[go: up one dir, main page]

CN1313403C - Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof - Google Patents

Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof Download PDF

Info

Publication number
CN1313403C
CN1313403C CNB2003101247605A CN200310124760A CN1313403C CN 1313403 C CN1313403 C CN 1313403C CN B2003101247605 A CNB2003101247605 A CN B2003101247605A CN 200310124760 A CN200310124760 A CN 200310124760A CN 1313403 C CN1313403 C CN 1313403C
Authority
CN
China
Prior art keywords
glass
component oxide
optical
erbium
oxide glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101247605A
Other languages
Chinese (zh)
Other versions
CN1634785A (en
Inventor
邹快盛
陆敏
李玮楠
程光华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CNB2003101247605A priority Critical patent/CN1313403C/en
Publication of CN1634785A publication Critical patent/CN1634785A/en
Application granted granted Critical
Publication of CN1313403C publication Critical patent/CN1313403C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种光放大用铒镱共掺多组份氧化物玻璃,其组成包括SiO2、Al2O3、Li2O、Yb2O3、Er2O3、B2O3、Na2O、K2O、CaO、BaO、ZnO、MgO等。该光放大用玻璃的制备方法是把原料加入坩埚中,进行熔化,得到玻璃液,加入铂坩埚中,再用光学玻璃熔制法使其熔融、澄清、均化。本发明解决了背景技术中光纤放大器增益带宽窄,玻璃转变温度低,热稳定性和化学稳定性较差,制备工艺复杂的技术问题。本发明的铒镱共掺多组份氧化物光学玻璃能提供高达60nm的增益带宽和更为平坦的增益谱,具有良好的化学稳定性和热稳定性,可完全满足当前光通讯发展信息传输容量急剧膨胀的需要,且制备工艺简单,成本低。

Figure 200310124760

An erbium-ytterbium co-doped multi-component oxide glass for optical amplification, the composition of which includes SiO 2 , Al 2 O 3 , Li 2 O, Yb 2 O 3 , Er 2 O 3 , B 2 O 3 , Na 2 O, K 2 O, CaO, BaO, ZnO, MgO, etc. The preparation method of the glass for optical amplification is that raw materials are added into a crucible and melted to obtain glass liquid, which is added into a platinum crucible, and then melted, clarified and homogenized by an optical glass melting method. The invention solves the technical problems of narrow gain bandwidth of the optical fiber amplifier, low glass transition temperature, poor thermal stability and chemical stability and complicated preparation process in the background technology. The erbium-ytterbium co-doped multi-component oxide optical glass of the present invention can provide a gain bandwidth up to 60nm and a flatter gain spectrum, has good chemical stability and thermal stability, and can fully meet the information transmission capacity of current optical communication development Rapid expansion is required, and the preparation process is simple and the cost is low.

Figure 200310124760

Description

光放大用铒镱共掺多组份氧化物玻璃及其制备方法Erbium-ytterbium co-doped multi-component oxide glass for optical amplification and its preparation method

技术领域technical field

本发明涉及一种光放大用铒镱共掺多组份氧化物光学玻璃及其制备方法,该玻璃可用于第三光通讯窗口即1.55~1.65μm波段的宽带光放大器玻璃。The invention relates to an erbium-ytterbium co-doped multi-component oxide optical glass for optical amplification and a preparation method thereof. The glass can be used for the third optical communication window, that is, the broadband optical amplifier glass in the 1.55-1.65 μm band.

