CN1314078C - Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof - Google Patents
Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof Download PDFInfo
- Publication number
- CN1314078C CN1314078C CNB2004100671318A CN200410067131A CN1314078C CN 1314078 C CN1314078 C CN 1314078C CN B2004100671318 A CNB2004100671318 A CN B2004100671318A CN 200410067131 A CN200410067131 A CN 200410067131A CN 1314078 C CN1314078 C CN 1314078C
- Authority
- CN
- China
- Prior art keywords
- mgal
- film
- preparation
- lining material
- single crystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052733 gallium Inorganic materials 0.000 title claims abstract description 95
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910052738 indium Inorganic materials 0.000 claims abstract description 92
- 229910020068 MgAl Inorganic materials 0.000 claims abstract description 62
- 238000000137 annealing Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000004549 pulsed laser deposition Methods 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims 3
- 230000008025 crystallization Effects 0.000 claims 3
- 230000003760 hair shine Effects 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000005245 sintering Methods 0.000 claims 1
- 239000007790 solid phase Substances 0.000 claims 1
- 238000010189 synthetic method Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 34
- 239000002131 composite material Substances 0.000 abstract description 26
- 239000010409 thin film Substances 0.000 abstract description 8
- 238000000151 deposition Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 229910052793 cadmium Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000013077 target material Substances 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种Cd(In,Ga)2O4/MgAl2O4复合衬底的材料及其制备方法,该复合衬底材料是在MgAl2O4单晶上设有一层Cd(In,Ga)O4覆盖层构成。该复合衬底材料的制备方法是:用脉冲激光淀积方法在MgAl2O4(111)单晶衬底上形成Cd(In,Ga)O4覆盖层,通过退火工艺处理,在MgAl2O4(111)单晶衬底得到晶化的Cd(In,Ga)O4(111)薄膜。本发明的复合衬底材料的制备工艺简单,易操作,此种结构的复合衬底Cd(In,Ga)2O4/MgAl2O4适合于高质量GaN的外延生长。
A Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material and a preparation method thereof. The composite substrate material is composed of a Cd(In, Ga) O 4 covering layer provided on a MgAl 2 O 4 single crystal. The preparation method of the composite substrate material is: forming a Cd(In, Ga) O 4 covering layer on a MgAl 2 O 4 (111) single crystal substrate by a pulse laser deposition method, and obtaining a crystallized Cd(In, Ga) O 4 (111) thin film on the MgAl 2 O 4 (111) single crystal substrate through an annealing process. The preparation process of the composite substrate material of the invention is simple and easy to operate. The composite substrate Cd(In, Ga) 2 O 4 /MgAl 2 O 4 with such a structure is suitable for the epitaxial growth of high-quality GaN.
Description
技术领域technical field
本发明涉及InN-GaN基蓝光半导体外延生长,特别是一种用于InN-GaN基蓝光半导体外延生长的Cd(In,Ga)2O4/MgAl2O4复合衬底材料及其制备方法。The invention relates to the epitaxial growth of InN-GaN-based blue light semiconductors, in particular to a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material and a preparation method thereof for the epitaxial growth of InN-GaN-based blue light semiconductors.
背景技术Background technique
以GaN为代表的宽带隙III-V族化合物半导体材料正在受到越来越多的关注,它们将在蓝、绿光发光二极管(LEDs)和激光二极管(LDs)、高密度信息读写、水下通信、深水探测、激光打印、生物及医学工程,以及超高速微电子器件和超高频微波器件方面具有广泛的应用前景。Wide bandgap III-V compound semiconductor materials represented by GaN are receiving more and more attention, and they will be used in blue and green light-emitting diodes (LEDs) and laser diodes (LDs), high-density information reading and writing, underwater It has broad application prospects in communication, deep water exploration, laser printing, biological and medical engineering, as well as ultra-high-speed microelectronic devices and ultra-high-frequency microwave devices.
