矢量即为第nT层发送天线上的mnT个部分矢量,记为 j是第nT层发送天线上的部分矢量的序号,分别取区间[1,mnT]内的自然数,并删除其余的L-mnT个部分矢量;(3) Start breadth-first search: shilling the sequence number k=n T of the transmit antenna layer, calculate the n T layer, that is, the L candidate partial vectors on the bottom transmit antenna
Figure C20051006790600142
And the posterior probability of its partial vector is obtained through the calculation method of the posterior probability of the partial vector on the bottom transmitting antenna Wherein j is the sequence number of the optional partial vector on the nth T layer transmitting antenna, which is a natural number in the interval [1, L] respectively, and L is the number of optional partial vectors on the transmitting antenna; from the n T layer transmitting antenna Among the L alternative partial vector posterior probabilities on , select the largest m nT values as the posterior probability of a group of partial vectors on the nth T layer transmitting antenna, denoted as The corresponding partial vectors are the m nT partial vectors on the transmit antenna of the nth T layer, denoted as j is the sequence number of the partial vectors on the nth T layer transmitting antenna, respectively take natural numbers in the interval [1, m nT ], and delete the remaining Lm nT partial vectors;

(4)令发送天线层的序号k=nT-1;(4) Let the serial number k=n T -1 of the transmitting antenna layer;

(5)第k+1层发送天线上有mk+1个维数为nT-k的部分矢量 其部分矢量后验概率为

Figure C20051006790600147
j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;其中有一个部分矢量
Figure C20051006790600148
向第k层发送天线产生L个分支,形成L个维数为nT-k+1的部分矢量 该L个维数为nT-k+1的部分矢量的后nT-k维分量都是 且它们的第1维分量分别为a1,a2,...,aL,该L个在信号矢量 条件下的部分矢量后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 上述两式中,i是发送符号的序号,分别取区间[1,L]内的自然数;再通过相邻两层发送天线上的部分矢量后验概率间的递推关系式计算第k+1层发送天线上的部分矢量 向第k层发送天线产生的L个备选的部分矢量的后验概率 P ( S ~ k + 1 j , s k = a i | Z ~ k ) 这样,第k+1层发送天线上的mk+1个部分矢量向第k层发送天线生成了L·mk+1个备选的部分矢量,该部分矢量的后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) i是发送符号的序号,分别取区间[1,L]内的自然数,j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;从第k层发送天线上的L·mk+1个备选的部分矢量的部分矢量后验概率中选择最大的mk个数值作为第k层发送天线上的一组部分矢量的后验概率,记为
Figure C20051006790600151
其对应的部分矢量即为第k层发送天线上的mk个部分矢量,记为
Figure C20051006790600152
j是第k层发送天线上的部分矢量的序号,分别取区间[1,mk]内的自然数;删除其余的L·mk+1-mk个部分矢量;(5) There are m k+1 partial vectors with dimension n T -k on the transmitting antenna of layer k+1 Its partial vector posterior probability is
Figure C20051006790600147
j is the serial number of the partial vector on the transmitting antenna of the k+1 layer, which is a natural number in the interval [1, m k+1 ]; there is a partial vector
Figure C20051006790600148
Generate L branches to the k-th layer transmit antenna to form L partial vectors with dimension n T -k+1 The last n T -k dimensional components of the L partial vectors with dimensions n T -k+1 are all And their first dimension components are respectively a 1 , a 2 ,..., a L , the L ones in the signal vector The partial vector posterior probability under the condition is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , In the above two formulas, i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L] respectively; then the k+1th is calculated by the recursive relationship between the partial vector posterior probabilities on the adjacent two layers of transmitting antennas Partial vectors on layer transmit antennas The posterior probability of the L candidate partial vectors generated by the transmitting antenna to the kth layer P ( S ~ k + 1 j , the s k = a i | Z ~ k ) In this way, the m k+1 partial vectors on the k+1th layer transmit antenna generate L m k+1 candidate partial vectors to the kth layer transmit antenna, and the posterior probability of this partial vector is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L], and j is the serial number of the partial vector on the k+1th layer transmitting antenna, and is a natural number in the interval [1, m k+1 ]; Select the largest m k values from the partial vector posterior probabilities of L m k+1 candidate partial vectors on the k-th layer transmitting antenna as the posterior probability of a group of partial vectors on the k-th layer transmitting antenna , denoted as
Figure C20051006790600151
The corresponding partial vectors are the m k partial vectors on the transmitting antenna of the kth layer, denoted as
Figure C20051006790600152
j is the serial number of the partial vector on the kth layer transmitting antenna, which is a natural number in the interval [1, m k ]; delete the remaining L·m k+1 -m k partial vectors;

(6)发送天线层的序号k减1后,判断k>0是否成立,如果是,则返回执行步骤(5);否则,结束宽度优先搜索过程,执行后续步骤;(6) After the serial number k of the sending antenna layer is subtracted by 1, it is judged whether k>0 is established, if yes, then return to the execution step (5); otherwise, end the breadth-first search process, and perform subsequent steps;

(7)从宽度优先搜索过程中得到一组m1个矢量 S ~ 1 j = s j 及其对应的矢量后验概率 P ( S ~ 1 j | Z ~ 1 ) = P ( s j | z ) , 其中j是最顶层发送天线上的矢量的序号,分别取区间[1,m1]内的自然数;如果需要输出硬判决,则执行后续步骤;如果需要输出软信息,则跳转执行步骤(9);(7) Get a set of m 1 vectors from the breadth-first search process S ~ 1 j = the s j and its corresponding vector posterior probability P ( S ~ 1 j | Z ~ 1 ) = P ( the s j | z ) , Wherein j is the sequence number of the vector on the top-level transmit antenna, which is a natural number in the interval [1, m 1 ]; if it is necessary to output a hard decision, then perform the subsequent steps; if it is necessary to output soft information, then jump to the execution step (9 );

(8)最顶层天线上的矢量数m1=1,该矢量即为发送信号矢量的估计值,即硬判决的结果,输出该硬判决的结果;检测方法结束;(8) The number of vectors m 1 on the topmost antenna = 1, this vector is the estimated value of the transmitted signal vector, that is, the result of the hard decision, and the result of the hard decision is output; the detection method ends;

(9)最顶层天线上的矢量数为m1,利用该m1个矢量及其矢量后验概率,根据全概率公式得到每层发送天线上的各个发送符号的符号后验概率软信息,输出该软信息;检测方法结束。(9) The number of vectors on the topmost antenna is m 1 , using the m 1 vectors and their vector posterior probabilities, according to the total probability formula, the soft information of the symbol posterior probability of each transmitted symbol on each layer of transmitting antennas is obtained, and output The soft message; detection method ends.

所述步骤(6)中,相邻两层发送天线上的部分矢量后验概率的递推计算公式,即第k+1层发送天线上的部分矢量 向第k层发送天线生成L个备选部分矢量 该两个部分矢量后验概率分别为

Figure C20051006790600157
P ( S ~ k + 1 j , s k = a i | Z ~ k ) 它们之间的后验概率的递推计算公式为:In the step (6), the recursive calculation formula of the partial vector posterior probability on the adjacent two layers of transmitting antennas, that is, the partial vector on the k+1th layer of transmitting antennas Generate L candidate partial vectors to the k-th layer transmit antenna The posterior probabilities of the two partial vectors are
Figure C20051006790600157
and P ( S ~ k + 1 j , the s k = a i | Z ~ k ) The recursive calculation formula of the posterior probability between them is:

PP (( SS ~~ kk ++ 11 jj ,, sthe s kk == aa ii || ZZ ~~ kk )) ∝∝ PP (( zz kk || SS ~~ kk ++ 11 jj ,, sthe s kk == aa ii )) PP (( sthe s kk == aa ii )) PP (( SS ~~ kk ++ 11 jj || ZZ ~~ kk ++ 11 )) ;;

式中,j是第k+1层发送天线上的部分矢量的序号,取区间[1,mk+1]内的任一自然数,i是发送符号的序号,i取区间[1,L]内的自然数;P(sk=ai)是第k层发送天线上的符号ai的符号先验概率; P ( z k | S ~ k + 1 j , s k = a i ) 是已知

Figure C200510067906001511
sk=ai的条件下zk的概率,它满足均值为 ρ n T Σ l = k + 1 n T r k , l s l j + ρ n T r k , k a i , 方差为1的高斯分布:In the formula, j is the serial number of the partial vector on the transmitting antenna on the k+1th layer, any natural number in the interval [1, m k+1 ], i is the serial number of the transmitted symbol, and i is in the interval [1, L] A natural number in ; P(s k =a i ) is the symbol prior probability of the symbol a i on the transmitting antenna of the kth layer; P ( z k | S ~ k + 1 j , the s k = a i ) is known
Figure C200510067906001511
The probability of z k under the condition of s k =a i , which satisfies the mean ρ no T Σ l = k + 1 no T r k , l the s l j + ρ no T r k , k a i , Gaussian distribution with variance 1:

PP (( zz kk || SS ~~ kk ++ 11 jj ,, sthe s kk == aa ii )) == 11 ππ expexp {{ -- || || zz kk -- ρρ nno TT ΣΣ ll == kk ++ 11 nno TT rr kk ,, ll sthe s ll jj -- ρρ nno TT rr kk ,, kk aa ii || || 22 }} ;;

式中,nT为发送天线数;ρ为nT根发送天线上发送信号的总能量;ai为发送符号,i是发送符号的序号,i选取区间[1,L]内的自然数;

Figure C20051006790600161
为第k+1层发送天线上的第j个部分矢量;sl j为k+1层发送天线上的第j个部分矢量的第l层发送天线上的符号;rk,l为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第l列的元素;rk,k为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第k列的元素。In the formula, n T is the number of transmitting antennas; ρ is the total energy of the transmitted signal on n T transmitting antennas; a i is the transmitted symbol, i is the serial number of the transmitted symbol, and i is selected as a natural number in the interval [1, L];
Figure C20051006790600161
is the j-th partial vector on the k+1th layer transmit antenna; s l j is the symbol on the l-th layer transmit antenna of the j-th partial vector on the k+1 layer transmit antenna; r k,l is the matrix H The element of row k and column l in the upper triangular matrix R obtained after QR decomposition; r k, k is the element of row k and column k in the upper triangular matrix R obtained after QR decomposition of matrix H.

所述方法中,在每层发送天线选择部分矢量时,只选择对检测方法输出贡献大的部分矢量,即选择部分矢量后验概率最大的一个或一组部分矢量;且每层发送天所选择的部分矢量数量是不固定的,它是随着发送天线数的递减而不同;在硬判决输出时,最顶层发送天线选择1个部分矢量,其他各层的发送天线选择的部分矢量数目则随发送天线数量的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 , m1=1;在输出软信息时,对每层发送天线选择的部分矢量数目随发送天线数量的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 ≤ m 1 . In the method, when selecting partial vectors for each layer of transmitting antennas, only select the partial vectors that contribute greatly to the output of the detection method, that is, select one or a group of partial vectors with the largest posterior probability of the partial vectors; The number of partial vectors is not fixed, it is different with the decrease of the number of transmitting antennas; in the hard decision output, the topmost transmitting antenna selects one partial vector, and the number of partial vectors selected by the transmitting antennas of other layers varies with The number of transmit antennas decreases but does not decrease monotonically, that is, m no T ≤ m no T - 1 ≤ &Center Dot; &Center Dot; &Center Dot; ≤ m 2 , m 1 =1; when outputting soft information, the number of partial vectors selected for each layer of transmit antennas does not decrease monotonically with the decrease of the number of transmit antennas, namely m no T ≤ m no T - 1 ≤ &Center Dot; &Center Dot; · ≤ m 2 ≤ m 1 .

所述方法用于分层空时码系统或超三代移动通信系统中的接收机的检测器。The method is used for a receiver detector in a layered space-time code system or a super three-generation mobile communication system.

为了达到上述目的,本发明又提供了一种根据上述检测方法进行检测的分层空时码系统,由发射机和接收机组成,其中发射机包括:信源、星座点映射器、串并变换器和nT根发送天线;接收机包括:nR根接收天线、检测器、星座点逆映射器和信宿;其中发射机的信源产生的二进制数据{bi},送入星座点映射器得到发送信号{s1,...,snT},该发送信号{s1,...,snT}又被送入串并变换器将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特征在于:所述接收机中的检测器是采用准最大后验概率检测方法和输出硬判决的准最大后验概率检测器;该准最大后验概率检测器从所述接收机中的nR根接收天线接收到nR路并行接收信号{y1,...,ynR}后,进行准最大后验概率的检测后,得到发送信号的估计值

Figure C20051006790600164
即硬判决结果,然后将该硬判决结果送入星座点逆映射器得到二进制数据的估计值
Figure C20051006790600171
最后送入信宿。In order to achieve the above object, the present invention provides a layered space-time code system detected according to the above detection method, which is composed of a transmitter and a receiver, wherein the transmitter includes: a signal source, a constellation point mapper, a serial-to-parallel conversion and n T transmitting antennas; the receiver includes: n R receiving antennas, a detector, a constellation point inverse mapper and a sink; where the binary data {b i } generated by the source of the transmitter is sent to the constellation point mapper The transmission signal {s 1 , ..., s nT } is obtained, and the transmission signal {s 1 , ..., s nT } is sent to the serial-to-parallel converter to convert the serial signal into n T parallel signals, and then Send out through n T root transmitting antenna; It is characterized in that: the detector in the described receiver is the quasi maximum a posteriori probability detector that adopts quasi maximum a posteriori probability detection method and output hard decision; This quasi maximum a posteriori probability detection After receiving the n R channels of parallel receiving signals {y 1 ,...,y nR } from the n R receiving antennas in the receiver, the device performs quasi-maximum a posteriori probability detection to obtain the estimated value of the transmitted signal
Figure C20051006790600164
That is, the hard decision result, and then send the hard decision result to the constellation point inverse mapper to obtain the estimated value of the binary data
Figure C20051006790600171
Finally sent to the destination.

为了达到上述目的,本发明还提供了一种根据上述检测方法进行检测的分层空时码系统,该系统由发射机和迭代接收机组成,其中发射机包括:信源、信道编码器、交织器、星座点映射器、串并变换器和nT根发送天线;迭代接收机包括:nR根接收天线、检测器、比特似然比计算器、符号概率计算器、解交织器、交织器、信道译码器、两个减法器和信宿;其中发射机的信源产生的二进制数据{ci},送入信道编码器得到编码后的二进制数据{bi},又被送入交织器进行处理,得到的编码后的随机交织的二进制数据{bπ(i)}被送入星座点映射器,得到的发送信号{s1,...,snT}又被送入串并变换器,将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特征在于:所述迭代接收机中的检测器是采用准最大后验概率检测方法和输出各发送天线上发送符号后验概率软信息的准最大后验概率检测器。In order to achieve the above object, the present invention also provides a layered space-time code system that detects according to the above detection method, the system is composed of a transmitter and an iterative receiver, wherein the transmitter includes: a source, a channel encoder, an interleaving device, constellation point mapper, serial-to-parallel converter, and n T transmitting antennas; the iterative receiver includes: n R receiving antennas, detectors, bit likelihood ratio calculators, symbol probability calculators, deinterleavers, and interleavers , a channel decoder, two subtractors and a sink; where the binary data { ci } generated by the source of the transmitter is sent to the channel encoder to obtain encoded binary data {bi } , which is then sent to the interleaver After processing, the encoded randomly interleaved binary data {b π(i) } is sent to the constellation point mapper, and the obtained transmitted signal {s 1 ,...,s nT } is sent to the serial-to-parallel conversion The serial signal is converted into parallel signals of n T paths, and then sent out through n T root transmitting antennas; it is characterized in that: the detector in the iterative receiver adopts the quasi-maximum a posteriori probability detection method and outputs each transmission A quasi-maximum a posteriori probability detector for sending symbol posterior probability soft information over an antenna.