背景技术Background technique

掺铒光纤放大器(EDFA)被广泛应用于光通讯领域1550nm波段光信号的放大,其中光放大介质为掺杂有铒离子的光纤。然而,随着不断发展的通讯服务需求的增加,因特网信息传输容量的迅速增加,光纤骨干网和光城域网的信息传输容量急剧膨胀,当前的波分复用(WDM)通讯系统难以适应这种需求,密集波分复用(DWDM)通讯系统应运而生,目前实际系统中由于采用的掺铒光纤放大器EDFA多为石英基质掺铒光纤放大器,其增益谱形状非常尖锐,且所能获得的净增益带宽1530~1565nm窄到只有35nm左右,严重制约了密集波分复用(DWDM)通讯系统传输系统的信道数。Erbium-doped fiber amplifier (EDFA) is widely used in the optical communication field to amplify optical signals in the 1550nm band, wherein the optical amplification medium is an optical fiber doped with erbium ions. However, with the increasing demand for communication services and the rapid increase of Internet information transmission capacity, the information transmission capacity of optical fiber backbone network and optical metropolitan area network is rapidly expanding. The current wavelength division multiplexing (WDM) communication system is difficult to adapt to this demand, Dense Wavelength Division Multiplexing (DWDM) communication system came into being. At present, the erbium-doped fiber amplifier EDFA used in the actual system is mostly a quartz matrix erbium-doped fiber amplifier, and its gain spectrum shape is very sharp, and the net The gain bandwidth of 1530-1565nm is as narrow as only about 35nm, which seriously restricts the number of channels of the dense wavelength division multiplexing (DWDM) communication system transmission system.

如果掺铒光纤放大器EDFA在更宽的波长范围内能实现更为平坦的增益,则可拓宽可用的信号波长,增大传输容量。为此,人们把不同增益波长范围的光放大器级联起来,但是,这种结构非常复杂,而且在各增益中心波长的边缘无法实现光信号的放大。因此,人们一直致力于研究宽带平坦增益光放大器玻璃材料,当前使用最好的光放大器材料为由ZBLAN(ZrF3-BaF2-LaF3-AlF3-NaF)玻璃制成的光纤,但其价格昂贵,且制备工艺复杂,其玻璃转变温度比碲酸盐玻璃、铋酸盐玻璃还要低,热稳定性差。If the erbium-doped fiber amplifier EDFA can achieve a flatter gain in a wider wavelength range, the available signal wavelength can be broadened and the transmission capacity can be increased. For this reason, people cascade optical amplifiers with different gain wavelength ranges, but this structure is very complicated, and the amplification of optical signals cannot be realized at the edge of each gain center wavelength. Therefore, people have been working on the study of broadband flat gain optical amplifier glass materials. Currently, the best optical amplifier material is an optical fiber made of ZBLAN (ZrF 3 -BaF 2 -LaF 3 -AlF 3 -NaF) glass, but its price It is expensive, and the preparation process is complicated. Its glass transition temperature is lower than that of tellurate glass and bismuth glass, and its thermal stability is poor.

发明内容Contents of the invention

本发明解决了背景技术中光纤放大器增益带宽窄,玻璃转变温度低,热稳定性和化学稳定性较差,制备工艺复杂的技术问题。The invention solves the technical problems of narrow gain bandwidth of the optical fiber amplifier, low glass transition temperature, poor thermal stability and chemical stability and complicated preparation process in the background technology.

本发明的技术解决方案是:Technical solution of the present invention is:

一种光放大用铒镱共掺多组份氧化物玻璃,其特殊之处在于:该铒镱共掺多组份氧化物玻璃的摩尔百分比组成如下An erbium-ytterbium co-doped multi-component oxide glass for optical amplification, which is special in that the mole percentage composition of the erbium-ytterbium co-doped multi-component oxide glass is as follows

SiO2                  20~80SiO 2 20~80

B2O3                 0~40B 2 O 3 0~40

Al2O3                3~20Al 2 O 3 3~20

Li2O                  1~20 Li2O 1~20

Na2O                  0~20 Na2O 0~20

K2O                         0~20K 2 O 0~20

CaO                          0~10CaO 0~10

BaO                          0~10BaO 0~10

ZnO                          0~10ZnO 0~10

MgO                          0~10MgO 0~10

Er2O3                     0.01~10Er 2 O 3 0.01~10

Yb2O3                     0.1~25Yb 2 O 3 0.1~25

ZrO2                       0~5ZrO 2 0~5

Bi2O3                     0~10Bi 2 O 3 0~10

La2O3                     0~10La 2 O 3 0~10

Y2O3                      0~10Y 2 O 3 0~10

上述SiO2和B2O3的总含量以20~85mol%为佳。The total content of the aforementioned SiO 2 and B 2 O 3 is preferably 20-85 mol%.