由于GaN熔点高、硬度大、饱和蒸汽压高,故要生长大尺寸的GaN体单晶需要高温和高雅,波兰高压研究中心在1600℃的高温和20kbar的高压下才制出了条宽为5mm的GaN体单晶。在目前,要生长大尺寸的GaN体单晶的技术更不成熟,且生长的成本高,离实际应用尚有相当长的距离。Due to GaN's high melting point, high hardness, and high saturated vapor pressure, high temperature and elegance are required to grow large-sized GaN bulk single crystals. The Polish High Pressure Research Center only produced strips with a width of 5 mm at a high temperature of 1600 ° C and a high pressure of 20 kbar. GaN bulk single crystal. At present, the technology to grow large-sized GaN bulk single crystals is still immature, and the cost of growth is high, and there is still a long distance from practical application.
蓝宝石晶体(α-Al2O3),易于制备,价格便宜,且具有良好的高温稳定性等特点,α-Al2O3是目前最常用的InN-GaN外延衬底材料(参见Jpn.J.Appl.Phys.,第36卷,1997年,第1568页)。Sapphire crystal (α-Al 2 O 3 ) is easy to prepare, cheap, and has good high temperature stability. α-Al 2 O 3 is currently the most commonly used InN-GaN epitaxial substrate material (see Jpn.J .Appl.Phys., Vol. 36, 1997, p. 1568).
MgAl2O4晶体属立方晶系,尖晶石型结构,晶格常数为0.8083nm,熔点为2130℃。因MgAl2O4晶体与GaN的晶格失配达9%,且其综合性质不如α-Al2O3顾很少使用。The MgAl 2 O 4 crystal belongs to the cubic crystal system, the spinel structure, the lattice constant is 0.8083nm, and the melting point is 2130°C. Because the lattice mismatch between MgAl 2 O 4 and GaN reaches 9%, and its comprehensive properties are not as good as α-Al 2 O 3 , it is rarely used.
目前,典型的GaN基蓝光LED是在蓝宝石衬底上制作的。其结构从上到下如下所示:p-GaN/AlGaN barrer layer/InGaN-GaN quantumwells/AlGaN barrier layer/n-GaN/4μm GaN。由于蓝宝石具有极高的电阻率,所以器件的n-型和p-型电极必须从同一侧引出。这不仅增加了器件的制作难度,同时也增大了器件的体积。根据有关资料,对于一片直径2英寸大小的蓝宝石衬底而言,目前的技术只能制作出GaN器件约1万粒左右,而如果衬底材料具有合适的电导率,则在简化器件制作工艺的同时,其数目可增至目前的3-4倍。Currently, typical GaN-based blue LEDs are fabricated on sapphire substrates. Its structure is as follows from top to bottom: p-GaN/AlGaN barrel layer/InGaN-GaN quantumwells/AlGaN barrier layer/n-GaN/4μm GaN. Due to the extremely high resistivity of sapphire, the n-type and p-type electrodes of the device must be brought out from the same side. This not only increases the manufacturing difficulty of the device, but also increases the volume of the device. According to relevant data, for a sapphire substrate with a diameter of 2 inches, the current technology can only produce about 10,000 GaN devices. If the substrate material has a suitable conductivity, it will simplify the device manufacturing process. At the same time, its number can be increased to 3-4 times of the present.
综上所述,在先技术衬底(α-Al2O3和MgAl2O4)存在显著缺点:In summary, prior art substrates (α-Al 2 O 3 and MgAl 2 O 4 ) have significant disadvantages:
(1)用α-Al2O3作衬底,α-Al2O3和GaN之间的晶格失配度高达14%,是制备的GaN薄膜具有较高的位错密度和大量的点缺陷;(1) Using α-Al 2 O 3 as the substrate, the lattice mismatch between α-Al 2 O 3 and GaN is as high as 14%, which means that the prepared GaN film has a higher dislocation density and a large number of dots defect;
(2)由于MgAl2O4晶体与GaN的晶格失配达9%,再加上综合性能不如α-Al2O3,因而使用较少;(2) Since the lattice mismatch between MgAl 2 O 4 and GaN reaches 9%, and the overall performance is not as good as that of α-Al 2 O 3 , it is less used;
(3)以上透明氧化物衬底均不导电,器件制作难度大,同时也增大了器件的体积,造成了大量的原材料的浪费。(3) The above transparent oxide substrates are all non-conductive, making the device difficult to manufacture, and also increases the volume of the device, resulting in a lot of waste of raw materials.