为了达到上述目的,本发明更提供了一种采用上述检测方法的分层空时码系统中的迭代接收机的工作方法,其特征在于:包括如下步骤:In order to achieve the above object, the present invention further provides a working method of an iterative receiver in a layered space-time code system employing the above detection method, which is characterized in that: comprising the following steps:

(1)系统启动后,初始化系统参数:将每层发送天线上各个发送符号先验概率初始化设置为等概率,并把该初始化的发送符号先验概率P(s)送入准最大后验概率检测器;初始化设置本地交织器输出的比特似然比{λ2[bπ(i)]}为0,并将该初始化的本地交织器输出的比特似然比{λ2[bπ(i)]}送入第一减法器;再设置每层发送天线选择的部分矢量数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmitted symbol on each layer of transmitting antennas to equal probability, and send the initialized prior probability P(s) of the transmitted symbol into the quasi-maximum posterior probability Detector; initialize the bit likelihood ratio {λ 2 [b π(i) ]} output by the local interleaver to be 0, and set the bit likelihood ratio {λ 2 [b π(i )] of the initialized local interleaver output ) ]} into the first subtractor; then set the number of partial vectors m k selected by each layer of transmit antenna, where k is the serial number of the transmit antenna layer, which is a natural number with an interval of [1, n T ], n T is The number of layers of the transmitting antenna, that is, the serial number of the bottom antenna;

(2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,其中QR分解为正交-三角化分解;(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure through an orthogonal transformation, wherein the QR decomposition is an orthogonal-triangulation decomposition;

(3)检测器对nR个接收天线上得到的接收信息按照准最大后验概率检测方法中的宽度优先搜索和计算软信息的过程进行处理,得到发送符号后验概率软信息p(s|y);再将该检测器输出的发送符号后验概率软信息p(s|y)送到比特似然比计算器,得到比特似然比信息{Λ1[bπ(i)]},然后将该比特似然比信息{Λ1[bπ(i)]}送入第一减法器;(3) The detector processes the received information obtained from n R receiving antennas according to the process of breadth-first search and soft information calculation in the quasi-maximum a posteriori probability detection method, and obtains the soft information p(s| y); then send the soft information p(s|y) of the posterior probability of the transmitted symbol output by the detector to the bit likelihood ratio calculator to obtain the bit likelihood ratio information {Λ 1 [b π(i) ]}, Then send the bit likelihood ratio information {Λ 1 [b π(i) ]} into the first subtractor;

(4)在第一减法器中,比特似然比信息{Λ1[bπ(i)]}减去本地交织器输出的比特似然比信息{λ2[bπ(i)]}得到外信息{λ1[bπ(i)]},该外信息{λ1[bπ(i)]}被送到解交织器中进行解交织,得到解交织的外信息{λ1[bi]};(4) In the first subtractor, the bit likelihood ratio information {Λ 1 [b π(i) ]} is subtracted from the bit likelihood ratio information {λ 2 [b π(i) ]} output by the local interleaver to obtain The extrinsic information {λ 1 [b π(i) ]}, the extrinsic information {λ 1 [b π(i) ]} is sent to the deinterleaver for deinterleaving, and the deinterleaved extrinsic information {λ 1 [b i ]};

(5)将解交织的外信息{λ1[bi]}分为两路:一路送入信道译码器进行译码,另一路作为先验信息送入第二减法器;(5) Divide the deinterleaved external information {λ 1 [ bi ]} into two paths: one path is sent to the channel decoder for decoding, and the other path is sent to the second subtractor as prior information;

(6)解交织的外信息{λ1[bi]}送入信道译码器进行译码后输出符号软信息的对数似然比{Λ2[bi]},再将该符号软信息的对数似然比{Λ2[bi]}送入第二减法器;(6) The deinterleaved external information {λ 1 [ bi ]} is sent to the channel decoder for decoding, and the log likelihood ratio {Λ 2 [ bi ]} of the symbol soft information is output, and then the symbol soft information The log likelihood ratio {Λ 2 [b i ]} of the information is sent to the second subtractor;

(7)在第二减法器中,信道译码器输出的符号软信息的对数似然比{Λ2[bi]}减去先验信息{λ1[bi]}得到外信息{λ2[bi]};该外信息{λ2[bi]}被送到本地交织器中进行交织后,输出新的比特似然比,即新的{λ2[bπ(i)]};(7) In the second subtractor, the log-likelihood ratio {Λ 2 [b i ]} of the symbol soft information output by the channel decoder is subtracted from the prior information {λ 1 [b i ]} to obtain the extrinsic information { λ 2 [b i ]}; after the external information {λ 2 [b i ]} is sent to the local interleaver for interleaving, it outputs a new bit likelihood ratio, that is, the new {λ 2 [b π(i) ]};

(8)新的比特似然比{λ2[bπ(i)]}送入到符号概率计算器,得到新的先验信息P(s);该新的先验信息P(s)又送到准最大后验概率检测器,更新先验信息;同时在顺序执行上述步骤(3)~(8)各一次的过程中,完成一次迭代操作;(8) The new bit likelihood ratio {λ 2 [b π(i) ]} is sent to the symbol probability calculator to obtain new prior information P(s); the new prior information P(s) is Send it to the quasi-maximum a posteriori probability detector to update the prior information; at the same time, in the process of sequentially executing the above steps (3) to (8) once, complete an iterative operation;

(9)循环执行上述步骤(3)-(8),即经过多次迭代后,停止译码;(9) cyclically execute the above steps (3)-(8), that is, after multiple iterations, stop decoding;

(10)迭代结束后,将信道译码器输出的硬判决的二进制数据{Λ1[a1]}送到信宿,迭代接收机结束其检测和译码操作。(10) After the iteration ends, the hard-decision binary data {Λ 1 [a 1 ]} output by the channel decoder is sent to the sink, and the iterative receiver ends its detection and decoding operations.

所述迭代接收机的操作步骤中进行的循环迭代操作次数至少是1次,,迭代次数取决于检测和译码的时延和硬件复杂度的不同要求。The number of loop iteration operations performed in the operation steps of the iterative receiver is at least one, and the number of iterations depends on different requirements of detection and decoding time delay and hardware complexity.

目前,分层空时码的检测方法最好的技术有最优检测算法和次优检测算法两种,其中最优算法可以取得最好的性能,但复杂度太高,因此最优算法只是提供一个检测性能所能达到的理论极限,实际通信系统中一般不会采用。次优算法的性能非常接近最优算法的性能,但复杂度大大降低,实际的通信系统中通常采用次优算法。At present, the best detection methods for layered space-time codes include optimal detection algorithms and suboptimal detection algorithms. Among them, the optimal algorithm can achieve the best performance, but the complexity is too high, so the optimal algorithm only provides The theoretical limit that a detection performance can achieve is generally not adopted in the actual communication system. The performance of the suboptimal algorithm is very close to the performance of the optimal algorithm, but the complexity is greatly reduced, and the suboptimal algorithm is usually used in the actual communication system.

本发明是一种用于分层空时码系统的准最大后验概率检测方法,它与传统的最优算法,即最大后验概率检测方法进行比较的优点是:性能损失很小,但是,检测的复杂度大大降低。与最好的次优算法,即球译码算法进行比较的优点和效果是:该方法的性能稍稍优于球译码算法,或着与球译码算法性能相当;但是,检测方法的复杂度大大降低:球译码的复杂度与发送天线数呈立方关系,本发明的复杂度与发送天线数呈线性关系;而且,本发明的复杂度是可控制的。由于确定了每层天线选择的节点数后不需要设置其它的阈值或参数,所以宽度优先搜索的复杂度是确定的,这样就能够避免球译码算法中复杂度可能是不可控制的问题。The present invention is a kind of quasi-maximum a posteriori probability detection method for layered space-time code system, and its advantage compared with the traditional optimal algorithm, that is, the maximum a posteriori probability detection method is: performance loss is very small, but, The detection complexity is greatly reduced. The advantages and effects of comparing with the best sub-optimal algorithm, that is, the sphere decoding algorithm are: the performance of this method is slightly better than that of the sphere decoding algorithm, or is equivalent to the performance of the sphere decoding algorithm; however, the complexity of the detection method Greatly reduced: the complexity of spherical decoding has a cubic relationship with the number of transmitting antennas, and the complexity of the present invention has a linear relationship with the number of transmitting antennas; moreover, the complexity of the present invention is controllable. Since there is no need to set other thresholds or parameters after determining the number of nodes selected by each layer of antennas, the complexity of the breadth-first search is determined, which can avoid the problem that the complexity of the sphere decoding algorithm may be uncontrollable.

本发明检测方法的技术创新之处是:利用分层空时码系统的QR分解-干扰删除结构,从最底层发送天线到最顶层发送天线递推地计算部分矢量后验概率。这种递推计算可以在符号矢量树图上采用宽度优先搜索,从而避免了球译码算法的深度优先搜索中的回溯过程。另外,在每层发送天线上,以部分矢量后验概率为度量,保留部分矢量后验概率大的节点(与部分矢量相对应),使之继续产生子节点;删除部分矢量后验概率小的节点(与部分矢量相对应),使之不再产生子节点。这样使得其性能比贪婪的搜索算法(在符号矢量树图中对所有的路径都进行搜索)损失很小,但复杂度大大降低。The technical innovation of the detection method of the present invention is: using the QR decomposition-interference deletion structure of the layered space-time code system to recursively calculate the partial vector posterior probability from the bottommost transmitting antenna to the topmost transmitting antenna. This recursive calculation can use breadth-first search on the symbol vector tree graph, thus avoiding the backtracking process in the depth-first search of the sphere decoding algorithm. In addition, on each layer of transmitting antennas, the posterior probability of the partial vector is used as the measure, and the node with a large posterior probability of the partial vector is reserved (corresponding to the partial vector) to make it continue to generate child nodes; the node with the small posterior probability of the partial vector is deleted node (corresponding to the partial vector), so that it no longer produces child nodes. In this way, the loss of its performance is small compared with the greedy search algorithm (searching all paths in the symbol vector tree graph), but the complexity is greatly reduced.

再者,本发明在符号矢量树图中进行宽度优先搜索时,对每层发送天线选择的节点数不是固定的,而是随着发送天线数的递减而不同。由于确定了每层天线选择的节点数后不需要设置其它的阈值或参数,所以本发明宽度优先搜索的复杂度是确定的,也就是其计算的复杂度是确定的或可控的,就避免了球译码算法中复杂度可能是不可控制的问题。Furthermore, when the present invention performs breadth-first search in the symbol vector tree diagram, the number of nodes selected for each layer of transmitting antennas is not fixed, but varies with the decreasing number of transmitting antennas. Since it is not necessary to set other thresholds or parameters after determining the number of nodes selected by each layer of antennas, the complexity of the breadth-first search in the present invention is definite, that is, the computational complexity is definite or controllable, and avoids The complexity may be an uncontrollable problem in the sphere decoding algorithm.

最后,本发明的检测方法可以同时得到发送矢量的估计值(硬判决的结果),和发送符号后验概率(软信息);即在搜索结束后,可以得到一个具有最大矢量后验概率的矢量作为硬判决结果,或者得到一组具有最大矢量后验概率的矢量,根据这组矢量后验概率得到发送符号后验概率的软信息。Finally, the detection method of the present invention can simultaneously obtain the estimated value of the transmitted vector (the result of the hard decision) and the posterior probability of the transmitted symbol (soft information); that is, after the search is completed, a vector with the maximum posterior probability of the vector can be obtained As a hard decision result, or a set of vectors with the largest vector posterior probability is obtained, and soft information of the posterior probability of the transmitted symbol is obtained according to the set of vector posterior probabilities.

附图说明Description of drawings

图1(A)、(B)分别是在假设发送天线数为4,采用QPSK调制时的最大后验概率检测方法与准最大后验概率检测方法的符号矢量树图的示意图。Figure 1(A) and (B) are schematic diagrams of the symbol vector tree diagrams of the maximum a posteriori probability detection method and the quasi-maximum a posteriori probability detection method when the number of transmitting antennas is assumed to be 4 and QPSK modulation is adopted.

图2是本发明用于分层空时码系统的准最大后验概率检测方法的流程图。Fig. 2 is a flow chart of the quasi maximum a posteriori probability detection method for a layered space-time code system according to the present invention.

图3是本发明利用准最大后验概率检测方法硬判决输出的分层空时码系统中的发射机与接收机的结构组成图。Fig. 3 is a structural composition diagram of a transmitter and a receiver in a layered space-time code system output by a hard decision using a quasi-maximum a posteriori probability detection method according to the present invention.

图4是本发明利用准最大后验概率检测方法软信息输出的分层空时码系统中的发射机与迭代接收机的结构组成图。Fig. 4 is a structural composition diagram of a transmitter and an iterative receiver in a layered space-time code system output by soft information using a quasi-maximum a posteriori probability detection method according to the present invention.

图5是本发明利用准最大后验概率检测器硬判决输出的分层空时码系统仿真的误码率曲线与其它几种方法的误码率曲线比较图。Fig. 5 is a graph comparing the bit error rate curve of the layered space-time code system simulation output by the hard decision of the quasi maximum a posteriori probability detector and the bit error rate curves of several other methods in the present invention.

图6是本发明利用准最大后验概率检测器输出软信息作为接收机的第一级检测器进行仿真时的不同迭代次数的误码率曲线比较图。Fig. 6 is a graph comparing bit error rate curves of different iterations when the present invention utilizes quasi-maximum a posteriori probability detector to output soft information as the first-stage detector of the receiver for simulation.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.

对于发送天线数为nT、接收天线数为nR的多入多出MIMO系统,信道为nR×nT维衰落信道H,系统噪声为nR维高斯白噪声矢量v,即v中的每个分量都是均值为0、方差为1的高斯白噪声。nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 与nR维接收信号矢量 y = [ y 1 , y 2 , · · · , y n R ] T 之间存在收发信号关系模型: y = ρ n T Hs + v ; 式中,ρ为nT根发送天线上发送信号的总能量。For a multiple-input multiple-output MIMO system with n T transmit antennas and n R receive antennas, the channel is an n R ×n T -dimensional fading channel H, and the system noise is an n R- dimensional Gaussian white noise vector v, that is, in v Each component is Gaussian white noise with mean 0 and variance 1. n T- dimensional transmit signal vector the s = [ the s 1 , the s 2 , · &Center Dot; &Center Dot; , the s no T ] T with n R- dimensional received signal vector the y = [ the y 1 , the y 2 , · &Center Dot; · , the y no R ] T There is a relationship model between sending and receiving signals: the y = ρ no T Hs + v ; In the formula, ρ is the total energy of the transmitted signal on n T transmitting antennas.