上述Li2O、Na2O和K2O的总含量以5~25mol%为佳。The total content of the aforementioned Li 2 O, Na 2 O and K 2 O is preferably 5-25 mol%.

上述Bi2O3、La2O3和Y2O3的总含量以0~20%为佳。The total content of the aforementioned Bi 2 O 3 , La 2 O 3 and Y 2 O 3 is preferably 0-20%.

上述铒镱共掺多组份氧化物玻璃的较佳组成为The preferred composition of the above-mentioned erbium-ytterbium co-doped multi-component oxide glass is

SiO2(mol%)                       45SiO 2 (mol%) 45

B2O3(mol%)                      9B 2 O 3 (mol%) 9

Al2O3(mol%)                     12Al 2 O 3 (mol%) 12

Li2O(mol%)                       8Li 2 O (mol%) 8

K2O(mol%)                        4K 2 O (mol%) 4

CaO(mol%)                         6CaO(mol%) 6

ZnO(mol%)                         7ZnO(mol%) 7

Yb2O3(mol%)                     3Yb 2 O 3 (mol%) 3

ZrO2(mol%)                       4ZrO 2 (mol%) 4

Y2O3+Bi2O3(mol%)             2Y 2 O 3 +Bi 2 O 3 (mol%) 2

其与Er2O3的重量百分比为100∶0.25。The weight percentage of it and Er 2 O 3 is 100:0.25.

上述铒镱共掺多组份氧化物玻璃的另一较佳组成为Another preferred composition of the above-mentioned erbium-ytterbium co-doped multi-component oxide glass is

SiO2(mol%)                       55SiO 2 (mol%) 55

B2O3(mol%)                      8B 2 O 3 (mol%) 8

Al2O3(mol%)                     5Al 2 O 3 (mol%) 5

Li2O(mol%)                       14Li 2 O (mol%) 14

Na2O(mol%)                       2Na 2 O (mol%) 2

K2O(mol%)                        2K 2 O(mol%) 2

CaO(mol%)                         1CaO(mol%) 1

BaO(mol%)                         3BaO(mol%) 3

ZnO(mol%)                         2ZnO(mol%) 2

MgO(mol%)                         2MgO(mol%) 2

Yb2O3(mol%)                    2Yb 2 O 3 (mol%) 2

ZrO2(mol%)                      2ZrO 2 (mol%) 2

Y2O3+Bi2O3(mol%)            1Y 2 O 3 +Bi 2 O 3 (mol%) 1

La2O3(mol%)                    1La 2 O 3 (mol%) 1

其与Er2O3的重量百分比为100∶0.25。The weight percentage of it and Er 2 O 3 is 100:0.25.

一种制备上述光放大用铒镱共掺多组份氧化物玻璃的方法,其特殊之处在于:该制备方法包括A method for preparing the above-mentioned erbium-ytterbium co-doped multi-component oxide glass for optical amplification, which is special in that: the preparation method includes

1).按组分、配比取原料,把原料加入坩埚中,在1200~1300℃温度下进行熔化,得到玻璃液;1). Take the raw materials according to the composition and ratio, put the raw materials into the crucible, and melt them at a temperature of 1200-1300 ° C to obtain glass liquid;

2).把玻璃液加入铂坩埚中,采用光学玻璃熔制法使其熔融、澄清、均化,熔制温度为1380~1450℃,得均匀玻璃。2). Add the glass liquid into a platinum crucible, and use the optical glass melting method to melt, clarify and homogenize it. The melting temperature is 1380-1450°C to obtain a uniform glass.

上述熔制温度以1420℃为佳。The above-mentioned melting temperature is preferably 1420°C.

上述熔化温度以1250℃为宜。The above-mentioned melting temperature is preferably 1250°C.

上述熔化坩埚可采用石英坩埚或陶瓷坩埚等。The above-mentioned melting crucible can be a quartz crucible or a ceramic crucible.