发明内容Contents of the invention
本发明要解决的技术问题在于克服上述现有技术的缺点,提供一种用作InN-GaN基蓝光半导体外延生长的Cd(In,Ga)2O4/MgAl2O4复合衬底材料及其制备方法。The technical problem to be solved by the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material and its Preparation.
本发明的Cd(In,Ga)2O4/MgAl2O4复合衬底材料实际上是在MgAl2O4单晶上设有一层Cd(In,Ga)2O4而构成,该复合衬底适合于外延生长高质量InN-GaN基蓝光半导体薄膜。The Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material of the present invention is actually composed of a layer of Cd(In, Ga) 2 O 4 on the MgAl 2 O 4 single crystal. The bottom is suitable for epitaxial growth of high-quality InN-GaN-based blue semiconductor thin films.
Cd(In,Ga)2O4是CdIn2O4和CdGa2O4所形成的固溶体化合物,属于立方晶系,尖晶石型结构。Cd(In,Ga)2O4(111)与GaN的晶格失配度很小,当CdIn2O4和CdGa2O4以适当的比例形成固溶体时,其(111)面可以与GaN完全匹配,但由于Cd(In,Ga)2O4大尺寸体单晶生长困难,本发明提出利用脉冲激光淀积的方法,在MgAl2O4单晶衬底上生长Cd(In,Ga)2O4覆盖层,从而得到Cd(In,Ga)2O4/MgAl2O4复合衬底。在这里,MgAl2O4单晶起支撑其上的Cd(In,Ga)2O4透明导电薄膜的作用。此种结构的复合衬底[Cd(In,Ga)2O4/MgAl2O4]适合于外延生长高质量的GaN。Cd(In, Ga) 2 O 4 is a solid solution compound formed by CdIn 2 O 4 and CdGa 2 O 4 , which belongs to cubic crystal system and spinel structure. The lattice mismatch between Cd(In, Ga) 2 O 4 (111) and GaN is very small. When CdIn 2 O 4 and CdGa 2 O 4 form a solid solution in an appropriate ratio, its (111) plane can be completely compatible with GaN However, due to the difficulty in growing large-size Cd(In, Ga) 2 O 4 bulk single crystals, the present invention proposes a method of using pulsed laser deposition to grow Cd(In, Ga) 2 on MgAl 2 O 4 single crystal substrates O 4 covering layer, thereby obtaining a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. Here, the MgAl2O4 single crystal acts as a support for the Cd(In,Ga) 2O4 transparent conductive thin film on it. The composite substrate [Cd(In, Ga) 2 O 4 /MgAl 2 O 4 ] with this structure is suitable for epitaxial growth of high-quality GaN.
本发明的技术解决方案是:Technical solution of the present invention is:
一种Cd(In,Ga)2O4/MgAl2O4复合衬底材料的制备方法,主要是利用脉冲激光淀积方法在MgAl2O4单晶衬底上制备Cd(In,Ga)2O4薄膜,通过高温退火,在MgAl2O4单晶衬底上形成Cd(In,Ga)2O4单晶覆盖层。A preparation method of Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material, which mainly uses pulsed laser deposition method to prepare Cd(In, Ga) 2 on MgAl 2 O 4 single crystal substrate O 4 thin film, through high temperature annealing, form Cd(In, Ga) 2 O 4 single crystal capping layer on MgAl 2 O 4 single crystal substrate.