输出硬判决的检测目的是通过接收信号矢量y和衰落信道信息H得到发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 的估计值 s ^ = [ s ^ 1 , s ^ 2 , · · · , s ^ n T ] T ; 输出软信息的检测目的是通过接收信号矢量y和衰落信道信息H得到在接收到信号矢量y的条件下发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 的各分量的符号后验概率值P(s1|y),P(s2|y),..,P(snT|y)。The detection purpose of the output hard decision is to obtain the transmitted signal vector through the received signal vector y and the fading channel information H the s = [ the s 1 , the s 2 , · &Center Dot; &Center Dot; , the s no T ] T estimated value of the s ^ = [ the s ^ 1 , the s ^ 2 , &Center Dot; &Center Dot; &Center Dot; , the s ^ no T ] T ; The purpose of detecting the output soft information is to obtain the transmitted signal vector under the condition of received signal vector y by receiving signal vector y and fading channel information H the s = [ the s 1 , the s 2 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T The signed posterior probability values P(s 1 |y), P(s 2 |y), ..., P(s nT |y) of each component of .

本发明是一种用于分层空时码系统的准最大后验概率检测方法,首先要将收发信号关系模型化为QR分解-干扰删除结构:即对于收发信号间的关系模型中的衰落信道矩阵H进行QR分解:H=QR;式中,Q是单位酉阵,R是上三角阵。再将上式代入收发信号关系模型:y=QRs+v;然后,将上式两边都左乘以QH,得到正交变换后的收发信号关系模型:The present invention is a quasi-maximum a posteriori probability detection method for a layered space-time code system. First, the relationship between the sending and receiving signals should be modeled as a QR decomposition-interference deletion structure: that is, for the fading channel in the relationship model between the sending and receiving signals The matrix H is decomposed by QR: H=QR; where, Q is a unitary unitary matrix, and R is an upper triangular matrix. Substitute the above formula into the relationship model of sending and receiving signals: y=QRs+v; then, multiply both sides of the above formula by Q H to get the relationship model of sending and receiving signals after orthogonal transformation:

zz == QQ Hh ythe y == ρρ nno TT QQ Hh QRsQRs ++ QQ Hh vv == ρρ nno TT RsRs. ++ ωω

其中,矢量z=QHy是接收信号矢量y经正交变换后的信号矢量,矢量 z = [ z 1 , z 2 , · · · , z n T ] T 的维数是nT。由于是正交变换,信号矢量z与接收信号矢量y等价。由于Q是单位酉阵,QHQ等于单位阵。ω=QHv, ω = [ ω 1 , ω 2 , · · · , ω n T ] 是nT维高斯白噪声矢量。Among them, the vector z=Q H y is the signal vector after the orthogonal transformation of the received signal vector y, and the vector z = [ z 1 , z 2 , &Center Dot; &Center Dot; · , z no T ] T The dimensionality of is n T . Due to the orthogonal transformation, the signal vector z is equivalent to the received signal vector y. Since Q is a unitary matrix, Q H Q is equal to a unitary matrix. ω=Q H v, ω = [ ω 1 , ω 2 , &Center Dot; &Center Dot; · , ω no T ] is an nT- dimensional Gaussian white noise vector.

发送信号矢量s的nT个分量为s1,s2,…,snT;信号矢量z的nT个分量为z1,z2,…,znT;高斯白噪声矢量ω的nT个分量为ω1,ω2,…,ωnT;上三角阵R的元素为rij,i和j是区间为[1,nT]的自然数。将上面的正交变换后的收发信号关系模型由矢量形式写为矩阵形式:

Figure C20051006790600214
该式就是QR分解-干扰删除结构。The n T components of the transmitted signal vector s are s 1 , s 2 , ..., s nT ; the n T components of the signal vector z are z 1 , z 2 , ..., z nT ; the n T components of the Gaussian white noise vector ω The components are ω 1 , ω 2 ,..., ω nT ; the element of the upper triangular matrix R is r ij , and i and j are natural numbers in the interval [1, n T ]. Write the above orthogonally transformed transceiver signal relationship model from vector form to matrix form:
Figure C20051006790600214
This formula is the QR decomposition-interference deletion structure.

在接收到信号矢量y的条件下发送信号矢量s的矢量后验概率为P(s|y);在接收到信号矢量z的条件下发送信号矢量s的矢量后验概率为P(s|z)。由于信号矢量z与接收信号矢量y等价,因此,P(s|y)=P(s|z)。The vector posterior probability of sending signal vector s under the condition of receiving signal vector y is P(s|y); the vector posterior probability of sending signal vector s under the condition of receiving signal vector z is P(s|z ). Since the signal vector z is equivalent to the received signal vector y, P(s|y)=P(s|z).

对于矢量 s = [ s 1 , s 2 , · · · , s k , s k + 1 , · · · , s n T ] T , 它的后nT-k+1个分量组成矢量s的部分矢量 S ~ k = [ s k , s k + 1 , · · · , s n T ] T , k是发送天线层的序号。同样的,对于信号矢量 z = [ z 1 , z 2 , · · · , z k , z k + 1 , · · · , z n T ] T , 它的后nT-k+1个分量组成矢量z的部分矢量 Z ~ k = [ z k , z k + 1 , · · · , z n T ] T , k是发送天线层的序号。在接收到部分矢量

Figure C20051006790600219
的条件下,部分发送信号矢量
Figure C20051006790600221
的部分矢量后验概率为
Figure C20051006790600223
中的发送天线层的序号k依次取自然数nT,nT-1,...,1时,就组成不同层发送天线上的部分矢量后验概率序列: P ( S ~ n T | Z ~ n T ) , P ( S ~ n T - 1 | Z ~ n T - 1 ) , . . . , P ( S ~ 1 | Z ~ 1 ) . 因为 S ~ 1 = s , Z ~ 1 = z , 即最顶层发送天线上的部分矢量就是该矢量,所以有 P ( S ~ 1 | Z ~ 1 ) = P ( s | z ) , 即最顶层发送天线上的部分矢量后验概率就是该矢量后验概率。for vector the s = [ the s 1 , the s 2 , &Center Dot; &Center Dot; &Center Dot; , the s k , the s k + 1 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T , Its last n T -k+1 components form the partial vector of vector s S ~ k = [ the s k , the s k + 1 , · · · , the s no T ] T , k is the serial number of the transmitting antenna layer. Similarly, for signal vector z = [ z 1 , z 2 , &Center Dot; &Center Dot; &Center Dot; , z k , z k + 1 , · &Center Dot; &Center Dot; , z no T ] T , Its last n T -k+1 components form the partial vector of vector z Z ~ k = [ z k , z k + 1 , &Center Dot; &Center Dot; · , z no T ] T , k is the serial number of the transmitting antenna layer. After receiving the partial vector
Figure C20051006790600219
Under the condition that the partial transmit signal vector
Figure C20051006790600221
The partial vector posterior probability of is when
Figure C20051006790600223
When the serial number k of the transmitting antenna layer in the sequence takes the natural number n T , n T -1, ..., 1, the partial vector posterior probability sequence on the transmitting antenna of different layers is formed: P ( S ~ no T | Z ~ no T ) , P ( S ~ no T - 1 | Z ~ no T - 1 ) , . . . , P ( S ~ 1 | Z ~ 1 ) . because S ~ 1 = the s , Z ~ 1 = z , That is, the partial vector on the top transmit antenna is the vector, so we have P ( S ~ 1 | Z ~ 1 ) = P ( the s | z ) , That is, the partial vector posterior probability on the topmost transmitting antenna is the vector posterior probability.

设发送符号集为A={a1,a2,...,aL},其中L为发送符号集中符号的个数,a1,a2,...,aL为发送符号。对于nT维的发送信号矢量s,它的每个分量都可以取发送符号集A中的任意一个发送符号。这样,发送信号矢量s可以有LnT种可能的矢量。从nT层发送天线到最顶层发送天线生成的所有的矢量构成的阶梯深度为nT、每个部分矢量有L个分支的发送符号矢量树图。部分矢量

Figure C20051006790600227
有LnT-k种可能的部分矢量,记为
Figure C20051006790600228
j为第k+1层发送天线上的每个可能的部分矢量的序号,j分别取区间[1,LnT-k]内的自然数。Let the transmitted symbol set be A={a 1 , a 2 , ..., a L }, where L is the number of symbols in the transmitted symbol set, and a 1 , a 2 , ..., a L are the transmitted symbols. For an nT- dimensional transmitted signal vector s, each component of it can take any transmitted symbol in the transmitted symbol set A. Thus, there are L nT possible vectors for the transmitted signal vector s. A transmit symbol vector tree diagram with a ladder depth of n T and each partial vector having L branches formed by all the vectors generated from the transmit antennas on the n T layer to the top transmit antenna. partial vector
Figure C20051006790600227
There are L nT-k possible partial vectors, denoted as
Figure C20051006790600228
j is the sequence number of each possible partial vector on the k+1th layer transmit antenna, and j is a natural number in the interval [1, L nT-k ].

设第k+1层发送天线上有维数为nT-k的部分矢量

Figure C20051006790600229
其具有的部分矢量后验概率 j是第k+1层发送天线上的部分矢量的序号。该部分矢量向第k层发送天线产生L个分支,形成L个维数是nT-k+1的部分矢量。这L个维数是nT-k+1的部分矢量的后nT-k维分量都是
Figure C200510067906002211
它们的第1维分量分别为a1,a2,...,aL。这L个维数是nT-k+1的部分矢量记作
Figure C200510067906002212
i是发送符号的序号,分别取区间[1,L]的自然数。L个在信号矢量 条件下的维数是nT-k+1的部分矢量的后验概率记作 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , i是发送符号的序号,分别取区间[1,L]的自然数。第k+1层发送天线上的部分矢量
Figure C200510067906002215
的部分矢量后验概率 与第k层发送天线上的部分矢量 的部分矢量后验概率 P ( S ~ k + 1 j , s k = a i | Z ~ k ) 之间存在如下关系: P ( S ~ k + 1 j , s k = a i | Z ~ k ) ∝ P ( z k | S ~ k = 1 j , s k = a i ) P ( s k - a i ) P ( S ~ k + 1 j | Z ~ k + 1 ) ; 其中i取区间[1,L]的自然数。这就是相邻两层发送天线上的部分矢量后验概率间的递推关系式。Assume that there is a partial vector of dimension n T -k on the transmitting antenna of layer k+1
Figure C20051006790600229
It has a partial vector posterior probability j is the serial number of the partial vector on the k+1th layer transmit antenna. This partial vector generates L branches to the transmit antenna of the kth layer, forming L partial vectors whose dimension is n Tk+1. The last n T -k dimension components of the part vector whose L dimensions are n T -k+1 are all
Figure C200510067906002211
Their first dimension components are respectively a 1 , a 2 ,..., a L . These L dimensions are part vectors of n T -k+1 denoted as
Figure C200510067906002212
i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L] respectively. L in signal vector The posterior probability of a partial vector whose dimension is n T -k+1 under the condition is denoted as P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L] respectively. Partial vector on transmit antenna of layer k+1
Figure C200510067906002215
The partial vector posterior probability of and the partial vector on the transmit antenna of layer k The partial vector posterior probability of P ( S ~ k + 1 j , the s k = a i | Z ~ k ) There is the following relationship between: P ( S ~ k + 1 j , the s k = a i | Z ~ k ) ∝ P ( z k | S ~ k = 1 j , the s k = a i ) P ( the s k - a i ) P ( S ~ k + 1 j | Z ~ k + 1 ) ; Where i is a natural number in the interval [1, L]. This is the recursive relationship between the partial vector posterior probabilities on two adjacent layers of transmitting antennas.

其中,P(sk=ai)是第k层发送天线上的符号ai的符号先验概率; P ( z k | S ~ k + 1 j , s k = a i ) 是已知 sk=ai的条件下zk的概率,它满足均值为 ρ n T Σ l = k + 1 n T r k , l s l j + ρ n T r k , k a i , 方差为1的高斯分布:Wherein, P(s k =a i ) is the symbol prior probability of the symbol a i on the transmitting antenna of the kth layer; P ( z k | S ~ k + 1 j , the s k = a i ) is known The probability of z k under the condition of s k =a i , which satisfies the mean ρ no T Σ l = k + 1 no T r k , l the s l j + ρ no T r k , k a i , Gaussian distribution with variance 1:

PP (( zz kk || SS ~~ kk ++ 11 jj ,, sthe s kk == aa ii )) == 11 ππ expexp {{ -- || || zz kk -- ρρ nno TT ΣΣ ll == kk ++ 11 nno TT rr kk ,, ll sthe s ll jj -- ρρ nno TT rr kk ,, kk aa ii || || 22 }}

上式中,nT为发送天线数;ρ为nT根发送天线上发送信号的总能量;ai为发送符号,i是发送符号的序号,分别取区间[1,L]内的自然数; 为第k+1层发送天线上的第j个部分矢量;sl j为k+1层发送天线上的第j个部分矢量的第l层发送天线上的符号;rk,l为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第l列的元素;rk,k为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第k列的元素。In the above formula, n T is the number of transmitting antennas; ρ is the total energy of the transmitted signal on n T transmitting antennas; a i is the transmitted symbol, and i is the serial number of the transmitted symbol, which are natural numbers in the interval [1, L]; is the j-th partial vector on the k+1th layer transmit antenna; s l j is the symbol on the l-th layer transmit antenna of the j-th partial vector on the k+1 layer transmit antenna; r k,l is the matrix H The element of row k and column l in the upper triangular matrix R obtained after QR decomposition; r k, k is the element of row k and column k in the upper triangular matrix R obtained after QR decomposition of matrix H.

在初始化时,发送天线层的序号k=nT,即为最底层,其部分矢量 S ~ n T = s n T , Z ~ n T = z n T ; 最底层发送天线上的部分矢量后验概率的计算方法为 P ( S ~ n T | Z ~ n T ) = P ( s n T | z n T ) = P ( z n T | s n T = a i ) P ( s n T = a i ) ; 其中, P ( s n T = a i ) 是第nT层发送天线上的符号ai的符号先验概率; P ( z n T | s n T = a i ) 是已知 s n T = a i 的条件下znT的概率,它满足均值为

Figure C200510067906002311
方差为1的高斯分布:At the time of initialization, the serial number k=n T of the transmitting antenna layer is the bottom layer, and its partial vector S ~ no T = the s no T , Z ~ no T = z no T ; The calculation method of the partial vector posterior probability on the bottom transmitting antenna is P ( S ~ no T | Z ~ no T ) = P ( the s no T | z no T ) = P ( z no T | the s no T = a i ) P ( the s no T = a i ) ; in, P ( the s no T = a i ) is the symbol a priori probability of the symbol a i on the transmitting antenna of the nth T layer; P ( z no T | the s no T = a i ) is known the s no T = a i The probability of z nT under the condition that the mean is
Figure C200510067906002311
Gaussian distribution with variance 1:

PP (( zz nno TT || sthe s nno TT == aa ii )) == 11 ππ expexp {{ -- || || zz nno TT -- ρρ nno TT rr nno TT ,, nno TT aa ii || || 22 }}

其中,nT为发送天线数;ρ为nT根发送天线上发送信号的总能量;ai为发送符号,i是发送符号的序号,取区间[1,L]内的自然数;rnT,nT为矩阵H进行QR分解后得到的上三角矩阵R中的第nT行第nT列的元素。Among them, n T is the number of transmitting antennas; ρ is the total energy of the transmitted signal on the n T transmitting antennas; a i is the transmitted symbol, i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L]; r nT, nT is the element of row nT and column nT in the upper triangular matrix R obtained after matrix H is decomposed by QR.