本发明具有以下优点:The present invention has the following advantages:

本发明的铒镱共掺多组份氧化物光学玻璃能提供高达60nm的增益带宽和更为平坦的增益谱,具有良好的化学稳定性和热稳定性,可完全满足当前光通讯发展信息传输容量急剧膨胀的需要,且制备工艺简单,成本低。The erbium-ytterbium co-doped multi-component oxide optical glass of the present invention can provide a gain bandwidth up to 60nm and a flatter gain spectrum, has good chemical stability and thermal stability, and can fully meet the information transmission capacity of current optical communication development Rapid expansion is required, and the preparation process is simple and the cost is low.

附图说明Description of drawings

图1为本发明玻璃在980nm波长的泵浦光激励下的发射光谱图;Fig. 1 is the emission spectrogram of glass of the present invention under the pumping light excitation of 980nm wavelength;

图2为本发明玻璃的透过率示意图;Fig. 2 is a schematic diagram of the transmittance of the glass of the present invention;

图3为本发明玻璃的吸收系数曲线图。Fig. 3 is a graph showing the absorption coefficient of the glass of the present invention.

具体实施方式Detailed ways

本发明的宽带光放大器用铒镱共掺多组份氧化物玻璃的摩尔百分比组成如下:Broadband optical amplifier of the present invention is composed as follows with the molar percentage of erbium and ytterbium co-doped multi-component oxide glass:

SiO2                      20~80SiO 2 20~80

B2O3                     0~40(SiO2+B2O3=20~85%)B 2 O 3 0~40 (SiO 2 +B 2 O 3 =20~85%)

Al2O3                    3~20Al 2 O 3 3~20

Li2O                      1~20 Li2O 1~20

Na2O                      0~20 Na2O 0~20

K2O                       0~20(Li2O+Na2O+K2O=5~25%)K 2 O 0~20 (Li 2 O+Na 2 O+K 2 O=5~25%)

CaO                        0~40CaO 0~40

BaO                        0~10BaO 0~10

ZnO                        0~10ZnO 0~10

MgO                        0~10MgO 0~10

Er2O3                    0.01~10Er 2 O 3 0.01~10

Yb2O3                    0.1~25Yb 2 O 3 0.1~25

ZrO2                      0~5ZrO 2 0~5

Bi2O3                    0~10Bi 2 O 3 0~10

La2O3                    0~10La 2 O 3 0~10

Y2O3                     0~10(Bi2O3+La2O3+Y2O3=0~20%)Y 2 O 3 0~10 (Bi 2 O 3 +La 2 O 3 +Y 2 O 3 =0~20%)

其中,SiO2和B2O3总的含量以20~85mol%为宜;Li2O、Na2O和K2O总的含量以5~25mol%为宜;Bi2O3、La2O3和Y2O3总的含量以0~20%为宜。Among them, the total content of SiO 2 and B 2 O 3 is preferably 20-85 mol %; the total content of Li 2 O, Na 2 O and K 2 O is preferably 5-25 mol %; Bi 2 O 3 , La 2 O The total content of 3 and Y 2 O 3 is preferably 0-20%.

本发明的生产方法:Production method of the present invention:

第一步:按摩尔百分比组成取原料,把原料加入至石英坩埚或陶瓷坩埚中,在1200~1300℃温度下进行熔化,得到玻璃液;The first step: take the raw materials according to the molar percentage composition, add the raw materials into a quartz crucible or a ceramic crucible, and melt them at a temperature of 1200-1300 ° C to obtain glass liquid;

第二步:把玻璃液加入至铂坩埚中,采用光学玻璃熔制法使其熔融、澄清和均化,获得均匀的玻璃。熔制温度可为1380~1450℃,最佳熔制温度为1420℃。Step 2: Add the glass liquid into the platinum crucible, and use the optical glass melting method to melt, clarify and homogenize it to obtain uniform glass. The melting temperature can be 1380-1450°C, and the optimum melting temperature is 1420°C.