本发明Cd(In,Ga)2O4/MgAl2O4复合衬底材料的制备材料的制备方法,其特征在于它包括下列具体步骤:The preparation method of the preparation material of the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material of the present invention is characterized in that it includes the following specific steps:
<1>在MgAl2O4单晶衬底上制备Cd(In,Ga)2O4薄膜:将抛光、清洗过的MgAl2O4单晶衬底送入脉冲激光淀积系统,Cd(In,Ga)2O4源采用Cd(In,Ga)2O4多晶靶材;采用脉宽25-30ns的KrF准分子激光器,激射波长为248nm,通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置内的Cd(In,Ga)2O4靶材,在富氧的反应气氛下,在被加热的MgAl2O4单晶衬底上淀积Cd(In,Ga)2O4薄膜,膜厚大于100nm。<1> Preparation of Cd(In, Ga) 2 O 4 film on MgAl 2 O 4 single crystal substrate: send the polished and cleaned MgAl 2 O 4 single crystal substrate into the pulsed laser deposition system, Cd(In , Ga) 2 O 4 source adopts Cd(In,Ga) 2 O 4 polycrystalline target material; adopts KrF excimer laser with pulse width of 25-30ns, the lasing wavelength is 248nm, and the energy of about 10J/cm 2 is passed through the lens Density concentrated light, irradiating the Cd(In, Ga) 2 O 4 target in the vacuum device through the optical window, and depositing Cd(In, Ga) 2 O 4 on the heated MgAl 2 O 4 single crystal substrate In, Ga) 2 O 4 film, the film thickness is greater than 100nm.
<2>高温退火:将得到的Cd(In,Ga)2O4/MgAl2O4样品放入退火炉中,升温,在700~1500℃和富氧的气氛下,退火处理,得到Cd(In,Ga)2O4单晶的覆盖层,形成Cd(In,Ga)2O4/MgAl2O4复合衬底材料。<2>High-temperature annealing: Put the obtained Cd(In, Ga) 2 O 4 /MgAl 2 O 4 sample into an annealing furnace, raise the temperature, and anneal at 700-1500°C in an oxygen-rich atmosphere to obtain Cd( In, Ga) 2 O 4 single crystal covering layer, forming Cd (In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material.
所述的Cd(In,Ga)2O4多晶靶材所用原料及其比例为CdO∶In2O3∶Ga2O3=2∶1∶1,所得多晶靶材的纯度优于99.999%。The raw material used for the Cd(In, Ga) 2 O 4 polycrystalline target and its ratio are CdO:In 2 O 3 :Ga 2 O 3 =2:1:1, and the purity of the obtained polycrystalline target is better than 99.999% %.
所述的高温退火处理,退火炉内的最佳温度为1000℃。For the high temperature annealing treatment, the optimum temperature in the annealing furnace is 1000°C.
本发明的特点是:The features of the present invention are:
(1)提出了一种用于InN-GaN基蓝光半导体外延生长的Cd(In,Ga)2O4衬底材料,该衬底与在先衬底相比,其与GaN(111)的晶格失配度小,适当改变Mg和Cd的比例可以使其与与GaN(111)的晶格相匹配,且该材料为透明导电氧化物材料。(1) A Cd(In, Ga) 2 O 4 substrate material for the epitaxial growth of InN-GaN-based blue light semiconductors is proposed. The degree of lattice mismatch is small, and the ratio of Mg and Cd can be appropriately changed to match the lattice of GaN (111), and the material is a transparent conductive oxide material.