在计算天线的序号k=nT情况下的部分矢量后验概率后,再在相邻两层发送天线上的部分矢量后验概率间的递推关系式中,令发送天线层的序号k依次取从nT-1到1的自然数,就可以递推地得到不同层发送天线上的部分矢量后验概率,递推结束后得到矢量后验概率P(s|z)。After calculating the partial vector posterior probability in the case of antenna serial number k=n T , in the recursive relationship between the partial vector posterior probability on two adjacent layers of transmitting antennas, the serial number k of the transmitting antenna layer is sequentially By taking natural numbers from n T -1 to 1, the partial vector posterior probabilities on the transmitting antennas of different layers can be obtained recursively, and the vector posterior probability P(s|z) can be obtained after the recursion ends.

在最大后验概率检测方法中,每层发送天线上的部分矢量全部保留。对应在相邻两层发送天线上的部分矢量后验概率间的递推关系式中,第k+1层发送天线上的部分矢量的个数为LnT-k。这LnT-k个部分矢量对应于发送符号矢量树图中第k+1层发送天线上的LnT-k个节点。这LnT-k个节点中的每个节点向第k层发送天线生成L个分支。这样,第k层发送天线上有LnT-k+1个节点。发送符号矢量树图中的第k层发送天线上的LnT-k+1个节点对应于第k层发送天线上的LnT-k+1个部分矢量。LnT-k+1个部分矢量后验概率可以通过相邻两层发送天线上的部分矢量后验概率间的递推关系式给出。这样,最大后验概率检测方法需要搜索发送符号矢量树图中所有的LnT个路径。这样的复杂度太高,通信系统无法容忍。In the maximum a posteriori probability detection method, all partial vectors on each layer of transmitting antennas are reserved. In the recursive relationship between the posterior probabilities of partial vectors corresponding to two adjacent layers of transmitting antennas, the number of partial vectors on the k+1th layer of transmitting antennas is L nT-k . The L nT-k partial vectors correspond to the L nT-k nodes on the k+1th layer of the transmit antenna in the transmit symbol vector tree diagram. Each of the L nT-k nodes generates L branches to the transmit antenna of the kth layer. In this way, there are L nT-k+1 nodes on the transmitting antenna of the kth layer. The L nT-k+1 nodes on the transmit antennas on the k-th layer in the transmit symbol vector tree diagram correspond to the L nT-k+1 partial vectors on the k-th layer transmit antennas. L nT-k+1 partial vector posterior probabilities can be given by a recursive relationship between partial vector posterior probabilities on two adjacent layers of transmitting antennas. In this way, the maximum a posteriori probability detection method needs to search all L nT paths in the transmitted symbol vector tree diagram. Such complexity is too high for the communication system to tolerate.

参见图1,从图1(A)中可以看出:最大后验概率(MAP)的检测方法在符号矢量树图中采用贪婪的搜索算法,保留了树形结构中所有可能的路径,复杂度是发送天线数的指数次方。如图所示:发送天线数是4、QPSK调制(发送符号个数为4)时,第4层发送天线上有4个节点,第3层发送天线上有4×4=16个节点,第2层发送天线上有16×4=64个节点,第1层发送天线上有64×4=256个节点。总共需要搜索44=256条路径,并计算所有可能的256条路径的矢量后验概率:P(sj|y),j=1,2,...,256。然后从这256个矢量后验概率中选出最大值,对应的矢量即为发送符号矢量的估计值(硬判决)。如果发送天线数是4、16QAM调制时,需要搜索65536条路径。这样的复杂度太高,通信系统无法容忍。而图1(B)中可以看出:准最大后验概率检测方法仅搜索16条完整的路径,16QAM调制需要搜索256条完整的路径,检测的复杂度大大降低。因此,准最大后验概率检测方法比最大后验概率检测方法复杂度大大降低,且其性能比最大后验概率检测方法损失很小(参见图5和图6所示)。Referring to Fig. 1, it can be seen from Fig. 1(A): the detection method of the maximum a posteriori probability (MAP) adopts a greedy search algorithm in the symbol vector tree diagram, retains all possible paths in the tree structure, and the complexity is the exponential power of the number of transmitting antennas. As shown in the figure: when the number of transmitting antennas is 4 and QPSK modulation (the number of transmitting symbols is 4), there are 4 nodes on the transmitting antennas on the fourth layer, and 4×4=16 nodes on the transmitting antennas on the third layer. There are 16×4=64 nodes on the transmitting antennas on the second layer, and 64×4=256 nodes on the transmitting antennas on the first layer. A total of 4 4 =256 paths need to be searched, and the vector posterior probabilities of all possible 256 paths are calculated: P(s j |y), j=1, 2, . . . , 256. Then select the maximum value from the 256 vector posterior probabilities, and the corresponding vector is the estimated value of the transmitted symbol vector (hard decision). If the number of transmitting antennas is 4 and 16QAM modulation, 65536 paths need to be searched. Such complexity is too high for the communication system to tolerate. It can be seen from Figure 1(B) that the quasi-maximum a posteriori probability detection method only searches 16 complete paths, while 16QAM modulation needs to search 256 complete paths, and the detection complexity is greatly reduced. Therefore, the quasi maximum a posteriori probability detection method is much less complex than the maximum a posteriori probability detection method, and its performance loss is small compared with the maximum a posteriori probability detection method (see Fig. 5 and Fig. 6).

对于准最大后验概率检测方法,在发送符号矢量树图中进行宽度优先搜索。对每层发送天线不是选择所有可能的部分矢量,而是仅选择对检测方法输出贡献大的部分矢量,即选择部分矢量后验概率最大的一个或一组部分矢量;对每层发送天线选择的部分矢量数是不固定的,是随着发送天线数的递减而不同。设第k层发送天线选择部分矢量的个数为mk,发送天线层的序号k依次取从nT到1的自然数。对于硬判决输出的情况,最顶层发送天线选择1个部分矢量,其他发送天线选择的部分矢量数随发送天线数的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 , m1=1;对于输出软信息的情况,对每层发送天线选择的部分矢量数随发送天线数的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 ≤ m 1 . For the quasi-maximal a posteriori probability detection method, a breadth-first search is performed in the vector treemap of the transmitted symbols. For each layer of transmitting antennas, instead of selecting all possible partial vectors, only the partial vectors that contribute greatly to the output of the detection method are selected, that is, one or a group of partial vectors with the largest posterior probability of partial vectors is selected; for each layer of transmitting antennas, the selected Part of the vector number is not fixed, it is different with the decreasing number of transmitting antennas. Assuming that the number of vectors selected by the k-th layer transmit antenna is m k , the sequence number k of the transmit antenna layer is a natural number from n T to 1 in sequence. For the case of hard decision output, the topmost transmit antenna selects one partial vector, and the number of partial vectors selected by other transmit antennas does not decrease monotonically with the decrease of the number of transmit antennas, that is m no T ≤ m no T - 1 ≤ · · &Center Dot; ≤ m 2 , m 1 =1; for the case of outputting soft information, the number of partial vectors selected for each layer of transmit antennas does not decrease monotonically with the decrease of the number of transmit antennas, namely m no T ≤ m no T - 1 ≤ &Center Dot; &Center Dot; &Center Dot; ≤ m 2 ≤ m 1 .

对应在相邻两层发送天线上的部分矢量后验概率间的递推关系式中,第k+1层发送天线上的部分矢量的个数为mk+1,其部分矢量后验概率为j是第k+1层发送天线上的部分矢量的序号,为区间[1,mk+1]内的自然数。这mk+1个部分矢量中的每个部分矢量向第k层发送天线生成L个分支。这样,在第k层发送天线上生成了L·mk+1个备选的部分矢量,即生成了L·mk+1个备选的部分矢量。L·mk+1个部分矢量后验概率 P ( S ~ k + 1 j , s k = a i | Z ~ k ) 可以通过相邻两层发送天线上的部分矢量后验概率间的递推关系式给出,j是第k+1层发送天线上的部分矢量的序号,为区间[1,mk+1]内的自然数,i是发送符号的序号,为区间[1,L]内的自然数。从L·mk+1个备选的部分矢量后验概率中选择数值最大的mk个,记为 j是第k层发送天线上的部分矢量的序号,分别取区间[1,mk]内的自然数。保留这mk个部分矢量后验概率对应的部分矢量,删除其他的L·mk+1-mk个部分矢量。这样就得到了第k层发送天线的mk个部分矢量

Figure C20051006790600256
以及其部分矢量后验概率 j是第k层发送天线上的部分矢量的序号,取区间[1,mk]的自然数。计算天线的序号k=nT情况下的部分矢量后验概率后,在相邻两层发送天线上的部分矢量后验概率间的递推关系式中令发送天线层的序号k依次取从nT-1到1的自然数,就可以递推地得到不同层发送天线上的部分矢量后验概率,递推结束后得到的m1个矢量及其矢量后验概率 P ( S ~ 1 j | Z ~ 1 ) = P ( s j | z ) , j是第1层发送天线上的部分矢量的序号,即矢量的序号,为区间[1,m1]内的自然数。Corresponding to the recursive relationship between the partial vector posterior probabilities on two adjacent layers of transmitting antennas, the number of partial vectors on the k+1th layer transmitting antenna is m k+1 , and its partial vector posterior probability is j is the sequence number of the partial vector on the k+1th layer transmit antenna, which is a natural number in the interval [1, m k+1 ]. Each of the m k+1 partial vectors generates L branches to the transmit antenna of the kth layer. In this way, L·m k+1 candidate partial vectors are generated on the k-th layer transmit antenna, that is, L·m k+1 candidate partial vectors are generated. L·m k+1 partial vector posterior probability P ( S ~ k + 1 j , the s k = a i | Z ~ k ) It can be given by the recursive relationship between the partial vector posterior probabilities on two adjacent layers of transmitting antennas, j is the serial number of the partial vector on the k+1th layer of transmitting antenna, which is the interval [1, m k+1 ] The natural number in , i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L]. Select m k with the largest value from L·m k+1 alternative partial vector posterior probabilities, denoted as j is the serial number of the partial vectors on the transmitting antenna of the kth layer, which are natural numbers in the interval [1, m k ]. Retain the partial vectors corresponding to the posterior probabilities of these m k partial vectors, and delete the other L·m k+1 -m k partial vectors. In this way, the m k partial vectors of the transmit antenna of the kth layer are obtained
Figure C20051006790600256
and its partial vector posterior probability j is the serial number of the partial vector on the transmitting antenna of the kth layer, which is a natural number in the interval [1, m k ]. After calculating the partial vector posterior probability in the case of antenna serial number k=n T , in the recursive relationship between the partial vector posterior probability on two adjacent layers of transmitting antennas, the serial number k of the transmitting antenna layer is sequentially taken from n The natural number from T -1 to 1 can recursively obtain the partial vector posterior probabilities on the transmitting antennas of different layers, and obtain m 1 vectors and their vector posterior probabilities after the recursion ends P ( S ~ 1 j | Z ~ 1 ) = P ( the s j | z ) , j is the serial number of the partial vector on the first layer of transmitting antenna, that is, the serial number of the vector, which is a natural number in the interval [1, m 1 ].

利用得到的m1个矢量及其对应的矢量后验概率可以得到两种输出:输出硬判决和输出软信息。输出硬判决时,最顶层天线上的m1=1个矢量就是发送信号矢量的估计值,即硬判决的结果。输出软信息时,利用m1个矢量及其矢量后验概率,根据下面的全概率公式得到每层发送天线上的各发送符号的符号后验概率软信息: P ( s k = a i | y ) = P ( s k = a i | z ) = 1 W Σ j = 1 m 1 δ ( s k j = a i ) P ( s j | z ) ; Two kinds of outputs can be obtained by using the obtained m 1 vectors and their corresponding vector posterior probabilities: hard decision output and soft information output. When outputting a hard decision, the m 1 =1 vectors on the topmost antenna are the estimated value of the transmitted signal vector, that is, the result of the hard decision. When outputting soft information, use m1 vectors and their vector posterior probabilities, and obtain the symbol posterior probability soft information of each transmitted symbol on each layer of transmitting antennas according to the following full probability formula: P ( the s k = a i | the y ) = P ( the s k = a i | z ) = 1 W Σ j = 1 m 1 δ ( the s k j = a i ) P ( the s j | z ) ;

式中,k是发送天线层的序号,取区间[1,nT]的自然数,i是发送符号的序号,取区间[1,L]内的自然数;P(sk=ai|y)=P(sk=ai|z)为第k层发送天线上的发送符号ai的符号后验概率软信息;P(sj|z)为m1个矢量后验概率,j是矢量的序号,取区间[1,m1]内的自然数;sk j是第j个矢量中在第k层发送天线上的符号; W = Σ j = 1 m 1 P ( s j | z ) , 是m1个矢量后验概率的和;δ(·)是一个指示函数:In the formula, k is the serial number of the transmitting antenna layer, which is a natural number in the interval [1, n T ], i is the serial number of the transmitted symbol, and is a natural number in the interval [1, L]; P(s k =a i |y) =P(s k =a i |z) is the symbol posterior probability soft information of the transmitted symbol a i on the kth layer transmit antenna; P(s j |z) is m 1 vector posterior probability, and j is the vector The serial number of , which is a natural number in the interval [1, m 1 ]; s k j is the symbol on the transmitting antenna of the k-th layer in the j-th vector; W = Σ j = 1 m 1 P ( the s j | z ) , is the sum of m 1 vector posterior probabilities; δ(·) is an indicator function:

δδ (( xx == ee )) == 11 ,, xx == ee 00 ,, xx ≠≠ ee ..

参见图2,介绍本发明用于分层空时码系统的准最大后验概率检测方法的具体操作步骤:Referring to Fig. 2, the specific operation steps of the quasi-maximum a posteriori probability detection method that the present invention is used for layered space-time code system are introduced:

(1)系统启动后,初始化系统参数:将每层发送天线上的各个发送符号先验概率初始化设置为等概率,并设置每层发送天线选择的部分矢量的个数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmit symbol on each layer of transmit antennas to equal probability, and set the number m k of partial vectors selected by each layer of transmit antennas, where k is The serial number of the transmitting antenna layer, which is a natural number with an interval of [1, n T ], where n T is the number of layers of the transmitting antenna, that is, the serial number of the bottom antenna;

本发明准最大后验概率检测方法对每层发送天线不是选择所有可能的部分矢量,而是仅选择对检测方法输出贡献大的部分矢量;对每层发送天线选择的部分矢量数是不固定的:随着发送天线数的递减而不同;对于硬判决输出的情况,最顶层发送天线选择1个部分矢量,其他发送天线选择的部分矢量数随发送天线数的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 , m1=1;对于输出软信息的情况,对每层发送天线选择的部分矢量数随发送天线数的递减而单调不减,即The quasi maximum a posteriori probability detection method of the present invention does not select all possible partial vectors for each layer of transmitting antennas, but only selects the partial vectors that contribute greatly to the output of the detection method; the number of partial vectors selected for each layer of transmitting antennas is not fixed : It varies with the decrease of the number of transmit antennas; for the case of hard decision output, the top transmit antenna selects one partial vector, and the partial vector numbers selected by other transmit antennas monotonically do not decrease with the decrease of the number of transmit antennas, namely m no T ≤ m no T - 1 ≤ &Center Dot; &Center Dot; &Center Dot; ≤ m 2 , m 1 =1; for the case of outputting soft information, the number of partial vectors selected for each layer of transmit antennas does not decrease monotonically with the decrease of the number of transmit antennas, namely

mm nno TT ≤≤ mm nno TT -- 11 ≤≤ ·&Center Dot; ·&Center Dot; ·&Center Dot; ≤≤ mm 22 ≤≤ mm 11 ..