SiO2和B2O3作为玻璃网络生成体,其总含量为20~85mol%;SiO2和B2O3的含量低于20mol%,会使玻璃析晶,降低玻璃的化学稳定性,超过85mol%会提高玻璃的高温熔制粘度,使玻璃的熔制困难;同时还会影响其它组分加入到玻璃中。B2O3的含量超过15mol%,会降低玻璃的化学稳定性。SiO 2 and B 2 O 3 are used as glass network generators, and their total content is 20-85 mol%. If the content of SiO 2 and B 2 O 3 is less than 20 mol%, it will devitrify the glass and reduce the chemical stability of the glass. 85mol% will increase the high-temperature melting viscosity of the glass, making it difficult to melt the glass; meanwhile, it will also affect the addition of other components into the glass. If the content of B 2 O 3 exceeds 15 mol%, the chemical stability of the glass will be reduced.

Li2O的加入可以提高Er3+的溶解率,使光信号达到一定增益所需的介质长度很短,这对于实现光放大器的小型化极为有利。但Li2O的含量不能超过20mol%,否则会使玻璃易于失透,缩小玻璃的形成范围。The addition of Li 2 O can increase the dissolution rate of Er 3+ , so that the length of the medium required for the optical signal to achieve a certain gain is very short, which is extremely beneficial for realizing the miniaturization of the optical amplifier. However, the content of Li 2 O cannot exceed 20 mol%, otherwise the glass will be prone to devitrification and the glass formation range will be reduced.

Na2O和K2O的加入有利于扩大玻璃的形成区,便于玻璃在较低的温度下进行熔制。The addition of Na 2 O and K 2 O is beneficial to expand the glass forming area and facilitate the glass to be melted at a lower temperature.

Li2O、Na2O和K2O的总含量为5~25mol%,低于5mol%会使玻璃的熔制温度偏高,增加玻璃熔制的难度,超过25mol%会降低玻璃的化学稳定性。The total content of Li 2 O, Na 2 O and K 2 O is 5-25mol%. If it is less than 5mol%, the melting temperature of the glass will be high, which will increase the difficulty of glass melting. If it exceeds 25mol%, the chemical stability of the glass will be reduced. sex.

二价金属氧化物CaO、BaO、ZnO和MgO的加入用于调整玻璃的折射率及热膨胀系数,提高玻璃的化学稳定性和机械加工性能。The addition of divalent metal oxides CaO, BaO, ZnO and MgO is used to adjust the refractive index and thermal expansion coefficient of the glass, and improve the chemical stability and mechanical processing performance of the glass.

加入Al2O3可以改变Er3+周围的配位场结构,使Er3+在1.5μm发射谱的宽度增加。因此本玻璃中必须含有足够高含量的Al2O3,但含量不能超过20mol%,否则会增加玻璃的粘度,使玻璃熔制和成型困难。The addition of Al 2 O 3 can change the structure of the ligand field around Er 3+ and increase the width of the emission spectrum of Er 3+ at 1.5 μm. Therefore, the glass must contain a sufficiently high content of Al 2 O 3 , but the content cannot exceed 20 mol%, otherwise the viscosity of the glass will be increased, making it difficult to melt and shape the glass.

Yb2O3作为敏化剂,增强Er3+在980nm波段的吸收,使Er3+能充分吸收泵浦光的能量,提高Er3+在1.55μm波段的发光效率,但Yb2O3的含量不能超过25mol%,否则会使玻璃易于失透。Yb 2 O 3 acts as a sensitizer to enhance the absorption of Er 3+ in the 980nm band, so that Er 3+ can fully absorb the energy of the pump light, and improve the luminous efficiency of Er 3+ in the 1.55μm band, but Yb 2 O 3 The content cannot exceed 25mol%, otherwise the glass will be prone to devitrification.

适当加入ZrO2可以有效地提高玻璃的化学稳定性,扩大玻璃的形成范围,但不能超过5mol%,否则会使玻璃易于析晶,对拉纤不利。Appropriate addition of ZrO 2 can effectively improve the chemical stability of the glass and expand the range of glass formation, but it should not exceed 5 mol%, otherwise the glass will be prone to crystallization, which is not good for fiber drawing.