(2)本发明提出利用脉冲激光淀积(PLD)技术,在MgAl2O4单晶衬底上生成Cd(In,Ga)2O4覆盖层,从而得到了Cd(In,Ga)2O4/MgAl2O4复合衬底,该复合衬底的制备工艺简单、易操作,此种结构的复合衬底[Cd(In,Ga)2O4/MgAl2O4]适合于高质量的GaN的外延生长。(2) The present invention proposes to use pulsed laser deposition (PLD) technology to generate a Cd(In, Ga) 2 O 4 capping layer on a MgAl 2 O 4 single crystal substrate, thereby obtaining Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. The preparation process of the composite substrate is simple and easy to operate. The composite substrate [Cd(In, Ga) 2 O 4 /MgAl 2 O 4 ] with this structure is suitable for high-quality Epitaxial growth of GaN.
附图说明Description of drawings
图1是脉冲激光淀积(PLD)系统的示意图。Figure 1 is a schematic diagram of a pulsed laser deposition (PLD) system.
具体实施方式Detailed ways
图1是脉冲激光淀积(PLD)系统的示意图。PLD的机理是首先将脉宽25-30ns的KrF准分子激光器波长为248nm的激光通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置内的Cd(In,Ga)2O4多晶靶材,靶材吸收激光后,由于电子激励而成为高温熔融状态,使材料表面数十纳米(nm)被蒸发气化,气体状的微粒以柱状被放出和被扩散,在离靶材的数厘米处放置的适当被加热的MgAl2O4单晶衬底上,附着、堆积从而淀积成Cd(In,Ga)2O4薄膜。膜厚大于100nm。Figure 1 is a schematic diagram of a pulsed laser deposition (PLD) system. The mechanism of PLD is to first focus the laser light of KrF excimer laser with a pulse width of 25-30ns and a wavelength of 248nm through the lens with an energy density of about 10J/ cm2 , and irradiate the Cd(In, Ga) in the vacuum device through the optical window. 2 O 4 polycrystalline target, after the target absorbs the laser, it becomes a high-temperature molten state due to electronic excitation, so that the surface of the material is evaporated and gasified, and the gaseous particles are released and diffused in columnar shape. Cd (In, Ga) 2 O 4 film is deposited on a suitably heated MgAl 2 O 4 single crystal substrate placed a few centimeters away from the target, attached and stacked. The film thickness is greater than 100nm.
本发明的脉冲激光淀积(LPD)技术制备复合衬底材料Cd(In,Ga)2O4/MgAl2O4的具体工艺流程如下:The pulse laser deposition (LPD) technique of the present invention prepares composite substrate material Cd (In, Ga) 2 O 4 /MgAl 2 O 4 The specific technological process of 4 is as follows:
<1>将抛光、清洗过的MgAl2O4单晶衬底送入脉冲激光淀积PLD系统制备Cd(In,Ga)2O4薄膜,在MgAl2O4单晶衬底上制备Cd(In,Ga)2O4薄膜,Cd(In,Ga)2O4源采用99.999%以上的Cd(In,Ga)2O4多晶靶材,靶材所用原料为CdO∶In2O3∶Ga2O3=2∶1∶1。系统采用脉宽25-30ns的KrF准分子激光器,激射波长为248nm,通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置中的Cd(In,Ga)2O4靶材,在富氧的气氛下淀积Cd(In,Ga)2O4薄膜,膜厚大于100nm。<1> Send the polished and cleaned MgAl 2 O 4 single crystal substrate into the pulsed laser deposition PLD system to prepare Cd(In, Ga) 2 O 4 thin film, and prepare Cd( In, Ga) 2 O 4 film, Cd (In, Ga) 2 O 4 source adopts more than 99.999% Cd (In, Ga) 2 O 4 polycrystalline target, the raw material used for the target is CdO: In 2 O 3 : Ga 2 O 3 =2:1:1. The system uses a KrF excimer laser with a pulse width of 25-30ns, the lasing wavelength is 248nm, the light is condensed through the lens with an energy density of about 10J/ cm2 , and irradiated to the Cd(In, Ga) 2 O in the vacuum device through the optical window. 4 target material, deposit Cd(In,Ga) 2 O 4 film in an oxygen-rich atmosphere, and the film thickness is greater than 100nm.