(2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,其中QR分解为正交-三角化分解;(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure through an orthogonal transformation, wherein the QR decomposition is an orthogonal-triangulation decomposition;

对于发送天线个数为nT、接收天线个数为nR的多入多出MIMO系统,其信道为nR×nT维衰落信道H,系统噪声为每个分量都是均值为0和方差为1的nR维高斯白噪声矢量v;假设发送符号集为A={a1,...,ai,...,aL},其中L为发送符号集中的符号的个数,ai为发送符号集中的一个发送符号,i为发送符号的序号;则nT维发送信号矢量 s = [ s 1 , s 2 , · · · a n T ] T 与nR维接收信号矢量 y = [ y 1 , y 2 , · · · y n R ] T 之间存在的收发信号关系模型为: y = ρ n T Hs + v , 式中,ρ为nT个发送天线上发送信号的总能量;For a multiple-input multiple-output MIMO system with n T transmit antennas and n R receive antennas, its channel is n R × n T dimensional fading channel H, and the system noise is that each component has a mean value of 0 and a variance of Be the nR- dimensional Gaussian white noise vector v of 1; assume that the sending symbol set is A={a 1 ,..., a i ,..., a L }, where L is the number of symbols in the sending symbol set, a i is a transmission symbol in the transmission symbol set, and i is the serial number of the transmission symbol; then n T- dimensional transmission signal vector the s = [ the s 1 , the s 2 , · · · a no T ] T with n R- dimensional received signal vector the y = [ the y 1 , the y 2 , &Center Dot; &Center Dot; &Center Dot; the y no R ] T The relationship model between sending and receiving signals is: the y = ρ no T Hs + v , In the formula, ρ is the total energy of the transmitted signal on the n T transmitting antennas;

将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,相应地,将衰落信道矩阵H转换为上三角阵R;nR维接收信号矢量y经正交变换转换为由nT个分量z1,z2,…,znT组成的nT维信号矢量z;对于nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s k , s k + 1 , · · · , s n T ] T , 其中后nT-k+1个分量组成矢量s的部分矢量 s k ~ = [ s k , s k + 1 , · · · , s n T ] T ; 同样地,对于nT维信号矢量 z = [ z 1 , z 2 , · · · , z k , z k + 1 , · · · , z n T ] T , 其中后nT-k+1个分量组成矢量z的部分矢量 Z k ~ = [ z k , z k + 1 , · · · , z n T ] T , 上述两式中,k为发送天线层的序号;The relationship model between the receiving and sending signals is transformed into a QR decomposition-interference deletion structure through orthogonal transformation. Correspondingly, the fading channel matrix H is transformed into an upper triangular matrix R; n R- dimensional received signal vector y is transformed into The n T -dimensional signal vector z composed of n T components z 1 , z 2 ,..., z nT ; for the n T- dimensional sending signal vector the s = [ the s 1 , the s 2 , &Center Dot; · · , the s k , the s k + 1 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T , Among them, the last n T -k+1 components form part of the vector s the s k ~ = [ the s k , the s k + 1 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T ; Similarly, for n T- dimensional signal vector z = [ z 1 , z 2 , · &Center Dot; &Center Dot; , z k , z k + 1 , &Center Dot; · · , z no T ] T , Among them, the last n T -k+1 components form a part vector of vector z Z k ~ = [ z k , z k + 1 , &Center Dot; &Center Dot; · , z no T ] T , In the above two formulas, k is the serial number of the transmitting antenna layer;

(3)开始进行宽度优先搜索:先令发送天线层的序号k=nT,计算第nT层,即最底层发送天线上L个备选的部分矢量

Figure C20051006790600278
以及通过最底层发送天线上的部分矢量后验概率的计算方法得到其部分矢量的后验概率
Figure C20051006790600279
其中j是第nT层发送天线上备选的部分矢量的序号,分别取区间[1,L]内的自然数,L是发送天线上备选的部分矢量个数;从第nT层发送天线上的L个备选的部分矢量后验概率中选择最大的mnT个数值作为第nT层发送天线上的一组部分矢量的后验概率,记为 其对应的部分矢量即为第nT层发送天线上的mnT个部分矢量,记为 j是第nT层发送天线上的部分矢量的序号,分别取区间[1,mnT]内的自然数,并删除其余的L-mnT个部分矢量;(3) Start breadth-first search: shilling the sequence number k=n T of the transmit antenna layer, calculate the n T layer, that is, the L candidate partial vectors on the bottom transmit antenna
Figure C20051006790600278
And the posterior probability of its partial vector is obtained through the calculation method of the posterior probability of the partial vector on the bottom transmitting antenna
Figure C20051006790600279
Wherein j is the sequence number of the optional partial vector on the nth T layer transmitting antenna, which is a natural number in the interval [1, L] respectively, and L is the number of optional partial vectors on the transmitting antenna; from the n T layer transmitting antenna Among the L alternative partial vector posterior probabilities on , select the largest m nT values as the posterior probability of a group of partial vectors on the nth T layer transmitting antenna, denoted as The corresponding partial vectors are the m nT partial vectors on the transmit antenna of the nth T layer, denoted as j is the sequence number of the partial vectors on the nth T layer transmitting antenna, respectively take natural numbers in the interval [1, m nT ], and delete the remaining Lm nT partial vectors;

(4)令发送天线层的序号k=nT-1;(4) Let the serial number k=n T -1 of the transmitting antenna layer;

(5)第k+1层发送天线上有mk+1个维数为nT-k的部分矢量 其部分矢量后验概率为 j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;其中有一个部分矢量

Figure C20051006790600283
向第k层发送天线产生L个分支,形成L个维数为nT-k+1的部分矢量
Figure C20051006790600284
该L个维数为nT-k+1的部分矢量的后nT-k维分量都是
Figure C20051006790600285
且它们的第1维分量分别为a1,a2,...,aL,该L个在信号矢量
Figure C20051006790600286
条件下的部分矢量后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 上述两式中,i是发送符号的序号,分别取区间[1,L]内的自然数;再通过相邻两层发送天线上的部分矢量后验概率间的递推关系式计算第k+1层发送天线上的部分矢量
Figure C20051006790600288
向第k层发送天线产生的L个备选的部分矢量的后验概率 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 这样,第k+1层发送天线上的mk+1个部分矢量向第k层发送天线生成了L·mk+1个备选的部分矢量,该部分矢量的后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , i是发送符号的序号,分别取区间[1,L]内的自然数,j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;从第k层发送天线上的L·mk+1个备选的部分矢量的部分矢量后验概率中选择最大的mk个数值作为第k层发送天线上的一组部分矢量的后验概率,记为 其对应的部分矢量即为第k层发送天线上的mk个部分矢量,记为 j是第k层发送天线上的部分矢量的序号,分别取区间[1,mk]内的自然数;删除其余的L·mk+1-mk个部分矢量;(5) There are m k+1 partial vectors with dimension n T -k on the transmitting antenna of layer k+1 Its partial vector posterior probability is j is the serial number of the partial vector on the transmitting antenna of the k+1 layer, which is a natural number in the interval [1, m k+1 ]; there is a partial vector
Figure C20051006790600283
Generate L branches to the k-th layer transmit antenna to form L partial vectors with dimension n T -k+1
Figure C20051006790600284
The last n T -k dimensional components of the L partial vectors with dimensions n T -k+1 are all
Figure C20051006790600285
And their first dimension components are respectively a 1 , a 2 ,..., a L , the L ones in the signal vector
Figure C20051006790600286
The partial vector posterior probability under the condition is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , In the above two formulas, i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L] respectively; then the k+1th is calculated by the recursive relationship between the partial vector posterior probabilities on the adjacent two layers of transmitting antennas Partial vectors on layer transmit antennas
Figure C20051006790600288
The posterior probability of the L candidate partial vectors generated by the transmitting antenna to the kth layer P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , In this way, the m k+1 partial vectors on the k+1th layer transmit antenna generate L m k+1 candidate partial vectors to the kth layer transmit antenna, and the posterior probability of this partial vector is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L], and j is the serial number of the partial vector on the k+1th layer transmitting antenna, and is a natural number in the interval [1, m k+1 ]; Select the largest m k values from the partial vector posterior probabilities of L m k+1 candidate partial vectors on the k-th layer transmitting antenna as the posterior probability of a group of partial vectors on the k-th layer transmitting antenna , denoted as The corresponding partial vectors are the m k partial vectors on the transmitting antenna of the kth layer, denoted as j is the serial number of the partial vector on the kth layer transmitting antenna, which is a natural number in the interval [1, m k ]; delete the remaining L·m k+1 -m k partial vectors;

(6)发送天线层的序号k减1后,判断k>0是否成立,如果是,则返回执行步骤(5);否则,结束宽度优先搜索过程,执行后续步骤;(6) After the serial number k of the sending antenna layer is subtracted by 1, it is judged whether k>0 is established, if yes, then return to the execution step (5); otherwise, end the breadth-first search process, and perform subsequent steps;

(7)从宽度优先搜索过程中得到一组m1个矢量 S ~ 1 j = s j 及其对应的矢量后验概率 P ( S ~ 1 j | Z ~ 1 ) = P ( s j | z ) , 其中j是最顶层发送天线上的矢量的序号,分别取区间[1,m1]内的自然数;如果需要输出硬判决,则执行后续步骤;如果需要输出软信息,则跳转执行步骤(9);(7) Get a set of m 1 vectors from the breadth-first search process S ~ 1 j = the s j and its corresponding vector posterior probability P ( S ~ 1 j | Z ~ 1 ) = P ( the s j | z ) , Wherein j is the sequence number of the vector on the top-level transmit antenna, which is a natural number in the interval [1, m 1 ]; if it is necessary to output a hard decision, then perform the subsequent steps; if it is necessary to output soft information, then jump to the execution step (9 );

(8)最顶层天线上的矢量数m1=1,该矢量即为发送信号矢量的估计值,即硬判决的结果,输出该硬判决的结果;检测方法结束;(8) The number of vectors m 1 on the topmost antenna = 1, this vector is the estimated value of the transmitted signal vector, that is, the result of the hard decision, and the result of the hard decision is output; the detection method ends;

(9)最顶层天线上的矢量数为m1,利用该m1个矢量及其矢量后验概率,根据全概率公式得到每层发送天线上的各个发送符号的符号后验概率软信息,输出该软信息;检测方法结束。(9) The number of vectors on the topmost antenna is m 1 , using the m 1 vectors and their vector posterior probabilities, according to the total probability formula, the soft information of the symbol posterior probability of each transmitted symbol on each layer of transmitting antennas is obtained, and output The soft message; detection method ends.

参见图3,介绍利用本发明准最大后验概率检测方法输出硬判决的的分层空时码系统,该系统由发射机和接收机组成,其中发射机包括:信源、星座点映射器、串并变换器和nT根发送天线;接收机包括:nR根接收天线、准最大后验概率检测器、星座点逆映射器和信宿,其中发射机的信源产生的二进制数据{bi},送入星座点映射器得到发送信号{s1,...,snT},该发送信号{s1,...snT}又被送入串并变换器将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特点是接收机中的检测器是采用准最大后验概率检测方法和输出硬判决的准最大后验概率检测器;该准最大后验概率检测器从所述接收机中的nR根接收天线接收到nR路并行接收信号{y1,...,ynR}后,进行准最大后验概率的检测后,得到发送信号的估计值 即硬判决结果,然后将该硬判决结果送入星座点逆映射器得到二进制数据的估计值 最后送入信宿。Referring to Fig. 3, introduce the layered space-time code system that utilizes quasi maximum a posteriori probability detection method of the present invention to output hard decision, this system is made up of transmitter and receiver, and wherein transmitter comprises: information source, constellation point mapper, Serial-to-parallel converter and n T transmitting antennas; the receiver includes: n R receiving antennas, quasi-maximum a posteriori probability detector, constellation point inverse mapper and sink, where the binary data {b i }, sent to the constellation point mapper to obtain the transmitted signal {s 1 ,...,s nT }, and the transmitted signal {s 1 ,...s nT } is sent to the serial-to-parallel converter to convert the serial signal into n T parallel signals are sent out through n T transmitting antennas; the characteristic is that the detector in the receiver is a quasi-maximum a posteriori probability detector that adopts a quasi-maximum a posteriori probability detection method and outputs a hard decision; the quasi-maximum After the posterior probability detector receives n R channels of parallel received signals {y 1 , ..., y nR } from the n R receiving antennas in the receiver, after performing quasi-maximum posterior probability detection, the transmitted Estimated value of the signal That is, the hard decision result, and then send the hard decision result to the constellation point inverse mapper to obtain the estimated value of the binary data Finally sent to the destination.

参见图4,介绍利用本发明准最大后验概率检测方法输出软信息的的分层空时码系统,该系统由发射机和迭代接收机组成,其中发射机包括:信源、信道编码器、交织器、星座点映射器、串并变换器和多根(nT)根发送天线;迭代接收机包括:多根(nR)接收天线、检测器、比特似然比计算器、符号概率计算器、解交织器、交织器、信道译码器、两个减法器和信宿;其中发射机的信源产生的二进制数据{ci},送入信道编码器得到编码后的二进制数据{bi},又被送入交织器进行处理,得到的编码后的随机交织的二进制数据{bπ(i)}被送入星座点映射器,得到的发送信号{s1,...,snT}又被送入串并变换器,将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特点是迭代接收机中的检测器是采用准最大后验概率检测方法和输出各发送天线上发送符号后验概率软信息的准最大后验概率检测器。Referring to Fig. 4, introduce the layered space-time code system that utilizes quasi maximum a posteriori probability detection method of the present invention to output soft information, this system is made up of transmitter and iterative receiver, wherein transmitter comprises: information source, channel coder, Interleaver, constellation point mapper, serial-to-parallel converter and multiple (n T ) transmit antennas; iterative receiver includes: multiple (n R ) receive antennas, detector, bit likelihood ratio calculator, symbol probability calculation device, deinterleaver, interleaver, channel decoder, two subtractors and sink; where the binary data {c i } generated by the source of the transmitter is sent to the channel encoder to obtain encoded binary data { bi }, is sent to the interleaver for processing, and the encoded randomly interleaved binary data {b π(i) } is sent to the constellation point mapper, and the obtained transmitted signal {s 1 ,...,s nT } is sent to the serial-to-parallel converter to convert the serial signal into n T parallel signals, and then send it out through n T transmitting antennas; its characteristic is that the detector in the iterative receiver adopts the quasi maximum Method and quasi-maximum a posteriori probability detector outputting soft information of a posteriori probability of transmitted symbols on each transmitting antenna.