适当加入La2O3、Y2O3和/或Bi2O3作可以改善玻璃的熔制性能,扩大玻璃的形成范围,但不能超过20mol%,否则会使玻璃易于析晶;同时有利于增大带宽。Appropriate addition of La 2 O 3 , Y 2 O 3 and/or Bi 2 O 3 can improve the melting performance of glass and expand the range of glass formation, but it should not exceed 20mol%, otherwise the glass will be prone to crystallization; Increase bandwidth.

本发明中的掺铒玻璃具有相当宽且平坦的发射谱,如图1所示。虽然玻璃发射谱不同于光纤的增益谱,但是较宽的发射谱有助于产生较大的增益带宽。The erbium-doped glass in the present invention has a rather broad and flat emission spectrum, as shown in FIG. 1 . Although the glass emission spectrum is different from the gain spectrum of fiber, the wider emission spectrum contributes to a larger gain bandwidth.

本发明玻璃的组成实施例及效果参数如下:   例一   例二   例三   例四   例五   例六   例七   例八   例九   例十   SiO2B2O3Al2O3Li2ONa2OK2OCaOBaOZnOMgOGa2O3Yb2O3ZrO2Y2O3+Bi2O3La2O3Er2O3ρnTgλ0Δλ   459128046070034200.252.661.5379510154852   558514221322022110.252.681.5393520155048   6012381000002050000.52.951.5402540153257.5   63558000630040240.53.181.5578563155761   651058600000042000.73.211.5609585155054   7015360000.50005.50000.73.181.5746610154857   620689005020500313.211.5802547155258   60.5081003040506.52101.53.221.5884570154858   557426534400100002.53.291.5935530155569   97.900.10000000200000.05-1.491010153035 Composition embodiment and effect parameter of glass of the present invention are as follows: Example one Example two Example three Example four Example five Example six Example seven Example eight Example nine Example ten SiO 2 B 2 O 3 Al 2 O 3 Li 2 ONa 2 OK 2 OCaOBaOZnOMgOGa 2 O 3 Yb 2 O 3 ZrO 2 Y 2 O 3 +Bi 2 O 3 La 2 O 3 Er 2 O 3 ρnT g λ 0 Δλ 459128046070034200.252.661.5379510154852 558514221322022110.252.681.5393520155048 6012381000002050000.52.951.5402540153257.5 63558000630040240.53.181.5578563155761 651058600000042000.73.211.5609585155054 7015360000.50005.50000.73.181.5746610154857 620689005020500313.211.5802547155258 60.5081003040506.52101.53.221.5884570154858 557426534400100002.53.291.5935530155569 97.900.10000000200000.05-1.491010153035

其中,例一至例十的掺铒块状玻璃样品成份以摩尔百分比(mol%)表示,其中Er2O3的含量以重量百分比表示,即每100重量单位的掺铒块状玻璃样品成份,含Er2O3的重量。例一至例九为本发明样品,可采用常规的高温熔融方法在1420℃下制备;例十为对照玻璃样品,为商用掺铒石英玻璃,可采用气相沉积方法制备。Wherein, the composition of the erbium-doped bulk glass sample of Example 1 to Example 10 is expressed in mole percent (mol%), wherein the content of Er 2 O 3 is expressed in weight percent, that is, the composition of the erbium-doped bulk glass sample per 100 weight units contains Er2O3 by weight. Examples 1 to 9 are samples of the present invention, which can be prepared by conventional high-temperature melting method at 1420° C.; Example 10 is a control glass sample, which is commercial erbium-doped quartz glass, which can be prepared by vapor deposition.

其中,ρ为密度,单位:g/cm3,采用排水失重法测试;n为1550nm波长的折射率,采用椭偏仪(Ellipsometer)测量;Tg为玻璃的转变温度,单位为℃,采用差热分析仪(DTA)测试;Δλ为增益带宽,单位为nm;λ0为玻璃荧光发射中心波长;玻璃颜色均为玫瑰色。Among them, ρ is the density, unit: g/cm 3 , measured by draining weight loss method; n is the refractive index at 1550nm wavelength, measured by ellipsometer (Ellipsometer); Tg is the transition temperature of glass, unit is ℃, measured by differential thermal Analyzer (DTA) test; Δλ is gain bandwidth, the unit is nm; λ 0 is the center wavelength of glass fluorescence emission; the glass colors are all rose.