<2>然后将上步骤中得到的Cd(In,Ga)2O4/MgAl2O4样品放入退火炉中,在700~1500℃退火,可以得到Cd(In,Ga)2O4的单晶覆盖层,从而得到了Cd(In,Ga)2O4/MgAl2O4复合衬底。此种结构的复合衬底适合于高质量GaN的外延生长。<2>Then put the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 sample obtained in the previous step into the annealing furnace, and anneal at 700-1500°C to obtain the Cd(In, Ga) 2 O 4 single crystal capping layer, thus obtaining the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. The composite substrate with this structure is suitable for the epitaxial growth of high-quality GaN.
用图1所示的脉冲激光淀积(PLD)实验装置制备Cd(In,Ga)2O4/MgAl2O4复合衬底材料的方法,以较佳实施例说明如下:The method for preparing the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate material with the pulsed laser deposition (PLD) experimental device shown in Figure 1 is described as follows with a preferred embodiment:
实施例1:Example 1:
将抛光、清洗过的MgAl2O4单晶衬底送入脉冲激光淀积PLD系统制备Cd(In,Ga)2O4薄膜,Cd(In,Ga)2O4源采用99.999%以上的Cd(In,Ga)2O4多晶靶材。系统采用脉宽25-30ns的KrF准分子激光器,激射波长为248nm,通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置中的Cd(In,Ga)2O4靶材,在富氧的气氛下淀积Cd(In,Ga)2O4薄膜,MgAl2O4单晶衬底温度为300℃,控制Cd(In,Ga)2O4薄膜的厚度为300nm。然后将上步骤中得到的Cd(In,Ga)2O4/MgAl2O4样品放入退火炉中,升温至1000℃退火处理,即得到Cd(In,Ga)2O4的单晶覆盖层,从而得到Cd(In,Ga)2O4/MgAl2O4复合衬底。此种结构的复合衬底适合于高质量GaN的外延生长。Send the polished and cleaned MgAl 2 O 4 single crystal substrate into the pulsed laser deposition PLD system to prepare Cd(In, Ga) 2 O 4 thin film, and the Cd(In, Ga) 2 O 4 source uses more than 99.999% Cd (In, Ga) 2 O 4 polycrystalline target. The system uses a KrF excimer laser with a pulse width of 25-30ns, the lasing wavelength is 248nm, the light is condensed through the lens with an energy density of about 10J/ cm2 , and irradiated to the Cd(In, Ga) 2 O in the vacuum device through the optical window. 4 target material, deposit Cd(In, Ga) 2 O 4 film in an oxygen-rich atmosphere, MgAl 2 O 4 single crystal substrate temperature is 300 ℃, control the thickness of Cd(In, Ga) 2 O 4 film to 300nm. Then put the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 sample obtained in the above step into an annealing furnace, raise the temperature to 1000°C for annealing treatment, and obtain a Cd(In, Ga) 2 O 4 single crystal covering layer, thereby obtaining a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. The composite substrate with this structure is suitable for the epitaxial growth of high-quality GaN.