其中迭代接收机的工作方法的操作步骤如下:The operation steps of the working method of the iterative receiver are as follows:

(1)系统启动后,初始化系统参数:将每层发送天线上各个发送符号先验概率初始化设置为等概率,并把该初始化的发送符号先验概率P(s)送入准最大后验概率检测器;初始化设置本地交织器输出的比特似然比{λ2[bπ(i)]}为0,并将该初始化的本地交织器输出的比特似然比{λ2[bπ(i)]}送入第一减法器;再设置每层发送天线选择的部分矢量数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmitted symbol on each layer of transmitting antennas to equal probability, and send the initialized prior probability P(s) of the transmitted symbol into the quasi-maximum posterior probability Detector; initialize the bit likelihood ratio {λ 2 [b π(i) ]} output by the local interleaver to be 0, and set the bit likelihood ratio {λ 2 [b π(i )] of the initialized local interleaver output ) ]} into the first subtractor; then set the number of partial vectors m k selected by each layer of transmit antenna, where k is the serial number of the transmit antenna layer, which is a natural number with an interval of [1, n T ], n T is The number of layers of the transmitting antenna, that is, the serial number of the bottom antenna;

(2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构(QR Decomposition and Cancellation Structure):(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure (QR Decomposition and Cancellation Structure) through orthogonal transformation:

(3)检测器对nR个接收天线上得到的接收信息按照准最大后验概率检测方法中的宽度优先搜索和计算软信息的过程进行处理,得到发送符号后验概率软信息p(s|y);再将该检测器输出的发送符号后验概率软信息p(s|y)送到比特似然比计算器,得到比特似然比信息{Λ1[bπ(i)]},然后将该比特似然比信息{Λ1[bπ(i)]}送入第一减法器;(3) The detector processes the received information obtained from n R receiving antennas according to the process of breadth-first search and soft information calculation in the quasi-maximum a posteriori probability detection method, and obtains the soft information p(s| y); then send the soft information p(s|y) of the posterior probability of the transmitted symbol output by the detector to the bit likelihood ratio calculator to obtain the bit likelihood ratio information {Λ 1 [b π(i) ]}, Then send the bit likelihood ratio information {Λ 1 [b π(i) ]} into the first subtractor;

(4)在第一减法器中,比特似然比信息{Λ1[bπ(i)]}减去本地交织器输出的比特似然比信息{λ2[bπ(i)]}得到外信息{λ1[bπ(i)]},该外信息{λ1[bπ(i)]}被送到解交织器中进行解交织,得到解交织的外信息{λ1[bi]};(4) In the first subtractor, the bit likelihood ratio information {Λ 1 [b π(i) ]} is subtracted from the bit likelihood ratio information {λ 2 [b π(i) ]} output by the local interleaver to obtain The extrinsic information {λ 1 [b π(i) ]}, the extrinsic information {λ 1 [b π(i) ]} is sent to the deinterleaver for deinterleaving, and the deinterleaved extrinsic information {λ 1 [b i ]};

(5)将解交织的外信息{λ1[bi]}分为两路:一路送入信道译码器进行译码,另一路作为先验信息送入第二减法器;(5) Divide the deinterleaved external information {λ 1 [ bi ]} into two paths: one path is sent to the channel decoder for decoding, and the other path is sent to the second subtractor as prior information;

(6)解交织的外信息{λ1[bi]}送入信道译码器进行译码后输出符号软信息的对数似然比{Λ2[bi]},再将该符号软信息的对数似然比{Λ2[bi]}送入第二减法器;(6) The deinterleaved external information {λ 1 [ bi ]} is sent to the channel decoder for decoding, and the log likelihood ratio {Λ 2 [ bi ]} of the symbol soft information is output, and then the symbol soft information The log likelihood ratio {Λ 2 [b i ]} of the information is sent to the second subtractor;

(7)在第二减法器中,信道译码器输出的符号软信息的对数似然比{Λ2[bi]}减去先验信息{λ1[bi]}得到外信息{λ2[bi]};该外信息{λ2[bi]}被送到本地交织器中进行交织后,输出新的比特似然比,即新的{λ2[bπ(i)]};(7) In the second subtractor, the log-likelihood ratio {Λ 2 [b i ]} of the symbol soft information output by the channel decoder is subtracted from the prior information {λ 1 [b i ]} to obtain the extrinsic information { λ 2 [b i ]}; after the external information {λ 2 [b i ]} is sent to the local interleaver for interleaving, it outputs a new bit likelihood ratio, that is, the new {λ 2 [b π(i) ]};

(8)新的比特似然比{λ2[bπ(i)]}送入到符号概率计算器,得到新的先验信息P(s);该新的先验信息P(s)又送到准最大后验概率检测器,更新先验信息;同时在顺序执行上述步骤(3)~(8)各一次的过程中,完成一次迭代操作;(8) The new bit likelihood ratio {λ 2 [b π(i) ]} is sent to the symbol probability calculator to obtain new prior information P(s); the new prior information P(s) is Send it to the quasi-maximum a posteriori probability detector to update the prior information; at the same time, in the process of sequentially executing the above steps (3) to (8) once, complete an iterative operation;

(9)循环执行上述步骤(3)-(8),即经过多次迭代后,停止译码;(9) cyclically execute the above steps (3)-(8), that is, after multiple iterations, stop decoding;

(10)迭代结束后,将信道译码器输出的硬判决的二进制数据{Λ1[a1]}送到信宿,迭代接收机结束其检测和译码操作。(10) After the iteration ends, the hard-decision binary data {Λ 1 [a 1 ]} output by the channel decoder is sent to the sink, and the iterative receiver ends its detection and decoding operations.

该迭代接收机的操作步骤中进行的循环迭代操作次数,至少是1次,或者是2次或2次以上的多次迭代;迭代次数取决于检测和译码的时延和硬件复杂度的不同要求。The number of loop iterative operations performed in the operation steps of the iterative receiver is at least 1, or multiple iterations of 2 or more times; the number of iterations depends on the delay and hardware complexity of detection and decoding. Require.

本发明是一种用于分层空时码系统的准最大后验概率检测方法及其系统,该检测方法利用分层空时码系统的QR分解-干扰删除结构,从最底层发送天线到最顶层发送天线递推地计算部分矢量后验概率,这样可以计算出部分矢量后验概率后在符号矢量树图中进行宽度优先搜索,仅保留部分矢量后验概率大的部分矢量,删除其他的部分矢量,由于在矢量树图中删除了一些冗余的路径(即矢量后验概率小的路径或对检测器输出贡献小的路径),从而大大的降低了检测的复杂度。The present invention is a quasi-maximum a posteriori probability detection method and system for a layered space-time code system. The detection method utilizes the QR decomposition-interference deletion structure of the layered space-time code system, from the bottom transmitting antenna to the bottom The top-level transmitting antenna recursively calculates the posterior probability of some vectors, so that the posterior probability of partial vectors can be calculated, and then breadth-first search is performed in the symbol vector tree diagram, and only some vectors with high posterior probability of partial vectors are kept, and other parts are deleted Vector, since some redundant paths (that is, paths with small posterior probability of vectors or paths with small contribution to detector output) are deleted in the vector tree diagram, the complexity of detection is greatly reduced.

利用本发明准最大后验概率检测方法是一种次优检测方法,与最优检测方法相比复杂度大大降低。前面已经详细说明之。现在主要介绍本发明准最大后验概率检测方法的性能比最大后验概率检测方法损失很小。The quasi-maximum posterior probability detection method of the present invention is a suboptimal detection method, and its complexity is greatly reduced compared with the optimal detection method. It has been explained in detail above. Now it is mainly introduced that the performance loss of the quasi maximum a posteriori probability detection method of the present invention is smaller than that of the maximum a posteriori probability detection method.

参见图5,介绍采用本发明准最大后验概率检测方法的检测器实施例与现有的几种检测方法(包括最大后验概率和次优检测方法-球译码检测方法)相比较的误码率曲线比较示意图,仿真实施的条件为:发送天线数4、接收天线数8,平坦衰落信道,QPSK调制。从图中可以看出,准最大后验概率检测器的误码性能曲线(用实线表示之)比最优算法的最大后验概率检测器的误码性能曲线(用点线表示之-处于最低位置)损失很小,而稍稍优于球译码检测器(即目前已知的最好的次优算法)的误码性能曲线(用虚线表示之-处于靠近实线的上方位置),或与其误码性能性能相当;其误码性能远远优于QR分解-干扰删除算法的检测器的误码性能曲线(用粗点划线表示之-处于最上方位置)。但是,本发明的计算复杂度大大降低:球译码的复杂度与发送天线数呈立方关系,准最大后验概率检测方法的复杂度则与发送天线数呈线性关系;而且,准最大后验概率检测方法的复杂度是可控制的。由于确定了每层天线选择的节点数后不需要设置其它的阈值或参数,所以宽度优先搜索的复杂度是确定的,这就避免了球译码算法中复杂度可能是不可控制的问题。Referring to Fig. 5, introduce the detector embodiment that adopts quasi maximum a posteriori probability detection method of the present invention to compare with existing several detection methods (comprising maximum a posteriori probability and suboptimal detection method-ball decoding detection method) compared error Schematic diagram of code rate curve comparison. The conditions for the simulation implementation are: the number of transmitting antennas is 4, the number of receiving antennas is 8, flat fading channel, and QPSK modulation. As can be seen from the figure, the bit error performance curve (represented by the solid line) of the quasi maximum a posteriori probability detector is better than the bit error performance curve (represented by the dotted line) of the maximum a posteriori probability detector of the optimal algorithm (indicated by the dotted line) lowest position) with little loss and slightly better than the error performance curve of a ball-decoded detector (i.e., the best suboptimal algorithm known so far) (shown by the dotted line - at a position close to the upper position of the solid line), or Its bit error performance performance is equivalent; its bit error performance is far better than the bit error performance curve of the detector of the QR decomposition-interference deletion algorithm (indicated by a thick dotted line - at the top position). However, the computational complexity of the present invention is greatly reduced: the complexity of spherical decoding is cubically related to the number of transmitting antennas, and the complexity of the quasi-maximum a posteriori probability detection method is linearly related to the number of transmitting antennas; moreover, the quasi-maximum a posteriori The complexity of the probabilistic detection method is manageable. Since there is no need to set other thresholds or parameters after determining the number of nodes selected by each layer of antennas, the complexity of the breadth-first search is determined, which avoids the problem that the complexity of the sphere decoding algorithm may not be controllable.

参见图6,介绍本发明利用准最大后验概率检测器输出软信息作为接收机的第一级检测器进行仿真时的不同迭代次数的误码率曲线比较。仿真实施的条件为:发送天线数4、接收天线数8,平坦衰落信道,QPSK调制,信道编码器为Turbo-R1/2。图中用实线表示的是一次迭代的误码性能曲线,二次迭代的误码性能曲线为点虚线,三次迭代的误码性能曲线为线段虚线。可以看出,分层空时码系统的迭代接收机经过多次迭代后,性能提高:在10-3误码率量级上,三次迭代的误码性能比一次迭代的约提高0.25dB。Referring to FIG. 6 , it introduces the comparison of BER curves of different iterations when the present invention uses the quasi-maximum a posteriori probability detector to output soft information as the first-stage detector of the receiver for simulation. The conditions for the simulation implementation are: the number of transmitting antennas is 4, the number of receiving antennas is 8, flat fading channel, QPSK modulation, and the channel coder is Turbo-R1/2. In the figure, the bit error performance curve of the first iteration is represented by a solid line, the bit error performance curve of the second iteration is a dotted line, and the bit error performance curve of the third iteration is a dashed line. It can be seen that the performance of the iterative receiver of the layered space-time code system improves after multiple iterations: on the order of BER of 10 -3 , the bit error performance of three iterations is about 0.25dB higher than that of one iteration.

Claims (9)