Claims (3)

1. light amplification erbium ytterbium codoped multi-component oxide glass, it is characterized in that: the molar percentage of this erbium ytterbium codoped multi-component oxide glass is composed as follows
SiO 2 20~80
B 2O 3 0~40
Al 2O 3 3~20
Li 2O 1~20
Na 2O 0~20
K 2O 0~20
CaO 0~10
BaO 0~10
ZnO 0~10
MgO 0~10
Er 2O 3 0.01~10
Yb 2O 3 0.1~25
ZrO 2 0~5
Bi 2O 3 0~10
La 2O 3 0~10
Y 2O 3 0~10
Described SiO 2And B 2O 3Total content be 20~85mol%; Described Li 2O, Na 2O and K 2The total content of O is 5~25mol%; Described Bi 2O 3, La 2O 3And Y 2O 3Total content be 0~20%.
2. light amplification erbium ytterbium codoped multi-component oxide glass according to claim 1, it is characterized in that: the composition of described erbium ytterbium codoped multi-component oxide glass comprises
SiO 2 45mol%
B 2O 3 9mol%
Al 2O 3 12mol%
Li 2O 8mol%
K 2O 4mol%
CaO 6mol%
ZnO 7mol%
Yb 2O 3 3mol%
ZrO 2 4mol%
Y 2O 3+Bi 2O 3 2mol%
Itself and Er 2O 3Weight percent be 100: 0.25.
3. light amplification erbium ytterbium codoped multi-component oxide glass according to claim 1 and 2, it is characterized in that: the composition of described erbium ytterbium codoped multi-component oxide glass comprises
SiO 2 55mol%
B 2O 3 8mol%
Al 2O 3 5mol%
Li 2O 14mol%
Na 2O 2mol%
K 2O 2mol%
CaO 1mol%
BaO 3mol%
ZnO 2mol%
MgO 2mol%
Yb 2O 3 2mol%
ZrO 2 2mol%
Y 2O 3+Bi 2O 3 1mol%
La 2O 3 1mol%
Itself and Er 2O 3Weight percent be 100: 0.25.
CNB2003101247605A 2003-12-31 2003-12-31 Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof Expired - Fee Related CN1313403C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101247605A CN1313403C (en) 2003-12-31 2003-12-31 Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101247605A CN1313403C (en) 2003-12-31 2003-12-31 Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof

Publications (2)

Publication Number Publication Date
CN1634785A CN1634785A (en) 2005-07-06
CN1313403C true CN1313403C (en) 2007-05-02

Family

ID=34845066

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101247605A Expired - Fee Related CN1313403C (en) 2003-12-31 2003-12-31 Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof

Country Status (1)