实施例2:Example 2:
将抛光、清洗过的MgAl2O4单晶衬底送入脉冲激光淀积PLD系统制备Cd(In,Ga)2O4薄膜,Cd(In,Ga)2O4源采用99.999%以上的Cd(In,Ga)2O4多晶靶材。系统采用脉宽25-30ns的KrF准分子激光器,激射波长为248nm,通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置中的Cd(In,Ga)2O4靶材,在富氧的气氛下淀积Cd(In,Ga)2O4薄膜,MgAl2O4单晶衬底温度为100℃,控制Cd(In,Ga)2O4薄膜的厚度为100nm。然后将上步骤中得到的Cd(In,Ga)2O4/MgAl2O4样品放入退火炉中,升温至700℃退火处理,即得到Cd(In,Ga)2O4的单晶覆盖层,从而得到Cd(In,Ga)2O4/MgAl2O4复合衬底。此种结构的复合衬底适合于高质量GaN的外延生长。Send the polished and cleaned MgAl 2 O 4 single crystal substrate into the pulsed laser deposition PLD system to prepare Cd(In, Ga) 2 O 4 thin film, and the Cd(In, Ga) 2 O 4 source uses more than 99.999% Cd (In, Ga) 2 O 4 polycrystalline target. The system uses a KrF excimer laser with a pulse width of 25-30ns, the lasing wavelength is 248nm, the light is condensed through the lens with an energy density of about 10J/ cm2 , and irradiated to the Cd(In, Ga) 2 O in the vacuum device through the optical window. 4 target material, deposit Cd(In, Ga) 2 O 4 film in an oxygen-rich atmosphere, MgAl 2 O 4 single crystal substrate temperature is 100 ℃, control the thickness of Cd(In, Ga) 2 O 4 film to 100nm. Then put the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 sample obtained in the above step into the annealing furnace, raise the temperature to 700°C for annealing treatment, and obtain the single crystal covering of Cd(In, Ga) 2 O 4 layer, thereby obtaining a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. The composite substrate with this structure is suitable for the epitaxial growth of high-quality GaN.
实施例3:Example 3:
将抛光、清洗过的MgAl2O4单晶衬底送入脉冲激光淀积PLD系统制备Cd(In,Ga)2O4薄膜,Cd(In,Ga)2O4源采用99.999%以上的Cd(In,Ga)2O4多晶靶材。系统采用脉宽25-30ns的KrF准分子激光器,激射波长为248nm,通过透镜以约10J/cm2的能量密度聚光,经光学窗口照射到真空装置中的Cd(In,Ga)2O4靶材,在富氧的气氛下淀积Cd(In,Ga)2O4薄膜,MgAl2O4单晶衬底温度为300℃,控制Cd(In,Ga)2O4薄膜的厚度为500nm。然后将上步骤中得到的Cd(In,Ga)2O4/MgAl2O4样品放入退火炉中,升温至1500℃退火处理,即得到Cd(In,Ga)2O4的单晶覆盖层,从而得到Cd(In,Ga)2O4/MgAl2O4复合衬底。此种结构的复合衬底适合于高质量GaN的外延生长。Send the polished and cleaned MgAl 2 O 4 single crystal substrate into the pulsed laser deposition PLD system to prepare Cd(In, Ga) 2 O 4 thin film, and the Cd(In, Ga) 2 O 4 source uses more than 99.999% Cd (In, Ga) 2 O 4 polycrystalline target. The system uses a KrF excimer laser with a pulse width of 25-30ns, the lasing wavelength is 248nm, the light is condensed through the lens with an energy density of about 10J/ cm2 , and irradiated to the Cd(In, Ga) 2 O in the vacuum device through the optical window. 4 target material, deposit Cd(In, Ga) 2 O 4 film in an oxygen-rich atmosphere, MgAl 2 O 4 single crystal substrate temperature is 300 ℃, control the thickness of Cd(In, Ga) 2 O 4 film to 500nm. Then put the Cd(In, Ga) 2 O 4 /MgAl 2 O 4 sample obtained in the above step into an annealing furnace, raise the temperature to 1500°C for annealing treatment, and obtain a Cd(In, Ga) 2 O 4 single crystal covering layer, thereby obtaining a Cd(In, Ga) 2 O 4 /MgAl 2 O 4 composite substrate. The composite substrate with this structure is suitable for the epitaxial growth of high-quality GaN.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100671318A CN1314078C (en) | 2004-10-13 | 2004-10-13 | Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100671318A CN1314078C (en) | 2004-10-13 | 2004-10-13 | Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1588615A CN1588615A (en) | 2005-03-02 |
CN1314078C true CN1314078C (en) | 2007-05-02 |
Family
ID=34604123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100671318A Expired - Fee Related CN1314078C (en) | 2004-10-13 | 2004-10-13 | Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1314078C (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196648A (en) * | 1992-12-25 | 1994-07-15 | Fuji Xerox Co Ltd | Oriented ferroelectric thin film device |