1、一种用于分层空时码系统的准最大后验概率检测方法,是根据接收信号矢量和多入多出MIMO信道矩阵得到发送信号矢量的估计值作为硬判决结果,或者得到发送符号后验概率的软信息;其特征在于:所述检测方法是一种准最大后验概率检测方法;该方法利用分层空时码系统的QR分解-干扰删除结构,从最底层发送天线到最顶层发送天线依次计算部分矢量后验概率,在符号矢量树图中进行宽度优先搜索时,仅保留部分矢量后验概率中最大的一个或一组部分矢量,删除其余的部分矢量;且在宽度优先搜索过程中所选择的每层发送天线的部分矢量数是不同的;搜索结束后得到的一个或一组具有最大矢量后验概率的矢量;其中一个具有最大后验概率的矢量就作为发送信号矢量的估计值,即硬判决结果;或者根据该一组矢量后验概率得到发送符号后验概率的软信息。1. A quasi-maximum a posteriori probability detection method for a layered space-time code system, which is to obtain the estimated value of the transmitted signal vector as a hard decision result according to the received signal vector and the MIMO channel matrix, or obtain the transmitted symbol The soft information of posterior probability; It is characterized in that: described detection method is a kind of quasi-maximum posterior probability detection method; This method utilizes the QR decomposition-interference deletion structure of layered space-time code system, from the bottom transmit antenna to the bottom The top-level transmitting antenna calculates the posterior probability of partial vectors sequentially. When performing breadth-first search in the symbol vector tree diagram, only the largest partial vector or a group of partial vectors in the partial vector posterior probability is retained, and the rest of the partial vectors are deleted; and in the width-first The number of partial vectors of each layer of transmitting antennas selected during the search is different; one or a group of vectors with the largest posterior probability of the vector is obtained after the search; one of the vectors with the largest posterior probability is used as the transmitted signal vector The estimated value of , that is, the result of the hard decision; or the soft information of the posterior probability of the transmitted symbol is obtained according to the set of vector posterior probabilities. 2、根据权利要求1所述的检测方法,其特征在于:该方法包括下述步骤:2. The detection method according to claim 1, characterized in that: the method comprises the following steps: (1)系统启动后,初始化系统参数:将每层发送天线上的各个发送符号先验概率初始化设置为等概率,并设置每层发送天线选择的部分矢量的个数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmit symbol on each layer of transmit antennas to equal probability, and set the number m k of partial vectors selected by each layer of transmit antennas, where k is The serial number of the transmitting antenna layer, which is a natural number with an interval of [1, n T ], where n T is the number of layers of the transmitting antenna, that is, the serial number of the bottom antenna; (2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,其中QR分解为正交-三角化分解;(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure through an orthogonal transformation, wherein the QR decomposition is an orthogonal-triangulation decomposition; 对于发送天线个数为nT、接收天线个数为nR的多入多出MIMO系统,其信道为nR×nT维衰落信道H,系统噪声为每个分量都是均值为0和方差为1的nR维高斯白噪声矢量v;假设发送符号集为A={a1,...,ai,...,aL},其中L为发送符号集中的符号的个数,ai为发送符号集中的一个发送符号,i为发送符号的序号;则nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s n T ] T 与nR维接收信号矢量 y = [ y 1 , y 2 , · · · , y n R ] T 之间存在的收发信号关系模型为: y = ρ n T Hs + v , 式中,ρ为nT个发送天线上发送信号的总能量;For a multiple-input multiple-output MIMO system with n T transmit antennas and n R receive antennas, its channel is n R × n T dimensional fading channel H, and the system noise is that each component has a mean value of 0 and a variance of Be the nR- dimensional Gaussian white noise vector v of 1; assume that the sending symbol set is A={a 1 ,..., a i ,..., a L }, where L is the number of symbols in the sending symbol set, a i is a transmission symbol in the transmission symbol set, and i is the serial number of the transmission symbol; then n T- dimensional transmission signal vector the s = [ the s 1 , the s 2 , · &Center Dot; &Center Dot; , the s no T ] T with n R- dimensional received signal vector the y = [ the y 1 , the y 2 , · · &Center Dot; , the y no R ] T The relationship model between sending and receiving signals is: the y = ρ no T Hs + v , In the formula, ρ is the total energy of the transmitted signal on the n T transmitting antennas; 将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,相应地,将衰落信道矩阵H转换为上三角阵R;nR维接收信号矢量y经正交变换转换为由nT个分量z1,z2,...,znT组成的nT维信号矢量z;The relationship model between the receiving and sending signals is transformed into a QR decomposition-interference deletion structure through orthogonal transformation. Correspondingly, the fading channel matrix H is transformed into an upper triangular matrix R; n R- dimensional received signal vector y is transformed into n T -dimensional signal vector z composed of n T components z 1 , z 2 ,..., z nT ; 对于nT维发送信号矢量 s = [ s 1 , s 2 , · · · , s k , s k + 1 , · · · , s n T ] T , 其中后nT-k+1个分量组成矢量s的部分矢量 S ~ k = [ s k , s k + 1 , · · · , s n T ] T ; 同样地,对于nT维信号矢量 z = [ z 1 , z 2 , · · · , z k , z k + 1 , · · · , z n T ] T , 其中后nT-k+1个分量组成矢量z的部分矢量 Z ~ k = [ z k , z k + 1 , · · · , z n T ] T , 上述两式中,k为发送天线层的序号;For n T- dimensional transmitted signal vector the s = [ the s 1 , the s 2 , · · &Center Dot; , the s k , the s k + 1 , &Center Dot; &Center Dot; · , the s no T ] T , Among them, the last n T -k+1 components form part of the vector s S ~ k = [ the s k , the s k + 1 , &Center Dot; &Center Dot; &Center Dot; , the s no T ] T ; Similarly, for n T- dimensional signal vector z = [ z 1 , z 2 , &Center Dot; &Center Dot; · , z k , z k + 1 , &Center Dot; &Center Dot; &Center Dot; , z no T ] T , Among them, the last n T -k+1 components form a part vector of vector z Z ~ k = [ z k , z k + 1 , &Center Dot; &Center Dot; &Center Dot; , z no T ] T , In the above two formulas, k is the serial number of the transmitting antenna layer; (3)开始进行宽度优先搜索:先令发送天线层的序号k=nT,计算第nT层,即最底层发送天线上L个备选的部分矢量
Figure C2005100679060003C5
以及通过最底层发送天线上的部分矢量后验概率的计算方法得到其部分矢量的后验概率
Figure C2005100679060003C6
其中j是第nT层发送天线上备选的部分矢量的序号,分别取区间[1,L]内的自然数,L是发送天线上备选的部分矢量个数;从第nT层发送天线上的L个备选的部分矢量后验概率中选择最大的mnT个数值作为第nT层发送天线上的一组部分矢量的后验概率,记为
Figure C2005100679060003C7
其对应的部分矢量即为第nT层发送天线上的mnT个部分矢量,记为
Figure C2005100679060003C8
j是第nT层发送天线上的部分矢量的序号,分别取区间[1,mnT]内的自然数,并删除其余的L-mnT个部分矢量;
(3) Start breadth-first search: shilling the sequence number k=n T of the transmit antenna layer, calculate the n T layer, that is, the L candidate partial vectors on the bottom transmit antenna
Figure C2005100679060003C5
And the posterior probability of its partial vector is obtained through the calculation method of the posterior probability of the partial vector on the bottom transmitting antenna
Figure C2005100679060003C6
Wherein j is the sequence number of the optional partial vector on the nth T layer transmitting antenna, which is a natural number in the interval [1, L] respectively, and L is the number of optional partial vectors on the transmitting antenna; from the n T layer transmitting antenna Among the L alternative partial vector posterior probabilities on , select the largest m nT values as the posterior probability of a group of partial vectors on the nth T layer transmitting antenna, denoted as
Figure C2005100679060003C7
The corresponding partial vectors are the m nT partial vectors on the transmit antenna of the nth T layer, denoted as
Figure C2005100679060003C8
j is the sequence number of the partial vectors on the nth T layer transmitting antenna, respectively take natural numbers in the interval [1, m nT ], and delete the remaining Lm nT partial vectors;
(4)令发送天线层的序号k=nT-1;(4) Let the serial number k=n T -1 of the transmitting antenna layer; (5)第k+1层发送天线上有mk+1个维数为nT-k的部分矢量 其部分矢量后验概率为 j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;其中有一个部分矢量
Figure C2005100679060003C11
向第k层发送天线产生L个分支,形成L个维数为nT-k+1的部分矢量
Figure C2005100679060003C12
该L个维数为nT-k+1的部分矢量的后nT-k维分量都是 且它们的第1维分量分别为a1,a2,...,aL,该L个在信号矢量
Figure C2005100679060003C14
条件下的部分矢量后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 上述两式中,i是发送符号的序号,分别取区间[1,L]内的自然数;再通过相邻两层发送天线上的部分矢量后验概率间的递推关系式计算第k+1层发送天线上的部分矢量 向第k层发送天线产生的L个备选的部分矢量的后验概率 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 这样,第k+1层发送天线上的mk+1个部分矢量向第k层发送天线生成了L·mk+1个备选的部分矢量,该部分矢量的后验概率为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , i是发送符号的序号,分别取区间[1,L]内的自然数,j是第k+1层发送天线上的部分矢量的序号,分别取区间[1,mk+1]内的自然数;从第k层发送天线上的L·mk+1个备选的部分矢量的部分矢量后验概率中选择最大的mk个数值作为第k层发送天线上的一组部分矢量的后验概率,记为
Figure C2005100679060004C4
其对应的部分矢量即为第k层发送天线上的mk个部分矢量,记为 j是第k层发送天线上的部分矢量的序号,分别取区间[1,mk]内的自然数;删除其余的L·mk+1-mk个部分矢量;
(5) There are m k+1 partial vectors with dimension n T -k on the transmitting antenna of layer k+1 Its partial vector posterior probability is j is the serial number of the partial vector on the transmitting antenna of the k+1 layer, which is a natural number in the interval [1, m k+1 ]; there is a partial vector
Figure C2005100679060003C11
Generate L branches to the k-th layer transmit antenna to form L partial vectors with dimension n T -k+1
Figure C2005100679060003C12
The last n T -k dimensional components of the L partial vectors with dimensions n T -k+1 are all And their first dimension components are respectively a 1 , a 2 ,..., a L , the L ones in the signal vector
Figure C2005100679060003C14
The partial vector posterior probability under the condition is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , In the above two formulas, i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L] respectively; then the k+1th is calculated by the recursive relationship between the partial vector posterior probabilities on the adjacent two layers of transmitting antennas Partial vectors on layer transmit antennas The posterior probability of the L candidate partial vectors generated by the transmitting antenna to the kth layer P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , In this way, the m k+1 partial vectors on the k+1th layer transmit antenna generate L m k+1 candidate partial vectors to the kth layer transmit antenna, and the posterior probability of this partial vector is P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , i is the serial number of the transmitted symbol, which is a natural number in the interval [1, L], and j is the serial number of the partial vector on the k+1th layer transmitting antenna, and is a natural number in the interval [1, m k+1 ]; Select the largest m k values from the partial vector posterior probabilities of L m k+1 candidate partial vectors on the k-th layer transmitting antenna as the posterior probability of a group of partial vectors on the k-th layer transmitting antenna , denoted as
Figure C2005100679060004C4
The corresponding partial vectors are the m k partial vectors on the transmitting antenna of the kth layer, denoted as j is the serial number of the partial vector on the kth layer transmitting antenna, which is a natural number in the interval [1, m k ]; delete the remaining L·m k+1 -m k partial vectors;
(6)发送天线层的序号k减1后,判断k>0是否成立,如果是,则返回执行步骤(5);否则,结束宽度优先搜索过程,执行后续步骤;(6) After the serial number k of the sending antenna layer is subtracted by 1, it is judged whether k>0 is established, if yes, then return to the execution step (5); otherwise, end the breadth-first search process, and perform subsequent steps; (7)从宽度优先搜索过程中得到一组m1个矢量 S ~ 1 j = s j 及其对应的矢量后验概率 P ( S ~ 1 j | Z ~ 1 ) = P ( s j | z ) , 其中j是最顶层发送天线上的矢量的序号,分别取区间[1,m1]内的自然数;如果需要输出硬判决,则执行后续步骤;如果需要输出软信息,则跳转执行步骤(9);(7) Get a set of m 1 vectors from the breadth-first search process S ~ 1 j = the s j and its corresponding vector posterior probability P ( S ~ 1 j | Z ~ 1 ) = P ( the s j | z ) , Wherein j is the sequence number of the vector on the top-level transmit antenna, which is a natural number in the interval [1, m 1 ]; if it is necessary to output a hard decision, then perform the subsequent steps; if it is necessary to output soft information, then jump to the execution step (9 ); (8)最顶层天线上的矢量数m1=1,该矢量即为发送信号矢量的估计值,即硬判决的结果,输出该硬判决的结果;检测方法结束;(8) The number of vectors m 1 on the topmost antenna = 1, this vector is the estimated value of the transmitted signal vector, that is, the result of the hard decision, and the result of the hard decision is output; the detection method ends; (9)最顶层天线上的矢量数为m1,利用该m1个矢量及其矢量后验概率,根据全概率公式得到每层发送天线上的各个发送符号的符号后验概率软信息,输出该软信息;检测方法结束。(9) The number of vectors on the topmost antenna is m 1 , using the m 1 vectors and their vector posterior probabilities, according to the total probability formula, the soft information of the symbol posterior probability of each transmitted symbol on each layer of transmitting antennas is obtained, and output The soft message; detection method ends.
3、根据权利要求2所述的检测方法,其特征在于:所述步骤(6)中,相邻两层发送天线上的部分矢量后验概率的递推计算公式,即第k+1层发送天线上的部分矢量
Figure C2005100679060004C8
向第k层发送天线生成L个备选部分矢量
Figure C2005100679060004C9
该两个部分矢量后验概率分别为 P ( S ~ k + 1 j , s k = a i | Z ~ k ) , 它们之间的后验概率的递推计算公式为: P ( S ~ k + 1 j , s k = a i | Z ~ k ) ∝ P ( z k | S ~ k + 1 j , s k = a i ) P ( s k = a i ) P ( S ~ k + 1 j | Z ~ k + 1 ) ;
3. The detection method according to claim 2, characterized in that: in the step (6), the recursive calculation formula of the partial vector posterior probability on the adjacent two layers of transmitting antennas is that the k+1 layer transmits Partial vectors on the antenna
Figure C2005100679060004C8
Generate L candidate partial vectors to the k-th layer transmit antenna
Figure C2005100679060004C9
The posterior probabilities of the two partial vectors are and P ( S ~ k + 1 j , the s k = a i | Z ~ k ) , The recursive calculation formula of the posterior probability between them is: P ( S ~ k + 1 j , the s k = a i | Z ~ k ) ∝ P ( z k | S ~ k + 1 j , the s k = a i ) P ( the s k = a i ) P ( S ~ k + 1 j | Z ~ k + 1 ) ;
式中,j是第k+1层发送天线上的部分矢量的序号,取区间[1,mk+1]内的任一自然数,i是发送符号的序号,i取区间[1,L]内的自然数;P(sk=ai)是第k层发送天线上的符号ai的符号先验概率; P ( z k | S ~ k + 1 j , s k = a i ) 是已知
Figure C2005100679060005C3
sk=ai的条件下zk的概率,它满足均值为 ρ n T Σ l = k + 1 n T r k , l s l j + ρ n T r k , k a i , 方差为1的高斯分布:
In the formula, j is the serial number of the partial vector on the transmitting antenna on the k+1th layer, any natural number in the interval [1, m k+1 ], i is the serial number of the transmitted symbol, and i is in the interval [1, L] A natural number in ; P(s k =a i ) is the symbol prior probability of the symbol a i on the transmitting antenna of the kth layer; P ( z k | S ~ k + 1 j , the s k = a i ) is known
Figure C2005100679060005C3
The probability of z k under the condition of s k =a i , which satisfies the mean ρ no T Σ l = k + 1 no T r k , l the s l j + ρ no T r k , k a i , Gaussian distribution with variance 1:
PP (( zz kk || SS ~~ kk ++ 11 jj ,, sthe s kk == aa ii )) == 11 ππ expexp {{ -- || || zz kk -- ρρ nno TT ΣΣ ll == kk ++ 11 nno TT rr kk ,, ll sthe s ll jj -- ρρ nno TT rr kk ,, kk aa ii || || 22 }} ;; 式中,nT为发送天线数;ρ为nT根发送天线上发送信号的总能量;ai为发送符号,i是发送符号的序号,i选取区间[1,L]内的自然数; 为第k+1层发送天线上的第j个部分矢量;sl j为k+1层发送天线上的第j个部分矢量的第l层发送天线上的符号;rk,l为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第l列的元素;rk,k为矩阵H进行QR分解后得到的上三角矩阵R中的第k行第k列的元素。In the formula, n T is the number of transmitting antennas; ρ is the total energy of the transmitted signal on n T transmitting antennas; a i is the transmitted symbol, i is the serial number of the transmitted symbol, and i is selected as a natural number in the interval [1, L]; is the j-th partial vector on the k+1th layer transmit antenna; s l j is the symbol on the l-th layer transmit antenna of the j-th partial vector on the k+1 layer transmit antenna; r k,l is the matrix H The element of row k and column l in the upper triangular matrix R obtained after QR decomposition; r k, k is the element of row k and column k in the upper triangular matrix R obtained after QR decomposition of matrix H.
4、根据权利要求1所述的检测方法,其特征在于:所述方法中,在每层发送天线选择部分矢量时,只选择对检测方法输出贡献大的部分矢量,即选择部分矢量后验概率最大的一个或一组部分矢量;且每层发送天所选择的部分矢量数量是不固定的,它是随着发送天线数的递减而不同;在硬判决输出时,最顶层发送天线选择1个部分矢量,其他各层的发送天线选择的部分矢量数目则随发送天线数量的递减而单调不减,即 m n T ≤ m n T - 1 ≤ · · · ≤ m 2 , m 1 = 1 ; 在输出软信息时,对每层发送天线选择的部分矢量数目随发送天线数量的递减而单调不减,即4. The detection method according to claim 1, characterized in that: in the method, when the partial vectors are selected for each layer of transmitting antennas, only the partial vectors that contribute greatly to the output of the detection method are selected, that is, the posterior probability of the partial vectors is selected The largest one or a group of partial vectors; and the number of partial vectors selected for each layer of sending days is not fixed, it is different with the decrease of the number of sending antennas; when the hard decision is output, the topmost sending antenna selects 1 Partial vectors, the number of partial vectors selected by the transmit antennas of other layers will not decrease monotonically with the decrease of the number of transmit antennas, that is m no T ≤ m no T - 1 ≤ &Center Dot; &Center Dot; &Center Dot; ≤ m 2 , m 1 = 1 ; When outputting soft information, the number of partial vectors selected for each layer of transmit antennas does not decrease monotonically as the number of transmit antennas decreases, that is, mm nno TT ≤≤ mm nno TT -- 11 ≤≤ ·&Center Dot; ·&Center Dot; ·&Center Dot; ≤≤ mm 22 ≤≤ mm 11 .. 5、根据权利要求1所述的检测方法,其特征在于:所述方法用于分层空时码系统或超三代移动通信系统中的接收机的检测器。5. The detection method according to claim 1, characterized in that the method is used for a detector of a receiver in a layered space-time code system or a super three-generation mobile communication system. 6、一种根据权利要求1的检测方法进行检测的分层空时码系统,由发射机和接收机组成,其中发射机包括:信源、星座点映射器、串并变换器和nT根发送天线;接收机包括:nR根接收天线、检测器、星座点逆映射器和信宿;其中发射机的信源产生的二进制数据{bi},送入星座点映射器得到发送信号{s1,...,snT},该发送信号{s1,...,snT}又被送入串并变换器将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特征在于:所述接收机中的检测器是采用准最大后验概率检测方法和输出硬判决的准最大后验概率检测器;该准最大后验概率检测器从所述接收机中的nR根接收天线接收到nR路并行接收信号{y1,...,ynR}后,进行准最大后验概率的检测后,得到发送信号的估计值
Figure C2005100679060006C1
即硬判决结果,然后将该硬判决结果送入星座点逆映射器得到二进制数据的估计值
Figure C2005100679060006C2
最后送入信宿。
6, a kind of layered space-time code system that detects according to the detection method of claim 1 is made up of transmitter and receiver, and wherein transmitter comprises: signal source, constellation point mapper, serial-to-parallel converter and n T root Transmitting antenna; the receiver includes: n R receiving antennas, detectors, constellation point inverse mapper and sink; where the binary data {b i } generated by the source of the transmitter is sent to the constellation point mapper to obtain the transmitted signal {s 1 ,...,s nT }, the transmission signal {s 1 ,...,s nT } is sent to the serial-to-parallel converter to convert the serial signal into n T parallel signals, and then sent through n T roots The antenna sends out; it is characterized in that: the detector in the receiver is a quasi-maximum a posteriori probability detector that adopts a quasi-maximum a posteriori probability detection method and outputs a hard decision; After the n R receiving antennas in the machine receive n R channels of parallel receiving signals {y 1 ,...,y nR }, they perform quasi-maximum a posteriori probability detection to obtain the estimated value of the transmitted signal
Figure C2005100679060006C1
That is, the hard decision result, and then send the hard decision result to the constellation point inverse mapper to obtain the estimated value of the binary data
Figure C2005100679060006C2
Finally sent to the destination.
7、一种根据权利要求1的检测方法进行检测的分层空时码系统,由发射机和迭代接收机组成,其中发射机包括:信源、信道编码器、交织器、星座点映射器、串并变换器和nT根发送天线;迭代接收机包括:nR根接收天线、检测器、比特似然比计算器、符号概率计算器、解交织器、交织器、信道译码器、两个减法器和信宿;其中发射机的信源产生的二进制数据{ci},送入信道编码器得到编码后的二进制数据{bi},又被送入交织器进行处理,得到的编码后的随机交织的二进制数据{bπ(i)}被送入星座点映射器,得到的发送信号{s1,...,snT}又被送入串并变换器,将串行信号转化为nT路并行信号,然后通过nT根发送天线发送出去;其特征在于:所述迭代接收机中的检测器是采用准最大后验概率检测方法和输出各发送天线上发送符号后验概率软信息的准最大后验概率检测器。7. A layered space-time code system for detection according to the detection method of claim 1, consisting of a transmitter and an iterative receiver, wherein the transmitter includes: a source, a channel encoder, an interleaver, a constellation point mapper, Serial-to-parallel converter and n T transmitting antennas; iterative receiver includes: n R receiving antennas, detector, bit likelihood ratio calculator, symbol probability calculator, deinterleaver, interleaver, channel decoder, two A subtractor and a sink; where the binary data {c i } generated by the source of the transmitter is sent to the channel encoder to obtain the encoded binary data {b i }, and then sent to the interleaver for processing, and the obtained encoded binary data {b i } The randomly interleaved binary data {b π(i) } is sent to the constellation point mapper, and the transmitted signal {s 1 ,...,s nT } obtained is sent to the serial-to-parallel converter to convert the serial signal Be n T road parallel signals, then send out by n T root transmitting antennas; It is characterized in that: the detector in the iterative receiver adopts quasi-maximum a posteriori probability detection method and outputs the a posteriori probability of sending symbols on each transmitting antenna A quasi-maximum a posterior probability detector for soft information. 8、一种根据权利要求7所述的分层空时码系统中的迭代接收机的工作方法,其特征在于:包括如下步骤:8. A working method of an iterative receiver in a layered space-time code system according to claim 7, characterized in that: comprising the following steps: (1)系统启动后,初始化系统参数:将每层发送天线上各个发送符号先验概率初始化设置为等概率,并把该初始化的发送符号先验概率P(s)送入准最大后验概率检测器;初始化设置本地交织器输出的比特似然比{λ2[bπ(i)]}为0,并将该初始化的本地交织器输出的比特似然比{λ2[bπ(i)]}送入第一减法器;再设置每层发送天线选择的部分矢量数mk,其中,k为发送天线层的序号,其是区间为[1,nT]的自然数,nT是发送天线的层数,即最底层天线的序号;(1) After the system is started, initialize the system parameters: initialize the prior probability of each transmitted symbol on each layer of transmitting antennas to equal probability, and send the initialized prior probability P(s) of the transmitted symbol into the quasi-maximum posterior probability Detector; initialize the bit likelihood ratio {λ 2 [b π(i) ]} output by the local interleaver to be 0, and set the bit likelihood ratio {λ 2 [b π(i )] of the initialized local interleaver output ) ]} into the first subtractor; then set the number of partial vectors m k selected by each layer of transmit antenna, where k is the serial number of the transmit antenna layer, which is a natural number with an interval of [1, n T ], n T is The number of layers of the transmitting antenna, that is, the serial number of the bottom antenna; (2)将收发信号之间的关系模型经过正交变换转换为QR分解-干扰删除结构,其中QR分解为正交-三角化分解;(2) Convert the relationship model between the sending and receiving signals into a QR decomposition-interference deletion structure through an orthogonal transformation, wherein the QR decomposition is an orthogonal-triangulation decomposition; (3)检测器对nR个接收天线上得到的接收信号按照准最大后验概率检测方法中的宽度优先搜索和计算软信息的过程进行处理,得到发送符号后验概率软信息p(s|y);再将该检测器输出的发送符号后验概率软信息p(s|y)送到比特似然比计算器,得到比特似然比信息{Λ1[bπ(i)]},然后将该比特似然比信息{Λ1[bπ(i)]}送入第一减法器;(3) The detector processes the received signals obtained from n R receiving antennas according to the process of breadth-first search and calculation of soft information in the quasi-maximum a posteriori probability detection method, and obtains the soft information of the posterior probability of the transmitted symbol p(s| y); then send the soft information p(s|y) of the posterior probability of the transmitted symbol output by the detector to the bit likelihood ratio calculator to obtain the bit likelihood ratio information {Λ 1 [b π(i) ]}, Then send the bit likelihood ratio information {Λ 1 [b π(i) ]} into the first subtractor; (4)在第一减法器中,比特似然比信息{Λ1[bπ(i)]}减去本地交织器输出的比特似然比信息{λ2[bπ(i)]}得到外信息{λ1[bπ(i)]},该外信息{λ1[bπ(i)]}被送到解交织器中进行解交织,得到解交织的外信息{λ1[bi]};(4) In the first subtractor, the bit likelihood ratio information {Λ 1 [b π(i) ]} is subtracted from the bit likelihood ratio information {λ 2 [b π(i) ]} output by the local interleaver to obtain The extrinsic information {λ 1 [b π(i) ]}, the extrinsic information {λ 1 [b π(i) ]} is sent to the deinterleaver for deinterleaving, and the deinterleaved extrinsic information {λ 1 [b i ]}; (5)将解交织的外信息{λ1[bi]}分为两路:一路送入信道译码器进行译码,另一路作为先验信息送入第二减法器;(5) Divide the deinterleaved external information {λ 1 [ bi ]} into two paths: one path is sent to the channel decoder for decoding, and the other path is sent to the second subtractor as prior information; (6)解交织的外信息{λ1[bi]}送入信道译码器进行译码后输出符号软信息的对数似然比{Λ2[bi]},再将该符号软信息的对数似然比{Λ2[bi]}送入第二减法器;(6) The deinterleaved external information {λ 1 [ bi ]} is sent to the channel decoder for decoding, and the log likelihood ratio {Λ 2 [ bi ]} of the symbol soft information is output, and then the symbol soft information The log likelihood ratio {Λ 2 [b i ]} of the information is sent to the second subtractor; (7)在第二减法器中,信道译码器输出的符号软信息的对数似然比{Λ2[bi]}减去先验信息{λ1[bi]}得到外信息{λ2[bi]};该外信息{λ2[bi]}被送到本地交织器中进行交织后,输出新的比特似然比,即新的{λ2[bπ(i)]};(7) In the second subtractor, the log-likelihood ratio {Λ 2 [b i ]} of the symbol soft information output by the channel decoder is subtracted from the prior information {λ 1 [b i ]} to obtain the extrinsic information { λ 2 [b i ]}; after the external information {λ 2 [b i ]} is sent to the local interleaver for interleaving, it outputs a new bit likelihood ratio, that is, the new {λ 2 [b π(i) ]}; (8)新的比特似然比{λ2[bπ(i)]}送入到符号概率计算器,得到新的先验信息P(s);该新的先验信息P(s)又送到准最大后验概率检测器,更新先验信息;同时在顺序执行上述步骤(3)~(8)各一次的过程中,完成一次迭代操作;(8) The new bit likelihood ratio {λ 2 [b π(i) ]} is sent to the symbol probability calculator to obtain new prior information P(s); the new prior information P(s) is Send it to the quasi-maximum a posteriori probability detector to update the prior information; at the same time, in the process of sequentially executing the above steps (3) to (8) once, complete an iterative operation; (9)循环执行上述步骤(3)-(8),即经过多次迭代后,停止译码;(9) cyclically execute the above steps (3)-(8), that is, after multiple iterations, stop decoding; (10)迭代结束后,将信道译码器输出的硬判决的二进制数据{Λ1[a1]}送到信宿,迭代接收机结束其检测和译码操作。(10) After the iteration ends, the hard-decision binary data {Λ 1 [a 1 ]} output by the channel decoder is sent to the sink, and the iterative receiver ends its detection and decoding operations. 9、根据权利要求8所述的工作方法,其特征在于:所述迭代接收机的操作步骤中进行的循环迭代操作次数至少是1次,迭代次数取决于检测和译码的时延和硬件复杂度的不同要求。9. The working method according to claim 8, characterized in that: the number of loop iterative operations performed in the operation step of the iterative receiver is at least one, and the number of iterations depends on the time delay and hardware complexity of detection and decoding degree of different requirements.
CNB2005100679066A 2005-04-28 2005-04-28 Quasi maximum posterior probability detection method for layer space hour code system Expired - Fee Related CN1314216C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100679066A CN1314216C (en) 2005-04-28 2005-04-28 Quasi maximum posterior probability detection method for layer space hour code system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100679066A CN1314216C (en) 2005-04-28 2005-04-28 Quasi maximum posterior probability detection method for layer space hour code system