Country Link
CN (1) CN1313403C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361917B2 (en) 2010-08-05 2013-01-29 Schott Corporation Rare earth aluminoborosilicate glass composition
WO2018121491A1 (en) * 2016-12-29 2018-07-05 广东东阳光药业有限公司 Borosilicate glass with high chemical resistance and application thereof
CN107473579A (en) * 2017-09-30 2017-12-15 徐传龙 A kind of erbium and ytterbium codoping laser prefabricated rods and preparation method thereof
WO2019074794A1 (en) * 2017-10-10 2019-04-18 Unifrax 1 Llc Crystalline silica free low biopersistence inorganic fiber
CN108863083B (en) * 2018-06-25 2021-05-11 南京邮电大学 A kind of quantum dot and rare earth doped glass-ceramic and preparation method thereof
CN111253074A (en) * 2020-01-21 2020-06-09 华南师范大学 Erbium-ytterbium co-doped quartz substrate up-conversion luminescent fiber and preparation method thereof
CN111704361B (en) * 2020-06-08 2022-12-20 重庆国际复合材料股份有限公司 High-refractive-index high-performance glass fiber composition, glass fiber and composite material thereof
CN112851129B (en) * 2021-02-06 2021-08-31 威海长和光导科技有限公司 Near-infrared band broadband emission rare earth doped bismuthate optical fiber glass and preparation method thereof
CN113568245A (en) * 2021-07-23 2021-10-29 吉林大学 A silicon-based erbium-ytterbium co-doped polymer green light optical waveguide amplifier and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200467A (en) * 1977-07-01 1980-04-29 Ernst Leitz Wetzlar Gmbh Zirconium-containing borosilicate glasses
US4612295A (en) * 1983-07-14 1986-09-16 Hoya Corporation Glass for eye glass lens
CN1198414A (en) * 1997-03-25 1998-11-11 株式会社小原 Optical glass with negative anomalous dispersion
CN1352624A (en) * 1999-05-06 2002-06-05 康宁股份有限公司 Glass composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200467A (en) * 1977-07-01 1980-04-29 Ernst Leitz Wetzlar Gmbh Zirconium-containing borosilicate glasses
US4612295A (en) * 1983-07-14 1986-09-16 Hoya Corporation Glass for eye glass lens
CN1198414A (en) * 1997-03-25 1998-11-11 株式会社小原 Optical glass with negative anomalous dispersion
CN1352624A (en) * 1999-05-06 2002-06-05 康宁股份有限公司 Glass composition

Also Published As

Publication number Publication date
CN1634785A (en) 2005-07-06

Similar Documents

Publication Publication Date Title
CN1261332A (en) Composition for optical waveguide article and method for making continuous clad filament
CN101224947A (en) Oxyhalogen tellurite glass that emits light in the 2μm band
CN1313403C (en) Light-amplified erbium ytterbium co-doped multi-component oxide glass and preparation method thereof
CN111377609B (en) Preparation method of transparent glass with mid-infrared 3.9 mu m luminescence characteristic at room temperature
CN1233581C (en) Light amplification glass and optical waveguide
CN1807310A (en) Rare earth doped gallium germanium bismuth lead luminous glass material and its preparation method and uses
KR20130119048A (en) Optical glass for gain medium with high fluorescence efficiency and optical fiber using the optical glass
CN105753315A (en) A kind of Er3+/Ce3+/Yb3+ triple-doped tellurate glass containing silver nanoparticles and its preparation method
CN104230167A (en) Quantum dot doped glass and preparation method thereof
CN101414025A (en) Germanate glass optical fiber with emission wavelength of 1.5-2.2 mu m
CN1634784A (en) Erbium ytterbium codoped multi-component oxide glass single-mode optical fiber core glass and method for preparing single-mode optical fiber
CN1544964A (en) Oxyfluoride glass-ceramic fiber doped with rare earth ions and its preparation method
CN109023524B (en) Erbium-holmium-praseodymium tri-doped lead fluoride mid-infrared laser crystal and preparation method thereof
JP5516413B2 (en) Light amplification glass
WO2001099241A2 (en) RARE EARTH ELEMENT-DOPED Bi-Sb-Al-Si GLASS AND ITS USE IN OPTICAL AMPLIFIERS
JP2004277252A (en) Optical amplification glass and optical waveguide
CN1603871A (en) Yb3+Doped tellurate glass double-clad optical fiber and preparation method thereof
CN1562833A (en) Tm3+/Yb3+Codoped heavy metal oxyfluoride silicate glass and preparation method thereof
CN112062467B (en) Rare earth ion doped Er 3+ Preparation method of zirconium magnesium borate glass
CN1233580C (en) Tm3+/Yb3+Codoped oxyfluoride tellurate glass and preparation method thereof
CN102515513A (en) A kind of Er3+/Ce3+ co-doped tellurium bismuth titanium glass and its preparation method
CN1269915A (en) Glass for high and flat gain 1.55 micros optical amplifiers
CN1597584A (en) Tellurate glass and its application
CN1321924C (en) Yb3+/Ce3+/Er3+Codoped oxychloride tellurate glass and preparation method thereof
JP2004168578A (en) Optical amplification glass and optical waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070502

Termination date: 20101231