JPH07133188A (en) * | 1993-11-08 | 1995-05-23 | Fuji Xerox Co Ltd | Production of ferroelectric thin film having orientation property |
US6278138B1 (en) * | 1998-08-28 | 2001-08-21 | Sony Corporation | Silicon-based functional matrix substrate and optical integrated oxide device |
CN1482689A (en) * | 2003-07-29 | 2004-03-17 | 中国科学院上海光学精密机械研究所 | MgIn2O4/MgO composite substrate material and preparation method thereof |
-
2004
- 2004-10-13 CN CNB2004100671318A patent/CN1314078C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196648A (en) * | 1992-12-25 | 1994-07-15 | Fuji Xerox Co Ltd | Oriented ferroelectric thin film device |
JPH07133188A (en) * | 1993-11-08 | 1995-05-23 | Fuji Xerox Co Ltd | Production of ferroelectric thin film having orientation property |
US6278138B1 (en) * | 1998-08-28 | 2001-08-21 | Sony Corporation | Silicon-based functional matrix substrate and optical integrated oxide device |
CN1482689A (en) * | 2003-07-29 | 2004-03-17 | 中国科学院上海光学精密机械研究所 | MgIn2O4/MgO composite substrate material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1588615A (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI246116B (en) | Process for growing ZnSe Epitaxy layer on Si substrate and semiconductor structure thereby | |
KR100582250B1 (en) | Light emitting diode and laser diode having n-type ZnO layer and p-type semiconductor laser | |
JP5638772B2 (en) | Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device | |
JP5355221B2 (en) | Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device | |
CN104538526A (en) | Nitride LED epitaxial wafer structure based on copper substrate and manufacturing method thereof | |
TW201108411A (en) | Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy | |
JP2011501431A (en) | Gallium nitride semiconductor device on SOI and method of manufacturing the same | |
TW201220361A (en) | Epitaxial substrate, semiconductor light-emitting device using such epitaxial substrate and fabrication thereof | |
CN104576862B (en) | A kind of nitride LED vertical chip based on copper substrate and preparation method thereof | |
CN1383185A (en) | Process for preparing self-supporting gallium nitride substrate by laser stripping method | |
CN100481330C (en) | III nitride semiconductor and fabricating method thereof | |
Rogers et al. | ZnO thin film templates for GaN-based devices | |
CN110323308A (en) | A method of nitride vertical structure LED is prepared using graphene barrier layer | |
CN101235537B (en) | Method for preparing ZnMgO alloy thin film | |
CN1694225A (en) | GaN/β-Ga2O3Composite substrate material and preparation method thereof | |
CN1314078C (en) | Cd(In,Ga)2O4/MgAl2O4Composite substrate material and preparation method thereof | |
CN103996756B (en) | Film coating method and application thereof | |
CN1295747C (en) | (Mg,Cd)In2O4/MgAl2O4Composite substrate material and preparation method thereof | |
CN1210817C (en) | MgIn2O4/MgO composite substrate material and preparation method thereof | |
CN1219334C (en) | γ-LiAlO2/α-Al2O3Flexible substrate material and preparation method thereof | |
Zhang et al. | Damage-free transfer of GaN-based light-emitting devices and reuse of sapphire substrate | |
CN1322175C (en) | Preparation of gamma-LiAlO by pulsed laser deposition2Method for covering substrate with single crystal thin film | |
KR100338390B1 (en) | Preparation of Thick Film of Gallium Nitride by lower-layer Substrate-Sublimation and Reaction Apparatus Thereof | |
CN1610057A (en) | Cd1+xIn2-2xSnxO4/MgAl2O4Composite substrate material and preparation method thereof | |
CN1529366A (en) | MgIn2O4/MgAl2O4Composite substrate material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070502 Termination date: 20101013 |