Publications (2)

Publication Number Publication Date
CN1674487A CN1674487A (en) 2005-09-28
CN1314216C true CN1314216C (en) 2007-05-02

Family

ID=35046780

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100679066A Expired - Fee Related CN1314216C (en) 2005-04-28 2005-04-28 Quasi maximum posterior probability detection method for layer space hour code system

Country Status (1)

Country Link
CN (1) CN1314216C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100571098C (en) * 2006-02-24 2009-12-16 中国科学院上海微系统与信息技术研究所 Low-complexity maximum likelihood detection method and device in communication system
CN101542993B (en) * 2006-05-04 2013-01-09 新加坡科技研究局 Method and system for determining a signal vector
CN101192905B (en) * 2006-11-23 2012-07-25 华为技术有限公司 Communication system and its signal detection method
CN101252381B (en) * 2008-04-01 2011-07-20 东南大学 Multi-aerial radio communication system high efficiency feedback method based on tree code book
CN104901731B (en) * 2015-04-07 2018-02-16 浙江理工大学 A kind of multiple cell mimo system upward signal detection method of interactive portion Soft Inform ation
CN107231158B (en) * 2017-05-04 2019-12-31 西南交通大学 A polar code iterative receiver, system and polar code iterative decoding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411190A (en) * 2001-10-09 2003-04-16 华为技术有限公司 Vertical Bell laboratory ranked space and time code array linear detecting method
CN1501595A (en) * 2002-10-10 2004-06-02 三星电子株式会社 Transmitting and receiving apparatus for supporting transmit antenna diversity using space-time block code
GB2406760A (en) * 2003-10-03 2005-04-06 Toshiba Res Europ Ltd Max-log MAP decoder used with maximum likelihood decoders and determining bit likelihoods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411190A (en) * 2001-10-09 2003-04-16 华为技术有限公司 Vertical Bell laboratory ranked space and time code array linear detecting method
CN1501595A (en) * 2002-10-10 2004-06-02 三星电子株式会社 Transmitting and receiving apparatus for supporting transmit antenna diversity using space-time block code
GB2406760A (en) * 2003-10-03 2005-04-06 Toshiba Res Europ Ltd Max-log MAP decoder used with maximum likelihood decoders and determining bit likelihoods

Also Published As

Publication number Publication date
CN1674487A (en) 2005-09-28

Similar Documents

Publication Publication Date Title
CN1297076C (en) Transmission/reception apparatus for wireless system with three transmission antennas
CN101268647B (en) Apparatus and method for detecting communications from multiple sources
CN1154236C (en) Error correction coding type digital transmission method
US20090225878A1 (en) Adaptive forward-backward soft output m-algorithm receiver structures
CN101053263A (en) Method and system for determining a signal vector and computer program element
CN1947368A (en) Apparatus and method for coding/decoding block low density parity check code with variable block length
US20120063429A1 (en) METHODS AND APPARATUS OF FREQUENCY INTERLEAVING FOR 80 MHz TRANSMISSIONS
CN1855797A (en) Method for detecting and decoding a signal in a mimo communication system
CN1685650A (en) Transmission system
CN101064579A (en) Method for detecting low-complexity globular decoding
CN1898891A (en) Apparatus and method for transmitting and receiving coded data by encoder having unequal error probability in mobile communication system
CN107750435B (en) The device and method of non orthogonal transmissions
CN1889555A (en) Iterative decoding algorithm for space hour bit interlaced modulating system and receiving system
CN111480324B (en) Apparatus and method for detecting mutually interfering information flows
CN1314216C (en) Quasi maximum posterior probability detection method for layer space hour code system
CN1701557A (en) Signal decoding method and apparatus
CN1518264A (en) Transmitter and receiver in radio communication system using four transmitting antennas
CN1822531A (en) Spatial filtering detection method for multi-antenna wireless communication system
CN101059544A (en) Method for implementing iterative detection in multiple-input multiple-output system and multi-antenna detector
CN1640047A (en) Apparatus and method for determining combiner weights and log-likelihood ratios for symbols transmitted in a wireless communication system
CN1976327A (en) Method for counteracting minimum mean-square error soft interference, signal detector and receiver
CN101047468A (en) Detection method of adaptive selectited multiple input output system
CN1674482A (en) Method and apparatus for detecting normalized iterative soft interference cancelling signal
CN1239034C (en) Device and method of multi-antenna transmitting and receiving signal in mobile communication system
CN1968067A (en) Simplified maximum likelihood test method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee